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Data  Bases 

Abstract: AQL is a query language based on a data  base management system which uses Codd’s  relational model of data.  It  has  been 
designed mainly to  be used by the nonspecialist in data processing for  interactive problem  solving,  application building, and simulation. 
Ease of use is achieved by providing an interface which allows the use  of  default options,  synonyms,  and definitions of attributes, 
inference, and the  possibility of interactive  completion of the query  (i.e., menu). AQL combines the capabilities of the relational  model of 
data with the powerful  computational facilities and  control  structure of the  host programming  language (i.e., APL). A prototype version of 
AQL, which has been  implemented, is reviewed. 

Introduction 
Data  base management  systems  and their associated 
query  languages have evolved rapidly since  the in- 
troduction by Codd, in his 1970 historical paper [l], of the 
relational model of data. This model has been appealing 
to  data  base  researchers  both  for  the formal  precision of 
its definition [2, 31 and  for the simplicity, symmetry, and 
semantic  completeness of the  conceptual model of the 
data available to  the final user. The user is presented with 
tables (called relations), which can be named  and on 
which he  can  execute  the well-known operations of table 
look-up  and comparison. In fact, several query languages 
have  been  proposed based  on Codd’s data  model, most of 
them explicitly intended for  the inexperienced user.  Ex- 
amples include Query-by-Example [4], in which the user 
is required simply to  describe an example of a  possible 
answer  to the  query he has in mind, and SEQUEL [5], in 
which the query is formulated in a structured  form with 
English keywords; similar approaches  have been  taken in 
SQUARE [6] and QUEL [7]. 

In designing AQL (an acronym for A Query Language), 
which is based on  the n-ary relational model, a  major  ob- 
jective  was  to have a query language and  a system which 
could provide a “value  added” in terms of level of  in- 
telligence or flexibility made available to  the  user, 
whether a computer specialist or not. Thus it was impor- 
tant that  the language, even though formal, have not only 

a simple syntax (hence one  easy to learn and  to use),  but 
also  a high level of capability  and  effectiveness in problem 
solving and simulation, for  the  cases in which it was  nec- 
essary not  only to retrieve  data but also to  process them 
in an interactive and unanticipated way. 

To achieve  this objective,  the following facilities have 
been  introduced  into the language: 

1. Descriptiveness, so the user has only to  describe what 
is to be retrieved,  rather than how it is to be retrieved; 

2 .  Richness of default options, so that  “obvious”  actions 
(for example, quoting constants, referring attributes  to 
the  proper relation, etc.) could be done automatically 
by the  system; 

3. The possibility of using synonyms  and  definitions of 
attribute names, which allows the user  either  to refer 
to a given attribute  either by its name or by one of its 
synonyms or else  to  reference  an  attribute defined as a 
function of pre-existing ones; 

4. An automatic  recall of an inference mechanism, which 
gives to  the  system  the facility of building for  the  user, 
whenever  possible, all the  necessary  intermediate 
steps in queries requiring navigation through  relations; 

5. An interactive query completion  facility,  which is au- 
tomatically activated in cases of incomplete queries, 
or whenever the application of default options or infer- 
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ATTIVITY: D U R A l l O S  DAY M O N T H  YEAR BUDGET  DFPT CITY PROJECT  ACTNO 

RESOURCES: QUANlllY U N l T P R l C F   A C l N O  SUPPLIERNO  RRSNO 

Figure 1 Data base PROJECTS. 

Figure 2 Structure of projects and activities. 

ences may lead to ambiguities; in these  cases the user 
is asked to give, by means of a menu,  the lacking infor- 
mation; 

6. Eventually, an  open-endedness capability  (which is 
built into  the  language) by which the  user  can define 
new functions of the language using the pre-existing 
ones, provided that he conforms to  the language  syn- 
tax. 

To give the user  the ability to  execute unanticipated 
computations on retrieved data,  the  query language  has 
been  conceived as  an  extension of a  programming  lan- 
guage, so as to  preserve a homogeneous environment in 
which queries  and algorithms  can be executed. This led 
us to the choice of APL [8-101 both as the  implementation 
language and system  for AQL and as host language to 
process  the  results of queries. 542 
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The  syntax of AQL follows  that of  APL, so, strictly 
speaking, AQL is not  a new language; rather it can  be con- 
sidered a super-system of APL. AQL has  its  own inter- 
preter with a set of basic primitive functions made up by 
the primitives of the  query language together  with all the 
APL primitives.  This approach  results in complete  “trans- 
parency” between  the  query language and the program- 
ming language. In fact,  both elementary and user-defined 
functions may be  used in the body of a query,  and  queries 
may be used in the body of user-defined functions; fur- 
thermore (as will be  seen  later),  the values retrieved  as 
results of queries  are APL objects, which are  made avail- 
able in the workspace  for further  processing. 

AQL is the language interface  supported by a relational 
data base  management system  prototype  developed  at  the 
IBM Ban Scientific Center.  The general architecture of 
the  system is presented in Appendix A. It  provides facili- 
ties for  data definition (e.g., creating  and  adding  relations 
to  the  data base) and  update of relations. 

In this paper the characteristics of AQL are  presented 
by a series of examples  and by using the data  base in Fig. 
1. In this figure, the  relation ACTIVITY contains informa- 
tion about  projects; it is described by a set of attributes: 
ACTNO is the activity number; it is also the primary key of 
the  relation as defined by  Codd [2], and PROJECT gives the 
project  number to which a particular  activity  belongs. 
The  other  attributes indicate the city, department, bud- 
get, starting date,  and duration of each activity. A given 
project  can itself be an  activity, thus having another proj- 
ect upon which it is dependent;  other  projects may have 
no  direct  ancestors,  thus being themselves  the  ancestors 
of all activities  and/or projects dependent on them. Typi- 
cal situations are  represented in Fig. 2. For simplicity, let 
us suppose  that the structure is strictly hierarchical; i.e., 
every  activity has  at most one  predecessor. 

The relation RESOURCES in Fig. 1 describes,  for  each 
resource  number,  the supplier,  the  activity that  uses  that 
particular resource,  and  the price for  one unit of it to- 
gether with the quantity of resources required by that  ac- 
tivity. Obviously, an activity can have more  than  one sup- 
plier, whereas  a given supplier can supply more  than  one 
activity with the same  or different resources. In this  case, 
the  primary key of the relation is given by the  three attri- 
butes (RESNO, SUPPLIERNO, ACTNO). The final relation in 
Fig. I ,  SUPPLIER, gives,  for each supplier,  the  city  where 
he is located. 

In  the following sections, this data base is called PROJ- 
ECTS. It is worth  noting that AQL accepts  queries in a free 
format. Thus,  the  format used in the  examples  is not man- 
datory; it has been adopted here only for  the  sake of read- 
ability.  Finally, even though the use of APL has  been  kept 
to  the minimum necessary  to clarify the  computations re- 
quired in some examples, some  knowledge of APL is 
needed;  those not familiar with it  can refer to [8]. 
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Working with AQL 
To  introduce the structure and basic features of AQL, let 
us consider a simple query in which values are requested 
from a  domain of a relation, while imposing a  condition 
on  the values of another domain. For  instance, 

“Find the budgets of the activities in department 145” 

This  query is formulated as 

AQL ‘ P R O J E C T S ’  

( BUDGET OF A C T I V I T Y )  

WHEN 

DEPT  E& 145 (1) 

