498

Y. BARD

Y. Bard

An Analytic Model of the VM/370 System

Abstract: This paper describes an analytic model of an interactive multiprogrammed computer system. The model accepts a multiple-
user-class, transaction-oriented workload description and a system configuration description, and it produces predictions of resource
utilizations, transaction rates, and average transaction response times. The solution method involves nearly complete decomposition,
with a closed queuing network representing the multiprogrammed set. Asymptotic formulas are used to generate good initial guesses for

an overall iterative scheme. Extensive validation results are presented.

1. Introduction

This paper describes a model [1] of a virtual memory,
multiprogrammed, interactive computer system called
VM/370 [2]. A previous model of the system assumed a
homogeneous (single class) user population and concen-
trated most of its computational efforts on determining
the distribution of multiprogramming levels [3]. Neilson
[4] extended that model to accommodate two user
classes—batch and interactive. The present model, while
an outgrowth of the previous ones, differs from them in
almost all details. It accommodates multiple user classes
whose workload descriptions for an existing system are
derivable directly from available measurement facilities
[5]. Like the preceding ones, our model employs the prin-
ciple of nearly complete decomposition [6] to separate
the transaction flow outside the CPU from the actual
processing phase, the latter being treated by means of a
closed queuing network model. Unlike the preceding
ones, the present model iterates between the overall flow
equations and the queuing network equations. The distri-
bution of multiprogramming levels is no longer evaluated,
only average values being required. Simplified asymptotic
formulas significantly reduce the processing times for
large problems involving many user classes and/or a high
multiprogramming level.

The model has been thoroughly validated against live
workloads in a large variety of instaliations and has been
used extensively for predicting the performance of vari-
ous VM/370 configurations under many different work-
loads.

The paper is organized as follows: To provide the ratio-
nale for the structure of the model, we describe first the
VM/370 scheduler (Section 2). Model inputs are provided

in the form of workload (Section 3) and configuration
(Section 4) descriptions. The workload description may
need to be transformed to the specified configuration
(Section 5). The flow of transactions through the system
is modeled by means of Little’s formula (Section 6), but
the details of the flow model depend on whether FIFO
(Section 7) or CPU fair share (Section 8) scheduling is
employed. The overall system model (Section 9) consists
of iterative alternate applications of the flow model and
the multiprogrammed-set model (Section 10). The latter
may be approximated by means of asymptotic formulas
(Section 11), which are valid at high multiprogramming
levels.

The special case of a system with an auxiliary process-
ing unit is treated in Section 12. Once convergence has
been attained, the model computes predictions for the
usual performance factors (Section 13), such as response
times and resource utilizations. The model has been vali-
dated extensively (Section 14), both against live work-
loads and against controlled benchmarks.

2. VM/370 scheduler

Figure 1 illustrates the manner in which VM/370 sched-
ules its work. A user is dormant when he has no work
outstanding. Time spent in the dormant state is called
think time. When a user enters a request for service, he is
first placed in the eligible set, and then, when system re-
source availability permits, he is placed in the multi-
programmed set. Only members of the latter set actually
receive CPU time and I/O services and are allocated space
in main storage. The multiprogrammed set consists of two
subsets: Q1, containing users who have received less than

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish
other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

a certain amount of CPU time (about 100 ms) since leav-
ing the dormant state, and Q2, consisting of all others.
Similarly, the eligible set is broken up into Q1 and Q2
candidates. The total number of users in the multi-
programmed set is the multiprogramming level (MPL).

The system estimates the size of each user’s working
set, which is the amount of main storage space the user’s
programs are thought to require in order to run effi-
ciently. A user is admitted into the multiprogrammed set
only if sufficient main storage space is free to accommo-
date his working set, with Q1 candidates taking prece-
dence over Q2 candidates.

The VM/370 scheduler admits Q2 candidates in FIFO
order. The order may be modified by means of external
user priorities and scheduler bias factors [7]. The latter
are designed to penalize heavy users of bottlenecked sys-
tem resources.

