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An Analytic  Model of the  VM/370  System 

Abstract: This  paper  describes  an analytic  model  of an interactive  multiprogrammed computer  system.  The model accepts a multiple- 
user-class, transaction-oriented workload description  and a system configuration description,  and it produces predictions  of resource 
utilizations,  transaction rates,  and  average  transaction  response  times.  The solution  method  involves  nearly complete  decomposition, 
with  a  closed  queuing network representing the multiprogrammed set. Asymptotic  formulas are used to  generate good initial guesses  for 
an overall  iterative scheme.  Extensive validation results  are  presented. 

1. Introduction 
This paper  describes a model [l] of a virtual memory, in the form of workload  (Section 3) and  configuration 
multiprogrammed, interactive  computer  system called (Section 4) descriptions.  The workload description may 
VW370 [2]. A previous model of the system  assumed a need to be transformed to  the specified configuration 
homogeneous (single class)  user population and  concen- (Section 5). The flow  of transactions through the  system 
trated most of its computational efforts on determining is modeled by means of Little’s formula (Section 6), but 
the distribution of multiprogramming  levels [3]. Neilson  the  details of the flow model depend on whether  FIFO 
[4] extended  that model to  accommodate  two  user (Section 7) or CPU fair  share (Section 8) scheduling is 
classes-batch and  interactive.  The  present model, while employed.  The overall  system model (Section 9) consists 
an  outgrowth of the  previous ones, differs from  them in  of iterative alternate applications of the flow model  and 
almost all details. It accommodates multiple user  classes  the multiprogrammed-set model (Section 10). The  latter 
whose workload descriptions  for  an existing system  are may be  approximated by means of asymptotic  formulas 
derivable directly  from  available measurement facilities  (Section l l ) ,  which are valid at high multiprogramming 
[5]. Like the preceding ones,  our model employs  the prin- levels. 
ciple of nearly  complete  decomposition [6] to  separate  The special case of a system with an auxiliary process- 
the  transaction flow outside  the  CPU  from  the actual ing unit is treated in Section 12. Once  convergence  has 
processing phase,  the  latter being treated by means of a  been attained, the  model computes predictions for  the 
closed queuing  network model.  Unlike the preceding usual performance factors (Section 13), such  as  response 
ones, the present model iterates between the  overall flow times  and resource utilizations. The model has been vali- 
equations  and the queuing network equations.  The distri- dated extensively  (Section 14), both  against  live  work- 
bution of multiprogramming levels is no longer evaluated, loads  and  against  controlled benchmarks. 
only average values being required. Simplified asymptotic 
formulas significantly reduce  the processing  times for 2. VM/370 scheduler 
large  problems involving many user  classes  and/or a high Figure 1 illustrates the  manner in which VM/370 sched- 
multiprogramming  level.  ules  its  work. A user is dormant when he  has no work 

The model has been  thoroughly  validated  against live outstanding. Time spent in the  dormant  state is called 
workloads in a large variety of installations  and has been think t ime. When a user  enters a request  for  service, he is 
used  extensively for predicting the performance of vari- first placed in the eligible se t ,  and  then, when system  re- 
ous VW370 configurations under many  different  work- source availability permits, he is placed in the multi- 
loads. programmed set .  Only members of the  latter  set actually 

The  paper is organized as follows: To  provide  the ratio- receive CPU time and 1 /0  services  and are allocated space 
nale for  the  structure of the model, we describe first the in main storage.  The multiprogrammed set  consists of two 
VW370  scheduler (Section 2). Model  inputs are provided subsets: Q1,  containing users who have received less  than 
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a certain  amount of CPU time (about 100 ms)  since  leav- 
ing the dormant  state, and Q2, consisting of all others. 
Similarly, the eligible set is broken  up  into Q1 and Q2 
candidates.  The total  number of users in the multi- 
programmed set is the multiprogramming level (MPL). 

The system estimates  the size of each  user's working 
set ,  which is  the  amount of main storage  space  the  user's 
programs are thought to  require in order  to run effi- 
ciently.  A user is admitted  into the multiprogrammed set 
only if sufficient main storage  space is free  to  accommo- 
date his working set, with Q1 candidates taking  prece- 
dence  over Q2 candidates. 

The VW370 scheduler admits Q2 candidates in FIFO 
order.  The  order may be modified  by means of external 
user priorities and scheduler  bias  factors [7]. The  latter 
are designed to penalize  heavy users of bottlenecked  sys- 
tem resources. 

An alternative scheduler is available [8], which sched- 
ules  admissions so as  to equalize, as  far  as possible,  the 
share of CPU time obtained by different users. Specific 
users may be given more or less  than theirfair share ac- 
cording to external  priorities,  and scheduler bias  parame- 
ters may be used to include resources  other than the  CPU 
in the fair share  calculations. 

The model described below can accommodate  the fol- 
lowing scheduling  disciplines: 

1. Strict FIFO. 

2. CPU fair share, with or without  priorities. 

With very slight modifications,  multiple-resource  fair 
share could also be  treated. 

