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Influence of Scattering and lonization on RF Impedance
in Glow Discharge Sheaths

The effects of scattering and ionization on the rf impedance of a glow discharge sheath are calculated using an equivalent
dc sheath model. The effects of scattering are treated in terms of a drag force; equilibrium between the ion drift velocity
and field is not required. The ratio of first ionization coefficient to pressure, a/p, is assumed to be constant, and the ion
energy and ion current injected from the glow are assumed as initial parameters. In the limit of low pressures, the
calculation agrees with the Child-Langmuir law. At intermediate pressures, the results agree with the mobility limited
solution. At high pressures, the product of pressure and sheath dimension, pd, becomes constant because of ionization
effects. The results of this calculation, obtained by numeric integration, can be accurately approximated by an inter-

polation formula. This formula provides a simple means for calculating the rf impedance of a sheath.

Introduction

In the preceding paper, Keller and Pennebaker [1], in
their calculation of the electrical properties of the rf sput-
tering system, use an equivalent dc sheath model to cal-
culate the impedance of the rf sheath. The simplest form
of this model was first proposed by Koenig [2], who used
the Child-Langmuir law [3] to relate the sheath thickness
d to the average potential across the sheath, and to the ion
current injected into the sheath from the glow. The sheath
capacitance was assumed to be given by the thickness of
this sheath and the real component of the sheath imped-
ance was assumed to be small. As shown in the preceding
paper [1], the equivalent paraliel resistance can be calcu-
lated from the sheath voltage and ion current density; this
was not done in Koenig’s work.

Aside from neglecting the time dependence of the po-
tential (apparently justified by the excellent results ob-
tained with the dc approximation), the major drawback to
the use of the Child-Langmuir law is that the law is valid
only at very low pressures; it assumes that the ions ‘‘free
fall”” from glow to boundary. At higher pressures, both
scattering (primarily due to charge exchange [4]) and
ionization should substantially increase the positive

charge density in the sheath, and consequently decrease
the distance across the sheath. This, of course, will affect
the sheath impedance.

This paper describes a calculation of the influence of
gas pressure on the dc sheath. Both scattering and ioniza-
tion are included in the calculation, although ionization
effects are treated approximately. Several calculations of
the cathode sheath, also incorporating scattering and ion-
ization, have been given by Ward [5, 6]. However,
Ward’s treatments start with the assumption that the ion
drift velocity v is a function of the field divided by the
pressure, E/p. For values of E/p greater than 0.75 V/Pa-
cm (100 V/torr-cm),

v = KE/p)"”. o)

While this relationship is derived both from theory and
experiment [7] the experiment is always done with a con-
stant field. Warren [8] has noted that the field in the cath-
ode fall region varies so rapidly with distance that the as-
sumption of a drift velocity in equilibrium with the field—
that is, the use of Eq. (1)—is highly questionable. This is a
particularly important point in a calculation of the dc
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equivalent sheath, for in this problem the interest is
mainly in that pressure region where the ions almost free
fall through the sheath. When ions almost free fall, their
velocity is determined uniquely by neither the field nor
the potential.

In this paper the scattering effects are included through
the use of an equivalent drag force. The neutral gas is
treated as a viscous medium, and the drag force caused
by this medium is derived from Eq. (1). The ionization
effects are treated qualitatively, in that «/p (the first ion-
ization coefficient divided by pressure) is assumed to be
constant. There are no data on a/p for E/p > 7.5 V/Pa-
cm (10° V/torr-cm), but the best extrapolation of existing
data [7] indicates a/p =~ 0.1 (Pa-cm)™' [14 (torr-cm)”']
for argon. Even if the variation in a/p with E/p were
completely known, its use would not be justified. Just as
the ion is not in equilibrium with the field, neither is the
electron. Further arguments will be presented that show
the assumption of constant a/p to be reasonably con-
sistent with the results of this paper.

