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On Future-Dependent Block Coding for Input-Restricted

Channels

Consider a restricted channel whose constraints may be characterized by a finite state machine model. Conventional
coding techniques for such channels result in codes where the choice of a word to be transmitted is only a function of the
current state and the information to be represented by this word. This paper develops techniques for constructing codes
where the code word choice may also depend on future information to be transmitted. It is shown that such future-
dependent codes exist for channels and coding rates where no conventional code may be constructed.

Introduction

In many digital transmission and recording systems, con-
siderations such as spectral shaping, self-timing, and limi-
tations on intersymbol interference require that, before
modulation, the data be mapped onto a sequence with
special properties. Such suitable sequences often define
discrete noiseless channels of the type considered by
Shannon [1] in which restrictions are represented by fi-
nite-state sequential machines. In practice, a common ad-
ditional requirement is that the encoding of the binary
data onto the channel sequence must be synchronous. By
this is meant that the bit per symbol ratio (the coding rate)
is constant over each word.

An extensive body of literature exists on such codes;
references [2, 3] are survey papers. Although there have
been techniques proposed for creating a direct mapping
between data and code words [4-7], the majority of chan-
nel codes encountered in practice employ table look-up
techniques; construction of such codes requires finding a
set of code words or paths which correspond to state tran-
sitions in the model for the channel constraints. Informa-
tion to be coded is then associated with these paths [8, 9].

The requirement that the code be synchronous implies
that there exists a basic code word length W [9] of which
all word lengths in a given code are multiples. A code
word of length MW then represents M letters drawn from
an alphabet B where « = log, |8!. That is, the basic word

length is associated with « bits (for simplicity, only trans-
mission of binary information is considered), and the cod-
ing rate is a/W. Two classes of codes described in earlier
papers are as follows:

1. Fixed length (FL) codes [9]. Here all code words are of
the same length W, each representing one of the alpha-
bet of 2% letters. The word used to represent a letter
may be a function of the state occupied by the channel
at the beginning of a code word.

2. Variable length (VL) codes [9-11]. Here code word
lengths are integer multiples of the basic word length
W. The code, as in the fixed length case, may be state
dependent.

In general, the size of the coding table grows ex-
ponentially with the word length. Error propagation tends
to be proportional to this length. Thus it is desirable to
obtain, for a given rate, a/W, the shortest possible code.
The generation of a set of paths for an optimal (shortest)
fixed length code may be done by a simple recursive pro-
cedure [9]. In the case of a variable length code, the gen-
eration of a set of paths may be done by a recursive pro-
cedure each step of which involves the solution of a dy-
namic programming problem [10]. An interesting property
of variable length codes is that the maximal word length
for the shortest existing code with a given rate (bit per
symbol ratio) may be considerably smaller than the word
length required for a fixed length code [10].
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Consider the above coding process. Information se-
quences of length M are mapped onto code words of
length MW channel symbols, as a function of the channel
state occupied at the beginning of a code word. Another
way to look at this process is that, for each state entered
at the end of a code word, there exists an M for which a
code word may be found to map M information letters
onto MW channel symbols. An optimal VL code mini-
mizes the maximum value of M. But suppose no such M
exists. Is coding then not possible? It is shown below that
in fact there are cases where such “'infinite’” codes may
be constructed by incorporating future dependency or
look-ahead into the coding process. That is, coding of the
next N letters may always require knowledge of N + M.
Such codes will be termed future-dependent (FD).

FL and VL codes may be regarded as special cases of
FD codes. As an example, consider a variable length code
with words of length W and 2W. One way of looking at the
coding process for this code is that it is done one letter at
a time, but the path (W channel symbols) chosen may de-
pend on the following or previous letter as well as the
current and preceding channel state. An FL code of length
2W may be viewed in the same manner. Examples of spe-
cific codes incorporating future dependency may be
found in the literature [2, 12], but these are often equiva-
lent to some FL or VL code with different assignments of
letters to coding paths.

This paper considers a special class of FD codes. Let
fo},i=1,2,---, N, denote the states for the channel
constraint model. Let L,j=12,- - - bethe sequence of
letters to be transmitted. Each L ;s drawn from an alpha-
bet containing 2% distinct letters.

Definition: An FD(KW, K, Q) code of rate a/W is a map-
ping

A: (o L L -, L

rk+10 Srk+20 (r+ DK’

L - L )= o, r=1,2,---

(r+DE+1? r+DE+Q

defined over a set of terminal states {o}. The code word
is a sequence of KW symbols which take the channel from
a, to some other terminal state o,. The mapping is such
that L . ., - -, L., may be recovered, given o, and &
(i.e., the code is instantaneously decodable). For sim-
plicity, the codes considered will be restricted to the
special case where letters used for coding from each
terminal state o, are independent of the path by which
this state is entered. This may be contrasted with the
general case where the continuation of a particular path
entering o, could be restricted to a subset of the mapping
M.

