M. Sibuya
T. Fujisaki
Y. Takao

Noun-Phrase Model and Natural Query Language

Abstract: Basic considerations in designing a natural data base query language system are discussed. The notion of the noun-phrase
data model is elaborated, and its role in making a query system suitable for general use is stressed. An experimental query system,

Yachimata, embodying the concept, is described.

Introduction

This paper discusses the design of a query processing sys-
tem, Yachimata, which accepts natural language queries
to a data base and displays a data table satisfying the
query. The system was developed as a research prototype
to study the feasibility of using a natural language, in par-
ticular Japanese, to query a data base.

The key idea in the design is a noun-phrase model,
which is a variant of the relational data model but is more
suitable for representing data in everyday language. In
this paper we elaborate the idea of a noun-phrase model
and discuss its appropriateness in our system design. An
important benefit of the idea is its contribution to the uni-
versality of our system, which has a nucleus that is appli-
cation-independent and for which the application-depen-
dent part can be produced by feeding the necessary data
to a generator.

We note some difficulties peculiar to the Japanese lan-
guage, which is unique in some respects and with which
limited experience in machine processing has been had.
Finally, the Yachimata system is outlined and its per-
formance is discussed.

Use of natural language

Natural language is attractive for querying a data base be-
cause it permits access to the data by casual end-users
without the help of data processing professionals, the
studying of manuals, or the memorizing of formal rules.
But the problems involved in processing natural language
are formidable indeed, and many arguments have been
advanced for and against research in this area [e.g., 1-5].

In the case of a data base system, however, designers can
anticipate possible queries, the vocabulary is limited, and
the meanings of words can be assumed to be well under-
stood by all concerned. Thus, we assumed that some
things of value could be learned about processing a natu-
ral language in this less demanding environment.

System objectives

To make our system suitable for a variety of applications,
and at the same time control development costs, we felt
that the query processor ought to be made as independent
of the application as possible. The part of the system con-
cerned with syntactic and semantic rules is common to all
applications. Conversely, the vocabulary to be processed
is heavily dependent on each system application, so the
meanings of words are defined specifically in relation to
the particular data base. Thus, the application-dependent
part was designed to be generated automatically so that it
could easily be added to the nucleus.

Another objective for our system is that it provide a
more formal data sublanguage for data processing profes-
sionals. This would enable, for example, data base up-
dating, a rather routine job that should be done with a
formal language. Both languages have to run together un-
der the data base management system.

To satisfy these objectives, we need a common view of
the data base for all users. Codd’s relational data model
[6] is the most suitable view for this purpose and also sat-
isfies the first requirement, as we will see later. In fact,
the possibility of using a natural language for querying a

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish

other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

533

SIBUYA, FUJISAKI, AND TAKAO

534

NN C, C.
D, D, D,
?11 € (?m
Cm emg et €mn

NN: a collective noun or noun phrase

C,, - - -, C,: case indicators
FRERES D,: domain names

€,;; numbers or primitive nouns

Figure 1 Noun table structure.

stock CS5 C8
number part warehouse
50 radiator WH?22
120 bumper WH24
0 radiator WH24
50 radio WH24
C5 = {of} (a)
C8 = {at, in}
C8
part warehouse
radiator WH22
radio WH?24
(b)
CS Cc8
number part warehouse
40 radiator WH22
70 bumper WH24
20 radiator WH24
60 radio WH24
(c)

Figure 2 Examples of noun tables: (a) stock, (b) good selling
parts, (¢) recommended minimum.

relational data base has been suggested, and Codd himself
is developing a conversational query system, REN-
DEZvVOUS [7]. To allow natural expression of queries,
however, we prefer to modify the relational model and
use one called the noun-phrase model, which we discuss
next.