The function A Q L is used to gain entry  into the  system; it 
accepts  as  an argument the name of the data  base. This 
causes  the terminal keyboard to unlock, waiting for input; 
input is terminated by an empty  carriage return. In this 
case, the input is constituted of a structure called a 
“when-clause”;  i.e.,  the query is composed of two  dis- 
tinct  parts separated by the  dyadic function WHEN. The 
left argument is the  requested attribute ( BUDGET ) re- 
ferred to  the  proper relation by the function 0 F ;  the right 
argument is an  elementary condition made up of an attri- 
bute  name ( DEPT ) followed by a  comparison  function 
( E Q  ) whose right argument is a constant.  The com- 
parison  operation  performed by the  function E Q  (and by 
its  companions G T ,   L T ,  etc.) is extended  to  the  case 
where the right argument is a list of values, which can 
also  be the result of a  previous or of a  nested query. In 
this case  the comparison  operation is performed on  the 
Cartesian  product of the arguments, i.e.,  on  the  set of or- 
dered  couples  formed by every value defined for the  at- 
tribute left argument  with  each  element of the right argu- 
ment.  This  mode of operation is very useful when it is 
important to preserve  a correspondence  among values in 
the result  and each  value in the list. That is,  for  each ele- 
ment in the list right argument, a list of identifiers of the 
relevant  tuples is determined. Each tuple identifier (tid) 
consists of an integer, which is biunivocally associated 
with each tuple of each relation. The ith element of the 
right argument is associated with the ith list of tuple iden- 
tifiers, and vice versa. A parallel set of comparison func- 
tions ( GT, G E ,  E Q ,  NOZEQ, L E ,  L Z ) p r o -  
vides for  the  “scalar” mode of comparison,  i.e.,  every 
element of the left argument is compared with the  corre- 
sponding  element of the right one. Of course,  both argu- 
ments have  to  be  “conformable” in the APL sense. For 
this purpose,  attributes  are treated as three-dimensional 
arrays.  The final result of the  execution of the  query is a 
three-dimensional APL array with, in this case,  one plane 
and columns, which carries in each row the budget for  the 
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activities  in department 145. Furthermore, a global vari- 
able, called B U D G E 9, is created in the  workspace and 
contains the previous  values.  This  side effect is produced 
only in the  cases, like this one, in which the  query is not 
nested in an  outer  one.  The variable BUDGET is now 
available in the  workspace  for any further  processing,  as, 
for instance,  to  compute the  total  budget: 

Z + t / C 2 l B U D G E T  

Of course,  the primitive A P L  ’ t / C 2 3 ’ can  be re- 
placed by a predefined user function S U M U P .  Whenever 
all the  attributes of a  relation are in the  request  list, this 
can  be expressed more  concisely by the keyword 
A L L I N F 0; if we had requested almost all the attri- 
butes, the  function EXCEPT would have  been used in 
the following way: 

( A L L I N F O   E X C E P T   B U D G E T )  OF 

A C T I V I T Y .  . . 
On the  other  hand, when no condition is imposed on  the 
attributes (i.e., all tuples are wanted),  then the function 
A L L  replaces  the  condition  list; it assumes,  as its  argu- 
ment,  the relation  name in the same “when  clause.”  The 
default option, WHEN A L L  is applied whenever  only  a 
request list is specified in the query. Formally,  the func- 
tions A L L I N F 0 and A L L correspond to  Codd’s  “re- 
striction” and “projection”  operators. 

An example of application of default options together 
with the use of APL primitives in the body of a query is 

“Compute  the total  budget of  all the  activities” 

A Q L   ‘ P R O J E C T S ‘  

t / C 2 1 BUDGET ( 2 )  

Since the  attribute BUDGET (as it appears defined 
in the master relation) belongs only to  the relation 
A C T I V I T Y ,  it is possible for the system to univocally 
qualify the  attribute BUDGET OF A C T I V I T Y ,  
and the default  options  transform  the  query into  its equiv- 
alent and complete  form: 

t/ C 2 1 (BUDGET OF A C T I V I T Y )  

WHEN A L L   A C T I V I T Y  

The (only) final result of this  query is a  numeric value 
representing the sum of all budgets. 

The left argument of the function WHEN can be a 
request list constituted of more  than one  attribute  name 
catenated by the keyword W I T H .  Similarly, the right ar- 
gument of WHEN can be a condition list consisting of a 
number of elementary  conditions separated by the logical 
functions AND , OR , N O T .  An example of this is the 
following request: 543 
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“Activity  number  and departments  for  those  activities lo- 
cated in Bari  and whose budget is  between 1000 and 
2000.” 

A Q L   ‘ P R O J E C T S ‘  

( (ACTNO  WITH  DEPT ) OF A C T I V I T Y )  

WHEN 

( C I T Y   E Q   B A R I )  AND  BUDGET 

BETWEEN 1000 WITH 2 0 0 0  (3) 

In this query,  even though the attribute C I T Y  belongs to 
the  relations A C T I V I T Y  and S U P P L I E R ,  it is as- 
signed on a simple preference  basis to  that relation which 
matches the  one in the left argument of WHEN in the 
same  when-clause. In this case the results of the query 
are twofold: first, a two-row  character matrix  containing 
the names of the requested attributes is produced  as  the 
explicit result;  second,  as a side effect, two variables with 
the names A CTNO and D E P T  are initialized in the 
workspace. 

To introduce  some more primitives of the  query lan- 
guage,  and to show  how  they are integrated into  the pro- 
gramming language, we now describe  some  problems of 
costs of activities  and projects.  Suppose we want to 

“Compute the  costs of those activities whose suppliers 
are located in Rome.” 

First we have  to make a query  asking for  the unit price 
and quantity of the  resources used in those  particular ac- 
tivities: 

A Q L   ‘ P R O J E C T S ‘  

( ( U N I T P R I C E   W I T H   Q U A N T I T Y )  

OF RESOURCES 1 

WHEN 

SUPPLIERNO  ISONEOF 

( S U P P L I E R N O  OF S U P P L I E R )  

WHEN 

C I T Y   E Q  ROME (4) 

This  example represents a typical way of navigating 
among  relations and  shows how nesting of queries  is ac- 
complished in A Q L.  The function I S  0 NE 0 F performs 
a set membership operation.  Its right-hand argument  is a 

544 list of values  (here given as  the explicit result of the  inner 

query),  and  the left-hand  side  argument is an  attribute 
name,  which, in this case, the  system  automatically  refers 
to  the relation R E S 0   U R C E S .  

Unlike the function EQ, the function I S O N E O F  does 
not preserve any correspondence between the  elements 
of its arguments;  i.e., a list right argument produces a 
one-row matrix of tid’s, with no  order  correspondence 
left between the elements of the list and the tid’s. Of 
course, if the right argument  consists of one  element only, 
E Q  and I S O N E O F  behave  the same. To  compute the 
cost, we may use the  two variables now available in the 
workspace: 

COST++/  C 2 1 U N I T P R I C E  x Q U A N T I T Y  

(5 )  

Since  this  expression will become  very common in any 
further computation of cost, it turns  out  to  be useful to 
define a  function for it.  A  convenient way for doing  this is 
the following: 

V R+ACTCOST M 

C11 R + t / C 2 l ( a M C 1 ; 1 )  x z M C 2 ; l  

Q 

The function ACTCOST is quite  special:  its  argument 
( M ) is a  two-row character matrix; it performs the same 
computations as in (5) on  the values obtained  by execut- 
ing the variable names contained in each row of the argu- 
ment. Notice  that  the matrix M is exactly equivalent  to 
the  explicit  result  produced by the query (4), so it would 
be desirable to  introduce this  function directly in the 
query. In AQL this is possible,  since the  user  can  extend 
the set of basic  primitives of the language simply by add- 
ing to them  the new user-defined APL function by means 
of a system function called A DDFNS. In this  way, not 
only the function name but also its syntactic  nature is 
known by the  system  and by the AQL interpreter.  In  our 
case, this is achieved  by  typing 

Z+ADDFNS‘  ZtACTCOST M ‘  

The result is either 0, if the operation  was successful,  or 
an  error  code. Once  this  has  been done  for  the function 
A CT C 0 S T ,  it can  be  used in a query,  as in the following 
example: 

“For  each activity, list the activity  number and its  total 
cost.” 

A Q L   ‘ P R O J E C T S ‘  

( D I S T I N C T   A C T N O  OF RESOURCES 1 

CA T 
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ACTCOST 

( ( UNITPRICE WITH Q U A N T I T Y )  

O F  RESOURCES 1 

GROUPBY ACTNO (6) 

The  function CAT is used  to  catenate  the  results of two 
queries at  the  same level of nesting. In this case  its left 
argument extracts,  from the  relation RESOURCES, all 
the different values of the  attribute A CT N 0; this is a pro- 
jection in Codd’s  sense [l]. The right argument is a  group- 
ing operation, a  useful  means for representing  many-to- 
one relationships. Then  the  cost is computed  after group- 
ing, for  each activity  in the relation RESOURCES, the 
corresponding unit price  and  quantity  referred to  each re- 
source  used by that  activity. 

Some  entities (relations)  in the  data  base may have 
attributes (for instance, activity  numbers in some  depart- 
ments or activities  supplied with certain resources)  from 
which it is possible to  extract a subset of elements  (e.g., 
departments) which correspond  to all (or only) those in- 
stances of another  attribute  (e.g.,  project) which satisfy  a 
given condition (e.g., city is Rome).  The functions which 
allow the  user  to find those values are called quantifiers. 
This is a class of functions (namely, two: HASALL for 
all, HAS0 N L Y for only) implemented as primitives in 
AQL. An example of their  use is given by the following 
problem: 

“Compute the total  cost of those  activities developed in 
the  departments which  have only activities  supplied by 
suppliers  located in Rome.” 