The following is a synopsis of the paper. Section 2 re-
views methods for generating paths between channel
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states. Section 3 develops techniques for generating FD
(W, 1, 1) ccdes. Equations are presented the solutions of
which are a necessary condition for the existence of a
code. The solution of these, coupled with techniques for
assigning letters to the available paths, produces a code.
Section 4 gives some examples. It is shown that an
FD(W, 1, 1) code may be constructed for a set of channel
constraints and coding rate which admit no conventional
code of finite length. Section 5 considers the case of
FD(QW, Q, K) codes, where Q # K. It is shown that
whenever such a code may be constructed, it is possible
to form an FD(W', 1, 1) code, where W' = QSW and § is
the ceiling of K/Q. Section 6 summarizes the results.

2. Coding paths and channel constraints

Let § = {o},i=1,2,---, N, denote the states for the
channel constraint model. To each o, € §, there corre-
sponds a set of allowable channel symbols {V,}.. The
transmission of a symbol takes the channel to a new state
which is a function of the previous state and the trans-
mitted symbol.

It is convenient to define a channel skeleton transition
matrix as follows:

D = {d}, (0

where d,;2 the number of symbols which take the channel
from o, to o,

Let dfj 2 the number of paths of length n symbols
which take the channel from o, to o;. Then

d = [DY}, @)

The channel capacity, defined as the maximum bit per
symbol rate permitted by the channel constraints, is given
[1] by the base-two logarithm of the largest real root of

det [d, 2™ - 8,] = 0. 3)

Symbols associated with paths of length W may be ob-
tained from the Wth power of the channel transition ma-
trix

A = {ay), @

where a,; represents the disjunction, +, of sequence sym-
bols which take the channel from o, to 0. If no such sym-
bol exists, then a,, = . Powers of A are formed by the
operations of disjunction, +, and concatenation. The
concatenation of ¢J with any symbol results in .

3. FD(W, 1, 1) codes

As mentioned above, an FD(KW, K, K) code maps KX let-
ters on channel sequences whose basic word length is
KW, with the knowledge, at the time that a code word is
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chosen, of the current as well as the next X letters to be
transmitted. It is easy to see that this is equivalent to an
FD(W', 1, 1), where W' = KW.

Let L, t = 1, 2, - - -, be the letters encoded at time
t,1=1,2, - -. Each letter L is chosen from an alphabet
B containing 2°. The channel states occupied at the be-
ginning of each code word are denoted by o,,, i =
1, 2, - - -. The ith code word transmitted will be repre-
sented by W,.

Definition: The terminal or coding states for a code are
those entered at the end of code words.

Consider the transmission of L,. The path chosen, W,
takes the channel from state o, to o,,. At t = 1, the
time of transmission, L, is known, but L, is not. Thus o ,,
must be such that L, in particular and any L, can be trans-

mitted.

Definition: Anindependent path set of length NW (termed
an independent path for short) is a path or set of paths
which can be used to represent N symbols.

It can easily be seen that each terminal state must have
associated with it an integral number of independent
paths of length W. In the above example, L, is known at
t =1, but L, is not. Thus, given that the channel resides
in o, at ¢t = 1, only one state 04 Can be associated
with the transmission of L,.

Definition: The weight ®, of a state ¢, is the number »,
of independent paths of length W from o, times 27

Let {P}, P, = 1, be associated with the distinct paths
of length W which lead from o, to o,. That is, for each
path of length W from o, to o, there is a P},. Let {C}, Cj; =
0 or 1, be a set of choices associated with the distinct
paths. That is, if a given path is included in the code, then
its associated C}; is 1.

Proposition 1

Suppose an FD(W, 1, 1) code can be constructed for a
given rate o/ W. Let ®, be the weight of a terminal state
o, after the paths not used in coding have been eliminated.
Then,

@, = > CLP®2™" )

7.1

Proof
The number of independent paths of length 2W leading

from o, is
2%, =Y C"Pyn ©6)

- iyt gty
)
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But this is just enough to transmit any of

n, = Z CrijP Tij'”jz_a Q)
i

letters from o, followed by any other letter. O

Proposition 2

A necessary condition for the existence of an FD(W, 1, 1)
code is that there exists a set of choices {Cirj} for which
Egs. (5) have a set of solutions such that

1. =1

1

and

2. the @, are integer multiples of 27"

Proof

Conditions 1 and 2 follow from Proposition 1. Weight
®, > 1 means that not all the paths from o, can be utilized.
The {®,} must be integer multiples of 2% since they
represent integer numbers of independent paths. [J

Given that an appropriate solution has been found to
Eqgs. (5), the problem arises of assigning letters to the cod-
ing paths. Note that if all nonzero ®, are 1, then an FL
code can be constructed. Otherwise, two further condi-
tions are necessary:

3. Suppose n, distinct letters have been assigned for
transmission from a terminal state o,. Then each cod-
ing path from o, must be associated with a single let-
ter, since the code is to be instantaneously decodable.