SIBUYA, FUJISAKI, AND TAKAO

The noun-phrase model essentially formalizes the se-
mantic rules for data base retrieval. This function is inde-
pendent of each natural language (English, Japanese,
etc.). However, the model does specify possible struc-
tures of a query sentence. This specification is, of course,
dependent on each language. In the following text, pos-
sible structures are roughly sketched for English and Jap-
anese. The English reader might be interested in learning
the structure of Japanese sentences. A typical one is
‘“noun) {(case particle) --- (noun) {(case particle)
(verb).”” In noun phrases of the form ‘(verb phrase)
{noun),”” the modifying phrase has almost the same struc-
ture as the above sentence. Another type of noun phrase
is “noun) {(case particle) - - - (noun) {(case particle)
(noun),”” where case particles are slightly different from
those appearing in the above sentence. Nouns do not in-
flect, and the ordering of the pairs ‘“(noun) (case par-
ticle)’’ is not essential.

Noun-phrase model

Because nouns and verbs are the basic components of the
query language, and because their usage and meanings
usually depend heavily on the application, they are speci-
fied to the system by the system administrator in terms of
the noun-phrase model. For the nouns whose meanings
are considered to be primitive in the data base, the admin-
istrator need not give the specifications at all. For ex-
ample, ““‘Bob,” “IBM,” ‘“‘bumper,” ‘50"’ are nouns
whose meanings are primitive in some applications. We
call them ‘‘primitive nouns’’ here. Conversely, the mean-
ing of a noun such as ‘‘stock,’’ representing a set of asso-
ciations among parts and numbers, is not so simple. We
call these nouns ‘‘collective nouns,”” and their meanings
must be specified. In order to represent the meanings of
collective nouns and verbs, two types of tables, noun ta-
bles for the specification of application-dependent collec-
tive nouns and verb tables for the specification of appli-
cation-dependent verbs, are used. A collection of these
two types of tables forms a subschema of the data base,
i.e., each user’s or user-group’s derived view of the com-
mon data base.

® Noun table

Figure 1 shows the structure and Fig. 2 shows examples
of noun tables. The noun table is almost the same as a
relation in the relational model except that a noun table
consists of two different types of columns: the leftmost
column and the other columns. The leftmost column im-
plies a set of values which represents the meaning of the
noun directly; for example, the set 50, 120, 0, and 50 is
considered to be the meaning of the noun *‘stock’ in Fig.
2(a). The other columns, which are optional, further qual-
ify these values; e.g., ‘‘radiator’’ and *“WH22"’ qualify
the value ‘50, and so on.

IBM J. RES. DEVELOP. ® VOL. 22 &« NO. 5 & SEPTEMBER 1978

The domain of each of the columns denotes a set of
possible primitive nouns, just as the domain in the rela-
tional model, and specifies comparability among the col-
umn entries. Case indicators in columns are somewhat
similar to ‘‘cases’’ in the case grammar [8] but are used
only to specify the possible qualification forms for this
collective noun. In our system, all of the case indicators
are associated with a list of case particles, each of which
is typically a preposition in English. This mechanism cor-
responds to that of “‘role’” in the relational model.

The noun table ‘‘stock’’ in Fig. 2(a) provides the mean-
ing of the collective noun ‘‘stock.”” In a similar way, all of
the collective nouns that are expected to appear in query
sentences must have their corresponding noun tables in
the data base. These ‘‘collective nouns’’ can actually con-
sist of more than one word like ‘‘good selling part’ or
“recommended minimum’’ in Fig. 2. This loose definition
is useful in applications and very significant in Japanese
sentences, as explained later.

Note that, by defining such noun tables, the collective
noun itself and its syntax and semantics are provided to
the system. For example, ‘‘boy’’ does not refer to every
boy in the world but only to those who are defined by a
noun table with columns of, say, their towns and ages.
Then phrases like ‘‘boys in Tokyo of age over 15’ make
sense, but those like ‘‘boys playing football”’ or ‘‘boys in
high school’” do not. And the above meaningful phrase
corresponds to a list of boys’ names or IDs. The noun
tables exist virtually. In fact, they are defined in terms of
data base retrieval functions.

For the primitive nouns, e.g., ‘‘bumper,”” *““WH24,” in
Fig. 2(a), there is no need to prepare the corresponding
tables. Since a primitive noun is its own value (the value
of radiator is radiator), the system automatically creates
one-entry noun tables temporarily for each of the primi-
tive nouns during the initial scanning of the input query.
The need for this will become apparent later.