No attempt is made to calculate the rate of ion injection
from the glow. This is assumed as an initial condition, as
is the injection energy. In Ward’s analysis these two pa-
rameters were calculated from a knowledge of ionization
caused by secondary electrons passing through the glow
region. From purely empirical observations, the rf dis-
charge can be sustained at pressures substantially lower
than those required for the equivalent dc¢ discharge. In the
preceding paper we note that this is due to the large dis-
placement current flowing through the sheaths. There-
fore, it is more reasonable to assume ion injection param-
eters than to calculate them from secondary-electron ion-
ization.

General theory

If the first Townsend ionization constant « is a constant,
the ion current density at any point x is related to the ion
current density at the boundary J, by

J () = J {1 ~ ylexp (ax) — 11}, @

where v is the second Townsend coefficient. This follows
from the fact that the total current is constant, given by
J,, (1 + v); the electron current is given by yJ , exp (ax).
Therefore, Eq. (2) follows. The coordinates are defined
such that x is zero at the boundary. The i)oint x=dis
defined to be the transition point between the sheath and
the negative glow. When x > d, the electron density can
no longer be neglected. The potential change, in going
from x = d to a point where the electron and ion densities
are approximately equal, is assumed to be negligible. Cer-
tainly it is considerably less than the wall voltage, and the
wall voltage in turn is usually considerably less than the
total voltage across the sheath.
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The change in the ion current density in an interval dx
is, from Eq. (2),

Jyx) = J {1 — ylexp (ax) — 1]}, 3

The ion density at a point x’ due to ions injected from the
glow is
J
N, (x)= —°>—, )
) ev(d, x')
where v is the velocity the ion attains in traveling from d
to x', and J, = J (d).

The ion density due to ionization within the sheath is
given by

a4 _
N, () = [ I (5)

x' ev(x, X’) ’

where v(x, x') is the velocity at point x" of the ion created
at x.

Since the electrons are quickly removed from the
sheath by the large fields, their effect on the space charge
can be safely neglected. (Their neglect may not be justi-
fied in the transition region between sheath and glow, but
by assumption the potential drop across that region can
be neglected.) The total space charge is thus the sum of
Egs. (4) and (5).

The velocity of the ion is obtained as follows. In the
limit of low pressures the velocity is given by

1/2
=[z€ V+¢)] ’ (6)
v M( o

where ¢, is the initial energy at the point where V = 0,
and V is the potential relative to that point. The force on
the ion in order for Eq. (6) to be valid is just F = ¢FE.

As noted earlier, the ion drift velocity v in a constant
field in a gas at pressure p is given by Eq. (1) (E/p > 0.75
V/Pa-cm or 100 V/torr-cm).

For this velocity to be constant, the force due to the
field must be exactly balanced by a drag force due to scat-
tering. If we assume that the gas can be regarded as a
viscous medium insofar as scattering effects are con-
cerned, the drag force is given by

ep _,

F, = AR @)

and the equation of motion by

1\ d@® E
e

@®

M M
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Figure 1 Sheath dimension as a function of pressure for vari-
ous voltages and injected ion current densities. The curves are
calculated for argon assuming a/p = 0.1 (Pa-cm)™' [14 (torr-
cm) '] (where applicable), y = 0.2, and a 1-eV ion-injection en-
ergy. Dashed lines without data points give the curves for the
scattering only, mobility limited solution. Dashed lines with data
points are for the scattering only, numerically calculated solu-
tion. Solid lines represent the numerically calculated solution in-
volving both scattering and ionization.

Equation (8) is a linear, first-order differential equation
with the solution [9}

BT
= (ZeE) [ , 2ep} ,
—]exp|(x — x') 5= |dx
= J i 5 M Bwr ©
exp [(x - x) ep}
KM

If the field is known, this equation can be used with
Egs. (4) and (5) to obtain the positive space charge in the
sheath. When these equations are combined with Pois-
son’s equation the problem is, in principle, solved.

