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On  Future-Dependent  Block  Coding  for  Input-Restricted 
Channels 

Consider  a  restricted  channel  whose  constraints  may  be  characterized  by  a  jinite  state  machine  model.  Conventional 
coding  techniques  for  such  channels  result  in  codes where the  choice of a word to  be  transmitted  is  only  a  function of the 
current  state  and  the  information  to  be  represented  by  this  word.  This  paper  develops  techniques  for  constructing  codes 
where  the  code word choice  may  also  depend on future  information  to  be  transmitted.  It  is  shown  that  such  future- 
dependent  codes  exist for channels  and  coding  rates where no conventional  code  may be constructed. 

Introduction 
In many digital transmission and recording systems,  con- 
siderations such  as  spectral shaping,  self-timing,  and limi- 
tations on intersymbol interference require that, before 
modulation, the  data be  mapped onto a sequence with 
special  properties. Such suitable sequences  often define 
discrete noiseless channels of the  type  considered by 
Shannon [ I ]  in which restrictions  are  represented by fi- 
nhe-state sequential  machines. In practice, a common ad- 
ditional  requirement is that  the encoding of the binary 
data  onto  the  channel  sequence must  be synchronous. By 
this is meant that  the bit per symbol ratio  (the coding  rate) 
is constant  over  each word. 

An extensive body of literature  exists  on  such  codes; 
references [2, 31 are  survey  papers. Although there have 
been techniques proposed for  creating a direct mapping 
between  data  and  code  words [4-71, the majority of chan- 
nel codes  encountered in practice  employ table  look-up 
techniques;  construction of such  codes requires finding a 
set of code  words  or  paths which correspond  to  state tran- 
sitions in the model for  the  channel  constraints. Informa- 
tion to be coded is then  associated with these  paths  [8,9]. 

The requirement that the code be synchronous implies 
that  there  exists a basic  code word length W [9] of which 
all word  lengths in a given code  are multiples. A code 
word of length MW then  represents M letters  drawn from 
an  alphabet B where a = log, IBl. That  is,  the basic word 

length is associated with (Y bits (for simplicity,  only trans- 
mission of binary  information is considered),  and  the cod- 
ing rate is a / W .  Two  classes of codes described in earlier 
papers  are  as follows: 

1. Fixed  length (FL)  codes [9]. Here all code  words  are of 
the  same length W, each representing one of the alpha- 
bet of 2* letters.  The word  used to  represent a letter 
may be a  function of the  state occupied by the  channel 
at  the beginning of a code  word. 

2. Variable length (VL) codes [9-111. Here  code word 
lengths are integer  multiples of the basic word length 
W .  The  code,  as in the fixed length case, may be state 
dependent. 

In  general,  the size of the coding  table grows  ex- 
ponentially  with the word length. Error propagation tends 
to be  proportional to this  length. Thus it is desirable to 
obtain,  for a given rate, a / W ,  the  shortest possible code. 
The  generation of a set of paths  for  an optimal (shortest) 
fixed length code may be done by a simple recursive pro- 
cedure [9]. In the  case of a variable length code,  the gen- 
eration of a set of paths may be done by a recursive  pro- 
cedure  each  step of which involves the solution of a dy- 
namic programming problem [lo]. An interesting  property 
of variable  length codes is that the  maximal word length 
for the shortest existing code with a  given rate (bit per 
symbol  ratio)  may  be  considerably  smaller than  the word 
length required for a fixed length code [lo]. 
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Consider  the  above coding process. Information  se- 
quences of length M are mapped onto  code  words of 
length MW channel symbols,  as a  function of the channel 
state occupied at  the beginning of a code  word.  Another 
way to look at this process is that,  for  each  state  entered 
at  the  end of a code  word,  there  exists  an M for which a 
code word may be  found to map M information letters 
onto MW channel  symbols. An optimal VL code mini- 
mizes the maximum value of M .  But suppose  no  such M 
exists. Is  coding then not  possible? It is shown below that 
in fact  there  are  cases  where  such "infinite" codes may 
be constructed by incorporating future  dependency  or 
look-ahead  into the coding process.  That  is, coding of  the 
next N letters may always  require knowledge of N + M .  
Such codes will be termed  future-dependent (FD). 