The VW370 scheduler also permits  dedication of spe- 
cific system  resources  (e.g., a given fraction of CPU time 
or a certain number of main storage page frames) to given 
users.  The model handles such users by subtracting the 
dedicated resources  from the pool of resources available 
to  other  users. In the  case of a  dedicated percentage of 
CPU time,  the model treats the  CPU as though it were 
slowed down by an  appropriate  factor.  For  instance, a 50 
percent dedicated CPU  appears  to the model as  a CPU 
whose  speed has been cut in half. 

3. Workload characterization 
It is convenient to  break up each  user's workload  into 
transactions. A transaction is defined as  the work  done 
for  the user from the time he becomes  a Q1 candidate 
until the next time that he becomes either  dormant  or a 
Q1 candidate again,  whichever occurs first. Two  types of 
transactions  are recognized: 

Trivial transaction: One  that is completed in Q1. 

Nontrivial  transaction: One  that requires  at least  one 
stay in Q2. 
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Figure 1 Transaction flow in VM/370. 
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Some users (typically batch virtual machines) may 
present  to  the system  a continuous  workload, wherein 
they  cycle indefinitely between  the Q2 and Q2 candidate 
states. A continuous workload may be  regarded as a se- 
quence of nontrivial transactions, each  requiring one Q2 
slice of CPU  time,  separated by zero think times. 

The model accepts  the following workload character- 
ization: The  entire  user population may be  broken  up  into 
several user classes. Although it is desirable that  users 
within a class have  a  more or less  homogeneous work- 
load, good results  have been  obtained in many cases with 
all users lumped into  a single class. Each  user  class be- 
longs to  one of the following types: 

T: Trivial transactions  only. 

N: Nontrivial transactions only 

B: Both trivial and nontrivial transactions. 

C:  Continuous workload. 

From  remarks made above, it is evident that a  C class is a 
special case of an N class and requires no further  consid- 
erations. 

The average  values of the following quantities are re- 
quired for  each  user  class: 

0 Number of logged-on users. 
e Secondary storage paging slots occupied per logged 

Ratio of trivial to nontrivial transactions (B type  only). 
user. 
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Secondary storage data  areas owned by class  members, 
and  access  characteristics, including seek  distances, 
block lengths,  and relative  access  rates. 

The  average  values  per  transaction of the following quan- 
tities are required for  each  transaction  type within each 
user  class  (henceforth referred to  as transaction class): 

Virtual CPU time (measured  on a specified CPU 

Overhead  CPU time  (measured on  the  same  CPU 

Working set. 
Page reads (measured in the  same  environment  as  the 
overhead  CPU time). 
Paging index  (an empirical,  environment-independent 
measure of paging activity;  see [5] for  precise defini- 
tion). 
Virtual input-output  operations of various  kinds  (disk, 
tape, unit  record). 
Think time. 

A fuller  description of the workload characterization and 
how it is obtained  from measurements  on existing sys- 
tems  can be  found in [5 ] .  

model). 

model). 

4. Configuration  description 
Since  the VM/370 System  can run on  almost  any IBM 
Systed370 configuration, the model must be  provided 
with the following data describing that configuration: 

0 CPU model. 
Main storage size. 
Number and  type of direct  access  storage  devices and 

Placement of primary  and secondary paging areas  on 

Placement of each  user  class’s  data  areas  on  the  de- 

their placement on I/O channels. 

the  devices. 

vices. 

5. Workload  conversion 
Since  the workload may have been  measured on a system 
different from  the  one  to  be modeled, certain  conversions 
may be  required: 

CPU times are adjusted by the ratio of CPU  speeds. 
Different ratios may be  applicable to virtual and  over- 
head  times. These  factors  have been determined empir- 
ically. 
Number of page reads is adjusted  according to  the em- 
pirical model described in [ 5 ] .  

0 CPU  overhead time is adjusted  to reflect the changed 
number of page reads. 
The distribution of users’ page slots among the speci- 
fied paging areas  is  determined according to  the VM/ 
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slow paging devices  can be modeled by assigning a dis- 
proportionately high fraction of page reads  and writes 
to  the  fast devices. 

6. Transaction  flow  model 
For modeling purposes, it would be convenient if each 
stay in Q2 could be  considered  as a full nontrivial transac- 
tion. Fortunately,  this  is easily achieved,  because  to  the 
model a transaction requiring T seconds of think time, t 
seconds of CPU  time,  and M stays in 4 2  is equivalent  to 
M transactions,  each requiring T / M  seconds of think 
time, t / M  seconds of CPU time, and a single stay in Q2. 
The following assumptions  are also  made: 

1. The Q1 stay  at  the  start of a nontrivial transaction may 
be  lumped into  the  succeeding Q2 stay. 

2. Wait  time for admission to  Q1  is negligible; the sched- 
uler diagram (Fig. 1) is thereby transformed into  the 
simpler transaction flow model represented by Fig. 2. 

The formulation of the model would be  further sim- 
plified if there were  a separate  user  class  associated with 
each  transaction  class. This requires splitting each B-type 
user  class with N members  into  two  classes: A T-type 
with N ,  members and  an N-type with N ,  members,  such 
that N = N ,  + N ,  and N , / N ,  = RT,/T, ,  where R is the 
ratio of trivial to nontrivial transactions and T,  and T, are 
the cycle (think + response) times of the trivial and non- 
trivial transactions, respectively. While T,  and T, are not 
known a priori, they  are available at  each  iteration (see 
below), so that  current  values of N ,  and N,  can  always be 
calculated.  In  the sequel it is assumed  then that  the total 
user workload is divided into several classes, of which 
some enter only  trivial transactions,  whereas  the  others 
enter only nontrivial transactions. 