® Evaluation of a query

The noun tables stored in the data base and the noun ta-
bles temporarily created provide the meanings of the col-
lective nouns and primitive nouns, respectively. From
them the meanings of more complex noun phrases can be
determined algorithmically. The system has an operator
that can be used to determine the meaning of a noun
phrase such as ‘‘stock of radiators’’ from the meanings of
“stock’ and ‘‘radiator.’” “‘Stock’’ is in the form of a noun
table in the data base, and ‘‘radiator’’ is a noun table
created temporarily. Once the meaning of the phrase
“‘stock of radiators’’ is determined, another operator can
be applied to this result to derive the meaning of a more
complex phrase such as ‘‘the maximum of the stock of
radiators.”’ By introducing more operators, this method
can be extended to determine the meaning of general

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

noun phrases, e.g., ‘‘the location of the warehouse whose
stock of radiators is greater than 25.”" This is sufficient for
the evaluation of the queries in our system because this
system restricts the possible syntax of the query to the
form ‘““Give me (noun phrase).”” Note also that because
our model is based on the relational data base model, we
can construct such operators as extensions of the oper-
ators in the relational model, thereby achieving appli-
cation independence.

§ Data retrieval operation

The typical data retrieval operation is qualification. Since
a noun table has two types of columns, the leftmost and
the others, we can have two kinds of qualification: direct
(qualification of the leftmost column by the others) and
reverse (qualification of one of the other columns by the
leftmost).

A direct qualification is applied to a phrase consisting
of ‘“(noun phrasel) (case particle) (noun phrase2),” e.g.,
“‘stock of radiators.”” The number suffixes appended to
the noun phrases are included only to distinguish among
them. (In Japanese, the structure of this phrase is the
same except that the sequence is reversed, i.e., ‘‘radia-
tors no stock,”” where ‘‘no’’ is a case particle correspond-
ing to “‘of.”’) This phrase contains two noun phrases, a
qualified noun phrase ‘‘stock’ and a qualifying noun
phrase ‘‘radiators,”” which are represented by two noun
tables previous to the application of direct qualification.
In this case, ‘‘stock’ is represented in the noun table
shown in Fig. 2(a) and ‘‘radiators’’ in a temporary noun
table with only one entry. These two noun tables are
passed to the direct qualification operation as the argu-
ments, with the case particle ‘‘of”’ (‘“no”’ in Japanese),
which shows the association with the case indicator
““C5.”” The direct qualification operation then generates a
noun table as in Fig. 3(a) that is mainly the result of an
equi-join operation, as defined in [7], between the two
noun tables. (The result of the equi-join of the two tables
with respect to a common domain D is a table in which
each row consists of a row of the first table concatenated
with a row of the second table which contains the same D-
value.) The column used for the equi-join operation is de-
termined by the case particle ‘‘of,”” which implies the
case indicator ‘*C3,”” and by the domain of the qualifying
noun phrase ‘‘radiators,”” which implies the domain type
“part.”’

Since the result of direct qualification is itself a noun
table, it can be further qualified in other columns. **Stock
of radiators in WH22’’ is an example [Fig. 3(b)]. By the
case particle “‘in’’ and the primitive noun “WH?22,” the
column used for the qualification is determined in the
same way as in the previous example. The order of quali-
fication within a table is not essential and the phrase
“‘stock in WH22 of radiators’’ is acceptable and has the

535

SIBUYA, FUJISAKI, AND TAKAO

536

Cs C8
number part warehouse
50 radiator WH22

0 radiator WH24
(@)
Cs C8
number part warehouse
50 radiator WH22
®)
Cs C8
number part warehouse
50 radiator WH22
50 radio WH24
(©)

Figure 3 Examples of direct qualification: (a) stock of radia-
tors, (b) stock of radiators in WH22, (¢) stock of good selling
parts.