FL and VL codes may be regarded as special cases of 
FD codes. As an  example,  consider a variable length code 
with words of length Wand 2 W. One way of looking at the 
coding process  for this code is that it is done  one  letter  at 
a time, but the  path (W channel symbols) chosen may de- 
pend on  the following or previous letter  as well as  the 
current  and preceding channel  state. An FL code of length 
2W may be viewed in the  same manner. Examples of spe- 
cific codes incorporating future  dependency may be 
found in the literature  [2, 121, but  these  are often  equiva- 
lent to  some FL or VL code with different assignments of 
letters  to coding paths. 

This  paper  considers a special class of FD codes.  Let 
{u,}, i = 1, 2, . . ., N ,  denote  the  states  for  the channel 
constraint model. Let Lj ,  j = 1,2, . . ., be the  sequence of 
letters  to be transmitted.  Each Lj is drawn  from  an alpha- 
bet  containing 2" distinct letters. 

Definition: An FD(KW, K, Q) code of rate a/ W is a map- 
ping 

L(r+l)K+I' . . ., L(r+l,K+a) + " 3  r = 1, 2, . . . 
defined over a set ofterminal states {ui}. The  code word o 
is a sequence of KW symbols  which take  the  channel  from 
u, to  some  other terminal state uj. The mapping is  such 
that . . ., L(r+l)K may  be recovered, given ui and w 
(i.e.,  the  code is instantaneously  decodable). For sim- 
plicity, the  codes considered will be restricted  to  the 
special case  where  letters used for coding  from each 
terminal state ui are independent of the  path by which 
this state is entered.  This may be contrasted with the 
general case  where  the continuation of a particular path 
entering ui could be restricted to a subset of the mapping 
"4. 

The following is a synopsis of the  paper.  Section 2  re- 
76 views methods  for generating paths  between  channel 
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states. Section 3 develops  techniques  for generating FD 
(W, 1, 1) cccles. Equations  are  presented  the solutions of 
which are a necessary condition for the  existence of a 
code.  The solution of these, coupled with techniques  for 
assigning letters  to  the available paths,  produces a code. 
Section 4 gives some  examples.  It is shown  that  an 
FD( W, 1, 1) code may be constructed  for a set of channel 
constraints and  coding rate which admit no conventional 
code of finite length. Section 5 considers  the  case of 
FD(QW, Q,  K) codes,  where Q # K. It is shown  that 
whenever  such a code may be constructed, it is possible 
to  form  an FD(W', 1 ,  1) code,  where W' = QSW and S is 
the  ceiling of K/Q. Section 6 summarizes  the  results. 

2. Coding  paths  and  channel  constraints 
Let S = {ui}, i = 1, 2, . . ., N ,  denote  the  states  for  the 
channel constraint model. To  each ui E S, there  corre- 
sponds a set of allowable channel symbols {V,},. The 
transmission of a symbol takes  the channel to a new state 
which is a  function of the previous state and the  trans- 
mitted symbol. 

It is convenient  to define a channel skeleton transition 
matrix as follows: 

where dijE the number of symbols which take  the  channel 
from ui to uj. 

Let dt: E the number of paths of length n symbols 
which take  the  channel  from ui to uj. Then 

d t  = [Dl:. (2) 

The channel capacity, defined as  the maximum bit per 
symbol rate permitted  by the  channel  constraints, is given 
[l] by the base-two  logarithm of the largest  real root of 

det [dijZ" - i3J = 0. (3) 

Symbols associated  with paths of length W may be  ob- 
tained from the Wth power of the channel  transition ma- 
trix 

where a, represents  the disjunction, +, of sequence sym- 
bols which take  the  channel from ui to uj. If no  such sym- 
bol exists, then a, = 0. Powers of A are formed by the 
operations of disjunction, +, and  concatenation.  The 
concatenation of 0 with  any symbol  results in 0. 

3. FD(W, 1 , l )  codes 
As mentioned above,  an FD(KW, K,  K) code maps K let- 
ters  on channel sequences whose  basic  word  length is 
KW, with the knowledge, at  the time that a code word is 
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chosen, of the current  as well as  the next K letters  to be 
transmitted. It is easy  to  see  that this is equivalent to an 
FD( W ' ,  1 ,  l ) ,  where W' = K W .  