The boundary conditions on the voltage required for
the solution of Poisson’s equation are V = 0 at x = d, and
V = V,, (the maximum voltage) at x = 0. In addition we
must determine the field at x = 4. If the Child-Langmuir
law is assumed to be the limiting low pressure solution,
the field at x = d would be zero at low pressure. How-
ever, the Child-Langmuir law does not account for the
nonzero injection energy. When the injection energy ¢, is
properly incorporated into this low pressure solution (a
modification of the Child-Langmuir law that is discussed
in more detail in the following section), the field at x = d is
given by
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4/ “‘*[ 9\ M ]
E_,=-—[= |[=—)=| 7~ 10
z=d 3 ( e ) (450) 2e ° 10

At higher pressures there is no good guide to the field
value at the edge of the glow. However, from Eq. (8), if
the field is less than

P . 2ep (¢,
B == 50 g (o) v
the ion injected from the glow will slow down initially.
This is physically unreasonable. Consequently, we define
the edge of the glow to be that point where the field is
equal to the sum of Eqs. (10) and (11);

E _ [i ﬁ 1/4|: i )2& ]1/4]1/2} B Zﬂ ﬁ)
w=d 3<e> (460 2 | 7° kzM(e '
(12)

This expression ensures that the field at the edge of the
sheath is correct in the limit of low pressures, and suffi-
ciently large at high pressures that the ion does not slow
down after injection. The two terms in the above ex-
pression are of comparable magnitude at 133 Pa in argon.

In specifying that V = V, at x = 0, and in requiring Eq.
(12) to hold, we have uniquely specified the solution. The
additional boundary condition, V = 0 at x = d, is not re-
dundant, however. This third condition relates the dis-
tance across the sheath d to the voltage across the sheath.
The relationship is given in the Appendix, along with a
description of the numeric techniques used to obtain a
solution of the equations given in this section.

Low and high pressure approximations
As has been noted, at low pressures the solutions de-
scribed in the preceding section should be identical with
the Child-Langmuir law. When corrected for nonzero in-
jection energy, the Child-Langmuir law is

97\ M "
—V+ & = |:<4_0> 2__:| (d — x + (1)4/3, (13)
e €, e

where « is a distance defined by

2 4 2 J1/4 3/4

a = [_e ATy :| & , (14)
M \9J, e

and ¢, is the injection energy.

At higher pressures, when ionization can be ignored,
the field varies so little over a scattering distance that Eq.
(1) holds. Poisson’s equation can then be solved explic-
itly, and the solution (known as the mobility limited solu-
tion [10]) is

3 37 1/272/3
V-3 [7;(”2 d-x+a" - |, (15)
e0
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where

2 2 3/2 3/2
0= (2] Lo ($a) (16)
3\Mm KJ, \ e
In this high pressure limit the field at the sheath-glow
boundary is

2
E|,_, = ka’; (‘%) (17)

in agreement with Eq. (1).

If the ionization coefficient is not zero, ionization ef-
fects must dominate the charge density in the sheath in
the limit of high pressures. This occurs when the total ion
current to the boundary is much larger than the ion cur-
rent injected from the glow. From Eq. (2) the ion current
at the boundary becomes infinite when the product of
pressure and distance across the sheath, pd, is given by

pd = “1-— In (H—Y) (18)
a/p Y

Thus, in the limit of very high pressures, the distance

across the sheath is inversely proportional to the pres-

sure, and dependent on the other discharge parameters

only to the extent that @ and vy are [11].

Numeric results—application to an argon discharge
In the Appendix it is shown that the various equations
describing the space charge in the sheath can be ex-
pressed in terms of the relative coordinate x/d. When this
is done, the parameters which must be specified in order
to arrive at a charge distribution are the pressure-distance
product, pd, the ion current density injected from the
glow, J ; the voltage across the sheath, V,; the ion injec-
tion energy, ¢, ; the first ionization coefficient divided by
pressure, a/p; and the second ionization coefficient, y. In
addition, a parameter V|, a voltage interval in the vicinity
of lonization, is required but ¥V must simply be made
small enough that the charge density is not dependent on
1t.

Referring again to the Appendix, Eq. (A10) gives the
value of d appropriate to the specific charge distribution
calculated. Since pd is specified, the pressure is thus de-
termined.

