F. Antonacci

P. Dell'Orco

V. N. Spadavecchia
A. Turtur

AQL: A Problem-solving Query Language for Relational

Data Bases

Abstract: AQL is a query language based on a data base management system which uses Codd’s relational model of data. It has been
designed mainly to be used by the nonspecialist in data processing for interactive problem solving, application building, and simulation.
Ease of use is achieved by providing an interface which allows the use of default options, synonyms, and definitions of attributes,
inference, and the possibility of interactive completion of the query (i.e., menu). AQL combines the capabilities of the relational model of
data with the powerful computational facilities and control structure of the host programming language (i.e., APL). A prototype version of

AQL, which has been implemented, is reviewed.

Introduction

Data base management systems and their associated
query languages have evolved rapidly since the in-
troduction by Codd, in his 1970 historical paper [1], of the
relational model of data. This model has been appealing
to data base researchers both for the formal precision of
its definition [2, 3] and for the simplicity, symmetry, and
semantic completeness of the conceptual model of the
data available to the final user. The user is presented with
tables (called relations), which can be named and on
which he can execute the well-known operations of table
look-up and comparison. In fact, several query languages
have been proposed based on Codd’s data model, most of
them explicitly intended for the inexperienced user. Ex-
amples include Query-by-Example [4], in which the user
is required simply to describe an example of a possible
answer to the query he has in mind, and SEQUEL [5], in
which the query is formulated in a structured form with
English keywords; similar approaches have been taken in
SQUARE [6] and QUEL [7].

In designing AQL (an acronym for A Query Language),
which is based on the n-ary relational model, a major ob-
jective was to have a query language and a system which
could provide a “‘value added” in terms of level of in-
telligence or flexibility made available to the user,
whether a computer specialist or not. Thus it was impor-
tant that the language, even though formal, have not only

a simple syntax (hence one easy to learn and to use), but
also a high level of capability and effectiveness in problem
solving and simulation, for the cases in which it was nec-
essary not only to retrieve data but also to process them
in an interactive and unanticipated way.

To achieve this objective, the following facilities have
been introduced into the language:

1. Descriptiveness, so the user has only to describe what
is to be retrieved, rather than how it is to be retrieved;

2. Richness of default options, so that ““‘obvious’’ actions
(for example, quoting constants, referring attributes to
the proper relation, etc.) could be done automatically
by the system;

3. The possibility of using synonyms and definitions of
attribute names, which allows the user either to refer
to a given attribute either by its name or by one of its
synonyms or else to reference an attribute defined as a
function of pre-existing ones;

4. An automatic recall of an inference mechanism, which
gives to the system the facility of building for the user,
whenever possible, all the necessary intermediate
steps in queries requiring navigation through relations;

5. An interactive query completion facility, which is au-
tomatically activated in cases of incomplete queries,
or whenever the application of default options or infer-

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish

other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. ¢ VOL. 22 ¢ NO. 5 o SEPTEMBER 1978

541

ANTONACCI ET AL.

542

ACTIVITY: |ACTNO|PROJECT|CITY|DEPT|BUDGET | YEAR | MONTH | DAY | DURATION

RESOURCES: | RESNO | SUPPLIERNO | ACTNO | UNITPRICE | QUANTITY

SUPPLIER! SUPPLIERNO | CITY

Figure 1 Data base PROJECTS.

@@@ @:@

Figure 2 Structure of projects and activities.

ences may lead to ambiguities; in these cases the user
is asked to give, by means of a menu, the lacking infor-
mation;

6. Eventually, an open-endedness capability (which is
built into the language) by which the user can define
new functions of the language using the pre-existing
ones, provided that he conforms to the language syn-
tax.

To give the user the ability to execute unanticipated
computations on retrieved data, the query language has
been conceived as an extension of a programming lan-
guage, so as to preserve a homogeneous environment in
which queries and algorithms can be executed. This led
us to the choice of APL [8-10] both as the implementation
language and system for AQL and as host language to
process the results of queries.

ANTONACCI ET AL.

The syntax of AQL follows that of APL, so, strictly
speaking, AQL is not a new language; rather it can be con-
sidered a super-system of APL. AQL has its own inter-
preter with a set of basic primitive functions made up by
the primitives of the query language together with all the
APL primitives. This approach results in complete “‘trans-
parency’’ between the query language and the program-
ming language. In fact, both elementary and user-defined
functions may be used in the body of a query, and queries
may be used in the body of user-defined functions; fur-
thermore (as will be seen later), the values retrieved as
results of queries are APL objects, which are made avail-
able in the workspace for further processing.

AQL is the language interface supported by a relational
data base management system prototype developed at the
IBM Bari Scientific Center. The general architecture of
the system is presented in Appendix A. It provides facili-
ties for data definition (e.g., creating and adding relations
to the data base) and update of relations.

In this paper the characteristics of AQL are presented
by a series of examples and by using the data base in Fig.
1. In this figure, the relation ACTIVITY contains informa-
tion about projects; it is described by a set of attributes:
ACTNO is the activity number; it is also the primary key of
the relation as defined by Codd [2], and PROJECT gives the
project number to which a particular activity belongs.
The other attributes indicate the city, department, bud-
get, starting date, and duration of each activity. A given
project can itself be an activity, thus having another proj-
ect upon which it is dependent; other projects may have
no direct ancestors, thus being themselves the ancestors
of all activities and/or projects dependent on them. Typi-
cal situations are represented in Fig. 2. For simplicity, let
us suppose that the structure is strictly hierarchical; i.e.,
every activity has at most one predecessor.

The relation RESOURCES in Fig. 1 describes, for each
resource number, the supplier, the activity that uses that
particular resource, and the price for one unit of it to-
gether with the quantity of resources required by that ac-
tivity. Obviously, an activity can have more than one sup-
plier, whereas a given supplier can supply more than one
activity with the same or different resources. In this case,
the primary key of the relation is given by the three attri-
butes (RESNO, SUPPLIERNO, ACTNO). The final relation in
Fig. 1, SUPPLIER, gives, for each supplier, the city where
he is located.

In the following sections, this data base is called PROJ-
ECTS. It is worth noting that AQL accepts queries in a free
format. Thus, the format used in the examples is not man-
datory; it has been adopted here only for the sake of read-
ability. Finally, even though the use of APL has been kept
to the minimum necessary to clarify the computations re-
quired in some examples, some knowledge of APL is
needed; those not familiar with it can refer to [8].

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

Working with AQL

To introduce the structure and basic features of AQL, let
us consider a simple query in which values are requested
from a domain of a relation, while imposing a condition
on the values of another domain. For instance,

“Find the budgets of the activities in department 145"’

This query is formulated as

AQL 'PROJECTS'
(BUDGET OF ACTIVITY)
WHEN

DEPT Eg 145 0y

The function 4 @ L is used to gain entry into the system; it
accepts as an argument the name of the data base. This
causes the terminal keyboard to unlock, waiting for input;
input is terminated by an empty carriage return. In this
case, the input is constituted of a structure called a
“‘when-clause’’; i.e., the query is composed of two dis-
tinct parts separated by the dyadic function ¥ HEN. The
left argument is the requested attribute (BUDGET) re-
ferred to the proper relation by the function O F; the right
argument is an elementary condition made up of an attri-
bute name (DEPT) followed by a comparison function
(EQ) whose right argument is a constant. The com-
parison operation performed by the function E'¢ (and by
its companions GT, LT, etc.) is extended to the case
where the right argument is a list of values, which can
also be the result of a previous or of a nested query. In
this case the comparison operation is performed on the
Cartesian product of the arguments, i.e., on the set of or-
dered couples formed by every value defined for the at-
tribute left argument with each element of the right argu-
ment. This mode of operation is very useful when it is
important to preserve a correspondence among values in
the result and each value in the list. That is, for each ele-
ment in the list right argument, a list of identifiers of the
relevant tuples is determined. Each tuple identifier (tid)
consists of an integer, which is biunivocally associated
with each tuple of each relation. The ith element of the
right argument is associated with the ith list of tuple iden-
tifiers, and vice versa. A parallel set of comparison func-
tions (GT, GE, E@, NOTEQ, LE, LT)pI'O-
vides for the ‘‘scalar’” mode of comparison, i.e., every
element of the left argument is compared with the corre-
sponding element of the right one. Of course, both argu-
ments have to be ‘“‘conformable’ in the APL sense. For
this purpose, attributes are treated as three-dimensional
arrays. The final result of the execution of the query is a
three-dimensional APL array with, in this case, one plane
and columns, which carries in each row the budget for the