Let L,, t = 1, 2 ,  . . ., be the  letters  encoded  at time 
t ,  t = 1, 2 ,  . . .. Each  letter L is chosen  from  an  alphabet 
B containing 2". The channel states occupied at  the be- 
ginning of each  code word are  denoted by i = 

1, 2, . . . . The ith code word transmitted will be repre- 
sented by W,. 

Definition: The terminal or coding states  for a code  are 
those  entered  at  the  end of code  words. 

Consider  the transmission of L,. The path chosen, W , ,  
takes  the channel  from state uk(*) to ut(,). At t = 1, the 
time of transmission, L, is known,  but L, is not. Thus uk(,) 
must be such  that L, in particular  and any L, can be  trans- 
mitted. 

Definition: An independent  path  set of length N W  (termed 
an independent path  for  short)  is a path or set of paths 
which can be used  to  represent N symbols. 

It  can easily  be seen  that  each terminal state must have 
associated with it an integral  number of independent 
paths of length W .  In  the  above  example, L, is known at 
t = 1 ,  but L, is not.  Thus, given that  the  channel  resides 
in uk(l) at t = 1 ,  only one  state uk(,) can be  associated 
with the transmission of L,. 

Dejinition: The weight a, of a state ui is  the number n, 
of independent paths of length W from ui times 2-". 

Let {PL}, P'lj = 1 ,  be associated with the distinct paths 
of length W which lead  from ui to ai. That  is,  for  each 
path of length  Wfrom ui to ui, there is a PC. Let {CL}, Cri = 

0 or 1, be a set of choices  associated with the distinct 
paths.  That  is, if a given  path is included in the  code,  then 
its  associated CL is 1. 

Proposition 1 
Suppose  an  FD( W ,  1 ,  1) code can  be constructed  for a 
given rate a / W .  Let a, be the weight of a  terminal state 
u, after  the  paths not used in coding have been eliminated. 
Then, 

ai = 1 c;,P',@,2-". (5 )  
r , i j  

Proof 
The number of independent  paths of length 2 w  leading 
from ci is 

Pai = 1 C',,P',,nj, (6) 
rAi 
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But this is jus ;t  enough to  transmit  any  of 

letters from ui, followed by any  other  letter. 0 

Proposition 2 
A necessary condition for  the  existence of an  FD( W ,  1 ,  1) 
code is that  there  exists a set of choices {CLi} for which 
Eqs. (5) have  a set of solutions  such  that 

1. ai 5 1 

and 

2 .  the Qi are integer multiples of 2-". 

Proof 
Conditions 1 and 2 follow from Proposition 1 .  Weight 
@, > 1 means that not all the  paths from mi can be utilized. 
The {Qi} must be  integer multiples of 2-" since  they 
represent integer numbers of independent paths. 0 

Given that  an  appropriate solution has been  found to 
Eqs. ( 9 ,  the problem arises of assigning letters  to  the cod- 
ing paths.  Note  that if all nonzero ai are 1, then an FL 
code  can be constructed.  Otherwise, two further condi- 
tions are  necessary: 

3. Suppose ni distinct letters have  been  assigned for 
transmission  from  a  terminal state ui. Then  each cod- 
ing path  from ui must  be associated with a single let- 
ter, since the  code is to be  instantaneously decodable. 

4. The letters assigned to terminal state ui are indepen- 
dent of the  path used to reach  this state. 

Proposition 3 
The following two conditions ensure  the possibility of sat- 
isfying 3.  

a. No terminal state ui has more  than  a single code word 
leading to  each  state ui of fractional weight. 

b.  The terminal states  reachable via code  words from ui 
may be partitioned into  subsets of total partial weight 
one. 

Proof 
Each path leading to a state u, with a, = 1 may be  used to 
represent a single letter.  The  set of paths leading to a 
group of states of combined partial weight 1 may likewise 
be assigned a single letter. 0 77 
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Figure 1 State  transition  diagram for a set of channel con- 
straints. 

Table 1 Letter assignments. 

Initial state  Information  Code  word  New  state 

e 3  0 

cz 0 
c1 1 

( 1/01 
(1/1) 

aa c 3  
ab c1 
ba c 2  

aa c3 
aa c 3  

u3 

c3 

Table 2 Optimal  variable  length code. 