C8
part warehouse
bumper WH24
(@
C8
part warehouse
radiator WH24
radio WH24
b

Figure 4 Examples of reverse qualification: (a) part whose
stock is more than 80, (b) part whose stock is less than recom-
mended minimum.

same meaning as above unless a definite order is specified
by some grammar rule. When the noun tables corre-
sponding to the qualified and qualifying noun phrases

SIBUYA, FUJISAKI, AND TAKAO

have columns with the same combination of case in-
dicator and domain type, the equi-join operation is ap-
plied with respect to columns including these so that the
result table is meaningful. For example, given the noun
tables ‘‘stock’ and ‘‘good selling parts’’ of Fig. 2(a) and
(b), respectively, then the direct qualification ‘‘stock of
good selling parts’’ involves the (C8, warehouse) columns
of both the tables and leads to the table of Fig. 3(c).

Reverse qualification is applied to a phrase consisting
of ““(noun phrasel) whose (noun phrase2) (comparing
operator) (noun phrase3).”” The (comparing operator)
stands for, for example, “‘is,”” “‘are,”” ‘‘is greater than,”’
or ‘<.’ (In Japanese, we have almost the same structure
except that the order is reversed, i.e., “(noun phrase2)
(particle) (noun phrase3) (auxiliary verb) (noun
phrasel).”” In this case, the combination of (particle) and
(auxiliary verb) corresponds to the {comparing operator)
in the English structure.)

The reverse qualification operation is accomplished by
doing an equi-join operation between the leftmost col-

.umns of the two noun tables indicated by (noun phrase2)

and (noun phrase3). After the join operation, columns are
selected from the result of the operation so as to form a
new noun table having the same structure as the noun
table indicated by (noun phrase3). Figure 4(a) shows an
example using the phrase ‘‘parts whose stock is greater
than 80,”’ and Fig. 4(b) shows an example ‘‘parts whose
stock is less than the recommended minimum’ based on
the tables of Fig. 1(a) and (¢).

In addition to these two qualification operations, union,
intersection, and difference operations are provided to
support queries with conjunction and negation such as:
““Show me the maker who supplies bumpers or radiators
to warehouse WH24 and is located in New York.”” Note
that all of these operations are expressed in terms of rela-
tional algebraic operations.

Arithmetic operations such as “+,” “*x.,” ‘‘number
of,”” “‘average of,”’ etc., are also supported in this system
so as to allow queries such as: “‘Show me the price X
stock of parts in WH24.”

Note that the discussion in this section is similar to Hei-
dorn’s work [9] on resolution of noun phrases. The setups
are different, however, although both are trying to relate
phrase structure and formalized meaning.

& Verb table
Figure 5 shows the structure and Fig. 6 shows an example
of a verb table. It differs from the noun table in that it has
no special column in the leftmost position. The roles of
the case indicators and the domains are the same as those
of noun tables.

The purpose of the verb table is to allow a verb to ap-
pear in queries and thus increase the fluency of the query
language. Because in Japanese some adjectives are used

IBM J. RES. DEVELOP. & VOL. 22 4 NO. 5 & SEPTEMBER 1978

in a way similar to verbs, verb tables are also used for
introducing adjectives into the query language.

In our system, the use of verbs is restricted to those
which are used in the context of a noun phrase construc-
tion; for example,

“‘supplied part from (maker) to (warehouse),”
‘“‘supplied warehouse from (maker) with (part),”
“‘supplying maker of (part) to (warehouse),”

are typical uses of the verb ‘‘supply’’ in this system.
These are rather limited expressions in English verb us-
age, but correspond well to proper Japanese phrases.
Since the above phrases have the same structure, verbs in
this form are easily handled. That is, the verb table ‘‘sup-
ply”’ in Fig. 6 is essentially equivalent to three noun ta-
bles ‘‘supplied part,”” ‘‘supplied warehouse,”” and “‘sup-
plying maker’” in Fig. 7. Then a phrase including verbs
can be handled by the previously described direct qualifi-
cation operation just as noun tables are. For example, a
phrase ‘‘supplying maker of radiators’” (‘‘radiators o sup-
ply suru maker’’ in Japanese) can be treated as the direct
qualification of ‘‘supplying maker’’ by ‘‘radiator’’ with
“‘of”’ as the particle.