Let Ti,,, Ti,,, and TiS3 denote,  respectively,  the  average 
time spent by a class i transaction in the  dormant, eligible, 
and  multiprogrammed sets, respectively, and let Ni,,,  
Ni ,Z,  and Ni,3 be the  average number of class i members in 
those  sets  at  any  one  time.  Let Z, and I ,  denote  the  sets of 
indices corresponding  to trivial and  nontrivial transaction 
classes, respectively. The following equation is obvious: 

Ni, ,  + N,,, + Ni,3 = Ni (i E I , ,  I,), (1)  
where Ni is  the total average number of class i members 
(Ni  need  not  be an  integer).  The Q-admission policy re- 
quires  that 

s, + s, 5 s, (2 )  

where S is the total  available main storage capacity, and 
S, and S, are the average  amounts of main storage occu- 
pied by trivial and nontrivial transactions,  respectively. 
Clearly, 
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where Wi is the  class i transaction  average working set 
size. 

According to Little’s formula [lo], the average number 
of transactions in each  set is proportional to  the  average 
time spent by a transaction in that  set.  Thus, 

Ni,k = XiTi,, ( i  E I , ,   I , ;  k = 1, 2 ,  3 ) ,  (4) 

where X i  is the class i transaction flow rate. Summing  the 
above  equations  over k ,  we  find 

Ni = Ai (Ti,, + Ti,, + Ti,3) ( i  E I , ,   I , ) .  (5 )  

Furthermore, 

j L k =  Ti,k 

Ni T . 1  + Ti,, + Ti,3 

( i  E I , ,   I , ;  k = 1, 2 ,  3 ) .  (6)  

By assumption, Ti,, = 0 for i E I , .  Hence,  from ( 6 ) ,  

and 

Before  proceeding, we must take  stock of which vari- 
ables  are known  and which must be  calculated. Specifi- 
cally,  the following are given in the workload description: 

N i ,  i E I , ,  I,: users in class i ;  

Wi,  i E I , ,   I , :  class i working set; 

Ti, , ,  i E I , ,  I,: class i think time. 

Furthermore, S (main storage  capacity) is given in the 
configuration description. We shall also assume  for  the 
time  being that the Ti,3 are known for all i E I , ,  I , .  We can 
now evaluate S,,  using (8). If  it turns  out  that S, 2 S ,  then 
the  system is entirely saturated with trivial transactions, 
and  no  further  analysis  takes place. If S, < S, then the 
storage requirement for nontrivial transactions is comput- 
ed  on  the assumption that T,,i = 0, i E Z,, i.e.,  that non- 
trivial transactions  are admitted  into 4 2  immediately. 
Analogously to (8), this storage requirement is 

Now, if S: I S - SI, it follows that the assumption Ti,, = 

0 for i E I ,  is acceptable. If SE > S - S,, storage is 
saturated, so that S, = S - S,, or 

The solution of this equation  depends  on  the  system 
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Figure 2 Simplified transaction flow. 

scheduling discipline, as  shown in the next two  sections. 
One could easily model constraints on resources  other 
than main storage by introducing appropriate inequalities 
analogous to ( 2 ) .  

7. FIFO scheduler 
The  FIFO  scheduler  treats all classes  equally, so that  ex- 
pected Q2 admission wait time  should  be about  the same 
for all. Hence, we may assume 

Ti,, = Q ( i  E I , ) ,  (1 1) 

where Q is  an unknown constant. Substituting in (10) we 
find 

This is a single equation in the single unknown Q ,  which 
may be solved,  say, by means of the Newton-Raphson 
method. 

8. Fair  share  scheduler 
The fair share  scheduler  guarantees  equal  amounts of 
CPU time to all CPU-bound  users.  Let ti ( i  E I,) be the 
CPU time  required per  transaction. This  quantity is given 
in the workload description, but  needs to be adjusted  for 
B-class users  to include the contribution from  the trivial 
transactions generated by these  users.  The  CPU con- 
sumption rate  for  each  class i user is 

Ui = -. Xiti 

Ni 
Substituting  for Ai from ( 5 ) ,  we find that Ui = t i / (Ti , ,  + Ti,, 
+ T J .  Equating all Ui to a common “fair share” value 
U ,  we obtain  the  equation 

t 
U 

Ti,, + Ti,, + Ti,3 = ( i  E I , ) ,  (14) 



which, when substituted in ( lo) ,  yields 

i E I Z  I .  

or 

U =  
s - SI 

Y Ti  ,NiWi ' 

rapid rate may also  become subject to  the  fair  share  re- 
strictions. Since the model handles  fair share scheduling 
only  through control of eligible-set time, both of these ef- 
fects  are not modeled properly. 