Initial state  Information  Code  word  New  state 

0 3  0 
10 
11 

aa c3 

abaa c3 

baaa c3 
c3 

u 3  

Condition 4 is  related  to  the problem of state-indepen- 
dent decoding for F L  codes [9, 111. Consider a state ui of 
fractional  weight, reachable via paths of length W from a 
set of terminal states {uj}. The  state ui must  be  assigned 
letters which are  the  same  for all states in {uj}. This  can be 
attempted by a process of exhaustive  search. 

4. Examples 
Two  examples of FD(W, 1, 1) codes  are derived in this 
section.  The first is a rate 1/2 code, with W = 2, for  the 
constraints illustrated in Fig. 1. These  correspond  to a 
digital magnetic recording channel in which intersymbol 
interference is controlled by requiring that  each transition 
between saturation levels be separated by at  least  two 
baud intervals [9]. The D matrix for this example is given 
by 

The  capacity is approximately 0.55 bits per  channel sym- 
bol. 

Consider  the  set of inequalities 

1 
Ql 5 2 (Pl3@,)? 

1 
2 Q3 5 - (P31@l + P,,@, + P3,Q3). (9) 

Choosing Ptl = 0 ,  Pt = 1 otherwise, where P*ij = Ci,Pij, 
one  obtains 

1 
= 2 (@,I> 

1 
2 

1 
3 2  

Q, = - (@,I, 

@ = - (Ql + az + a,), (10) 

which is satisfied by Q1 = QZ = 112, Q3 = 1. In  other 
words, u1 and uZ each  have a single independent  path of 
length 2, while @, has two.  Note  that  the  paths satisfy the 
conditions  stipulated in Proposition 3. 

Let  the  alphabet A be (0, 1).  The  two independent paths 
from u3 imply that  either 0 or 1 may be transmitted from 
this state.  The  other  states  each  have only a single inde- 
pendent  path,  corresponding  to  either 0 or 1. One way of 
assigning letters to the  paths is shown in Table I ,  where 
(1/0) indicates that 1 is to be transmitted with the knowl- 
edge that 0 is to be the  next  letter. 

It is interesting to  note  that this is equivalent to  an opti- 
mal variable length code, derived in reference [7], with a 
maximum word length of 2,  as  shown in Table 2. 

Figure  2  illustrates another  set of channel constraints; 
for these  the channel capacity is one bit per  symbol. 

Proposition 4 
There  exist  sets of channel  constraints  for which no fixed 
or variable length code  can be constructed with a rate 
of a bits per W channel symbols, but which admit an 
FD(W, 1, 1) code with  this rate. 

Proof 
The  channel  constraints  are  those shown in Fig. 2. The 
existence of an  FD( W, 1, 1) code with a rate of one bit per 
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symbol is shown in Table 3. The proof that no fixed or 
variable length code  can be constructed is given in the 
appendix. 

An FD( 1 ,  1 ,   1 )  code will now be constructed. Consider 
the inequalities 

1 
2 5 - (Pllel + Pl,@, + P13Q3L 

Letting PC = 1 ,  the corresponding equations  are satisfied 
by = 1 ,  @, = Q3 = 112. Thus  two independent  paths of 
length 1 lead from ul, and  one  each from u, and u3. 

A code  can be constructed  as in Table 3. 

The coding paths  are illustrated by the trellis shown in 
Fig. 3. 

5. Fixed  length  codes  with  general  future 
dependency 
This  section considers the  general  class of F D ( K W ,   K ,  
M K )  codes with M # 1 .  It is shown  that  whenever  such a 
code  exists for integer M > 1, then an FD(MKW,  M K ,  
M K )  code exists.  Clearly, if a code  exists  for M < 1, then 
an F D ( K W ,  K ,  K )  code  exists. In other  words, it is suf- 
ficient to restrict attention  to FD(W, 1, 1) codes at the 
expense of possibly increased  complexity  and  coding 
delay. 

Suppose a F D ( K W ,  K ,  M K )  code  can be constructed. 
Coding is done for K letters  at a time, with knowledge of 
the next M K .  Then it is certainly  possible to  code with the 
knowledge of the next (2M - j ) K  letters,j = I ,  2, . . ., M .  
But this would be an F D ( M K W ,   M K ,   M K )  code. 