In AQL this request may be  formulated as 

AQL  ‘PROJECTS‘ 

ACTCOST 

( (  UNITPRICE WITH  QUANTITY 1 

O F  RESOURCES 1 

WHEN 

ACTIVITY 

I + 
RESOURCES SUPPLIER 

SUPPLIERNO 

Figure 3 Correlation among relations. 

referred  only to  the relation A CTI V I T Y ,  which is dif- 
ferent from the  request relation in the same when-clause, 
Le., RESOURCES. In this case  at  least  one inter- 
mediate query should be built up in order  to  “link”  the 
two  relations. The  system  can carry out  this  process by 
entering the so-called inference mode. In order  to  activate 
this process, an AQL function  has been defined by which it 
is possible to  describe  the correlations that in  a  given data 
base exist  among  relations  and  that may be  represented  as 
a graph in which the nodes  correspond to  the relations 
and the arcs  to the link attributes. Figure 3 shows  such a 
graph for  the  data  base PROJECTS. This graph is rep- 
resented in the system by means of a  navigation  matrix, 
which carries,  for  each  ordered couple of relations,  the 
couple(s) of linking attributes.  These links  should  be ex- 
plicitly established by the  data base administrator, since 
choices  based on world knowledge and data  base seman- 
tics are involved. In general, a link involves  a couple of 
attributes which are semantically  equivalent,  in the  sense 
that they represent  instances of the  same  set of entities, 
which is their  underlying  domain.  This  implies that, in 
general,  there  may be more than one  couple of link attri- 
butes between two  relations; in this case all the inference 
paths  are  present in the navigation matrix, and  the dis- 
ambiguation choice is asked of the user. 

In the  example on hand a one step inference  path is 
sufficient to  connect  the  two relations RESOURCES 
and A C T I V I T Y  by means of the  link attribute 
ACTNO. The query is now restated by the  system  as 
follows: 

ACTCOST 

DEPT HASONLY ACTNO E Q  

( ACTNO OF RESOURCES 

WHEN 

C I T Y  EQ ROME (7) 

With this  formulation of the query,  the  semantic com- 
pletion routine detects  that  the  attribute D E  PT can be ( ACTNO OF A C T I V I T Y  ) I  

( ( UNITPRICE WITH Q U A N T I T Y )  

O F  RESOURCES 1 

( W H E N  

ACTNO ISONEOF 

545 
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WHEN WHEN 

DEPT HASONLY  ACTNO E& 

( ACTNO OF R E S O U R C E S )  

WHEN 

C I T Y  E& ROME (8) 

Here  the  braces  denote  the part of the query built by the 
inference  mechanism. The query is not yet  ready  to be 
executed since the  attribute C I T Y ,  left argument of the 

DEPT  HASONLY ACTNO E& 

( ACTNO O F  R E S O U R C E S  ) 

(WHEN 

S U P P L I E R N O   I S O N E O F  

( S U P P L I E R N O  O F  S U P P L I E R  ) ]  

function E& in the rightmost  condition, cannot be  re- 
ferred to  the  request relationRESOURCESin the  same 
(innermost)  when-clause.  Moreover, it belongs to both 
the  relations S U P P L I E R  and A C T I V I T Y  so its 

C I T Y  E& ROME (10) 

qualification cannot be  decided by the  system.  To  cope The expression is equivalent to  the internal represents- 
with this kind of ambiguity, the  user is prompted with a tion of the  query which can now be executed. 
menu asking him to  choose  the  proper relation: The  structure of the projects, as it is defined in Fig. 2, 

suggests that the cost of an activity is different from  the . . . ( A C T N O   O F   R E S O U R C E S )  cost of the  project to which that activity  belongs, except 

WHEN 

WHEN ( C I T Y   O F . .  . ) E& ROME 
for  those  projects with no subsidiary  activities. Thus a 
problem such  as 

CHOOSE  THE NUMBER  “Compute the cost of a given project” 

CORRESPONDING TO T H E   P R O P E R  

R E L A T I O N  

1 .SUPPLIER 

2 . A C T I V I T Y  

0 :  

1 (user’s  answer) (9) 

The relation S U P P L I E R  (to which C I T Y  can now be 
referred) is different  from  the request relation; again the 
system enters  the inference mode,  and,  accessing  the 
navigation matrix, tries  to build the intermediate  query 
linking the  two relations. The final result of this process 
transforms the query into 

ACTCOST 

( ( U N I T P R I C E   W I T H   Q U A N T I T Y  ) 

I 
O F   R E S O U R C E S  ) 

{WHEN 

ACTNO ISONEOF 

is more  general than  the previous ones and  implies for the 
user the definition of some “application” functions.  The 
first step in solving this  problem is 

“Find all activities which depend  upon agiven  project.” 

To find the  activities which directly depend  upon a given 
project, say P, simply means, in AQL, writing a query like 

( A C T N O   O F   A C T I V I T Y )  WHEN 

P R O J E C T  E& P (11) 

If we were  interested in a list of projects (irrespective of 
their order), we would write I S O N E O F  instead of E & .  
This  query  should then be applied again, descending  the 
tree or sub-tree  whose root is P ,  and  saving the result  at 
each  step. To avoid recalling the AQL interpreter  at  each 
step of this recursive process, we can name the  query. 
The facility of naming a query is equivalent to  that of 
naming an  expression in APL, i.e., defining a function. 
This  function is defined as the APL expression equivalent 
to  the result  produced  by  the AQL interpreter;  moreover, 
the system automatically adds  its name to  the  basic primi- 
tive set of AQL. Once a name has  been assigned to a 
query, it can be saved  for  later  use, it can  be  executed by 
referencing  its name,  or it can  even be introduced in an- 
other query as a  primitive of the language. 

This facility can be  used for naming the  query ( l l ) ,  as 
follows: 

546 ( ACTNO O F  A C T I V I T Y ) ]  ‘ZtSONS P ‘  A Q L D E F  ’PROJECTS‘ 
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( A C T N O  O F  A C T I V I T Y )  

WHEN 

PROJECT  E& P 
The left argument of the function A Q L  D EFis the  header 
of the  function to be  defined,  and  its  name ( S O N S  ) is 
the name of the query whose  execution can be  performed 
(say for P equal  to 239) simply by writing the  expression 
SONS 2 3 9. The  descendent(s) of the tree or sub-tree 
whose  root node is a given  project P is (are) retrieved by 
the following recursive  function: 

V ZtDEPENDENP P 

c11  Z 4 P  Set up the result. 

C 2 1  +-0 I F  EMPTY P t S O N S  P 

if P has no sons,  then  quit; 

C31 ZtZ O N  DEPENDENT P 

else  compute its dependents, 

V and stack  on  the previous 
ones. 

(1 2 )  
The result of this function is the list of all activities  depen- 
dent upon P. The  cost of a list of activities can be com- 
puted by defining the function: 

‘Z+COST P‘ AQLDEF  ‘PROJECTS‘  

WHEN 

( A C T N O   E &  P )  AND C I T Y   E &  ROME 

The  expression (14) gives  the  cost of the project P only 
for those  activities located in Rome or whose suppliers 
are located in Rome,  since C I T Y  belongs to  both  the 
relations S U P P L I E R  and A C T I V I T Y .  This ambi- 
guity is resolved  during the execution of AQL  DEF by 
use of the  menu,  and  then  the query  completed by the 
inference process. 

In  the previous examples there is no way of knowing 
whether  a given project is the root of the  tree  (i.e.,  the 
ancestor of all its  activity) or whether it is a son of an- 
other  project.  This problem may be stated  as follows: 

“Compute the total cost of the ‘root’  project to which a 
given project or activity  belongs.” 

In this case, starting from  an activity we have  to move 
upward on  the  tree  to which it belongs, to  the  root.  First 
of all, using the naming facility, it is easy  to define a func- 
tion for finding the  “father” (direct ancestor) of an activi- 
ty: 

ZtFATHER  A‘   AQLDEF  PROJECTS‘  

( PROJECT OF A C T I V I T Y  ) 

WHEN 

ACTNO  E& A (15) 

Then a recursive function  for re-ascending the  tree  up  to 
the  root can be defined as 

ACTCOST 
Q Z t R O O T  A ; FA 

( ( U N I T P R I C E   W I T H   Q U A N T I T Y  ) 

C 1 3  Z 4 A  Set up the result 
OF R E S O U R C E S )  

C 2 1 +-0 I F  E M P T Y   F A t F A T H E R  A 
WHEN 

ACTNO  E& P (13) 

The  cost of a  project is then given by the  expression 

COST  DEPENDENT P ( 14) 

The function COST can be redefined whenever  the prob- 
lem is formulated in a different way;  for  instance, if 
COST is  the name of the  query, it would be defined as 

ACTCOST 

( ( U N I T P R I C E   W I T H   Q U A N T I T Y )  

OF RESOURCES 1 

if A has no father  then  quit, 

that’s the  root; 

C 3 1 Z t R O O T   F A  else go up another  step. 