4. The letters assigned to terminal state o, are indepen-
dent of the path used to reach this state.

Proposition 3
The following two conditions ensure the possibility of sat-
isfying 3.

a. No terminal state o, has more than a single code word
leading to each state o, of fractional weight.

b. The terminal states reachable via code words from o,
may be partitioned into subsets of total partial weight
one.

Proof

Each path leading to a state o, with @, = 1 may be used to
represent a single letter. The set of paths leading to a
group of states of combined partial weight 1 may likewise
be assigned a single letter. O
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Figure 1 State transition diagram for a set of channel con-
straints.

Table 1 Letter assignments.

Initial state Information Code word New state
o, 0 aa o,
o, (1/0) ab o,
o, /1) ba o,
o, 0 aa o,
o, 1 aa o,
Table 2 Optimal variable length code.
Initial state Information Code word New state
o, 0 aa o,
o, 10 abaa a,
o, 11 baaa g,

Condition 4 is related to the problem of state-indepen-
dent decoding for FL codes [9, 11]. Consider a state o, of
fractional weight, reachable via paths of length W from a
set of terminal states {(rj}. The state o, must be assigned
letters which are the same for all states in {o";}. This can be
attempted by a process of exhaustive search.

4. Examples

Two examples of FD(W, 1, 1) codes are derived in this
section. The first is a rate 1/2 code, with W = 2, for the
constraints illustrated in Fig. 1. These correspond to a
digital magnetic recording channel in which intersymbol
interference is controlled by requiring that each transition
between saturation levels be separated by at least two
baud intervals [9]. The D matrix for this example is given
by
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010
D=]|001]. 3
101

The capacity is approximately 0.55 bits per channel sym-
bol.

Consider the set of inequalities

1
D, = E (P, @,),

D

2

IA

1
E (Py®, + P, @),

1
®, = (P @, + Py, + Py®,). ©)

3 337 3

Choosing P%, = 0, P*, = 1 otherwise, where P¥%; = C, P,
one obtains

1
¢ = 5 (@,),
1
®, = Py (®,),
1
=S (@, + 0, + ), (10)

which is satisfied by &, = ®, = 1/2, &, = 1. In other
words, o, and o, each have a single independent path of
length 2, while @, has two. Note that the paths satisfy the
conditions stipulated in Proposition 3.

Let the alphabet A be (0, 1). The two independent paths
from o, imply that either 0 or 1 may be transmitted from
this state. The other states each have only a single inde-
pendent path, corresponding to either 0 or 1. One way of
assigning letters to the paths is shown in Table 1, where
(1/0) indicates that 1 is to be transmitted with the knowl-
edge that 0 is to be the next letter.

It is interesting to note that this is equivalent to an opti-
mal variable length code, derived in reference [7], with a
maximum word length of 2, as shown in Table 2.

Figure 2 illustrates another set of channel constraints;
for these the channel capacity is one bit per symbol.

Proposition 4

There exist sets of channel constraints for which no fixed
or variable length code can be constructed with a rate
of a bits per W channel symbols, but which admit an
FD(W, 1, 1) code with this rate.

Proof
The channel constraints are those shown in Fig. 2. The
existence of an FD(W, 1, 1) code with a rate of one bit per
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symbol is shown in Table 3. The proof that no fixed or
variable length code can be constructed is given in the
appendix. O

An FD(1, 1, 1) code will now be constructed. Consider
the inequalities

1
b = Y (P @ + PP + P D)

1

1
®, = > (P2,

1
®, = (Py®, + Py, (11)

IA

Letting P = 1, the corresponding equations are satisfied
by® =1,®, =&, = 1/2. Thus two independent paths of
length 1 lead from o, and one each from o, and o,

A code can be constructed as in Table 3.

The coding paths are illustrated by the trellis shown in
Fig. 3.

5. Fixed length codes with general future
dependency

This section considers the general class of FD(KW, X,
MK) codes with M # 1. It is shown that whenever such a
code exists for integer M > 1, then an FD(MKW, MK,
MK) code exists. Clearly, if a code exists for M < 1, then
an FD(KW, K, K) code exists. In other words, it is suf-
ficient to restrict attention to FD(W, 1, 1) codes at the
expense of possibly increased complexity and coding
delay.