An alternative scheduler is available [8], which sched-
ules admissions so as to equalize, as far as possible, the
share of CPU time obtained by different users. Specific
users may be given more or less than their fair share ac-
cording to external priorities, and scheduler bias parame-
ters may be used to include resources other than the CPU
in the fair share calculations.

The model described below can accommodate the fol-
lowing scheduling disciplines:

1. Strict FIFO.
2. CPU fair share, with or without priorities.

With very slight modifications, multiple-resource fair
share could also be treated.

The VM/370 scheduler also permits dedication of spe-
cific system resources (e.g., a given fraction of CPU time
or a certain number of main storage page frames) to given
users. The model handles such users by subtracting the
dedicated resources from the pool of resources available
to other users. In the case of a dedicated percentage of
CPU time, the model treats the CPU as though it were
slowed down by an appropriate factor. For instance, a 50
percent dedicated CPU appears to the model as a CPU
whose speed has been cut in half.

3. Workload characterization

It is convenient to break up each user’s workload into
transactions. A transaction is defined as the work done
for the user from the time he becomes a Q1 candidate
until the next time that he becomes either dormant or a
Q1 candidate again, whichever occurs first. Two types of

transactions are recognized:
Trivial transaction: One that is completed in Q1.

Nontrivial transaction: One that requires at least one
stay in Q2.

IBM J. RES. DEVELOP. @ VOL. 22 # NO. 5 « SEPTEMBER 1978

Q1 Roomavailable
candidate inmain storage
Start | of
transaction
End of Endof
Q2 - Dormant - 0l
transaction transaction
End of Q2 timesslice
Q2 Endof Q1 timeslice
candidate
Room available in

main storage

Figure 1 Transaction flow in VM/370.

Some users (typically batch virtual machines) may
present to the system a continuous workload, wherein
they cycle indefinitely between the Q2 and Q2 candidate
states. A continuous workload may be regarded as a se-
quence of nontrivial transactions, each requiring one Q2
slice of CPU time, separated by zero think times.

The model accepts the following workload character-
ization: The entire user population may be broken up into
several user classes. Although it is desirable that users
within a class have a more or less homogeneous work-
load, good results have been obtained in many cases with
all users lumped into a single class. Each user class be-
longs to one of the following types:

T: Trivial transactions only.

N: Nontrivial transactions only.

B: Both trivial and nontrivial transactions.
C: Continuous workload.

From remarks made above, it is evident that a C class is a
special case of an N class and requires no further consid-
erations.

The average values of the following quantities are re-
quired for each user class:

e Number of logged-on users.

s Secondary storage paging slots occupied per logged
user.

e Ratio of trivial to nontrivial transactions (B type only).

499

Y. BARD

500

Y. BARD

e Secondary storage data areas owned by class members,
and access characteristics, including seek distances,
block lengths, and relative access rates.

The average values per transaction of the following quan-
tities are required for each transaction type within each
user class (henceforth referred to as transaction class):

e Virtual CPU time (measured on a specified CPU
model).

® Overhead CPU time (measured on the same CPU
model).

e Working set.

® Page reads (measured in the same environment as the
overhead CPU time).

® Paging index (an empirical, environment-independent
measure of paging activity; see [5] for precise defini-
tion).

e Virtual input-output operations of various kinds (disk,
tape, unit record).

e Think time.

A fuller description of the workload characterization and
how it is obtained from measurements on existing sys-
tems can be found in [5].

4. Configuration description

Since the VM/370 System can run on almost any IBM
System/370 configuration, the model must be provided
with the following data describing that configuration:

o CPU model.

e Main storage size.

e Number and type of direct access storage devices and
their placement on I/O channels.

® Placement of primary and secondary paging areas on
the devices.

e Placement of each user class’s data areas on the de-
vices.

5. Workload conversion

Since the workload may have been measured on a system
different from the one to be modeled, certain conversions
may be required:

e CPU times are adjusted by the ratio of CPU speeds.
Different ratios may be applicable to virtual and over-
head times. These factors have been determined empir-
ically.

e Number of page reads is adjusted according to the em-
pirical model described in [5].

o CPU overhead time is adjusted to reflect the changed
number of page reads.

e The distribution of users’ page slots among the speci-
fied paging areas is determined according to the VM/
370 allocation strategy [9]. Page migration from fast to

slow paging devices can be modeled by assigning a dis-
proportionately high fraction of page reads and writes
to the fast devices.