9. Overall  system  model 

determined. In particular, we obtain 
(15) Once  the Ti,, are  computed, all other  quantities  are easily 

L 
ti 

and, from (14), 

Ti,, = - Ti,l - Ti,3 ( i  E ZJ. 
t .  
U (16) 

It may turn out  that (16) gives negative values  for some 
i E Z,. This indicates that  the  corresponding  user  classes 
are not CPU  bound.  Let J be  the  set of indices for which 
(16) is negative. We then assign 

Ti,2 = 0 ( i  E J )  

Ni,3 = 
Ti,3Ni 

Ti,, + Ti,, + ' i ,3 
( i  E I , ,  1,). (20) 

Recall that Ni,3 is the  average number of class i members 
who are in the multiprogrammed set. When in that  set, 
users  receive  CPU  bursts,  execute I/O operations,  etc. 
These  events  occur  frequently,  on a  milliseconds  time 
scale, while Fig. 2 state  transitions  occur relatively  infre- 
quently, on a seconds time  scale. Hence,  to  the  rest of the 
system,  the multiprogrammed set  appears  to  be in an 
equilibrium state.  The  system  may,  therefore, be  decom- 
posed [6], and the multiprogrammed set may be treated  as 

and modify (15) to  compute a new value of U :  a  closed  queuing network with a constant  user population 
Ni,3 (i E I , ,  ZJ. A suitable  queuing  network model (see 
Sections 10 and 11) may  be  used to find the  steady  state s - S I -  2 

c 

Ti  3Ni  Wi 

U =  
i E J  ' i , I  + Ti,3 (17) solution for  the  network.  This solution yields estimates 

Ti,& Wi for  the network residence  times, which are  the Ti,3. We 
iEI,-J t i  have,  therefore,  the makings of an  iterative  procedure: 

If resources  other  than  the  CPU  are  to be fair  shared, 
only a redefinition of the ti is required. In particular,  the ti 
may be defined as a weighted sum of different resources 
used per  transaction. 

1 .  Assume initial guesses for  the Ti,3. 
2. Apply the  transaction flow model to  compute  the Ti,2 

3. Apply the queuing network model to  recompute the 
and Ni,3. 

m 

The fair share  scheduler permits user priorities to be 
specified. These priorities are interpreted  by the  sched- 
uler as relative CPU utilizations [8]. That  is, a user with a 
higher than average priority is given a  larger than fair 
share of CPU time. These priorities are modeled as fol- 
lows:  Let bi be  the relative CPU utilization assigned to 
members of user  class i. Hence, instead of having Ui = U 
for all i E Z,, we now have Ui = biU,  and (15) must be 
modified to 

U =  
s - SI 
Ti & V i  Wibi ' 

i,3' 

4. Return  to  step 2. 
The  cycle is broken when values of Ti,, + Ti,3 from suc- 

cessive  iterations  do  not differ significantly. Although we 
have  no  convergence  proof,  experience with hundreds of 
practical cases  shows  that  convergence generally takes 
place  in two  to  ten  iterations,  where  as initial guesses  we 
take Ti,2 = 0 and Ti,, to  be equal to  the  CPU time  plus the 
sum of all channel data  transfer times for all I/O opera- 
tions  generated by a class i transaction.  To  guard against 
the possibility of infinite looping, if convergence  has not 
been  attained after  thirty  iterations, the  program  termi- 
nates with a  warning  message. 

Equation (16) becomes 10. Multiprogrammed  set  model 

ti 
The multiprogrammed users  are cycled  among a set of 

We assume  that  no  user  can  overlap his own I/O andCPU 
and (17) is also modified correspondingly. operations. With suitable  assumptions  on  service dis- 

If main storage is large  enough to admit all transactions ciplines at  the various queues, and ignoring the inter- 
immediately, the fair share  scheduler  controls  CPU time actions  between  channel and device queues,  one could 
allocation by assigning to  users in the multiprogrammed  solve this queuing network problem  provided one only 
set dispatching  priorities  inversely  related to  their  CPU knew the total service time  required by each  transaction 

Ti,, b , ~  - Ti,, - 'i.33 (19) queues:  CPU  queue, channel queues, and device  queues. 

502 utilizations. Users generating trivial transactions at  a very  class  at  each  queue [l 1 3 .  
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Unfortunately, if one  does ignore  these interactions, in- 
valid solutions  may  be obtained. An I/O operation to a 
direct access device consists of seek, rotational delay, 
and data  transfer  phases. During  the first phase, only the 
device is busy  (although the  phase  cannot be  initiated 
without a brief access  to  the  channel). During the second 
phase,  the channel too is busy if there is no rotational 
position  sensing.  During the third phase,  both channel 
and device  are  busy.  These partial overlaps  cannot be 
treated within the  framework of classical  queuing  net- 
work theory, but the following four  approximate  methods 
can be  suggested: 

1 .  Ignore  the overlap,  and assign to  each  channel and  de- 
vice  separately their full service times.  Result: inflated 
response time prediction,  since  the overlapped  service 
periods are  counted twice. 

2. Ignore the  devices, and assign the  entire service time 
to  the  channels. Result: inflated response time  predic- 
tion, since overlap  between  seeks on different devices 
is not  allowed. 

3. Ignore the  channels, and assign the  entire  service time 
to  the devices.  Result:  underestimated response time, 
since contention  and serialization of channel time are 
ignored. 