Considerations for achieving fluency

To achieve fluency in the query language, which is essen-
tial to the user of this system, some additional ideas are
incorporated.

Contextual reference After the system produces the re-
sult of a query in the form of a noun table, the table is put
into memory so that it can be referred to in the next query
by using demonstrative pronouns, such as ‘‘that,”
“‘those,” etc. “‘Give me the price of that,”” coming after
the query ‘‘Give me the parts which are supplied from
XYZ,” can be handled in this way.

It is also possible to refer to the resuit of previously
issued queries by using constructs like ‘‘that (noun
phrase),”” and ‘‘those (noun phrase).”” In such cases,
from among the query results previously stored, the most
recent one that has the same domain type as the noun
phrase is substituted as the meaning of the phrase. For
example, after the above two queries, ‘‘Give me the stock
of those parts in WH24”’ is allowed, and the phrase
“‘those parts’’ in this sentence means the result of the first
query.

Flexibility in tables The system allows arbitrary noun
and verb phrases as the names of noun and verb tables,
respectively. Therefore, in order to let the system under-
stand the phrase ‘‘quantity on order,” it is possible to
create a noun table whose name is ‘‘quantity on order.”’ It
is much simpler to use a phrase than to define all of the
terms separately: ‘‘quantity,”” ‘“‘on,”” and ‘“‘order.”

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

Vv
Cl C2 Cn
D, D, D,
f.’u 12 Cin
eml m2 emn
VV: a verb
C,, - - -, C,: case indicators
D,, -+, D,: domain names
¢,,; numbers or primitive nouns
Figure 5 Verb table structure.
supply
c3 C7 C10
maker warehouse part
AA WH22 radiator
BB WH24 bumper
AA WH24 radio
CC WH26 radio
C3 = {by}
C7 = {to}
C10 = {3}

Figure 6 Example of a verb table.

Figure 7 Noun tables generated from example verb table: (a)
supplied part, (b) supplied warehouse, (¢) supplying maker.

supplied
part C3 Cc7
part maker warehouse
(a)
supplied Cl10 C3
warehouse
warehouse part maker
{(b)
supplying c7 C10
maker
maker warehouse part
(c)

537

SIBUYA, FUJISAKI, AND TAKAO

538

Moreover, one of the possible ways to allow a noun
modifier like ‘‘established in 1972’ for a noun ‘‘com-
pany’’ is to treat the term “‘established in”’ just as a case
particle. Then the system can handle the phrase ‘‘com-
pany established in 1971’ as though it had the structure of
{noun phrase) (case particle) (noun phrase), which can be
handled simply by the direct qualification operation.

Redundancy Since the data base of our system is de-
signed on the assumption that all of the tables, noun ta-
bles and verb tables, are expressed as subschemata of the
common data base, the data base can be logically redun-
dant without physical redundancy, and this fact greatly
increases the fluency of the language. For example, a
noun table ‘‘supplier’”” and a verb table “‘supply”” might
be redundant, because they are just alternative ex-
pressions for a single fact. Nonetheless, they can coexist
in the data base as two different tables to allow both of the
following queries:

““Give me suppliers of radiators to WH24.”
“‘Give me supplying maker of radiators to WH24.”’

In the former case, the noun table “‘supplier” gives the
answer to the query, and in the latter case, the verb table
“supply’’ gives the answer to the query. Some experi-
mental systems of today realize such functions based on a
knowledge base using semantic networks or other struc-
tures. The knowledge base of common sense which is in-
dependent of applications, however, is very complicated,
and it is heavily application-dependent in present sys-
tems. Sowa [10] has discussed how much automatic refer-
ence will be possible when the relationships among con-
cepts in a data base are formalized as his conceptual
graphs. In our system, logically redundant definitions of
words meet partially the requirements of inference. For
example, a hierarchy of concepts can be defined rigor-
ously. We believe that the meaning of words should be
defined by the data base administrator, and that is done
more or less during the data base design and redesign
process.