IBM J. RES. DEVELOP. @ VOL. 22 # NO. 5 « SEPTEMBER 1978

activities in department 145. Furthermore, a global vari-
able, called BUDGFT, is created in the workspace and
contains the previous values. This side effect is produced
only in the cases, like this one, in which the query is not
nested in an outer one. The variable BUDGET is now
available in the workspace for any further processing, as,
for instance, to compute the total budget:

Z+«+/[21BUDGET

Of course, the primitive APL '+/[21" can be re-
placed by a predefined user function SUMU P, Whenever
all the attributes of a relation are in the request list, this
can be expressed more concisely by the keyword
ALLINFO; if we had requested almost all the attri-
butes, the function FXCFEPT would have been used in
the following way:

(ALLINFO EXCEPT BUDGET) OF

ACTIVITY...

On the other hand, when no condition is imposed on the
attributes (i.e., all tuples are wanted), then the function
ALL replaces the condition list; it assumes, as its argu-
ment, the relation name in the same ‘“‘when clause.”” The
default option WHEN ALL is applied whenever only a
request list is specified in the query. Formally, the func-
tions ALLINFQ and AL L correspond to Codd’s “‘re-
striction’’ and ‘‘projection’’ operators.

An example of application of default options together
with the use of APL primitives in the body of a query is

“‘Compute the total budget of all the activities”’
AQL 'PROJECTS'!
+/[2]1BUDGET)

Since the attribute BUDGET (as it appears defined
in the master relation) belongs only to the relation
ACTIVITY, itis possible for the system to univocally
qualify the attribute BUDGET OF ACTIVITY,
and the default options transform the query into its equiv-
alent and complete form:

+/[2]1(BUDGET OF ACTIVITY)

WHEN ALL ACTIVITY

The (only) final result of this query is a numeric value
representing the sum of all budgets.

The left argument of the function WHEN can be a
request list constituted of more than one attribute name
catenated by the keyword WI T H. Similarly, the right ar-
gument of ¥ HE N can be a condition list consisting of a
number of elementary conditions separated by the logical
functions AND, OR, NOT. Anexample of this is the
following request:

543

ANTONACCI ET AL.

544

““Activity number and departments for those activities lo-
cated in Bari and whose budget is between 1000 and
2000.”

AQL 'PROJECTS'
((ACTNO WITH DEPT) OF ACTIVITY)
WHEN
(CITY EQ BARI) AND BUDGET

BETWEEN 1000 WITH 2000 3

In this query, even though the attribute C I T'Y belongs to
the relations ACTIVITY and SUPPLIER, it is as-
signed on a simple preference basis to that relation which
matches the one in the left argument of ¥ HEN in the
same when-clause. In this case the results of the query
are twofold: first, a two-row character matrix containing
the names of the requested attributes is produced as the
explicit result; second, as a side effect, two variables with
the names ACTNOQO and DEPT are initialized in the
workspace.

To introduce some more primitives of the query lan-
guage, and to show how they are integrated into the pro-
gramming language, we now describe some problems of
costs of activities and projects. Suppose we want to

“Compute the costs of those activities whose suppliers
are located in Rome.”

First we have to make a query asking for the unit price
and quantity of the resources used in those particular ac-
tivities:

AQL 'PROJECTS'
((UNITPRICE WITH QUANTITY)
OF RESOURCES)

WHEN

SUPPLIERNO ISONEOF
(SUPPLIERNO OF SUPPLIER)
WHEN

CITY EQ ROME)

This example represents a typical way of navigating
among relations and shows how nesting of queries is ac-
complished in 4 @ L. The function I .SONE OF performs
a set membership operation. Its right-hand argument is a
list of values (here given as the explicit result of the inner

ANTONACCI ET AL.

query), and the left-hand side argument is an attribute
name, which, in this case, the system automatically refers
to the relation RESOURCES.

Unlike the function £ @, the function Z SONE O F does
not preserve any correspondence between the elements
of its arguments; i.e., a list right argument produces a
one-row matrix of tid’s, with no order correspondence
left between the elements of the list and the tid’s. Of
course, if the right argument consists of one element only,
E¢ and I SONEOF behave the same. To compute the
cost, we may use the two variables now available in the
workspace:

COST«+/L2JUNITPRICE x QUANTITY
®

Since this expression will become very common in any
further computation of cost, it turns out to be useful to
define a function for it. A convenient way for doing this is
the following:

V R<ACTCOST M
(11 R<+/027CeM[1:;]) x 2M[2:]

v

The function ACTCOST is quite special: its argument
(M) is a two-row character matrix; it performs the same
computations as in (5) on the values obtained by execut-
ing the variable names contained in each row of the argu-
ment. Notice that the matrix M is exactly equivalent to
the explicit result produced by the query (4), so it would
be desirable to introduce this function directly in the
query. In AQL this is possible, since the user can extend
the set of basic primitives of the language simply by add-
ing to them the new user-defined APL function by means
of a system function called ADDF'NS. In this way, not
only the function name but also its syntactic nature is
known by the system and by the AQL interpreter. In our
case, this is achieved by typing

Z<ADDFNS'Z«ACTCOST M!

The result is either 0, if the operation was successful, or
an error code. Once this has been done for the function
ACTCOST,it can be used in a query, as in the following
example:

“For each activity, list the activity number and its total
cost.”

AQL 'PROJECTS!
(DISTINCT ACTNO OF RESOURCES)

CAT

IBM J. RES. DEVELOP. & VOL. 22 ® NO. 5 & SEPTEMBER 1978

ACTCOST
((UNITPRICE WITH QUANTITY)
OF RESQURCES)

GROUPBY ACTNO (6)

The function CA T is used to catenate the results of two
queries at the same level of nesting. In this case its left
argument extracts, from the relation KESOURCE S, all
the different values of the attribute A C T N O; this is a pro-
jection in Codd’s sense [1]. The right argument is a group-
ing operation, a useful means for representing many-to-
one relationships. Then the cost is computed after group-
ing, for each activity in the relation RESOQURCES, the
corresponding unit price and quantity referred to each re-
source used by that activity.

Some entities (relations) in the data base may have
attributes (for instance, activity numbers in some depart-
ments or activities supplied with certain resources) from
which it is possible to extract a subset of elements (e.g.,
departments) which correspond to all (or only) those in-
stances of another attribute (e.g., project) which satisfy a
given condition (e.g., city is Rome). The functions which
allow the user to find those values are called quantifiers.
This is a class of functions (namely, two: HASALL for
all, HASONLY for only) implemented as primitives in
AQL. An example of their use is given by the following
problem:

“Compute the total cost of those activities developed in
the departments which have only activities supplied by
suppliers located in Rome.”