4. Assign to  the  devices  the  phases when only  they are 
busy, and to  the  channels assign  the  time when both 
channel and device  are  busy. Result: response time 
may be  underestimated,  since solutions may be  ob- 
tained in which true device utilization exceeds 100 
percent. Still, of the  four possibilities,  this one is by 
far  the best [12]. 

This approach  was indeed applied in the  first  version of 
this  model. The convolution algorithm of [13] was used, 
requiring on the order of 

(1 + M)L n (N:,, + 1) operations, 

where M is the number of channels + number of devices, 
L is the number of transaction  classes, and N:, = INi,, is 
the smallest integer containing Ni,, (recall that since Ni,, 
is an  average  value, it need not  be an  integer). 

Subsequently, an approach was  introduced that solved 
the problem of channel-device  overlap  and  also  consid- 
erably  reduced the  amount of computation required. 
There exist in the  literature several open-queue models of 
the  channel-device configuration [14-161 which explicitly 
model the complex  interaction  between these units. The 
models assume  that I/O requests arrive in a  Poisson 
stream, and they  require  as inputs the  record lengths, 
placement of data  sets  on  devices, and access  rates to all 
data  sets.  The  access  rates  are  computed  as follows: Let 
zi,j be the number of I/O operations requested by a  class i 

transaction from  data  set j .  According to (4), the  class i 
transaction  rate is Ai = Ni,,/Ti,,. Hence,  the  access  rate  to 
data  set j is 

C z i j ~ i , J ~ i , , .  
z 

The I/O submodel produces  as  outputs  the average re- 
sponse  times Dj to  an I/O request  from  data  set j .  The 
total average  delay suffered by a  class i transaction  due  to 
its I/O requests  is 

Bi = z ~ , ~ D ~ .  
j 

But the  same  average delay would be suffered by the 
transaction if all the channel  and  device queues were  re- 
placed by a single infinite-server  queue  with  service  time 
Bi. Thus, the (M + 1)-queue original network may be re- 
placed by a two-queue  network, consisting of a single- 
server  CPU  queue  and  an infinite-server I/O queue.  The 
number of operations in the convolution algorithm is 
thereby  reduced to  the  order of 

2~ r1 (NT, ,  + 1). 
1 

The number of operations in the solution of the open 
queuing I/O submodel is independent of the size  and na- 
ture of the  user  population. 

The convolution algorithm [13] is used to  generate  the 
queue length probability  generating  function for the  two- 
queue  network. An L-dimensional  array G is initialized to 

G ( j l , j 2 ,  . . . , jL )  = fl (ji = 0, 1, . . ., NT,,). (21) 
L 0:’ 

i = l  J i .  

These quantities are proportional to  the probabilities of 
queue lengths jl, j 2 ,  . . . , jL  at  the “infinite server” I/O 
subsystem. The array G is transformed by applying  the 
following feedback filter representing the  CPU  queue: 

(iljpo) 

where,  as  before, ti  is the  CPU time per  class i transac- 
tion.  Equation (22) must  be applied in order of increasing 
values of the indices. The expected  time in the multi- 
programmed set  for  class i transactions with a  population 
of N:,, is now  given by 

Similar equations hold for  any  other integral user popu- 
lation not  exceeding A’:,,. To  determine average re- 
sponses Ti,3 at  the (possibly)  nonintegral average popu- 503 
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Table 1 Comparison of asymptotic and finite  multiprogramrned 
set  models,  with ti = 2, 1 and Oi = 1 ,  1. 

No.  of users in Time in 
multiprogrammed  set  multiprogrammed  set 

Finite model [Eq. (23)] 
Asymptotic  model 

[Bq. @9)1 

1 1 4.00 2.67 
3.56  2.28 

2 2 7.44  4.37 
7.53  4.27 

3  3  11.43  6.31 
11.52  6.26 

4  4  15.45  8.30 
15.52 8.26 

5 5 19.46  10.29 
19.51 10.26 

10 10 39.48 20.27 
39.51 20.25 

4 1 9.78 5.50 
9.82  5.41 

8  2  19.79  10.45 
19.81 10.40 

16 4  39.79  20.42 
39 .SO 20.40 

lation Ni,3,  a set of L + 1 integral  populations  surrounding 
Ni,3 is selected,  the corresponding responses  are comput- 
ed, and Ti,3 is estimated by interpolation. 

11. Asymptotic  multiprogrammed  set  model 
The computational  and  storage demands of the algorithm 
described in the preceding  section  grow rapidly as  the 
number of transaction  classes  and  the multiprogramming 
level increase. It is,  therefore, of interest  to determine 
what happens as  the Nia3 increase  beyond  bounds and 
whether such asymptotic results  can provide useful ap- 
proximations in practical cases. 

Before proceeding, we define the following quantities: 

N = C,Ni,, is the total multiprogramming level. 

ai = Ni, , /N is  the  fraction of class i transactions in the 
multiprogrammed set. 

xj = fraction of multiprogrammed transactions in the 
jth  server  queue. 

T~~ = average  jth  server  service time for a class i trans- 
504 action. 