Ambiguities The model can accept ambiguous specifi-
cations for words. In order to allow both of the queries,
“‘Give me the income of Bob in 1971"" and ‘‘Give me the
income of IBM in 1971,” two different noun tables having
the name ‘‘income’’ can be present. In spite of this ambi-
guity, the system can reply to both of the queries cor-
rectly. However, a query like ‘“Give me the income in
1971”’ is ambiguous, and no one can decide which table
should be used. To cope with such situations, a ‘‘dis-
ambiguation’’ dialogue mechanism is incorporated in our
system. For this example, the mechanism would display a
menu showing all of the possible interpretations, such as

Are you asking about the “‘income of a person’’?

SIBUYA, FUJISAKI, AND TAKAO

Are you asking about the ‘‘income of a company’’?

The mechanism is also invoked when there are more than
two possible ways of parsing. Negations and conjunctions
often cause this to happen. To resolve such ambiguities,
the system first tries to use both contextual information
and domain information. If it fails in doing that, the mech-
anism is invoked to analyze and display all possibilities.

Application system generator

One of the requirements of a practical data base query
system is to separate the lexicon and the data base com-
pletely. This separation makes it possible for the system
to do complicated parsing without looking into the data
base; thus the system can respond to queries in reason-
able times. However, the separation of the lexicon and
the data base raises a problem: someone must prepare the
lexicon. To reduce the effort, the application system gen-
erator is a program which creates the lexicon from the
data base automatically.

Once the noun and verb tables, expressed by mappings
to the physical data base, are provided to the system, the
generator extracts the following information from each of
the tables:

1. A collective noun or verb from the name of the table.

2. Possible qualification forms for the collective noun or
verb from the column headers of the table.

3. Primitive nouns and their domains from the body of
the current table.

In this way, by scanning all of the tables provided, the
generator can create all of the lexicon entries for the
verbs, the collective nouns, and the primitive nouns. Af-
ter that, the generator prompts the administrator for the
associations between the case indicators and the case par-
ticles. From these associations, the system creates the
lexicon entries for the case particles.

® Generation steps

The generation of a Yachimata system can be summa-
rized in the following three steps, provided that a rela-
tional data base exists.

Step 1 The administrator determines what kinds of
verbs and collective nouns are to be allowed in the query
language. Also he must decide the possible qualification
forms for each of them. This will determine the necessary
tables as well as their structures.

Step 2 The administrator describes each of the tables in
the following form:

a. Table name: This is the collective noun or the stem of
the verb.

b. Column header: This is a list structure consisting of
the domain names and the case indicators describing

IBM J. RES. DEVELOP. e VOL. 22 ® NO. 5 « SEPTEMBER 1978

the possible qualification forms for the collective noun
or the verb.

c. Body as an expression: The entries of the table should
be defined in terms of a data sublanguage as a mapping
from the data base.

Step 3 All of the specifications above are fed to the gen-
erator to derive the lexicon.

Processing Japanese sentences

So far we have discussed the use of natural language in
general. We now consider some difficulties peculiar to
machine processing of the Japanese language. The most
rudimentary one is the input of Kanji characters. There is
no good device available at present for us to key in thou-
sands of Kanji characters, and we foresee none in the fu-
ture suitable for inexperienced casual end-users. Thus we
are limited to Katakana characters, which causes trouble
for the parser: first, the word separation rule in Katakana
sentences is flexible, and second, there are a lot of homo-
nyms in Katakana words. The first problem is something
like writing both ‘*data base’’ and ‘‘database’ for a lot of
words. A compound noun can be written as one word or
as several words, so that noun tables must be given
phrase names.

Ambiguities due to homonyms among nouns are re-
solved mainly by noun and verb tables, since they restrict
possible words in a syntactic structure. For example, in
“Kohchi no kohchi” (the cultivated area of Kohchi Pre-
fecture), one Kohchi can be a common noun while the
other is a proper noun (they are distinct in Kanji, and
there is no distinction between upper and lower case let-
ters in Katakana). To allow flexibility in the word separa-
tion rule, we have to indicate the position of negligible
spaces in the words in the lexicon on the one hand, and
match the words with all possible substrings of segmenta-
tions of the query sentence on the other hand.