In AQL this request may be formulated as

AQL 'PROJECTS'

ACTCOST

((UNITPRICE WITH QUANTITY)
OF RESOURCES)

WHEN

DEPT HASONLY ACTNO FQ
(ACTNO OF RESOURCES)
WHEN

CITY EFQ ROME M

With this formulation of the query, the semantic com-

ACTIVITY

49%0

RESOURCES SUPPLIER

SUPPLIERNO

Figure 3 Correlation among relations.

referred only to the relation ACT I VITY, which is dif-
ferent from the request relation in the same when-clause,
i.e., RESOURCES. In this case at least one inter-
mediate query should be built up in order to “‘link” the
two relations. The system can carry out this process by
entering the so-called inference mode. In order to activate
this process, an AQL function has been defined by which it
is possible to describe the correlations that in a given data
base exist among relations and that may be represented as
a graph in which the nodes correspond to the relations
and the arcs to the link attributes. Figure 3 shows such a
graph for the data base PROJ ECTS. This graph is rep-
resented in the system by means of a navigation matrix,
which carries, for each ordered couple of relations, the
couple(s) of linking attributes. These links should be ex-
plicitly established by the data base administrator, since
choices based on world knowledge and data base seman-
tics are involved. In general, a link involves a couple of
attributes which are semantically equivalent, in the sense
that they represent instances of the same set of entities,
which is their underlying domain. This implies that, in
general, there may be more than one couple of link attri-
butes between two relations; in this case all the inference
paths are present in the navigation matrix, and the dis-
ambiguation choice is asked of the user.

In the example on hand a one step inference path is
sufficient to connect the two relations RESOURCES
and ACTIVITY by means of the link attribute
ACTNO. The query is now restated by the system as
follows:

ACTCOST

((UNITPRICE WITH QUANTITY)
OF RESOURCES)

{WHEN

ACTNO ISONEOF

pletion routine detects that the attribute DEPT can be (ACTNO OF ACTIVITY)} 545

IBM J. RES. DEVELOP. ® VOL, 22 » NO. 5 ¢ SEPTEMBER 1978 ANTONACCI ET AL.

546

WHEN

DEPT HASONLY ACTNO EQ
(ACTNO OF RESOURCES)

WHEN

CITY EQ ROME (8)

Here the braces denote the part of the query built by the
inference mechanism. The query is not yet ready to be
executed since the attribute C I TY, left argument of the
function F'@ in the rightmost condition, cannot be re-
ferred to the request relation R E.SOURCE S in the same
(innermost) when-clause. Moreover, it belongs to both
the relations SUPPLIER and ACTIVITY so its
qualification cannot be decided by the system. To cope
with this kind of ambiguity, the user is prompted with a
menu asking him to choose the proper relation:

...(ACTNO OF RESOURCES)
WHEN (CITY OF...) EQ ROME
CHOOSE THE NUMBER
CORRESPONDING TO THE PROPER
RELATION
1.SUPPLIER
2 ACTIVITY
Q:

1 (user’s answer) 9

The relation SUPPLIER (to which CITY can now be
referred) is different from the request relation; again the
system enters the inference mode, and, accessing the
navigation matrix, tries to build the intermediate query
linking the two relations. The final result of this process
transforms the query into

ACTCOST
((UNITPRICE WITH QUANTITY)
OF RESOURCES)
{WHEN
ACTNO ISONEOF

(ACTNO OF ACTIVITY)}

ANTONACCI ET AL.

WHEN
DEPT HASONLY ACTNO FQ@
(ACTNO OF RESOURCES)
{WHEN
SUPPLIERNO ISONEOF
(SUPPLIERNO OF SUPPLIER)}
WHEN

CITY EQ HOME (10)

The expression is equivalent to the internal representa-
tion of the query which can now be executed.

The structure of the projects, as it is defined in Fig. 2,
suggests that the cost of an activity is different from the
cost of the project to which that activity belongs, except
for those projects with no subsidiary activities. Thus a
problem such as

“Compute the cost of a given project’

is more general than the previous ones and implies for the
user the definition of some ‘‘application’ functions. The
first step in solving this problem is

““Find all activities which depend upon a given project.”’

To find the activities which directly depend upon a given
project, say P, simply means, in AQL, writing a query like

(ACTNO OF ACTIVITY) WHEN

PROJECT EQ P (11

If we were interested in a list of projects (irrespective of
their order), we would write ZSONEOF instead of £ Q.
This query should then be applied again, descending the
tree or sub-tree whose root is P, and saving the result at
each step. To avoid recalling the AQL interpreter at each
step of this recursive process, we can name the query.
The facility of naming a query is equivalent to that of
naming an expression in APL, i.e., defining a function.
This function is defined as the APL expression equivalent
to the result produced by the AQL interpreter; moreover,
the system automatically adds its name to the basic primi-
tive set of AQL. Once a name has been assigned to a
query, it can be saved for later use, it can be executed by
referencing its name, or it can even be introduced in an-
other query as a primitive of the language.

This facility can be used for naming the query (11), as
follows:

'Z«SONS P' AQLDEF 'PROJECTS'!

IBM J. RES. DEVELOP. & VOL. 22 & NO. 5 ¢ SEPTEMBER 1978

(ACTNO OF ACTIVITY)
WHEN

PROJECT EQ P

The left argument of the function A @ L DE F'is the header
of the function to be defined, and its name (SONS) is
the name of the query whose execution can be performed
(say for P equal to 239) simply by writing the expression
SONS 239. The descendent(s) of the tree or sub-tree
whose root node is a given project P is (are) retrieved by
the following recursive function:

V Z<DEPENDENT P

[1] Z<«P Set up the result.
(2] -0 IF EMPTY P<«SONS P

if P has no sons, then quit;
[3] Z«Z ON DEPENDENT P
else compute its dependents,

v and stack on the previous
ones.

(12)

The result of this function is the list of all activities depen-
dent upon P. The cost of a list of activities can be com-
puted by defining the function:

'Z<«COST P' AQLDEF 'PROJECTS'
ACTCOST
((UNITPRICE WITH QUANTITY)

OF RESQURCES)

WHEN

ACTNO EQ P (13)
The cost of a project is then given by the expression
COST DEPENDENT P (14)

The function C 0.5 T can be redefined whenever the prob-
lem is formulated in a different way; for instance, if
COST is the name of the query, it would be defined as

ACTCOST
(CUNITPRICE WITH QUANTITY)

OF RESOURCES)

IBM J. RES., DEVELOP. & VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

WHEN

(ACTNO EQ P) AND CITY EQ ROME

The expression (14) gives the cost of the project P only
for those activities located in Rome or whose suppliers
are located in Rome, since C' I TY belongs to both the
relations SUPPLIER and ACTIVITY. This ambi-
guity is resolved during the execution of AQLDEF by
use of the menu, and then the query completed by the
inference process. .

In the previous examples there is no way of knowing
whether a given project is the root of the tree (i.e., the
ancestor of all its activity) or whether it is a son of an-
other project. This problem may be stated as follows:

“Compute the total cost of the ‘root’ project to which a
given project or activity belongs.”

In this case, starting from an activity we have to move
upward on the tree to which it belongs, to the root. First
of all, using the naming facility, it is easy to define a func-
tion for finding the ‘‘father’” (direct ancestor) of an activi-

ty:

VZ+«FATHER A' AQLDEF 'PROJECTS!
(PROJECT OF ACTIVITY)
WHEN

ACTNO EQ A 15)

Then a recursive function for re-ascending the tree up to
the root can be defined as

V Z+«ROOT A FA

(1] Z+4 Set up the result

[2]1+0IFEMPTY FA«FATHERA

if 4 has no father then quit,
that’s the root;

[3] Z«RO0OTFA else go up another step.

v (16)
The problem is solved by the expression
COST DEPENDENT ROOT A an

This means, for any given activity 4, find the root project
to which 4 belongs, explode this project in all its depend-
ing activities, and finally compute the cost. This algorithm
exemplifies a broader class of algorithms, which are appli- 547

ANTONACCI ET AL.

cable whenever the elements of a couple of attributes of
the same relation (in our case, PROJECT and
ACTPNO)are drawn from the same domain. They then
form a relation in an algebraic sense (see, for example,
[11]), and such operations as product, power, and transi-
tive closure (illustrated above) may be defined.