&(nJ = jth  server  service  rate when there  are nj  transac- 
tions in its  queue.  Clearly,  on  the  average, nj = 

x j N .  

Assume that N approaches infinity in such a way that 
the a, remain constant  (i.e., all transaction  classes in- 
crease  proportionately).  Then, it has  been  shown [17] 
that,  for a network satisfying the separability  criteria with 
processor sharing servers,  the xj approach values which 
can be  computed by using  the following iterative  scheme: 

where  the superscript u refers to  the iteration number. 
The iterations may be started with any  set of positive xj. 
In our  case, we have  two  servers: 

j = 1 is the single server CPU, with T ~ , ~  = ti  and f,(n,) 
= 1. 

j = 2 is  the infinite server I/O subsystem, with T ~ , ~  = Oi 
andf,(n,) = n2. 

Substituting these values  into (24), we find after sim- 
plification: 

x:+,’ = x y  2: 
aiti 

t i x y  + e. ’ 
N 

I t  is clear that meaningful results  can be  obtained  only if it 
is assumed that  the Bi increase in proportion with N .  
Hence, let pi = e i / N  be  assumed constant.  Then 

It is now possible to  apply  the iterative scheme (25)  by 
itself, then substitute x1 in (26) to  compute x2 directly (or, 
more  simply, set x2 = 1 - xl). We shall show,  however, 
that  even (25) need  not  be used in some  cases.  From (25) 
it is evident that 

r 

Therefore, if Xiai ti/pi < 1, then 

x, = lim x:’ = 0. 
v+m 

We now compute  the  average time Ti,3 spent by  a class i 
transaction in the multiprogrammed set  when N is large. 
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The time  spent in the I/O subsystem is O i ,  and the  CPU 
service time is ti .  Hence 

T .  2 Oi + t i .  
1.3 (27) 

When x,  = 0, CPU queuing time is negligible compared to 
Oi = Np, ,  and (27) holds with equality sign. If x,  > 0 ,  then 
the  CPU  queue  contains, on the  average, Nx, transac- 
tions,  and,  for large N ,  is almost  never empty.  Hence 
CPU utilization is 100 percent, and the  CPU utilization 
per  transaction in queue is I/Nx, .  To obtain ti seconds of 
CPU  time, a  transaction must spend tiNx, seconds in the 
CPU  queue.  Therefore, 

Ti,3 = Oi + tiNxl, (28) 

but,  because of (27), this  result  can  be valid only for 
Nx, 2 1 .  We may combine  this remark with Eq. (28) 
into  the single result 

Ti,3 = Oi + max ( t i ,   Nx ,   t J .  (29) 

Equation (29) gives  remarkably accurate  results  even  for 
fairly small values of N ,  as illustrated in Tables 1 and 2, 
and  its computation is much faster than (23). In view of 
this,  the following strategy  has been  adopted for  the mod- 
el: 

1 .  Apply the  overall  iterative scheme of Section 9 using 
Eq. (29) in step 3 until convergence is obtained.  The 
convergence criterion used is that no value of Ti,2 + Ti,3 
has changed by more than 5 percent from one iteration 
to  the next. 

2. If storage capacity is insufficient to contain the  entire 
G array,  or if N > 15, terminate. (The value 15 was 
chosen somewhat arbitrarily, but experience has 
shown  that Eq. (29) is generally accurate  for N > 15, 
and Eq. (23) is not too costly to  evaluate  for N 5 15.) 
Otherwise, go to  step 3.  

3. Continue the  iterations of Section 9, using Eq. (23) in 
step 3 ,  until once more convergence is obtained. 

In small problems,  this scheme is slightly slower  than 
using Eq. (23) from the  start,  since  the total  number of 
iterations is somewhat  increased. In large problems, this 
scheme  can be several fold faster, since  generally only 
one  or two  applications of Eq. (23) are  required. 

12. Auxiliary processing unit 
The VM/370 System can be run on a so-called auxiliary 
processor (AP) configuration containing  dual  instruction 
processing  units.  One of these, the CPU,  can handle all 
instructions, including I/O. The  other  one,  the  APU,  can- 
not execute I/O instructions. Any program can be  dis- 
patched on either unit, but, if an I/O instruction is en- 
countered on the APU,  the task  must  be suspended and 
scheduled to run on  the  CPU. In addition, I/O interrupts 
occur only on the CPU, so that  the interrupt  handler  runs 
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Table 2 Comparison of asymptotic and finite multiprogrammed 
set  models, with ti = 6,  3, 1 and Oi = 2, 8, 5.  