Another fundamental difficulty is due to the fact that
Japanese is not an inflectional but an agglutinative lan-
guage. This means syntactic rules play a less important
role and semantic ones a more important role in parsing
Japanese sentences. This, as well as the flexibility in sep-
aration rules, requires application of rewriting rules more
often. Because of the limited universe of discourse, this
difficulty is not insurmountable, but it increases parsing
time.

It is interesting to observe that Japanese queries fit the
noun-phrase model quite well. Since the role of case par-
ticles and semantics is stronger and the word order is al-
most meaningless, a case indicator in a verb table can be
just a set of strings to be matched and does not mean the
position in verb patterns. Further, matching with the pair
(domain, case indicator) of columns of tables plays an im-
portant role in syntactic analysis. The syntax of a phrase
with a verb in the passive voice is almost the same as that

IBM J. RES. DEVELOP. ® VOL. 22 « NO. 5 ¢ SEPTEMBER 1978

in the active voice. Thus, the passive voice of a verb be-
comes available if another verb table is added.

Yachimata

Yachimata, named after Haruniwa Motoori’s grammar
book Kotoba no Yachimata (Maze of Language), pub-
lished in 1808, is an experimental system which incorpo-
rates the ideas of the previous sections and has been run-
ning successfully since the spring of 1976. Yachimata ac-
cepts a Japanese-like query sentence keyed with an IBM
3270 Information Display System with the Katakana
Character Feature, asks the user questions to resolve am-
biguities or determine output format, if necessary, and
shows the result in tabular form. It is coded almost en-
tirely in PL/I, runs under IBM VM/370: Conversational
Monitor System (CMS), and supports multiple users. Its
data base is PRTV [11], and its parser and semantic ana-
lyzer are similar to those of REL [1]. Running in a typical
IBM System 370/Model 168 CMS environment, the re-
sponse time is 10-20 seconds for ordinary queries and 30~
50 seconds for longer or more complex queries. The vir-
tual CPU times are 2-5 seconds and 10-15 seconds, re-
spectively. The system uses 1.5 megabytes (where 1
megabyte equals 1024% bytes) of virtual storage for pro-
gram, 1.5 megabytes for rules and lexicon, and 0.5-1.5
megabytes for work area.

It is difficult to assess Yachimata’s fluency in grammati-
cal terms for non-Japanese languages. We believe that it
covers negation, comparatives (greater/smaller only),
passives, relative clauses, coordination, and mathemati-
cal expressions. It partially covers time and connected
sentences.

To demonstrate Yachimata’s generality, three small ap-
plications have been implemented: 1) inventory of parts
in warehouses, a typicai example of the relational data
model; 2) domestic airline schedule, a typical example of
the question answering system; and 3) regional statistical
data by prefecture. The details of these applications and
sample sentences have been published -elsewhere
[12, 13].

The last application was demonstrated to thousands of
people at the World Environment Exhibition, held in To-
kyo in May-June 1976. When people understood what
data were stored, they asked reasonable questions and
obtained satisfactory answers. A few DP professionals
asked essentially difficult questions. For the demonstra-
tion three college-educated typists knowing nothing about
DP systems were hired. They were shown sample queries
and were taught the valid sentence structures and the data
base contents for three hours. Then, after two afternoons
of self-training with a guide, they could freely ask Yachi-
mata questions.

The Yachimata system is similar to its two sister sys-
tems in German and French [14, 15]. In addition to the

539

SIBUYA, FUJISAKI, AND TAKAO

540

language involved, there are other differences. We do not
expect the user to alter the grammar rules himself. Since
the grammar rules are related to one other, it is difficult to
alter some without understanding all of the rules. Our
main efforts were directed towards simplifying the system
generation, based on the explicit definition of the noun-
phrase model. A DP professional can construct it easily
with the help of a system programmer to run the appli-
cation system generator. At present, only the query
*“(noun-phrase) wa? (Show me (noun-phrase).)’’ is imple-
mented. The case particle “‘wa’’ is a unique one in-
dicating the topic of a sentence. Some improvements to
the fluency have been designed but not implemented.