With a simple generalization of the functions
DEPENDENT and ROOT, it is possible to generalize
the last problem as

“Compute the total cost for all the root projects,”

which is solved by the expression

COST DEPENDENT ROOT DISTINCT

PROJECT OF ACTIVITY (18)

which, first of all, finds all the different projects
(DISTINCT PROJECT OF ACTIVITY),
then finds the respective roots (EFOOT), retrieves
their ““sons’ ** activities (DEPENDENT), and then
computes their cost (COST).

This is a style the user can adopt in solving problems or
building his own applications with AQL, even though it is
not the only one. Sometimes the user may find it conve-
nient or preferable not to name all queries involved in his
application functions, for instance, when the query is to
be executed only once in the application, or when the ap-
plication is to be run only periodically (.e., weekly or
monthly), as in the case of producing inventory or cost
reports. In this case the query can be directly introduced
in the body of the application function by the dyadic func-
tion 4§ LS, whose left argument is the data base name
and whose right argument is a character string represent-
ing the query. Since AQL S is the dyadic equivalent of
the function 4 @ L, the query will be interpreted and exe-
cuted inside the calling function.

Let us consider the problem of producing a cost report
such as

“For a given project find all its suppliers, and for each
supplier compute the total cost of the resources sup-
plied.”

An application function which solves this problem is here
described in a step-by-step fashion. Define a monadic
function, with some local variables:

VTI«COSTREPORTP;AP;SP;C
Find the activities depending upon P
L1] AP<«DEPENDENT P

Find the supplier of the activities A P. Since an activity

can be supplied with different resources by the same sup-

plier, the function DI ST INCT suppresses duplicates
548 of suppliers’ numbers for each activity:

ANTONACCI ET AL.

(2] '"PROJECTS' AQLS
'SP«DISTINCT
(SUPPLIERNO OF RESOURCES)

WHEN ACTNO ISONEOF AP

In S P, we obtain the list of the codes of suppliers who
supply at least the activities A P. Now, we have to find
the cost for those suppliers and those activities:

{31 '"PROJECTS' AQLS 'C<«ACTCOST
((UNITPRICE WITH QUANTITY)
OF RESOURCES) WHEN
(SUPPLIERNO EQ SP)

AND ACTNO EQ AP!
Finally, put the results in a tabular form:

(4] T+«P CAT SP CAT C

v

To produce the same kind of report for the project ances-
tor of P, the following expression should be executed:

COSTREPORT ROOT P 19

To produce a cost report for all the ‘‘root’’ projects in the
relation ACTIVITY, the expression is

COSTREPORT ROOT DISTINCT

PROJECT OF ACTIVITY (20)

with obvious meaning of the functions.

The facilities of AQL that we have described so far turn
out to be very useful tools for the user, not only in writing
his own application functions, but also in some cases
where the formalization of (very) complex (or ambiguous-
ly formulated) queries can be found more easily by break-
ing down the original request into a series of simpler ones.
This technique not only helps in finding the solution but
also gives the user a useful means for gaining insight into
the nature of his problem, as well as verifying some prop-
erties of his data. As an example of this, consider the fol-
lowing query:

“‘Find those activities such that the city where they are
taking place is the same as the city of all their suppliers.”’

A possible way in which this request can be worked out is
given by the following sequence of steps:

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

1. Find all distinct activities present in the table

RESOURCES:

DA<DISTINCT

ACTNO OF RESOURCES 2D

2. Group the suppliers (inFESOUR CES) by the activi-
ties they supply, i.e., obtain an array carrying for each
activity the list of its suppliers:

SBYA+(SUPPLIERNO
OF RESOQURCES)
GROUPBY
ACTNO (22

3. Find from the table ACT I VI T Y the cities where the
activities DA are developed:

CA<(CITY OF ACTIVITY) WHEN

ACTNO ISONEOF DA 23)
4. Find the same for each supplier in SBYA:
CS«(CITY OF SUPPLIER) WHEN

SUPPLIERNO ISONEOF SBYA (24)

5. The two variables CA and C'S are three-dimensional
arrays; furthermore, C4 is a one-plane array (as activ-
ities take place in one city at most), with the number of
rows equal to the number of planes in CS. These two
conditions hold only if there is one city for each sup-
plier and activity, and each activity has at least one
supplier. Note that this is a way to do some data analy-
sis or to verify the consistency and/or integrity of the
information in the data base. In this step, now, we
have to select from DA those activities such that the
corresponding plane in C'S has all the rows equal and
the value is equal to the corresponding element of C'4
(i.e., the suppliers of that activity live in the same city
as the activity). This would be done in the following way
by a more formal ApL style: Given the set of ac-
vities DA and an integer index I such that
Te1(pDA)L 2] (ranging from 1 to the number
of rows in DA), the activity DA[;I ;] should
be selected if the expression

AJCAL :T31A. =CS8[LI;;1]

holds; i.e., the name of its city is found in all the rows
of the plane carrying the names of the cities of all its
suppliers. By using basically this expression it is pos-

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 5 & SEPTEMBER 1978

sible to define a function for comparison between C'4
and C'S, with the syntax

V«<CA EQALL CS 25)

The result ¥ is a logical vector with as many elements
as the rows in CA and DA.

6. Finally, the logical vector V can be used to select the
array of activities D4 as:

v/[21p4A

whose result gives the desired activities whose city is
the same as that of all corresponding suppliers.

The characteristics of the host language give to the user
the possibility of executing the above steps directly at the
terminal in an interactive way and at each step deciding
what to do next. Using the open-endedness facility, the
function QAL L can be added to the basic set of the
language, and the request can be treated as a single query
which can also be named for further use. The formulation
of the query is obtained by putting together the previous
steps:

AQL 'PROJECTS'
(((CITY OF ACTIVITY)
WHEN
ACTNO ISONEOF DA)
EQALL
(CITY OF SUPPLIER)
WHEN
SUPPLIERNO ISONEOF

(SUPPLIERNO OF RESOURCES)
GROUPBY ACTNO)/[2]
DA<DISTINCT

ACTNO OF RESOURCES (26)

It is worth noting here the use, in the body of the same
complex query, of a variable (DA) specified as the re-
sult of an operation (DISTINCT) and referenced as
an argument of another one (ISONEOF). This is a
quite common way in AQL to avoid, whenever possible,
duplication of operations (speeding up the interpretation
and execution of the query), since a variable name can
always be used inside a query.

549

ANTONACCI ET AL.

550

In AQL it is possible to reference the names of attributes
by their synonyms; this facility is a particular case of a
more general mechanism which allows the user to define
new attributes as functions of pre-existing ones. The use
of these so-called defined attributes is particularly helpful
whenever some combinations of attributes in a given rela-
tion define concepts that the user may wish to reference
as if they were primitive ones in the formulation of
queries. The definitions are always expressed as APL
functions; the procedure to introduce definitions in the
system, and the protocol (i.e., the conventional way of
writing the definitions to interface with the interpreter)
are illustrated in the next section. By using the definition
mechanism, it is possible to define in the relation
ACTIVITY the attribute “‘starting date” (SDATE)
as a function of YEAR, MONTH, and DAY, and the
attribute ‘‘age of an activity”” (AGE) as a function of its
starting date SDATE. The use of defined attributes in a
query is shown in the following example:

““Which activities will be at least 3 years old at the end of
1978.”

AQL 'PROJECTS'
(ACTNO OF ACTIVITY)
WHEN

AGE GE 3 AT 1978 12 31 2N

The dyadic function AT, which accesses the time stamp,
thus getting the date (year, month, and day) when the
query is executed, causes the left argument to always
conform to a three-element vector which is assumed to be
the number of years, months, and days (this is the con-
ventional way of expressing dates in AQL); takes as a right
argument a date; and returns as a result the age computed
at the date given by the time stamp. The query is restated
by the system, applying the definition of AGE as:

(ACTNO OF ACTIVITY)
WHEN
((YEAR LT 7Z[;11) OR ((YEAR EQ
Z[03;11) AND ((MONTH LT 7Z(;21)
OR ((MONTH EQ Z[;21) AND ((DAY
LT Z[;3]) OR
(DAY EQ (Z<TIMEAGO 3

AT 1978 12 31) [3:31)))))) (28)

ANTONACCI ET AL.

which merely reads:

““Activities which started less than three years before
1978, or which started exactly three years before 1978 but
in a month preceding December, or, even though they
started in December 1975, at least they started some days
before December 31th, or, finally, those started exactly
on December 31th, 1975.”