No.  of users in Time in multiprogrammed  set 
multiprogrammed  set Finite model [Eq.  (2311 

Asymptotic  model [Eq.  (2911 

N I J  N2, N 3 , 3  T I  ,3 T*,3  T3,3 

1 2  3 19.19 18.51 8.71 
20.87 17.43 8.14 

2  4  6  53.28 34.57 14.03 
54.98 34.49 13.83 

4 8 12 125.31 70.02  25.77 
126.12 70.06  25.69 

8 16  24 269.32 141.82 49.66 
269.72 141.86 49.62 

3  2 1 28.46 22.47 10.00 
29.17 21.59  9.53 

6  4  2  63.48 39.39  15.60 
64.04 39.02  15.34 

12 8 4 135.05 74.84  27.36 
135.39 74.69 27.23 

24 16 8 278.86 146.58 51.24 
279.04 146.52  51.17 

only there.  Thus, a certain  fraction,  say F ,  of  all the in- 
structions  can only  be executed on the  CPU.  The value of 
F has been  measured as  about 10 percent of total supervi- 
sor time. Furthermore, it has been determined  that  about 
50 percent more supervisor time is incurred by a transac- 
tion running on  an  AP configuration than on a uni- 
processor  (UP) configuration,  due to additional  dis- 
patching  and  scheduling overhead, lock spinning, and sig- 
naling between  processors.  Thus, measured CPU 
supervisor time has  to be inflated by 50 percent before  a 
workload measured on a UP can  be  modeled on an AP. 

Since AP configurations are generally designed to  serve 
heavy  loads with many users, it was decided that only the 
asymptotic model need be adapted. The  only factor  that 
needs  to be adjusted isf,(n,), the processing unit's service 
rate. Assume  that n 2 2. The probability that all n,  pro- 
grams  require the  CPU is F"'. Hence, f,(n,) = 1 with 
probability F"', and f , (n,)  = 2 with probability 1 - F"'. 
Thus, on the average, 

f,(nl) = F"' + 2(1 - F"') = 2 - F"'. (30) 

Remembering that n1 = Nx, ,  we modify (25) to 

Similarly, (29) should be modified to 
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Table 3 Validation of model on real workloads.  Note  that predictions differ somewhat from those  presented in [5]  due to changes in the 
model. 

CPU  Average Percent  CPU Percent virtual Average  trivial Average nontrivial 
model  logged utilization CPU time response (seconds) response (seconds) 

users 
Measured  Predicted  Measured  Predicted  Measured  Predicted  Measured  Predicted 

~ 

135 
145 
145 
155-11 
15-5-11 
158 
158 
158 
168 
168 

4 
8 

15 
20 
23 
37 
46 
24 
72 

117 

17.1 
84.0 
96.6 
22.2 
36.9 
59.2 
70.3 
68.8 
36.0 
96.3 

17.2 
84.8 
97.4 
22.2 
35.7 
55.4 
69.0 
71.3 
35.2 
99.7 

5.3 
42.5 
40.8 

6.7 
10.7 
31.5 
37.8 
52.2 
14.5 
56.0 

~ 

5.2 
42.9 
41.4 

6.6 
10.3 
28.7 
36.7 
55.5 
14.6 
57.9 

0.7 
0.25 
0.51 
0.05 
0.08 
0.21 
0.14 
0.07 
0.13 
0.46“ 
0.48” 
0.55“ 
0.83“ 

1 .o 
0.24 
0.44 
0.06 
0.11 
0.26 
0.12 
0.09 
0.11 
0.41 
0.53 
0.58 
0.73 

19.0 
3.9 

26.6 
1.2 
2.8 

21.8 
2.5 
6.1 
7.8 
8.0 

13.9 
19.2 
28.3 

~. 

24.1 
3.1 

19.7 
1.1 
3.6 

18.4 
1.6 
5.3 
6.7 
9.7 

10.7 
19.2 
26.0 

“These response times refer to four separate user classes. Classification was based on ratio of trivial to nontrivial transactions 

Table 4 Description of benchmark workloads. 

Class  Description  Number of users 
name in workload 

with  total  user 
number  equal  to 

20 40 60 

TRVU  Generates a  trivial transaction 8 16 24 
after  every 10 seconds of think 
time 

tion (FORTRAN compilation) after 
every 40 seconds of think time 

MEDU Generates a  nontrivial  transac- 8 15  23 

HVYA  Generates a continuous stream 2 4 6  
Of PW1 CompilatiOIIS, FORTRAN 
compilations, and  assemblies 

of assemblies 
HVYB  Generates a continuous  stream 2 5 7  

13. Model outputs 
Once the model has converged, many performance mea- 
sures  can  be computed  easily  from  available quantities. 
We list some of these below: 

0 Class i transaction  average response time: 

Ti = Ti,2 + Ti,3. 

Note  that this is the internal  response  time, i.e.,  the time 
elapsed  from the  system scheduler’s  recognition of the 
iransaction’s  arrival until the  CPU’s completion of the 
transaction processing. It  does not include  transmission 
delays  between  the  CPU and  the  user’s terminal. To  the 

506 model, such delays appear  as part of the  think time. 

Class i transaction  rate, from Eq. (4): 

Ai = Ni33/Ti,3.  

0 Class i CPU  utilization: 

Vi = hiti. 

0 Total CPU utilization: 

v = 2 vi. 
i 

(I/O channel and device utilizations are obtained as by- 
products of the I/O system submodel.) 

0 Class i transaction wait and service time for each system 
component (storage, CPU, paging and I/O data  sets). 

14. Model validation 
The model is typically  used in the following fashion: The 
VM/370 monitor  facility [9] is turned on  to collect data 
for,  say,  two  hours of peak load time, on a  running VM/ 
370 installation. The  data  are reduced to  produce 

1. A summary of the  system’s  performance during the 

2 .  A characterization of the installation’s  workload. 
measured period; 

The  latter is input  to  the model, together with the de- 
scription of the actual  system configuration. The model’s 
output is then  compared  to  the  observed  system perform- 
ance. If the  two match to  the  user’s  satisfaction, the 
model is considered validated for this  installation.  It is 
now possible to vary the model’s inputs  to reflect changes 
in workload,  configuration, or  both,  and  thus  to explore 
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Table 5 Validation of model  on  benchmark  workload. 