V (16) 

The problem is solved by the  expression 

COST  DEPENDENT  ROOT A (17) 

This  means, for any  given  activity A ,  find the  root project 
to which A belongs, explode this  project  in all its  depend- 
ing activities, and finally compute  the  cost.  This algorithm 
exemplifies a broader  class of algorithms,  which are appli- 547 
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cable  whenever the  elements of a couple of attributes of 
the  same relation (in our  case, P R O J E C T  and 
ACTN0)are drawn  from  the  same  domain.  They  then 
form a relation in an algebraic sense  (see,  for  example, 
[ll]), and such  operations  as  product,  power,  and transi- 
tive  closure  (illustrated above) may be  defined. 

With a simple generalization of the functions 
DEPEND EN T and R 0 0 T ,  it is possible to generalize 
the last  problem as 

“Compute  the total cost  for all the  root projects,” 

which is solved by the expression 

COST  DEPENDENT  ROOT D I S T I N C T  

PROJECT OF A C T I V I T Y  (18) 

which, first of all, finds all the d8erent  projects 
( D I S T I N C T   P R O J E C T  OF A C T I V I T Y  1, 
then finds the  respective  roots ( ROOT ), retrieves 
their “sons’ ” activities ( DEPEND EN T ), and  then 
computes  their  cost ( COST >. 

This is a style  the user  can  adopt in solving problems or 
building his own applications with AQL, even though it is 
not the only one.  Sometimes  the user  may find  it conve- 
nient or preferable not to  name all queries involved in his 
application functions,  for  instance, when the  query is to 
be executed only once in the application, or when the ap- 
plication is to be  run  only periodically (i.e., weekly or 
monthly), as in the  case of producing inventory  or  cost 
reports.  In this case  the  query  can be  directly  introduced 
in the body of the application  function by the  dyadic func- 
tion A Q L S, whose  left  argument is the  data  base  name 
and  whose right argument is a character  string  represent- 
ing the  query.  Since A Q L S  is the dyadic  equivalent of 
the  function A Q L ,  the  query will be interpreted  and  exe- 
cuted inside the calling function. 

Let  us consider the problem of producing  a cost  report 
such  as 

“For a  given  project find all its  suppliers, and  for  each 
supplier compute  the  total  cost of the  resources sup- 
plied.” 

An application  function which solves this problem is here 
described in a step-by-step fashion. Define a  monadic 
function, with some local variables: 

V T + C O S T R E P O R T P ; A P ; S P ; C  

Find the activities depending upon P 

C11 APtDEPENDENT P 

Find the supplier of the activities AP. Since  an activity 
can  be supplied  with different resources by the  same sup- 
plier, the function D I S T I N C T  suppresses  duplicates 
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c 2 3  ‘ P R O J E C T S ‘   A Q L S  

S P t D I S T I N C T  

( S U P P L I E R N O  O F  R E S O U R C E S )  

WHEN ACTNO  ISONEOF  AP‘ 

In S P ,  we obtain the list of the  codes of suppliers who 
supply at least the activities A P .  Now, we have  to find 
the  cost  for  those suppliers  and those activities: 

C 3 1  ‘ P R O J E C T S ‘   A Q L S   ‘ C t A C T C O S T  

( ( U N I T P R I C E   W I T H   Q U A N T I T Y )  

O F  R E S O U R C E S )  WHEN 

( S U P P L I E R N O  EQ S P )  

AND  ACTNO  EQ  AP‘ 

Finally,  put the  results in a  tabular  form: 

C 4 l  T+P  CAT S P  CAT C 

V 

To  produce the same kind of report for  the  project  ances- 
tor of P ,  the following expression should  be executed: 

COSTREPORT  ROOT P (19) 

To  produce a cost  report  for all the  “root”  projects in the 
relation A C T I V I T Y ,  the expression is 

COSTREPORT  ROOT  DISTINCT 

PROJECT O F  A C T I V I T Y  (20) 

with obvious meaning of the  functions. 
The facilities of AQL that we have  described so far turn 

out  to be very useful tools for the  user, not  only  in writing 
his own  application functions, but also in some  cases 
where  the formalization of (very)  complex (or ambiguous- 
ly formulated) queries  can be found more easily by break- 
ing down the original request  into a  series of simpler ones. 
This  technique  not  only  helps in finding the solution but 
also gives the  user a  useful  means for gaining insight  into 
the nature of his problem,  as well as verifying some prop- 
erties of his data. As an  example of this, consider  the fol- 
lowing query: 

“Find  those activities such  that  the city where they are 
taking place is the  same as  the city of all their  suppliers.” 

A possible way in which  this request  can be worked  out is 
given by the following sequence of steps: 
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1. Find all distinct  activities  present in the  table 

RESOURCES:  

D A t D I S T I N C T  

ACTNO OF RESOURCES (2 1) 

2 .  Group  the suppliers ( inRESOURCES) by the activi- 
ties  they  supply, i.e.,  obtain  an  array  carrying  for  each 
activity the list of its  suppliers: 

S B Y A t (   S U P P L I E R N O  

OF RESOURCES 1 

GROUPBY 

ACTNO (22) 

3. Find from the table A C T I  V I T Y t h e  cities  where  the 
activities DA are developed: 

ACTNO  ISONEOF DA (23) 

4. Find the same for  each supplier in S B YA:  

CS+( C I T Y  O F  S U P P L I E R )  WHEN 

S U P P L I E R N O   I S O N E O F   S B Y A  (24) 

5 .  The two  variables C A  and C S  are three-dimensional 
arrays;  furthermore, CA is a  one-plane array  (as activ- 
ities take place in one city at most), with the number of 
rows  equal  to  the number of planes in CS. These two 
conditions hold only if there is  one city for  each sup- 
plier and activity,  and  each activity has  at  least  one 
supplier. Note  that this is a way to  do  some  data analy- 
sis or to verify the  consistency and/or  integrity of the 
information in the  data base. In this step,  now, we 
have  to select  from DA those activities such  that the 
corresponding  plane in CS has all the rows  equal  and 
the value is equal to  the corresponding  element of CA 
(i.e.,  the suppliers of that  activity live in the same  city 
as the activity). This would be done in the following way 
by a more formal APL style:  Given the  set of ac- 
vities DA and an integer  index I such  that 
I E I ( p DA ) [ 2 3 ,  (ranging from 1 to  the number 
of rows in DA), the activity DA [ ; I ; 1 should 
be  selected if the expression 

A / C A [ ; I ; ] A .   = C S [ I ; ; I  

holds; i.e.,  the  name of its  city is found in all the  rows 
of the  plane carrying  the  names of the cities of all its 
suppliers. By using basically this expression it is POS- 
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sible to define a function  for comparison between C A  
and CS, with the  syntax 

V t C A   E Q A L L  CS (25) 

The result V is a logical vector with as  many  elements 
as the  rows in CA and DA. 

6. Finally, the logical vector V can be  used to select the 
array of activities DA as: 

V / C 2 1 D A  

whose  result gives the desired  activities whose city is 
the same as  that of  all corresponding suppliers. 