Che function TIMFEAGO computes, from the date in-
dicated by the time stamp, the age referred to the data
given as its right argument. The result is assigned to Z as
a three-column matrix of number of years, months, and
days. This reformulation of the query shows how the defi-
nition of AGE depends on the comparison function, of
which it is the left argument; in fact, GE has been trans-
formed into L T'. The definition of an attribute can be, in
general, different if it is referenced at the left or the right
argument of the function W HE N. For instance, again us-
ing the domain AGF, one can ask for

“‘Age of activities located in Bari.”

AQL 'PROJECTS!
(AGE OF ACTIVITY)
WHEN

CITY E@ BARI 29

Again, reformulation of the query shows the definition of
A GE applied in this case to be:

TIMESINCE
((YEAR WITH MONTH WITH DAY)
OF ACTIVITY)
WHEN

CITY E§ BARI (30)

The function TIME ST NCE computes the time since a
given date up to the date in the time stamp; the result is a
matrix, containing, in each row, the years, months, and
days. The result of the query is an APL variable called
AGE, corresponding to the requested domain; this
means, in other words, that externally (i.e., from a user
point of view) the defined attributes always behave as the
basic ones. A typical application in which defined attri-
butes are specially useful for the data base we are consid-
ering is the following:

““‘How long will a given project P last?”’

This problem implies that, to find the residual duration of
a project P, we have to descend the tree (or the sub-tree)

IBM J. RES. DEVELOP. @ VOL. 22 e NO. 5 » SEPTEMBER 1978

whose root is P and, at each step, compute the residual

duration of its depending activities. The nature of the

problem suggests, again, the use of a recursive function.
Suppose we call RESDUR (P) the residual duration

of P; then the essential steps of the procedure to compute

RESDUR(P)can be informally described as

1. If Pis empty, then RESDUR(P)is 0, and we can
quit.

2. Else we have to check whether P is started; if this is
the case, then RESDUR(P)is defined as

(SDATE(P) + DURATION(P))

- TODAYDATE;

3. Else (i.e., P is not yet started) RESDUR(P) is de-
fined by

DURATION(P) + MAXIMUM

RESDUR (SONS(P)).

Here SDATE(P)and DURATION(P),which rep-
resent the starting date and the duration of the project P,
should be computed by issuing a query against the rela-
tion ACTIVITY. Since this query will be introduced in
the application function and executed at each step of the
recursion, it can be named

'Z<DATEDUR P' AQLDEF 'PROJECTS'
((SDATE WITH DURATION)

OF ACTIVITY)
WHEN

ACTNO EQ P 3D

The expression SONS (P) represents the name of the
query (already defined) which finds the activities directly
depending upon a given project P, and finally
TODAYDATE is an APL nulladic function that returns
the value of the time stamp.

The three steps used to describe the problem informally
can now be the guideline to writing the application func-
tion RESDUR whose definition, together with some
comment lines, is shown in Appendix A.

With the same style used in previous examples, the
function R £ S D U R can be used, for example, to compute

*“The residual duration of the ‘root’ project to which ac-
tivity 4 belongs.”

In fact, the expression
RESDUR ROOT A 32)

solves the problem.

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 « SEPTEMBER 1978

Data definition

Data definition facilities have been introduced in AQL as a
set of functions, with the same syntax as the query func-
tions, to allow the data base administrator to define or
drop attributes of a relation, to add tuples (rows) to a pre-
defined relation, as well as to create or drop copies and
views from basic relations. In this section we describe the
syntax and properties of the functions for data definition
through a series of examples from the data base in Fig. 1.
The first operation to create a new relation is that of defin-
ing its schema (e.g., attribute names, definitions, and
types). This operation is performed by the function
DEFINFE; an example of its use is the following:

AQL 'PROJECTS'
DEFINE (ACTNO WITH PROJECT WITH

CITYWITHDEPT)OFACTIVITY (33)

Here we ask that the relation whose name is the right ar-
gument of the function OF be associated with a list of
attribute names in its left argument. The function
DFE F I NFE interactively asks the user to specify, for each
attribute, the type and the definition (if one exists). The
attribute type value is mainly used to establish the order-
ing relationship when an index may possibly be built for
that attribute. The ultimate and most important effect of
the execution of DFF I NF is that the master relation is
updated with the description of this new relation. To
show how the mechanism of defined attributes works,
suppose we want to

‘“‘Add to the pre-existing attributes of the relation
ACTIVITYanew one called ACTCODE, as a syn-
onym of ACTNO.”

This operation is performed by the expression

AQL 'PROJECTS'

DEFINE ACTCODE OF ACTIVITY (34

The dialog between the system and the user is in this case

S (system) ATTRIBUTE-NAME IS ACTCODE
S TYPE:

U (user) N

S DEFINITION:

U MSYNS '"ACTNO!

where SYNS is an APL function which declares
ACTCODEto be a synonym of A CTNO; it represents,

ANTONACCI ET AL.

552

also, a typical example of the protocol for writing defini-
tions.

The major idea underlying the mechanism of defined
attributes is the following: Definitions are APL functions,
for which each execution always produces an AQL state-
ment. This means that, in order to operate properly, this
function should know the syntactic context in which the
manipulation of the query should be performed to ac-
count for the definition. The information that defines the
syntactic context is simply the function name, of which
the defined attribute is an argument, together with its ar-
guments in the parse tree. This context is what we have
called the protocol or the interface between the definition
and the AQL interpreter, and it is always specified as the
left-hand side argument of the definition function. This is
the reason why all these functions should be dyadic, with
the right argument referred to the defining attribute.

It is the task of the AQL interpreter, before executing
the definition, to associate with the left argument the val-
ue of the syntactic context, by representing it as a three-
row matrix containing, respectively, the left argument
(possibly empty), the function name, and the right argu-
ment. The AQL statement produced as the result of exe-
cuting the definition is parsed and checked for semantic
completeness by the interpreter before it is substituted
into the old syntactic context. A very simple way to de-
fine the function SYN .5 is

V 2«4 SYNS TRUEDOM
[1] Z«TRUEDOM,A[2;1,A[83:]

v

Then, knowing only the protocol, the user can write the
definition of an attribute as an APL function and add to the
master relation the newly defined attribute using the func-
tion DEFINE.

AQL provides a function to store the data into a pre-
defined relation; this operation is performed by the func-
tion 4D D, whose syntax is shown in the next expression
for the case of adding new tuples to all the domains of the
relation ACTIVITY.

AQL 'PROJECTS'
(ALLINFO OF ACTIVITY)

ADD VALUES (35)

The left argument always specifies the attribute and rela-
tion names; the variable called VALUE S, in the right
argument, can be:

1. The name of a preformatted file, in which case the
A DD function performs a bulk input kind of opera-
tion.

ANTONACCI ET AL.

2. A character matrix, representing a list of names of
global variables which contain the attributes’ values.

3. A three-dimensional array, in which each plane carries
the values of the attributes whose names are in the list
left argument.

4. An empty APL vector; then the function will accept the
values of each attribute of the relation in an interactive
way.

Beforehand, this function prompts the user with a list
of options asking him to choose for which domains an
inversion should be built.