Conclusion

There was widespread doubt that Japanese (especially in
Katakana sentences) could be an adequate query lan-
guage. One of the achievements of Yachimata was to
show Japanese to be as good as European languages for
querying a data base. Our experiences show that, if a user
of an information system within a community knows
something about his data base, he can learn quickly how
to ask the system what he wants to know.

The main difficulty is the cost: parsing time and work
space. This will be justified when the cost becomes suffi-
ciently low and the number of end-users who prefer a nat-
ural language to a formal one becomes sufficiently high.

References

1. F. B. Thompson, P. C. Lockeman, B. Dostert, and R. S.
Deverill, “‘REL: A Rapidly Extensible Language System,”’
Proceedings of the Twenty-fourth National Conference of
the ACM, New York, 1969, p. 399.

2. W. A. Woods, R. M. Kaplan, and B. Nash-Weber, ‘“The
Lunar Sciences Natural Language Information System,”” Fi-
nal Report BBN 2378, Bolt Beranek and Newman Inc.,
Cambridge, MA, 1972.

SIBUYA, FUJISAKI, AND TAKAO

3. W. J. Plath, “REQUEST: A Natural Language Question-
Answering System,”’ IBM J. Res. Develop. 20, 326 (1976).

4. J. Mylopoulos et al., “TORUS: A Step Towards Bridging
the Gap Between Data Bases and the Casual User,” Info.
Syst. 2, 49 (1976).

5. S. R. Petrick, “‘On Natural Language Based Computer Sys-
tems,”” IBM J. Res. Develop. 20, 314 (1976).

6. E. F. Codd, “*A Relational Model of Data for Large Shared
Data Banks,”” Commun. ACM 13, 377 (1970).

7. E. F. Codd, “Seven Steps to RENDEZVOUS with the Cas-
ual User,”” J. W. Kinbie and K. L. Koffeman, eds., North-
Holland Publishing Co., Amsterdam, 1974, p. 179.

8. C. J. Fillmore, ““The Case for Case,’’ Universals in Linguis-
tic Theory, E. Bach and R. Harms, eds., Holt, Rinehart and
Winston, New York, 1968, pp. 1-89.

9. G. Heidorn, ‘‘Supporting a Computer-Directed Natural Lan-
guage Dialogue for Automatic Business Programming,’” Re-
search Report RC6041, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1976.

10. J. F. Sowa, ‘‘Conceptual Graphs for a Data Base Interface,”
IBM J. Res. Develop. 20, 336 (1976).

11. S. Todd, ‘“PRTV-—An Efficient Implementation for Large
Relational Data Bases,”” Proceedings of the International
Conference on Very Large Data Bases 1, No. 1, 554 (1975).

12. T. Fujisaki, M. Sibuya, and Y. Takao, ‘A System Querying
Regional Statistics—Practice of Noun-Phrase Data Model,”
presented at International Technical Conference on Rela-
tional Data Base Systems, June 23-25, 1976, IBM Italy Sci-
entific Center, Bari, Italy.

13. T. Fujisaki ef al., ‘‘A Data Base Query System Using Japa-
nese-Like Language: Yachimata,”” IBM Review, No. 63, 69
(1976), IBM Japan, Tokyo (in Japanese).

14. H. Lehmann, ‘‘Interpretation of Natural Language in an In-
formation System,”” IBM J. Res. Develop. 22, 560 (1978,
this issue).

15. O. Bertrand, ““NLS: A Natural-Like Language System,”’ In-
ternational Conference on Relational Data Base Systems,
IBM Bari Scientific Center, Bari, Italy, June 23-25, 1976.

Received September 6, 1977; revised May 3, 1978

The authors are located at the IBM Tokyo Scientific Cen-
ter, 1-11-32 Nagata-cho, Chiyoda-ku, Tokyo.

IBM J. RES. DEVELOP. ® VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