The  characteristics of the host language give to  the  user 
the possibility of executing the  above  steps directly at  the 
terminal in an interactive way and  at each  step deciding 
what to  do next.  Using the open-endedness  facility, the 
function EQA L L can  be added to the basic  set of the 
language, and  the request can be  treated  as a single query 
which can  also  be  named for further use.  The formulation 
of the query is obtained by putting together the previous 
steps: 

A Q L   ' P R O J E C T S '  

( ( ( C I T Y  O F  A C T I V I T Y )  

WHEN 

ACTNO  ISONEOF  DA)  

E Q A L L  

( C I T Y  O F  S U P P L I E R )  

WHEN 

SUPPLIERNO  ISONEOF 

( S U P P L I E R N O  OF R E S O U R C E S )  

GROUPBY  ACTNO ) / C 2 1 

D A t D I S T I N C T  

ACTNO OF RESOURCES (26) 

It is worth noting here  the  use, in the body of the  same 
complex query, of a  variable ( DA ) specified as  the  re- 
sult of an operation ( D I S T I N C T  ) and  referenced  as 
an argument of another  one ( I SON E 0 F ) . This is a 
quite  common way in AQL to avoid, whenever possible, 
duplication of operations (speeding up  the  interpretation 
and execution of the  query), since a variable name  can 
always  be used inside a query. 549 
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In AQL it is possible to reference the  names of attributes which merely reads: 
by their synonyms; this facility is a particular case of a 
more  general  mechanism which allows the  user  to define 
new attributes  as  functions of pre-existing ones.  The use 
of these so-called defined attributes is particularly helpful 
whenever some  combinations of attributes in a given rela- 
tion define concepts  that  the  user may wish to  reference 
as if they  were  primitive ones in the formulation of 
queries.  The definitions are always expressed  as APL 

functions; the  procedure  to introduce  definitions in the 
system, and the protocol (i.e.,  the  conventional way of 
writing the definitions to interface with the  interpreter) 
are illustrated in the next  section. By using the definition 
mechanism, it is possible to define in the relation 
A C T I V I T Y t h e  attribute “starting date” ( S D A T E  ) 
as a function of Y E A R ,  MONTH, and DAY, and  the 
attribute “age of an  activity” ( AGE ) as a function of its 
starting date S D A   T E .  The use of defined attributes in a 
query is shown in the following example: 

“Which  activities will be at  least 3  years old at the  end of 
1978.” 

A Q L   ‘ P R O J E C T S ’  

I ( ACTNO O F  A C T I V I T Y )  

I WHEN 

AGE GE 3 A T  1978 12  31 (27) 

The dyadic  function A T ,  which accesses  the time stamp, 
thus getting the  date  (year, month,  and day) when the 
query is executed,  causes  the left argument to always 
conform to a  three-element vector which is assumed  to  be 
the  number of years,  months, and days (this is the con- 
ventional way of expressing  dates in AQL); takes  as a right 
argument  a date; and returns  as a result the age computed 
at the date given by the time stamp.  The  query is restated 
by the  system, applying the definition of AGE as: 

( ACTNO O F  A C T I V I T Y )  

WHEN 

( ( Y E A R   L T  ZC;11) OR ( ( Y E A R   E &  

OR ( (MONTH  E& ZC;21) AND ( ( D A Y  

L T  ZC;3l) OR 

( D A Y   E &  ( Z t T I M E A G O  3 

“Activities which started less  than three  years before 
1978, or which started exactly  three  years before 1978 but 
in a month  preceding December,  or,  even though  they 
started in December 1975, at  least they started  some  days 
before  December 31th,  or, finally, those  started exactly 
on December 31th, 1975.” 

The function TIMEAGO computes, from the  date in- 
dicated by the time stamp,  the age referred to  the  data 
given as its right argument.  The result is assigned to Z as 
a  three-column  matrix of number of years,  months, and 
days. This  reformulation of the query shows how the defi- 
nition of AGE depends  on  the comparison function, of 
which it  is the left argument; in fact, GE has  been  trans- 
formed into L T .  The definition of an  attribute  can  be, in 
general, different if it is referenced at  the left or  the right 
argument of the function WHEN. For  instance, again us- 
ing the  domain AGE,  one  can ask for 

“Age of activities located in Bari.” 

A Q L   ‘ P R O J E C T S ‘  

( A G E  OF A C T I V I T Y )  

WHEN 

C I T Y   E &   B A R I  (29) 

Again, reformulation of the query  shows the definition of 
AGE applied in this case  to be: 

T I M E S I N C E  

( ( Y E A R   W I T H  MONTH W I T H   D A Y )  

O F  A C T I V I T Y )  

WHEN 

C I T Y   E &   B A R I  (30) 

The function T I M E S I N C E  computes  the  time  since a 
given date up to  the  date in the time stamp;  the result is a 
matrix,  containing, in each  row,  the  years,  months, and 
days.  The result of the  query is an APL variable called 
AGE, corresponding to  the requested domain; this 
means, in other  words,  that externally (i.e.,  from a user 
point of view) the defined attributes always behave  as  the 
basic ones. A  typical  application in which defined attri- 
butes  are specially useful for the  data  base we are consid- 
ering is the following: 

“How long will a  given  project P last?” 

This  problem implies that,  to find the residual duration of 
a  project P,  we have  to descend the  tree  (or  the sub-tree) 
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whose root is P and,  at  each  step,  compute  the residual 
duration of its depending activities. The  nature of the 
problem  suggests,  again,  the use of a recursive  function. 

Suppose we call R E S D U R (  P ) the residual  duration 
of P ;  then  the  essential  steps of the procedure  to  compute 
R E S  D UR ( P ) can be informally described as 
1. If P is empty,  then RESDUR ( P ) is 0 ,  and we can 

2. Else we have to  check whether P is started; if this is 
quit. 

the  case, then R E S D U R (  P ) i s  defined as 

( S D A T E (  P t DURATION( P )  ) 

- TODAYDATE;  

3. Else  (i.e., P is not  yet  started) R E S D U R (  P ) is de- 
fined by 

DURATION(   P I  t MAXIMUM 

RKSDUR ( S O N S (  P )  ). 
H e r e S D A T E (  P ) a n d  D U R A T I O N (  P) ,whichrep-  
resent  the  starting date and the duration of the project P, 
should be computed by issuing a  query  against the rela- 
tion A CT I V I  BY. Since this  query will be  introduced in 
the application  function and executed  at each  step of the 
recursion, it can be named 

‘ ZtDATEDUR P‘ AQLDEF ‘ P R O J E C T S ‘  

( ( S D A T E   W I T H   D U R A T I O N )  

OF A C T I V I T Y )  

WHEN 

ACTNO  EQ P (3 1) 

The expression SONS ( P ) represents  the  name of the 
query  (already  defined) which finds the activities directly 
depending  upon  a given project P, and finally 
TO DA Y DATE is an APL nulladic function that  returns 
the  value of the  time stamp. 

The  three  steps used to describe  the  problem informally 
can now be  the guideline to writing the  application  func- 
tion RESDUR whose definition, together with  some 
comment  lines, is shown in Appendix  A. 

With the  same  style used in previous examples,  the 
function R E S D  URcan  be  used, for example,  to  compute 

“The residual duration of the  ‘root’  project to which ac- 
tivity A belongs.” 

In  fact,  the expression 

RESDUR  ROOT A (32) 

solves the problem. 
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Data definition 
Data definition facilities have been  introduced  in AQL as a 
set of functions, with the  same syntax as  the  query func- 
tions,  to allow the  data  base administrator to define or 
drop  attributes of a relation,  to  add tuples  (rows) to a pre- 
defined relation, as well as  to  create  or  drop  copies and 
views from basic  relations. In this section we describe  the 
syntax  and properties of the functions for  data definition 
through a series of examples from  the data  base in Fig. 1. 
The first operation  to  create a new relation is  that of defin- 
ing its schema (e.g., attribute names,  definitions, and 
types). This operation is performed by the function 
D E F I N E ;  an  example of its use is the following: 

AQL ‘ P R O J E C T S ’  

DEFINE  (ACTNO  WITH  PROJECT  WITH 

C I T Y   W I T H   D E P T )  O F  A C T I V I T Y  (33)  

Here we ask  that  the relation whose name is the right ar- 
gument of the  function OF be associated  with  a list of 
attribute names in  its  left argument.  The function 
D E F I N E  interactively asks  the user to  specify,  for each 
attribute,  the  type and the definition (if one  exists).  The 
attribute type value is mainly used to establish the order- 
ing relationship  when an index may possibly be built for 
that attribute.  The ultimate  and most important effect of 
the execution of D E F I N E  is that the  master relation is 
updated with the  description of this new  relation. To 
show how the  mechanism of defined attributes  works, 
suppose we want to 

“Add to  the pre-existing attributes of the relation 
A C T I V I T Y a  new one called ACTCODE,as a syn- 
onym of ACTNO.” 

This  operation is performed by the  expression 

A Q L   ‘ P R O J E C T S ’  

DEFINE  ACTCODE OF A C T I V I T Y  (34) 

The dialog between the system  and  the user  is in this case 

S (system) A T T R I B U T E - N A M E  I S  ACTCODE 

S T Y P E :  

U (user) N 

S D E F I N I T I O N :  

U M S Y N S  ‘ ACTNO‘ 

where S Y N S  is  an APL function  which declares 
ACTCODEto be a synonym of ACTNO; it represents, 551 

ANTONACCI ET AL. 



also, a  typical  example of the protocol for writing defini- 
tions. 