For the management of the inversions the data base ad-
ministrator can have at his disposal the two functions
BUILDINDEXand ERASEINDE X for, respective-
ly, building or dropping the inversion of a given domain.
Both functions accept, as arguments, the attribute and re-
lation names in the usual way:

AQL 'PROJECTS'

BUILDINDEX ACTNO OF ACTIVITY (36)

The problem of deleting attributes from a relation, or
even the relation itself, is dealt with in AQL by the mo-
nadic function DR O P. The expression

AQL 'PROJECTS'
DROP (UNITPRICE WITH QUANTITY)

OF RESOURCES 37

physically deletes the attributes and their descriptions
from the master relation; all the attributes which have
been defined as functions of at least one of the two
dropped attributes will be flagged as “‘no longer usable.”
To cancel a relation completely, one can write

AQL 'PROJECT'

DROP ALLINFO OF ACTIVITY (38)

There are two other important facilities of data defini-
tion which offer to the user the possibility of extracting
from the set of relations which constitutes the data base
those particular subsets he will use more frequently to
perform tests and simulation and which he can consider
as “‘private’’ relations. Two classical ways are available
to meet these needs: the use of copies and/or views ex-
tracted from basic relations [12].

Both copies and views are supported by AQL, and in the
following text we give some examples of both. Suppose
the user wants to

“Create a copy, from the relation ACTIVITY, con-
sisting of activity numbers, projects, and starting dates of

all the activities located in Rome and call this copy
ROMEACTIVITY."

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

This is performed by

AQL 'PROJECTS'
((ACTIVITYNO WITH PROJECT WITH
DATE) OF ROMEACTIVITY)
ISCOPYOF
((ACTNO WITH PROJECT WITH SDATE)
OF ACTIVITY)
WHEN

CITY EQ ROME (39)

The right argument of the function ISCOPYOF can be
either a character matrix or a three-dimensional array,
with the same meaning as for the function ADD. Note
that both cases cover the possible result of a query, which
can be used as the right argument of T SCOPYOF. Of
course, this function can be thought of as a combination
of the two functions DEF I NE and A D D;in fact, it phys-
ically builds a new relation for the user and marks it as
‘“‘private.”” An important aspect of this example is the fact
that, while SDATFE in ACTIVITYis a defined attrib-
ute, in the new relation FOMEACTIVITY,the corre-
sponding attribute DA T F has an empty definition. This is
due to the fact that DA TE, being constituted of the result
of a query on the attribute SDA T E, has each item direct-
ly obtained from the catenation of the values in YEAR,
MONTH, and DA Y. The mechanism of building copies
can be a useful means for approaching the problem of
having different levels of authorizations in the data base.
For instance, a user who is not authorized to update the
basic relations, but only to define copies of them, being
the owner of the copies, automatically has the maximum
level of authorization, i.e., he is the administrator of his
personal data base. Furthermore, he can also authorize
other users to read and/or update, etc., his relations. It is
worth noting that copies are a static way of looking at
(parts of) basic relations, since any change of these does
not affect the copies and vice versa. The way of coping
with this problem is to introduce the concept of views.
Views give the user the possibility of looking at the de-
sired subsets of the basic relations without physically
building new ones. Unlike what happens with copies,
views are dynamically sensitive to the updates made in
their underlying relations.

The way to define a view, in AQL, is very similar to that
of defining copies. Suppose we want to

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

“Look only at those activities, projects, and budgets
which are in department 130.”

Then the view is built by the expression:

AQL 'PROJECTS'
((ACTIVITY WITH PROJECT WITH
BUDGET) OF DEPT130)
ISVIEWOF
((ACTNO WITH PROJECT WITH
BUDGET) OF ACTIVITY)
WHEN

DEPT E@Q 130 (40

Here the left argument of the function ISVIEWOF de-
scribes, as usual, the names of the attributes and their
relation, to be defined as a view, whereas the right argu-
ment is the query which gives the view definition. The
basic idea used in AQL for dealing with views is that of
treating each attribute in the view as if it were a defined
attribute. This definition is obtained from the result of in-
terpreting the query which defines the view and extract-
ing that portion of the parse tree which refers to the corre-
sponding requested attribute(s) in the underlying rela-
tion. This correspondence is established on the basis of
the order in which the attribute names appear both in the
view and in the list of requested attributes in the query.
With this approach the execution of the query defining the
view will never take place, i.e., the values of the re-
quested attributes will not be retrieved from the relation;
the view definition will be used to modify, in a suitable
way, the parsed form of the queries made against the
views. It is also possible in AQL to define views derived
from more than one relation; for instance, the previous
view can be redefined by adding the cost of the activities.

AQL 'PROJECTS'
((ACTIVITY WITH PROJECT WITH
BUDGET WITH COST) OF DEPT130)
ISVIEWOF
(((ACTNO WITH PROJECT WITH
BUDGET) OF ACTIVITY)

WHEN

553

ANTONACCI ET AL.

554

DEPT EQ 130)
CAT
ACTCOST ((UNITPRICE WITH
QUANTITY) OF RESOURCES)
WHEN
ACTNO ISONEOF
(ACTNO OF ACTIVITY)
WHEN

DEPT Eg 130 @1
Note that, since the query for computing a cost of a given
activity has been named in the previous section (13), it
can be used directly as the left argument of the function
CAT in the same way as in (6). Then we can write the
expression

C0ST (ACTNO OF ACTIVITY) WHEN

DEPT Eq 130 (42)
as the right argument of the function CAT.

Views, as well as copies, behave from an external view
point as basic relations on which the user can apply all the
query language facilities described in the previous sec-
tion. For instance, we can ask to

“Find those activities in department 130 whose cost is
greater than the respective budget.”

AQL 'PROJECTS'
(ACTIVITY OF DEPT130)
WHEN

CO0ST GI BUDGET (43)

Note here the use of the scalar comparison function, nec-
essary because each value of the cost should be compared
only with the corresponding value of budget.

As far as update through the view is concerned, to
avoid the problems exposed in [13], we choose to allow it
only when the view is obtained from only one relation and
contains its master key.

Update facilities

Of the three update operations, i.e., insert, replace, and
delete, the first one is performed by the function ADD,
described in the previous section, whereas the last two
are performed by a function called REPLACE.Thisis a
dyadic function whose right argument should be a query

ANTONACCI ET AL.

in which attribute names to be updated are specified, pos-
sibly together with conditions specifying which particular
values should be affected by the operation. The left argu-
ment is an APL array resulting from a function or an ex-
pression having the same structure as the explicit result of
a query, and therefore it can also be a query. It carries the
values that will be replaced in the positions specified by
the right argument. When a deletion should be performed,
then the left argument is an empty APL object. To show
how the update operation works in AQL, suppose that we
want to

“Increase by 10 percent the budget of those activities
with the maximum duration.”

AQL 'PROJECTS'
(1.1 x BUDGET) REPLACE
(BUDGET OF ACTIVITY)
WHEN
DURATION EQ MAX DURATION

44

In this case, the result of the query execution, which is
the variable BUDGE T, is directly used in the left-hand
side argument of the function REPLACE.

An example of a deletion operation is

“Delete all the activities which have not yet started and
with duration greater than 900 days.”’

AQL '"PROJECTS!

"' REPLACE (ALLINFO OF ACTIVITY)
WHEN
(SDATE EQ 0) AND

DURATION GT 900 (45)

which corresponds to deleting the tuples from
ACTIVITYwhich satisfy the condition.

During the execution of the function FEPLACE aset
of options is available to the user to allow him to control
the operation in a stepwise fashion or to verify the data he
is updating. To show how this mechanism works, we con-
sider the following example:

“Update the values of the attributes year, month, day,
and duration for project 20.”’