The numeric results for an injection energy of 1 eV
and a secondary-electron emission coefficient of 0.2 are
shown in Figs. 1 and 2 for several sheath voltages and ion
injection current densities. The ratio of ionization coeffi-
cient to pressure «/p was assumed to be either 0.1
(Pa-cm) ' [14 (torr-cm) '] or zero, as noted. The Child-
Langmuir low pressure limit, the mobility limited solu-
tion, and the limiting pd product (which occurs when ioni-
zation effects dominate) are all shown.
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Figure 2 (a) Relative velocity of injected ions striking the
boundary; same assumed parameters as in Fig. 1. Dashed lines
give the scattering only cases; solid lines, the scattering and ion-
ization cases. (b) Ion current density at the boundary as a func-
tion of pressure.

It is apparent that the numerically calculated curves ap-
proach the various limits quite reasonably. The somewhat
greater difference at lower voltages between the numeric
results for no ionization and the high pressure limit may
be attributed to the difference in field assumed at the
edge of the glow [compare Eq. (12) with Eq. (17)]. The
curves would have to be extended to somewhat higher
pressures before they would merge.

One test of the calculation is that if ionization is al-
lowed, the field should be essentially linear at higher pres-
sures. A typical result is shown in Fig. 3.

RF sheath impedance in an argon discharge

The main purpose of the preceding calculations was to
obtain information on the rf impedance of the sheath as a
function of pressure. Unfortunately, the calculations are
too lengthy to be of much use in calculating rf sputtering
system operation. Therefore, an approximate inter-
polation formula was devised by trial and error, which
describes the curves in Fig. 1 quite well:

R R
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Figure 3 Electric field as a function of position in the sheath,
illustrating the linear field typically encountered when ionization
effects dominate. The following parameters apply: a/p = 0.1
(Pa-cm) ' [14 (torr-em) '],y = 0.2, ¢, = 1 eV, J, = 0.001 A/em®,
Peare = 118 Pa (0.887 torr), and 4, = 0.137 cm.
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Figure 4 Comparison of numeric calculation with interpolation
formula. The following parameters apply: V, = 200 V, J, = 0.001
Alem®, a/p = 0.1 (Pa-cm) ™, and y = 0.2.
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where d,, d,;, and d, are the sheath dimensions calculated
using Egs. (13), (15), and (18), respectively. That is, d,
is the low pressure sheath dimension, d,, is the mobility
limited sheath dimension, and d, is the sheath dimension
when ionization effects dominate. This interpolation
formula is compared with the 200-V curves from Fig. 2
in Fig. 4. While the agreement is generally excellent, the
numerically integrated curves fall below the interpolation
curves in the transition region betwen low and high pres-
sure limits. It should be noted that the discrepancy may
be attributed to the numeric curves rather than the inter-
polation formula. The field [see Eq. (12)] at the sheath-
glow boundary may be over-estimated in this transition
region, and this would cause d to be too small there.

Following Koenig [2], the sheath capacitance is given
by

C= " (20)

The parallel resistance R, calculated from the power dis-
sipation in the sheath, is given by
_ VL= ylexp (ad) — 1}
2JA( + y)(Vy, — V)

) 21

which is the same as the equation for the parallel resis-
tance R given in the preceding paper [Eq. (13)], except for
the factor describing the increase in ion current due to
ionization. V, is the floating potential in the absence of an
rf voltage across the sheath. The relationship between V.,
the rf voltage across the sheath, and (V,, — V,) is given in
Ref. [1]. We note that if V, >> kT /e, V = V.

The admittance per unit sheath area, given by

G | juC

—_———— 4 , (22)
A RA A
is displayed as a function of pressure in Fig. 5 for a fre-

quency of 13.56 MHz.

For pressures below 13 Pa (0.1 torr) the reactive com-
ponent is more sensitive to pressure than is the real com-
ponent. This is a scattering effect—scattering causes the
sheath dimension to decrease, but does not increase the
power dissipation. Above 13 Pa both components are
quite pressure sensitive, but the real component changes
more rapidly. This is primarily an ionization effect, for
ionization both decreases the sheath dimension and in-
creases the power dissipation.