The major idea  underlying  the  mechanism of defined 
attributes  is  the following: Definitions are APL functions, 
for which each execution  always  produces an AQL state- 
ment.  This  means that, in order  to  operate  properly, this 
function  should  know the syntactic context in which the 
manipulation of the  query should be performed to ac- 
count for  the definition. The information that defines  the 
syntactic context is simply the function name, of which 
the defined attribute is an argument,  together  with its  ar- 
guments in the  parse  tree.  This context is what we have 
called the protocol or  the interface  between the definition 
and  the AQL interpreter,  and it  is always specified as the 
left-hand side  argument of the definition function.  This is 
the  reason why all these functions should be dyadic, with 
the right argument  referred to  the defining attribute. 

It is the task of the AQL interpreter, before executing 
the definition, to  associate with the left argument  the val- 
ue of the  syntactic  context, by representing it as a  three- 
row matrix containing,  respectively, the left  argument 
(possibly empty),  the function  name,  and the right argu- 
ment. The AQL statement produced as  the result of exe- 
cuting  the definition is parsed  and  checked for semantic 
completeness by the  interpreter before it is substituted 
into  the old syntactic context. A very simple way to  de- 
fine the function S Y N d  is 

V Z+A S Y N S  TRUEDOM 

C11 Z + T R U E D O M , A C 2 ; 1 , A C 3 ; 1  

V 
Then, knowing only the protocol, the  user  can write the 
definition of an  attribute  as  an APL function and  add  to the 
master relation the newly defined attribute  using the  func- 
tion D E F I N E .  

AQL provides a function to  store  the  data  into a pre- 
defined relation; this operation is performed by the  func- 
tion A D D, whose syntax is shown in the next expression 
for  the  case of adding new tuples to all the domains of the 
relation A C T I V I T Y .  

A Q L   ‘ P R O J E C T S ‘  

( A L L I N F O  OF A C T I V I T Y )  

ADD VALUES (35)  

The left argument always specifies the  attribute and  rela- 
tion names;  the variable called V A L U E S ,  in the right 
argument, can be: 

1. The name of a  preformatted file, in which case  the 
ADD function  performs  a bulk input kind of opera- 
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2 .  A character matrix,  representing  a  list of names of 
global variables  which  contain  the attributes’  values. 

3. A three-dimensional array, in which each plane carries 
the values of the  attributes whose  names are in the list 
left argument. 

4. An empty APL vector; then the function will accept  the 
values of each  attribute of the  relation in an  interactive 
way. 

Beforehand,  this  function  prompts the  user with a list 
of options  asking him to  choose  for which domains  an 
inversion should be  built. 

For the  management of the  inversions  the data  base  ad- 
ministrator  can have  at his disposal the  two functions 
B U I L D I N D E X a n d   E R A S E I N D E X f o r ,  respective- 
ly, building or dropping the inversion of a  given  domain. 
Both functions accept,  as arguments,  the attribute  and re- 
lation names in the usual way: 

A Q L   ‘ P R O J E C T S ‘  

BUILDINDEX ACT’NO OF A C T I V I T Y  (36) 

The problem of deleting attributes from a relation,  or 
even  the relation  itself, is dealt with in AQL by the mo- 
nadic function DROP. The expression 

AQL ‘ P R O J E C T S ‘  

DROP ( U N I T P R I C E   W I T H   Q U A N T I T Y )  

OF RESOURCES (37) 
physically deletes  the  attributes  and their descriptions 
from the  master  relation; all the attributes which have 
been defined as  functions of at least  one of the two 
dropped attributes will be flagged as “no longer  usable.” 
To cancel  a  relation completely,  one  can write 

A Q L   ‘ P R O J E C T ’  

DROP A L L I N F O  OF A C T I V I T Y  (38) 

There  are two other important  facilities of data defini- 
tion which offer to  the  user  the possibility of extracting 
from the  set of relations which constitutes  the  data  base 
those particular subsets  he will use  more frequently  to 
perform tests and  simulation  and which he  can  consider 
as “private” relations. Two classical  ways are available 
to meet these needs: the use of copies  and/or views ex- 
tracted  from  basic  relations [12]. 

Both copies and views are supported by AQL, and in the 
following text we give  some examples of both.  Suppose 
the user wants to 

“Create a copy,  from  the relation A C T I V I T Y ,  con- 
sisting of activity numbers, projects,  and starting  dates of 
all the activities  located in Rome and call this copy 
R O M E A C T I V I T Y . “  
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This is performed  by 

A Q L   ‘ P R O J E C T S ‘  

( ( A C T I V I T Y N O   W I T H   P R O J E C T   W I T H  

DATE ) OF R O M E A C T I V I T Y  ) 

I S C O P Y O F  

( ( A C T N O   W I T H   P R O J E C T   W I T H   S D A T E )  

OF A C T I V I T Y  ) 

WHEN 

C I T Y   E &  ROME (39) 

The right argument of the function I S C O  PY 0 F can be 
either a character  matrix or a three-dimensional array, 
with the  same meaning as for the function A D D .  Note 
that both  cases  cover  the possible result of a query, which 
can  be  used as  the right argument of I S  C 0 P Y 0 F.  Of 
course, this  function can be  thought of as a  combination 
ofthetwofunctions DEFINEandADD;infac t , i tphys-  
ically builds a new relation  for the  user and marks it as 
“private.” An important  aspect of this example  is  the  fact 
that, while S D A T E  in A C T 1   V I T ’ Y i s  a defined  attrib- 
ute, in the new relation R O M E A C T I V I T Y , t h e  corre- 
sponding attribute DA T E  has an empty  definition.  This is 
due  to  the  fact  that DATE,  being constituted of the result 
of a query on the attribute S D A T E ,  has  each  item direct- 
ly obtained  from the  catenation of the  values in Y E A R ,  
MONTH, and D A Y .  The mechanism of building copies 
can  be a useful means  for approaching the problem of 
having different levels of authorizations in the  data  base. 
For  instance, a user  who  is not authorized to  update  the 
basic  relations,  but  only to define copies of them, being 
the owner of the copies, automatically has  the maximum 
level of authorization,  i.e., he is the  administrator of his 
personal data  base.  Furthermore, he can  also  authorize 
other  users  to read and/or  update,  etc., his relations. It is 
worth  noting that  copies  are a static way of looking at 
(parts of) basic relations, since any change of these  does 
not affect the  copies  and vice versa. The way of coping 
with this  problem is  to  introduce  the  concept of views. 
Views give the  user  the possibility of looking at  the de- 
sired subsets of the  basic relations  without physically 
building new ones. Unlike  what  happens  with copies, 
views are dynamically  sensitive to  the  updates made in 
their  underlying  relations. 

The way to define a view, in AQL, is very  similar to  that 
of defining copies. Suppose we want to 

“Look only at  those activities, projects,  and budgets 
which are in department 130.” 

Then  the view is built by the expression: 

AQL  PROJECTS‘  

( ( A C T I V I T Y   W I T H   P R O J E C T   W I T H  

BUDGET)  O F  D E F T 1 3 0  ) 

I S V I E W O F  

( ( A C T N O   W I T H   P R O J E C T   W I T H  

BUDGET)  O F  A C T I V I T Y  1 

WHEN 

DEFT  EQ  130  (40) 

Here  the left argument of the function I S  V I  E W O  F de- 
scribes, as usual, the  names of the  attributes and their 
relation, to be defined as a  view, whereas  the right argu- 
ment is the query which  gives the view definition. The 
basic  idea  used in AQL for dealing with views is that of 
treating each  attribute in the view as if it were a defined 
attribute.  This definition is obtained from the  result of  in- 
terpreting the  query which defines the  view and  extract- 
ing that portion of the  parse  tree which refers  to  the  corre- 
sponding requested  attribute(s) in the underlying  rela- 
tion.  This correspondence is established on  the basis of 
the order in which the  attribute names appear  both in the 
view and in the list of requested  attributes in the  query. 
With this approach  the execution of the query defining the 
view will never  take  place, i.e., the values of the re- 
quested attributes will not  be  retrieved from  the relation; 
the view definition will be used to modify,  in a suitable 
way,  the parsed form of the  queries  made against the 
views. It is also possible  in AQL to define views  derived 
from more  than one  relation;  for  instance,  the previous 
view can  be redefined by adding the  cost of the activities. 