AQL 'PROJECTS'

LISTVARS REPLACE

IBM J. RES. DEVELOP. & VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

((YEAR WITH MONTH WITH DAY WITH
DURATION) OF ACTIVITY)

WHEN PROJECT E@ 20 (46)

Here LISTVARSis an APL matrix containing a list of
names of predefined variables with the new values. Fur-
thermore, the function FEPLACE requires that the
number of these variables be equal to the number of re-
quested attributes in the query. The list of options which
are shown to the user before the replace operation ac-
tually takes place is

(1) DISPLAY variable-name
(2) attribute-name STEPn
(3) AL L attribute-name

With the first option, the user can display either values
retrieved for a given attribute (in this case the argument of
the function DI SPLAY is a name of an attribute) or the
values of any of the variables in LI STVARS. Thus, for
example, if he wants to see the values of YEAR, he en-
ters

DISPLAY YEAR

The second option gives to the user more direct control of
the execution of the operation; in fact he can request that
the update for the attribute specified in the left argument
of the function STF P take place with n items at a time.
Referring to the above example, we can choose to update
the attribute DURAT I ON, one item at a time, in which
case the option is expressed as

DURATION STEP 1

The system prints one item of the attribute and accepts
from the user the new value. Any time the user enters an
empty value, the item is deleted.

Whenever the third option is specified, the update for
the attribute specified as an argument of the function
AL L takes place without further user control. AL L;, for
all the specified attributes, is the default option.

Conclusions

We have described how queries, data definitions, and up-
dates are handled in AQL with a simple and unified syntax,
which is the same as that of its host language, APL. The
examples and problems given show that AQL can be used
either by the nonspecialist or by the sophisticated APL
user. It offers to both classes of users, together with a
complete query facility, a very powerful means for prob-
lem solving and application building, allowing the user to
always work in a homogenous environment through a
complete integration with the host language. Different

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. § « SEPTEMBER 1978

styles for building application functions have also been
described to show how functions of different applications
can be used, always applying the same syntax, to build
new and more complex applications or to generalize
existing ones.

AQL is undergoing further development to introduce
new facilities which have not been described here,
namely, functions for data control. These will cope with
the problems of data security and authorization, as well
as assertions about properties of data belonging to a given
attribute for the purpose of controlling data consistency.

Appendix A: System architecture

In this appendix we give a functional description of the
overall system, concentrating on what the various func-
tions and their interrelationships are, rather than on how
they are actually implemented in the prototype. From an
architectural viewpoint, the system has a ‘‘layered’ or
multilevel structure constituted of three levels or sche-
mata as in Fig. 4. Each level is characterized by a lan-
guage for communicating, a set of objects corresponding
to particular data structures or models on which it oper-
ates, and a set of functions which constitute its processing
capabilities and environment.

The external level realizes what is known in the data
base literature [14, 15] as the ‘‘conceptual schema,’ i.e.,
it is the level which supports the user’s logical view of
data and provides data independence capabilities. At this
level the objects are simply sets of tables defined by their
names and by their corresponding attributes. A table can
be either a basic relation or a ‘‘user view,”” defined by
manipulating one or more underlying basic relations [this
mechanism was shown in the data definition section; see
expressions (40) and (41)]. At this level communication
with the user takes place through the query language.

The functions performed at this level are mainly those
of interpreting and checking the query; in doing this job
communication is established with the internal level by
mapping tables and attribute names into their correspond-
ing objects at the lowest level. The interpreter looks at the
query as a character string, which is parsed and then
checked for syntactic correctness and semantic complete-
ness. The parser produces a complete parse tree of the
query, using APL-like criteria: first, the right-most, least-
nested function is dealt with, then the same procedure is
recursively applied to the right and, possibly, to the left
argument of this function. In this process syntax errors
are detected and displayed to the user. The parsed form
of the query is then checked for semantic completeness;
in this phase, for instance, default options are applied and
attributes are qualified by referring them to the proper re-
lation. As in other systems (e.g., Codd’s GAMMA-0 [16]),
there is in AQL a master relation, i.e., a kind of catalog,
which contains information describing all the relations be-

555

ANTONACCI ET AL.

External level

Table 1 Table 2
User’s logical view
AQL query ——————= (attribute of table) WHEN condition(s)
Table J
__________] Parser
APL 3 Catalogs (MR, ...) Syntactic and
arrays semantic checks
_______ Base relations
- EXEC
! Commands Argument Internal level
Master Catalogs GET DOMAIN (Di, k, cond)
relation GET INDEX
catalog o (DB-REL)
DB system
catalog Values —————# tid ; tid ——— {pagenumber,offset}
~o
~~
Relations
5 5 ~
~o
Page 1 Page2 Pagek—2 Pagek—1 Pagek
~~
r~J
Indices | 1 f-—=———c-=———=
/ N
I Page 1 Page?2 Page3 I | Pagen—1 Pagen
Segment 1 Segment j
(Pages) ? I
Physical level
Commands Argument
(GET PAGE) (internal names, LPA)

LPA — = segment— physical records address
+

internal file names

access method command

1/0

556 Figure 4 Overview of system.

ANTONACCI ET AL. IBM J. RES. DEVELOP. @ VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

longing to a data base, and it is accessed in this step. The
final result of the interpretation is a canonical representa-
tion of the query, which can be fixed in the workspace
and executed as an APL function.

Communication with the internal level takes place
through a series of command functions. Each command
can have one or more arguments. At this level the argu-
ments are: data base name, relation name, attribute(s)
name, and a set of values to look for. The internal level
guarantees a very ‘‘loose” coupling between the user at
the external level and the physical level of data represen-
tation; in fact, it provides an internal model of memory
space which is an abstraction of the physical address
space on which data are stored; in this way, it improves
the degree of data independence.

From the viewpoint of the internal model, memory is
organized as a set of pages which constitutes a linear ad-
dress space. Pages correspond, at the physical level, to
aggregations of records, and each page is saved on disk as
a contiguous sequence of records of equal size. This tech-
nique has the advantage of simplifying buffer manage-
ment at the physical level. A memory space that spans a
continuous address space containing one or more pages
(i.e., arecord aggregate) is called a segment. A data set is
simply a collection of segments, while a single collection
of data sets described by an internal schema (which is
part of the system catalog) defines a data base.

In this model there is a one-to-one correspondence be-
tween relations and segments, established at data base
generation time. At this level a relation is seen as a set of
domains (where each domain contains all the occurrences
of values of the corresponding attribute), together with
their corresponding indices or inversions, which repre-
sent a correspondence between domain values and the
identifier of the tuple they belong to. Relations are stored
as transposed files, i.e., by clustering the elements of a
given attribute belonging to different tuples, instead of
clustering the elements of different attributes belonging to
the same tuple. This means that each page contains only
elements which are homogeneous, since they are all oc-
currences of values of the same attribute. This technique
has the advantage of speeding up retrieval when the num-
ber of relevant occurrences for a given query is greater
than the number of attributes in the target list. The data
structure used for the indices is that of a B-tree (as de-
fined in [17]) having variable-length keys.

During the creation of a relation, the system builds for
each domain the so-called tuple identifier to logical ad-
dress converter (tilac); this is a mapping mechanism be-
tween intervals of tuple identifier (tid) values and logical
page addresses. Other important objects at this level are
the two catalogs. These are defined as special relations
which describe the characteristics of all the objects of the
internal schema. The master relation catalog describes all

IBM J. RES. DEVELOP. ¢ VOL. 22 ¢ NO. 5 ¢« SEPTEMBER 1978

the relations belonging to any given data base; it holds
information such as relation names, attribute names,
types, and definitions (this last is a facility which gives the
user the possibility of defining new attributes as functions
of already existing ones; e.g., synonyms are a special
case of definition). The data base system catalog is used
to describe each data base in terms of the relations be-
longing to it and of the identifier of each relation creator;
it also holds other system dependent information.