Conclusions

The purpose of this work has been to extend the equiva-
lent dc sheath model of the rf sheath to higher pressures.
A calculation has been given which shows the effects of
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scattering and ionization on the sheath dimension for
pressures throughout the range of interest in rf sputtering.

Two of the assumptions made in the calculation may
introduce small, but perhaps significant, errors. First, a
field was assumed at the sheath-glow interface. The only
guide in assuming this field was that it should have the
correct low and high pressure limits. Further work is
needed to clarify this choice. Second, the scattering ef-
fects were treated in terms of a drag force. This implies a
very well-defined ion velocity. If, as is almost certainly
the case, there is a distribution of velocities, errors are
introduced in using Eq. (9) in Egs. (4) and (5). Without
knowing the velocity distribution it is difficult to estimate
this error. It is also possible that ionization mechanisms
other than direct electron impact contribute to ionization
in the sheath.

With the basic behavior of the sheath now known, the
assumption of a constant «/p can be better justified.
Equation (18) gives an upper limit to the product ad; if ¥
is 0.2, ad is less than 2. Therefore, only a few ionizing
collisions can occur during the electron’s transit of the
sheath. The efficiency of ionization—the ratio of energy
lost in ionizing collisions to total energy expended—is
known to be 0.46 for argon [12]. Therefore, few collisions
occur in the sheath, little energy is lost to collisions, and
most electrons (even those created by ionization) are able
to attain relatively high energies. The probability of ion-
ization ¢, which is equal to & at 133 Pa (1 torr) if the
electron velocity distribution is narrow [7], has a maxi-
mum of 11 ions/cm at 50 eV [13], and decreases slowly to
about 5 ions/cm at 500 eV. Therefore, for the most prob-
able electron energies, a/p is a slowly varying function
which can be approximated as a constant.

The value of a/p [0.1 (Pa-cm) ™, 14 (torr-cm)™ "] used in
the numeric calculations was obtained from extrapolation
of low energy measurements. Judging from the values of
¥, given above, this estimate of a/p was slightly high; a
more reasonable value would have been about 0.04 (Pa-
em) ', [10 (torr-cm) ']; perhaps slightly smaller values
would have been appropriate at higher sheath voltages.
The effect of a smaller a/p would be to raise the limiting
pd value [Eq. (18)], and thus increase the sheath dimen-
sion at higher pressures. On the other hand, the data
given in Ref. [1] seem to require a value of 0.1 (Pa-cm)
[14 (torr-cm)™'].

The two approximate equations developed for the
sheath capacitance and parallel resistance are perhaps the
most useful results of this work. It is now possible to cal-
culate the electrical behavior of rf sputtering systems
throughout the range of useful pressures. Another inter-
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Figure 5 Admittance per unit argon sheath area as a function of
pressure, assuming J, = 0.001 Alem?®, a/p = 0.1 (Pa-cm)™!, y =
0.2, a 1-eV ion-injection energy, a wall potential of 10 V, and an
electron temperature of 1.7 x 10* K (2 eV). Solid lines represent
the real component; dashed lines, the reactive component.

esting result, which is a by-product of the calculation, is
the values obtained for the drift velocity of injected ions
when they strike the substrate and target. Figure 2 shows
the drift velocity obtained for various pressures relative
to that which would occur in the absence of scattering.
The decrease in energy of bombardment is surprising.
However, if the velocities were distributed around the av-
erage value, the average energy would be higher than Fig.
2 indicates.
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Appendix: Numeric calculations

If the potential distribution can be expressed as a power
series, the equations developed in the second section can
be expressed as follows.
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If the potential distribution is
\% x\"
— = ZPH(—) , (A1)
Vi " d
where V,, is the potential at the target, d is the distance

from target to glow, and V = 0 at x = d, then Eq. (9)
can be reduced to

2 1/2 (bo/eVM + Z In .
v = (_e) V12 n=0
M
M exp [a(x — x,)/d ]

) (A2)

where x_ is the starting point, the initial energy is ¢ , and
a = 2ep/k*Md.