A Q L   ‘ P R O J E C T S ’  

( ( A C T I V I T Y   W I T H   P R O J E C T   W I T H  

BUDGET  WITH  COST)  OF D E P T 1 3 0 )  

I S V I E W O F  

( ( ( A C T N O   W I T H   P R O J E C T   W I T H  

BUDGET 1 OF A C T I V I T Y  1 

WHEN 553 
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DEPT  E& 1 3 0 )  

CAT 

A C T C O S T   ( ( U N I T P R I C E   W I T H  

Q U A N T I T Y )  O F  RESOURCES ) 

WHEN 

ACTNO  ISONEOF 

( ACTNO OF A C T I V I T Y )  

WHEN 

DEPT  E& 1 3 0  (41) 
Note  that, since the  query  for computing  a cost of a given 
activity  has  been  named in the previous section (13), it 
can  be used directly as  the left argument of the function 
CAT in the same way as in (6). Then we can write the 
expression 
COST ( ACTNO OF A C T I V I T Y )  WHEN 

DEPT  E&  130  (42) 
as  the right argument of the function C A   T .  

Views, as well as  copies, behave from an  external view 
point as basic  relations on which the  user  can apply all the 
query language facilities  described in the previous  sec- 
tion. For  instance, we can  ask  to 

“Find those activities  in department 130 whose  cost is 
greater  than the  respective budget.” 

A Q L   ‘ P R O J E C T S ‘  

( A C T I V I T Y  OF D E P T l 3 0  ) 

WHEN 

COST GT BUDGET (43) 
Note  here  the  use of the scalar comparison function, nec- 
essary because  each  value of the cost should be compared 
only with the  corresponding value of budget. 

As far  as update  through the view is  concerned, to 
avoid the  problems exposed in [ 131, we choose  to allow it 
only when the view is obtained from only one relation  and 
contains  its master  key. 

Update  facilities 
Of the three update operations, i.e., insert,  replace, and 
delete,  the first one is performed by the  function ADD, 
described in the previous section,  whereas  the last  two 
are performed by a  function called R E P  L A C E. This is a 

554 dyadic  function  whose  right  argument  should  be a query 
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in which attribute  names  to be  updated are specified,  pos- 
sibly together with conditions specifying which  particular 
values should  be  affected by the operation. The left  argu- 
ment is an APL array resulting  from  a  function or  an ex- 
pression having the same  structure  as  the explicit  result of 
a query, and  therefore it can  also be  a query.  It  carries  the 
values that will be  replaced in the positions specified by 
the right argument.  When  a  deletion  should  be performed, 
then the left argument is an  empty APL object.  To  show 
how the update operation works in AQL, suppose  that we 
want to 

“Increase by 10 percent  the budget of those activities 
with the maximum duration.” 

A Q L   ‘ P R O J E C T S ‘  

( BUDGET OF A C T I V I T Y  1 

WHEN 

DURATION  E& MAX DURATION 

(44) 
In this case,  the result of the query execution, which is 
the variable BUD G E T ,  is directly used in the left-hand 
side  argument of the function R E P  L A C E. 

An example of a  deletion operation is 

“Delete all the activities which have not yet started and 
with duration greater  than 900 days.” 

A Q L  ’ P R O J E C T S ‘  

WHEN 

( S D A T E  EQ 0 ) AND 

DURATION GT 9 0 0  (45) 

which corresponds  to deleting the  tuples from 
A C T I V I T Y w h i c h  satisfy the condition. 

During the execution of the  function R E P  L A C E ,  a set 
of options is available to the user  to allow him to control 
the operation in a stepwise fashion or  to verify the  data he 
is updating. To show  how  this  mechanism works, we con- 
sider the following example: 

“Update  the values of the  attributes  year,  month,  day, 
and duration  for  project 20.” 

A Q L   ’ P R O J E C T S ‘  

L I S T V A R S   R E P L A C E  
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( ( Y E A R   W I T H  MONTH WITH DAY WITH 

DURATION 1 O F  A C T I V I T Y  1 

WHEN PROJECT  E& 2 0  (46) 

Here L I S T   V A R S i s  an APL matrix  containing  a  list of 
names of predefined variables  with the new values. Fur- 
thermore,  the function R E P L A C E  requires  that the 
number of these variables  be  equal to the number of re- 
quested attributes in the  query.  The list of options which 
are shown to  the  user before the replace operation ac- 
tually takes place is 

(1) D I S P L A Y variable-name 

(2 )  attribute-name S T E P  n 

(3) A L L  attribute-name 

With the first option,  the  user  can display either values 
retrieved for a  given attribute (in this case  the argument of 
the  function D I S  P L  A Y is a name of an  attribute) or the 
values of any of the  variables in L I S T V A R S .  Thus,  for 
example, if he wants  to  see  the values of Y E A R ,  he en- 
ters 

D I S P L A Y   Y E A R  

The second  option  gives to  the user  more direct  control of 
the execution of the operation; in fact he can  request that 
the update  for  the  attribute specified in the left  argument 
of the function S T E P  take  place with n items  at a time. 
Referring to  the  above  example, we can  choose  to update 
the  attribute DURATION,  one  item  at  a time, in which 
case  the option is  expressed  as 

D U R A T I O N   S T E P  1 

The  system prints one item of the  attribute  and  accepts 
from the user the new value. Any time the  user  enters  an 
empty  value, the item is deleted. 

Whenever  the  third option is specified, the  update  for 
the  attribute specified as an argument of the function 
A L L takes place  without further  user  control. A L L ,  for 
all the specified attributes, is the default option. 

Conclusions 
We have described  how queries,  data definitions,  and up- 
dates  are handled in AQL with a simple and unified syntax, 
which is the  same  as  that of its  host  language, APL. The 
examples and problems given show  that AQL can  be used 
either by the nonspecialist or by  the sophisticated APL 
user. It offers to  both  classes of users,  together with a 
complete  query  facility,  a  very powerful means  for prob- 
lem solving and application building, allowing the  user  to 
always work in a  homogenous  environment  through a 
complete  integration with the host  language. Different 
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styles for building application  functions have  also been 
described to  show how functions of different applications 
can  be used, always  applying the  same  syntax,  to build 
new and  more complex applications or to generalize 
existing ones. 

AQL is undergoing further development to introduce 
new facilities which have not  been described  here, 
namely,  functions for  data control. These will cope with 
the problems of data  security and authorization,  as well 
as  assertions  about  properties of data belonging to a given 
attribute  for  the  purpose of controlling data  consistency. 

Appendix  A:  System architecture 
In this  appendix we give  a functional description of the 
overall system,  concentrating  on what the various  func- 
tions  and their interrelationships are,  rather  than  on how 
they are actually  implemented in the  prototype.  From  an 
architectural  viewpoint, the system has a “layered” or 
multilevel structure  constituted of three  levels or sche- 
mata as in Fig. 4. Each level is characterized  by a lan- 
guage for communicating, a set of objects  corresponding 
to particular data  structures or models on which it oper- 
ates, and a set of functions which constitute its processing 
capabilities and environment. 

The  external level realizes  what is known in the  data 
base literature [14, 151 as  the “conceptual schema,” i.e., 
it is the level which supports  the user’s logical view of 
data  and provides data  independence capabilities. At this 
level the  objects  are simply sets of tables defined by their 
names  and by their corresponding  attributes. A table  can 
be either a basic  relation or a “user  view,” defined by 
manipulating one or more underlying basic  relations  [this 
mechanism was shown in the  data definition section;  see 
expressions (40) and (41)]. At  this level communication 
with the  user  takes place  through the  query language. 

The functions  performed at this level are mainly those 
of interpreting  and checking  the  query; in doing this job 
communication is established with the internal level by 
mapping tables  and  attribute names  into their  correspond- 
ing objects  at  the lowest  level. The  interpreter looks at  the 
query  as a character string, which is  parsed and then 
checked for  syntactic  correctness and semantic complete- 
ness. The  parser  produces a  complete parse  tree of the 
query, using APL-like criteria: first, the right-most,  least- 
nested  function is dealt  with, then the  same  procedure  is 
recursively applied to  the right and, possibly, to  the left 
argument of this function. In this  process syntax  errors 
are  detected and  displayed to the user.  The  parsed form 
of the query is then  checked  for semantic comp!eteness; 
in this phase,  for  instance, default  options are applied and 
attributes  are qualified by referring  them to  the  proper re- 
lation. As in other  systems  (e.g.,  Codd’s GAMMA-0 [16]), 
there is in AQL a master  relation,  i.e., a kind of catalog, 
which contains information  describing all the relations be- 555 
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longing to a data  base,  and it is  accessed in this step.  The 
final result of the  interpretation is a  canonical representa- 
tion of the  query, which can be fixed in the  workspace 
and executed  as  an APL function. 