The functions performed at the internal level are mainly
those of computing the logical paths (up to the value of
page addresses) in order to access a set of data items both
for querying and updating. The command functions avail-
able to manipulate data items are of different types, but
the most significant ones are those to access the inversion
and the domain of a given attribute. Concerning the in-
dex, we may (informally) write:

GET INDEX (D, K, cond) for read
GET INDEX (D, K, cond) for write

This function, using the B-tree of the index of domain D,,
finds the set of tuple identifiers (tid’s) of D, corresponding
to the value K and for a given condition (e.g., equal,
greater than, etc.). The command functions

GET DOMAIN (D; T) for read

GET DOMAIN (D,, T) for write

extract from the domain D, the set of values correspond-
ing to the tuple identifiers given in 7. The result returned
is an APL array with those values, if there are any, or
empty. In order to show how all this works, we consider
the following quite typical operational situation:

‘“Extract from domain D, those values that correspond in
the domain D, to the value K (assuming that an index has
been built for D).”

This can be considered as a complex command which ex-
pands into the two elementary ones

1. T « GET INDEX (D, K, *=’) for read
2. V < GET DOMAIN (D,, T) for read

Step 1 performs the descent on the B-tree; it will also is-
sue to the physical level the sequence of page calls to get
the appropriate pages of the inversion of the domain D,.
The result returned in 7 is the set of tuple identifiers to
which correspond those values of D, equal to K. Step 2,
using the tilac of D,, converts each value in T into two
values: logical page address and offset (i.e., the displace-
ment in that particular page of the item corresponding to
that value of T):

T = >[LPA, offset]

557

ANTONACCI ET AL.

558

Then the sequence of commands for getting the pages
whose addresses are in LPA’s is issued to the physical
level.

The function GET DOMAIN also groups together all those
tid’s that refer to the same page in the segment of the
relation on hand, so that the relevant pages are read only
once. The result is reordered according to the initial tid
sequence. Finally, each page is processed to extract the
values corresponding to the computed offsets and to build
the resulting APL array.

The physical level represents the storage component of
the system. It materializes the representation of the ob-
jects available at the upper level, accesses physical rec-
ords from auxiliary storage, and controls their transfer to
and from main storage.

The interface between the internal and the physical
level is established by a ‘““‘command language’’ which pro-
vides command functions to manipulate pages; that is, in-
formally,

GET (page i, segment j) for read
GET (page i, segment j) for write

These functions always return as a result the page i or an
error code. Here segment and page identifications are
used to compute physical access paths to data and to rec-
ords on data sets by issuing the access method com-
mands.

Other important functions performed at the physical
level are those of granting compatibility among lock
requests by different transactions, providing mechanisms
for assuring physical data base integrity, recovery sche-
mata, and suitable sequencing of record access to reduce
accessing time to a page. The description of all these is-
sues is not covered here since they are beyond the scope
of this paper.

Appendix B: The function FESDUR
Following is the definition of the function RESDUR to
compute the residual duration of a given project P.

V RD<«RESDUR P;D;PS;PN;DNS;
DS3;RD1
[1] RD+0
Set up the result.
£21] +0 IF EMPTY P
Quit if P is empty.

(3] D+«DATEDUR P

D is the duration of P. The global variable
SDATE (start date) is produced as a side ef-

ANTONACCI ET AL.

fect by the function DATEDUR and con-
tains the start date of each project.

{41l PS«(SDATE=0) SELECT P
The projects started have SDATEZ0 .

(5] PN+«(SDATE=0) SELECT P
PN are projects not yet started.

{61 +~ALLSTARTED IF EMPTY PN
Go to ALLSTARTED if all projects are
started.

£71] ELSE:DNS«(SDATE=0) SELECT

DURATION
Else, take the duration of those not yet
started.

(8] RD«DATENORM RD+DNS+MAX

RESDUR SONS PN

The new residual duration is computed by
adding the old one to the duration of projects
not started and to the largest residual dura-
tion of the *‘sons’’ of the current project (in a
recursive fashion). DATENORM provides
for “‘normalizing’ the result of this sum by
imposing the number of months not to ex-
ceed 12 and the number of days not to exceed
the number of days of that month.

(9] +0 IF EMPTY PS
Quit if no project has started.
[10] ALLSTARTED :DS<«(SDATE#0)

SELECT DURATION
Select duration of started projects.
(111 RD1<(SDATE+DS)-TODAYDATE

Residual duration is endpoint minus today’s
date.

[12] RD«DATENORM MAX (RD1>0)

SELECT RD1

The residual duration is the maximum dura-
tion among the activities still “‘alive.”

v

References
1. E. F. Codd, ‘‘A Relational Model of Data for Large Shared
Data Banks,”” Commun. ACM 13, 377 (1970).

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

10.

1.

12.

. E. F. Codd, ‘“‘Relational Completeness of Data Base Sub-
languages,”’ Data Base Systems, Vol. 6, Courant Computer
Science Symposia Series, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1972.

. E. F. Codd, ‘‘Further Normalization of the Data Base Rela-
tional Model,”” Data Base Systems, Vol. 6, Courant Com-
puter Science Symposia Series, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ, 1972.

. M. M. Zloof, ““‘Query by Example,” Proceedings National
Computer Conference (AFIP Press) 44, 431 (1975).

. D. D. Chamberlin and R. F. Boyce, “SEQUEL: A Struc-
tured English Query Language,” Proceedings 1974 ACM
SIGFIDET Workshop, Ann Arbor, M1, April 1974, pp. 249-
264.

. R. F. Boyce, D. D. Chamberlin, W. F. King, and M. M.

Hammer, ‘‘Specifying Queries as Relational Expressions:
The SQUARE Data Sublanguage,”” Commun. ACM 18, 621
(1975).

. G. D. Held, M. R. Stonebraker, arid L. Wong, “‘INGRES: A
Relational Data Base System,” Proceedings of the AFIPS
National Computer Conference, Anaheim, CA, May 1975.

. APL Language, Report No. GC26-3847, IBM Corporation,
White Plains, NY.

. APL Shared Variables (APLSV) User’s Guide, Report No.

SH20-1460-1, IBM Corporation, White Plains, NY.

APL Shared Variables (APLSV) Programming RPQ WE

1191 TSIO Program Reference Manual, Report No. SH20-

1463, IBM Corporation, White Plains, NY.

D. Gries, Compiler Construction for Digital Computers,

John Wiley & Sons, Inc., New York, 1971, pp. 32-34.

D. D. Chamberlin, J. N. Gray, and 1. L. Traiger, ““Views,

Authorization, and Locking in a Relational Data Base Sys-

tem,”’ Proceedings of the AFIPS National Computer Con-

ference, Anaheim, CA, May 1975.

IBM J. RES. DEVELOP. ® VOL. 22 e NO. 5 e SEPTEMBER 1978

14.

15.

16.

17.

. P. Paolini and G. Pelagatti, ‘‘Formal Definition of Mappings
in a Data Base,” Proceedings of the SIGMOD International
Conference on Management of Data, Toronto, Canada, Au-
gust 1977, pp. 40-46.

ANSI/X3/SPARC Study Group on Data Base Management
Systems, ‘‘Interim Report,” FDT Bull. ACM, SIGMOD, 7,
No. 2 (1975).

M. E. Senko, “DIAM as a Detailed Example of the ANSI-
SPARC Architecture,”” Proceedings of the IFIP Working
Conference on Modelling in Data Base Management, Freu-
denstadt, Germany, North-Holland Publishing Company,
Amsterdam, 1976.

D. Bjorner, E. F. Codd, K. L. Deckert, and 1. L. Traiger,
“The Gamma-0 N-ary Relational Data Base Interface:
Specifications of Objects and Operations,’” Research Report
RJ 1200, 1BM Research Laboratory, San Jose, CA, April
1973.

D. Knuth, The Art of Computer Programming, Vol. 3, Sort-
ing and Searching, Addison-Wesley Publishing Co., Read-
ing, MA, 1973, pp. 473-479.

Received October 11, 1977, revised April 26, 1978

The authors are located at the IBM Centro di Ricerca,

Via Cardassi 3, 70121 Bari, Italy.

559

ANTONACCI ET AL.