Run Main No. of Percent  CPU 
storage  users  utilization 

size 
(Kbytes) Measured  Predicted  Measured 

Percent virtual 
CPU time 
- 

- 
Predicted 

1 512 20 48.4  48.0  35.0 

2 1024  20 81.1  95.8  58.1 

3h 1024 40 84.4  91.9  58.4 

4 1024 60 86.7  82.2 50.7 

5 2048 40 96.8 100 69.3 

6 2048 60  98.5 100 67.5 

29.7 

67.4 

59.9 

48.4 

73.4 

69.1 

Average  response” 
(seconds) 

Measured 

TRVU  0.33 
MEDU 32.0 
HVYA36.7 
HVYB 44.0 

15.0 
15.5 
16.3 

49.1 
38.8 
45.8 

127.7 
75.1 
84.6 

44.8 
32.6 
30.0 

78.2 
61.7 
57.5 

0.31 

0.38 

0.41 

0.25 

0.34 

Predicted 

0.16 
50.5 
46.0 
45 .8 

0.21 
12.2 
13.7 
12.3 

49.8 
46.0 
43.8 

122.4 
83.7 
84.6 

34.0 
38.2 
33.6 

76.5 
60.8 
55.1 

0.25 

0.26 

0.31 

0.44 

“Response times for HVYA and HVYB are per second of virtual CPU time 
bWorkload characterization derived from run no. 3. 

the system’s  predicted  performance under a wide variety 
of circumstances. If the match is unsatisfactory,  the 
model can be  “tuned” by manipulating some of the  more 
doubtful input parameters,  e.g., I/O block lengths, seek 
patterns,  and assignment of disk areas  to  the various user 
classes. 

Table 3 presents  the results of several such validations, 
which show  that  the model can reasonably  match the ob- 
served performance of the measured systems. Of greater 
interest, however, is the  question of how accurately  the 
model can  predict the performance of a  projected system, 
rather than that of the actually  measured one. Since a true 
workload measured on  an existing  system cannot gener- 
ally be reproduced after  the system has been changed, 
this type of validation  requires  a  controlled  benchmark 
environment. For this purpose, a benchmark  stream con- 
sisting of four  user  classes (see  Table 4) was  run repeat- 
edly on a  System/370 Model 158 with varying main stor- 
age sizes  and  total number of users.  The  data from one of 
these  runs  were  used to derive the workload character- 
ization,  and the model was then  invoked to predict the 
performance for all the runs. Comparisons of predicted 
and  measured performance  appear in Table 5. Once 
more,  the  accuracy of the predictions is  quite  adequate 
for the purposes of configuration and  capacity planning. 
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The predictions are least accurate in the 512-Kbyte 
case  (where K = 1024), primarily due  to  the difficulty of 
predicting the paging rate in such a  squeezed-storage  situ- 
ation. Remember that in going from 1024 Kbytes  to 512 
Kbytes  the  storage available for  user programs is actually 
reduced by a factor of three. 

All the  above validation  results  were attained without 
any attempt  to  “tune”  the model. The  results,  therefore, 
indicate what can be achieved by an inexperienced user in 
a limited amount of time. 

15. Conclusions 
The model described here has been  programmed in APL 

for use by IBM personnel. A typical case requires 2-20 
seconds of System/370 Model 168 time. 

The model has proved to be very successful in practice, 
mostly because of the  ease with which input to the 
model-primarily characterizations of existing  work- 
loads-can be  obtained [5 ] .  

Improved model accuracy can  probably  be  best at- 
tained  through better modeling of 

1 .  The paging process-particularly better prediction of 
the relation between paging rate,  system configura- 
tion, and  workload characteristics; 



2. Priority  dispatching within the multiprogrammed set. 

Our model ignores all delays incurred in data transmis- 
sion  between the  CPU  and  remote  user  terminals. To pre- 
dict  response times  actually experienced by users  at re- 
mote terminals,  the model would have  to  be coupled to a 
data transmission network model. The  same  type of itera- 
tion described in Section 9 could be  used to  alternate be- 
tween the  network model and the host VM/370 model. 

While some of the details are specific to  the VM/370 
System,  the model should  be  readily  applicable to many 
other  interactive multiprogrammed computer  systems. 
Perhaps the most important  feature of VM/370 which 
makes it easy  to model is that  the only interference be- 
tween users in the multiprogrammed set is through con- 
tention for physical resources: CPU and I/O paths. Block- 
ing through software locks to  prevent simultaneous ac- 
cess  to  data  items is largely absent.  However, it should be 
possible to model software locks so the Oi computed by 
the I/O subsystem model reflect these  delays, leaving the 
logic of the  rest of the model unchanged. The possibility 
of modeling other scheduling  algorithms would have  to  be 
investigated on a case by case basis. 
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