Communication  with the internal level takes place 
through a series of command  functions. Each command 
can  have one or more  arguments. At this level the argu- 
ments are:  data  base  name, relation name, attribute(s) 
name, and a set of values  to look for.  The  internal level 
guarantees a  very “loose” coupling between  the  user at 
the  external level and  the physical level of data  represen- 
tation; in fact, it provides  an internal model of memory 
space which is an  abstraction of the physical address 
space  on which data  are  stored; in this way, it improves 
the  degree of data  independence. 

From  the viewpoint of the internal  model,  memory is 
organized as a set of pages which constitutes a  linear  ad- 
dress  space. Pages correspond, at the physical  level, to 
aggregations of records, and each page is saved  on disk as 
a contiguous sequence of records of equal size.  This tech- 
nique has  the  advantage of simplifying buffer manage- 
ment at  the physical level. A memory space  that  spans a 
continuous  address  space containing one or more pages 
(i.e., a record  aggregate) is called a segment.  A data  set is 
simply a  collection of segments, while a single collection 
of data  sets described by an internal schema (which is 
part of the system  catalog) defines a data  base. 

In this model there  is a one-to-one correspondence be- 
tween  relations and  segments, established  at data  base 
generation  time. At this level a  relation is seen  as a set of 
domains (where  each domain contains all the occurrences 
of values of the  corresponding  attribute),  together with 
their  corresponding  indices or inversions,  which  repre- 
sent a correspondence between  domain values  and the 
identifier of the  tuple they belong to.  Relations are stored 
as  transposed files, i.e., by clustering the  elements of a 
given attribute belonging to different tuples, instead of 
clustering the  elements of different attributes belonging to 
the  same  tuple. This means that  each page contains only 
elements which are homogeneous,  since they  are all oc- 
currences of values of the same attribute.  This technique 
has  the advantage of speeding  up  retrieval  when the num- 
ber of relevant occurrences  for a given query is greater 
than the number of attributes in the target  list. The  data 
structure used for  the indices is that of a  B-tree (as de- 
fined in [17]) having variable-length keys. 

During the creation of a  relation,  the system builds for 
each  domain the so-called  tuple identifier to logical ad- 
dress  converter (tilac); this is a mapping mechanism be- 
tween  intervals of tuple identifier (tid) values  and logical 
page addresses.  Other important  objects at this  level are 
the  two  catalogs.  These  are defined as special  relations 
which describe  the  characteristics of all the objects of the 
internal  schema. The  master relation catalog describes all 

the relations belonging to  any given data  base;  it holds 
information such  as relation  names, attribute  names, 
types, and definitions (this last is a facility which  gives the 
user  the possibility of defining new attributes as functions 
of already  existing ones;  e.g., synonyms are a special 
case of definition). The  data  base system catalog  is used 
to  describe  each  data  base in terms of the  relations be- 
longing to it and of the identifier of each relation creator; 
it also  holds other  system dependent  information. 

The functions  performed at  the internal level are mainly 
those of computing the logical paths (up  to  the value of 
page addresses) in order  to  access a set of data  items  both 
for querying and updating. The command functions avail- 
able  to manipulate data  items  are of different types, but 
the  most significant ones  are  those  to  access  the inversion 
and the domain of a given attribute.  Concerning  the in- 
dex, we may (informally) write: 

GET INDEX (Dj, K ,  cond)  for read 

GET INDEX (Dj, K ,  cond) for write 

This  function, using the B-tree of the  index of domain Dj, 
finds the  set of tuple identifiers (tid’s) of Dj  corresponding 
to  the value K and  for a given  condition  (e.g., equal, 
greater  than,  etc.).  The command  functions 

GET DOMAIN (Di T )  for read 

GET DOMAIN (Di, T )  for Write 

extract from the domain Di the set of values  correspond- 
ing to  the tuple  identifiers given in T.  The  result  returned 
is an APL array with those values, if there  are  any,  or 
empty. In order  to  show how all this works, we consider 
the following quite  typical  operational  situation: 

“Extract from domain Di those values that  correspond in 
the domain  Dj to  the value K (assuming that  an index has 
been built for DJ.” 

This can  be considered as a complex  command which ex- 
pands  into the  two  elementary ones 

1. T t GET INDEX (Dj, K ,  ‘=’) for read 

2. V c GET DOMAIN (Di, T )  for read 

Step 1 performs  the descent  on the B-tree; it will also is- 
sue to  the physical  level the sequence of page  calls to get 
the  appropriate pages of the inversion of the  domain Dj. 
The result returned in T is  the  set of tuple  identifiers to 
which correspond those values of Dj equal  to K .  Step 2, 
using the  tilac of Di, converts each  value  in T into  two 
values: logical page address  and offset (i.e., the displace- 
ment in that particular  page of the item corresponding  to 
that value of T ) :  

T = >[LPA, offset] 557 
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Then  the  sequence of commands for  getting the pages 
whose addresses  are in LPA’s is issued to  the physical 
level. 

The function GET DOMAIN also  groups together all those 
tid’s that refer to  the  same page in the segment of the 
relation on  hand, so that  the relevant  pages are  read only 
once.  The result is reordered according to  the initial tid 
sequence. Finally, each page is processed  to  extract  the 
values  corresponding to  the computed  offsets and  to build 
the resulting APL array. 

The physical  level represents  the storage component of 
the  system. It  materializes the representation of the ob- 
jects available at  the  upper level, accesses physical  rec- 
ords from auxiliary storage, and controls  their  transfer  to 
and from main storage. 

The interface between  the internal and the physical 
level is established by a “command  language” which pro- 
vides  command functions  to manipulate pages;  that  is, in- 
formally, 
GET (page i, segment 51 for read 
GET (page i, segmentJ  for write 

These functions always  return  as a  result the page i or an 
error  code.  Here segment  and page identifications are 
used to  compute physical access paths to  data and to rec- 
ords  on  data  sets by issuing the  access  method com- 
mands . 

Other important functions performed at  the physical 
level are  those of granting  compatibility among lock 
requests by different transactions, providing mechanisms 
for assuring  physical data  base integrity, recovery sche- 
mata, and  suitable  sequencing of record access  to  reduce 
accessing  time to a page. The description of all these is- 
sues  is not covered  here  since they are  beyond  the  scope 
of this paper. 

Appendix 9: The  function RESDUR 
Following is  the definition of the function R E S  D UR to 
compute the residual duration of a given project P.  

V R D t R E S D U R   P ; D ; P S ; P N ; D N S ;  

D S ; R D I  

c 1 1  R D t Q  

Set up the  result. 

c 2 1  +Q I F  EMPTY P 

Quit if P is empty. 

C31  DcDATEDUR P 

D is  the  duration of P. The global variable 
558 S D A T E  (start  date)  is  produced  as a side ef- 

C 4 1  

C 5 1  

C S l  

C 7 1  

C 8 1  

C 9 l  

C l 0 1  

c111 

c 1 2 1  

fect by the function DA TED UR and  con- 
tains the  start  date of each  project. 

P S + (   S D A T E z Q  1 S E L E C T  P 

The  projects  started have S D A T E  * 0 . 
PN+( S D A T E = Q  1 S E L E C T  P 

PN are projects not  yet  started. 

+ A L L S T A R T E D   I F  EMPTY PN 

Go to A L L S T A R T E D  if all projects  are 
started. 

E L S E ;  DNS+( S D A T E =  0 1 S E L E C T  

DURATION 

Else,  take  the duration of those not  yet 
started. 

RDtDATENORM  RD+DNS+MAX 

RESDUR SONS PN 

The new residual  duration is computed by 
adding the old one  to  the  duration of projects 
not started and to  the largest residual dura- 
tion of the  “sons” of the current  project (in a 
recursive fashion). DA TEN ORM provides 
for “normalizing” the result of this  sum by 
imposing the number of months not  to  ex- 
ceed 12 and  the number of days  not  to  exceed 
the number of days of that month. 

+0 I F  EMPTY P S  

Quit if no project has  started. 

A L L S T A R T E D :  DS+( S D A T E * Q  1 

SELECT  DURATION 

Select duration of started  projects. 

R D l + (   S D A T E t D S )   - T O D A Y D A T E  

Residual duration is endpoint  minus  today’s 
date. 

RDtDATENORM MAX ( R D 1 > 0  1 

S E L E C T   R D 1  

The residual  duration is the  maximum  dura- 
tion among  the activities still “alive.” 

V 
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