It is interesting to consider what modifications to (5) are 
required to form a necessary condition for  the  existence 
of an F D ( K W ,   K ,   M K )  code.  Note  that each state uj en- 
tered  at  the  end of a code word must have sufficient paths 
leading  from it to  represent  the  next (known) M K  letters. 
But there  is no knowledge of what  is to follow. For ex- 
ample,  suppose L, ,  L,, . . ., L, are  to be transmitted,  tak- 
ing the channel from mi to uj. At the time  this  path is cho- 
sen LK+,, LK+,, ' . . , L,+, are known,  but LK+MX+,,  
LK+MK+,, . . . are  not.  Thus  paths of length M K  leading 
from each  terminal state must end in states associated 
with sufficient paths of length MW to  represent any M K  
letters. 

Figure 2 State transition  diagram for a set of channel con- 
straints. 

Figure 3 Example of a  coding  trellis for the  constraints of 
Fig. 2. 

Table 3 Constructed  code. 

Initial state  Information  Code  word  New  state 

But  this is precisely the requirement for  the  existence 
of an F D ( M K W ,   M K ,   M K )  code.  That  is,  there must exist 
a set of chosen C,  such that  the  equations 

have  solutions subject  to  the  requirements  of Proposition 
2. 79 
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t = 1  2 M 

t = 1  M - 1  M 

( b )  

Figure 4 (a) Trellis for the constraints of Fig. 2. (b) Paths  from 
u, to u, which maximize ly,. 

However,  code  words  are of length K W .  Thus an  addi- 
tional  requirement on  the eligible paths Pij is that they 
enter terminal states  after  each KW channel  symbols. 

6. Conclusion 
Methods were  presented  for the construction of FD(W, 
1, 1) codes, which may be regarded as a generalization of 
state-dependent block codes  for input-restricted  chan- 
nels. It was shown  that FD codes  exist for  constraints 
which admit  no  conventional codes of finite length. It  was 
also  shown that the existence of an F D ( K W ,   K ,   M K )  code 
for  integer M implies the possibility of constructing an 
FD(MKW,   MK,   MK)  code. 

Appendix:  Proof  of  Proposition 4 
It is shown here that no  variable length code with rate 1 
can be constructed  for  the constraints  shown in Fig. 2. 
Much of the terminology is drawn from  reference [lo]. 

Consider a set of paths { W f }  leading from ui, where 
{ W f }  is the  ith path of length n. Let V n  be the number of 
distinct paths of length n. A necessary  condition for the 
possibility of coding  from ui is given by the Kraft inequal- 
ity 

M 

Vi(M) = 1 vi- 2 1. 
n=1 

80 Here a! = 1 and MW is the maximum word  length. 
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Consider a code of maximum word length MW = M ,  
(W = 1). Assume first that all states  are principal  (i.e., 
code  words  can terminate there). Consider Fig. 4(a). 

Note that paths of length M from state ul, which enter 
states u2 and u3 at  depth ( M  - l),  can be terminated in 
their states without  decreasing Vl(M). This is because 
two paths of length M are equivalent to one of length 
(M - 1) in contributing to  the right-hand side of Eq. (13). 
Truncating  paths  from u1 at  depth (M - 2)  in states u, and 
u3 likewise does not decrease V,(M), since  (for a,) one 
path of length M - 2 is worth more  than three of length 
M ,  and  (for u3) two of length M - 1 are equivalent to  one 
of length M .  This process  can  be carried backward, re- 
sulting in a trellis whose paths entering states (+, and u3 
terminate there, and which maximizes 'Pl(M). Then, 

n=1 

But 

max (V,(M)) 5 2" max ( V l ( M  - 1)) < 1, (A31 

so that  words  cannot  terminate in u,. 

Moreover, 

+ 2-' max ( V l ( M  - 2)), (-44) 

which implies that V3(M) 2 1 only if T 3 ( M  - 1) > 1. But 
max (T3( 1)) 5 1. Thus  both u, and u3 are eliminated as 
candidates  for the  coding states. 

This means that all coding paths must start  and  end in 
state ul. Consider Fig. 4. Note  that 'Pl can  be maximized 
by terminating paths entering u1 at  depth M - 1. Having 
done so, it pays to terminate paths in u, at  depth M - 2, 
since there is one  extension of length 1 and one of length 
2. This  process can be continued  backward to  depth 2. 
The result  is one potential  coding  path of length n, n = 1, 
2, . . ., M .  Thus 

no rate 1 code of length M can  be  constructed. 
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