Suppose a FD(KW, K, MK) code can be constructed.
Coding is done for K letters at a time, with knowledge of
the next MK. Then it is certainly possible to code with the
knowledge of the next 2M — j)K letters,j= 1,2, - -, M.
But this would be an FD(MKW, MK, MK) code.

It is interesting to consider what modifications to (5) are
required to form a necessary condition for the existence
of an FD(KW, K, MK) code. Note that each state o, en-
tered at the end of a code word must have sufficient paths
leading from it to represent the next (known) MK letters.
But there is no knowledge of what is to follow. For ex-
ample, suppose L,, L,, - - -, L, are to be transmitted, tak-
ing the channel from o, to o,. At the time this path is cho-
sen L, ., L,.,, -, Ly, are known, but L __ . .
Ly siissr -+ are not. Thus paths of length MK leading
from each terminal state must end in states associated
with sufficient paths of length MW to represent any MK
letters.
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Figure 2 State transition diagram for a set of channel con-
straints.

Figure 3 Example of a coding trellis for the constraints of
Fig. 2.

Table 3 Constructed code.

Initial state Information Code word New state
o, 0 a o,
o, (1/0) b o,
o, /1) c o,
o, 0 c o,
o, (1/0) c o,
o, /1) a o,

But this is precisely the requirement for the existence
of an FD(MKW, MK, MK) code. That is, there must exist
a set of chosen C;; such that the equations

o, = > C P o2 (12)

[V Y]

have solutions subject to the requirements of Proposition
2.
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3 see M—1 M

=1 2

Figure 4 (a) Trellis for the constraints of Fig. 2. (b) Paths from
o, to o which maximize ¥,.

However, code words are of length KW. Thus an addi-
tional requirement on the eligible paths P, is that they
enter terminal states after each KW channel symbols.

6. Conclusion

Methods were presented for the construction of FD(W,
1, 1) codes, which may be regarded as a generalization of
state-dependent block codes for input-restricted chan-
nels. It was shown that FD codes exist for constraints
which admit no conventional codes of finite length. It was
also shown that the existence of an FD(KW, K, MK) code
for integer M implies the possibility of constructing an
FD(MKW, MK, MK) code.

Appendix: Proof of Proposition 4

It is shown here that no variable length code with rate 1
can be constructed for the constraints shown in Fig. 2.
Much of the terminology is drawn from reference [10].

Consider a set of paths {W} leading from &,, where
{W7} is the ith path of length n. Let V, be the number of
distinct paths of length n. A necessary condition for the
possibility of coding from o, is given by the Kraft inequal-
1ty

M
VM= V=1 (A)

Here ¢ = 1 and MW is the maximum word length.
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Consider a code of maximum word length MW = M,
(W = 1). Assume first that all states are principal (i.e.,
code words can terminate there). Consider Fig. 4(a).

Note that paths of length M from state o, which enter
states o, and o, at depth (M — 1), can be terminated in
their states without decreasing ¥ (M). This is because
two paths of length M are equivalent to one of length
(M — 1) in contributing to the right-hand side of Eq. (13).
Truncating paths from o, at depth (M — 2) in states o, and
o, likewise does not decrease ¥,(M), since (for o,) one
path of length M — 2 is worth more than three of length
M, and (for o) two of length M — 1 are equivalent to one
of length M. This process can be carried backward, re-
sulting in a trellis whose paths entering states o, and o,
terminate there, and which maximizes ¥,(M). Then,

M-1
max ¥ (M) = oax2"+3x27
n=1
M+1
=i+ Y2"<2. (A2)
n=1
But
max (¥,(M)) = 27! max (¥,(M - 1)) < 1, (A3)

so that words cannot terminate in o,.

Moreover,
max (¥,(M)) < 27" max (¥,(M — 1))
+ 27" max (¥,(M - 2)), (A4)

which implies that ¥,(M) = 1 only if ¥.,(M — 1) > 1. But
max (¥,(1)) < 1. Thus both o, and o, are eliminated as
candidates for the coding states.

This means that all coding paths must start and end in
state o,. Consider Fig. 4. Note that ¥, can be maximized
by terminating paths entering o, at depth M — 1. Having
done so, it pays to terminate paths in o, at depth M — 2,
since there is one extension of length 1 and one of length
2. This process can be continued backward to depth 2.
The result is one potential coding path of length n, n = 1,
2, -, M. Thus

¥ o<

1

27N < 1 (AS)

Mz

i

n=1

no rate 1 code of length M can be constructed.
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