Note that (2¢/M)'* (1V,))'* is the velocity of an ion of
energy e |V, |. I, in the above equation is given by

ax,
I, = nP, exp (— d°) S, (A3)
where
S,=0;
s - (x/d)"”" exp (ax/d) — (x,/d)"" exp (ax,/d)
" a
n—1
—( ; )S";l. (A4)
We define a relative field E, by the equation
Ed x\"1
E=—-= P> .
" ,;," "(d) (A3)

The integral giving the charge due to ionizatibn, Eq.
(5), is not, as it stands, integrable numerically. The veloc-
ity of the ion at the point of creation will be essentially the
thermal velocity of the atom just prior to ionization.
Thus, on the average, this velocity will be zero. Con-
sequently, the intégrand diverges at the lower limit, and
near that limit, the integral must be evaluated explicitly.

Fortunately, it is always possible to define a distance
Ax considerably smaller than a scattering length (= d/a),
and sufficiently small that the field can be regarded as
constant. Then Eq. (5) becomes

(x_') __2yyod [ exp (dax'/a’)] _
+i d (zea/M)l/2VM Er L
d —dJ (x)
+ —, (A6)
rraz €V(X, x)
where
dv
Ax = L
V,E
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and V| is the voltage interval over which the field is re-
garded constant. The integral in the above equation can
be evaluated numerically; V, must be sufficiently small
that N, has no significant dependence on it.

Referring to Egs. (A1) and (A5), it is clear that if a pow-
er series in x/d is assumed for the voltage and ﬁeid, that
power series must be fitted to the charge distribution ob-
tained from Eqs. (A6) and (A3). Least square fitting of the
calculated charge distribution to a power series is a con-
venient way of doing this, provided a large number of
points are calculated near x/d = 1. The charge density is
usually quite large in that region, and thus must be fitted
carefully if the correct field is to be obtairied. Once the
charge distribution is obtained, the potential and field
functions can be calculated using the boundary conditions
from the second section. This will be described shortly.

In practice, a potential function is assumed (a linear
field approximation seems to be a good first guess), and
the charge distribution appropriate to that potential is cal-
culated. This charge distribution is used to obtain a new
potential function, and the process is repeated. Usually,
three to four iterations are sufficient to obtain a self con-
sistent charge distribution and potential function.

At low pressures the ionized charge density is very
low, and to first order can be neglected. This makes the
calculation of the charge distribution far easier, in that a
rather accurate potential function can be obtained with-
out numeric integration. This is fortunate, for at very
low pressures many points must be calculated and a pow-
er series of at least eighth order must be used in order to
accurately describe the rapidly varying charge distribu-
tion. If the point density is insufficient, one of two things
may happen. Either the least square fit to the charge dis-
tribution is sufficiently poor that the calculated distance
across the sheath is inaccurate, or the potential function
calculated from the least square fit oscillates sufficiently
to allow a positive potential, causing the velocity [Eq.
(A2)] to be imaginary. Needless to éay, the computer will
error stop if that happens.

Once a charge distribution has been determihed, the
various potential function coefficients must be deter-
mined. The following equations are used for this.

Given that
X n
N, =3 An(g) : (A7)
the field is given by
ed A ed . A (x/d)""
E=E_, —|—)> ——|+ —> *+——r A8
w=d (eozn+l) eoz n+1 A8
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where E__, is obtained from Eq. (12). The potential is giv-
en by

L=l+[_e_(£)z An :if_ Ez'=d f
Vu €, \V, n+1]d Vy/ d

e |d* A (x/d)"?
. (_ s ST (A9)
€ \Vy (n+ H(n+2)
The third boundary condition, V = 0 at x = d, gives the
relation
e 2¢ \ & A e
—0+ {6 +4— |1V, - )—2 d] —=
e[ m (kzM D

d= g

(A10)

where

4 9 2M 1/4
o=—|1-— —| -
3 [(450) 2e]

The computer programs used for the numeric calcu-
lations were written in APL. It should be noted that these
programs made use of an APL library numeric integration
program; they also used a matrix inversion program writ-
ten by R. L. Anderson.
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