6. Transaction flow model

For modeling purposes, it would be convenient if each
stay in Q2 could be considered as a full nontrivial transac-
tion. Fortunately, this is easily achieved, because to the
model a transaction requiring T seconds of think time, ¢
seconds of CPU time, and M stays in Q2 is equivalent to
M transactions, each requiring 7/M seconds of think
time, t/M seconds of CPU time, and a single stay in Q2.
The following assumptions are also made:

1. The QI stay at the start of a nontrivial transaction may
be lumped into the succeeding Q2 stay.

2. Wait time for admission to Q1 is negligible; the sched-
uler diagram (Fig. 1) is thereby transformed into the
simpler transaction flow model represented by Fig. 2.

The formulation of the model would be further sim-
plified if there were a separate user class associated with
each transaction class. This requires splitting each B-type
user class with N members into two classes: A T-type
with N, members and an N-type with N, members, such
that N = N, + N, and N,/N, = RT,/T,, where R is the
ratio of trivial to nontrivial transactions and 7, and T, are
the cycle (think + response) times of the trivial and non-
trivial transactions, respectively. While 7, and T, are not
known a priori, they are available at each iteration (see
below), so that current values of N, and N, can always be
calculated. In the sequel it is assumed then that the total
user workload is divided into several classes, of which
some enter only trivial transactions, whereas the others
enter only nontrivial transactions.

Let T, , T,,, and T,, denote, respectively, the average
time spent by a class i transaction in the dormant, eligible,
and multiprogrammed sets, respectively, and let N, ,
N, ,. and N, be the average number of class / members in
those sets at any one time. Let I, and I, denote the sets of
indices corresponding to trivial and nontrivial transaction
classes, respectively. The following equation is obvious:

Ni,l + Ni,z + Ni,s = N, (ie I, 12), 1)

t
where N, is the total average number of class i members
(N, need not be an integer). The Q-admission policy re-
quires that

S, +S,=5,)

where § is the total available main storage capacity, and
§, and S, are the average amounts of main storage occu-
pied by trivial and nontrivial transactions, respectively.
Clearly,

S; = > N 13

il

G=12, 3

IBM J. RES. DEVELOP. ¢ VOL. 22 e NO. § ¢« SEPTEMBER 1978

where W, is the class i transaction average working set
size.

According to Little’s formula [10], the average number
of transactions in each set is proportional to the average
time spent by a transaction in that set. Thus,

N, =\T, Gel,l;k=1,2,3), 4)

it ik 1* 72?

where X, is the class / transaction flow rate. Summing the
above equations over k, we find

Ny=\ (Ti,l + Ti,2 + Ti,a) (i e 1, Iz)' (&)

Furthermore,
N _ Ti,k
N' Ti,l + Ti,2 + Ti,3

1

Gel,l;k=1,273). (6

By assumption, T,, = O fori € I,. Hence, from (6),

N _ Ti 3Ni (= I) 7
e Ti,l + Ti,3 l v ()
and
T..NW
S — Z E 7 . (8)
' i€l Ti,l + Ti,3

Before proceeding, we must take stock of which vari-
ables are known and which must be calculated. Specifi-
cally, the following are given in the workload description:

N, i €1, I, users in class i;
w, i € 1, I: class i working set;
T, ., i €1, L,: class i think time.

Furthermore, S (main storage capacity) is given in the
configuration description. We shall also assume for the
time being that the 7, ; are known foralli € 1 ,I,. We can
now evaluate S, using (8). If it turns out that §, = §, then
the system is entirely saturated with trivial transactions,
and no further analysis takes place. If §; < §, then the
storage requirement for nontrivial transactions is comput-
ed on the assumption that 7,, = 0, i € I,, i.e., that non-
trivial transactions are admitted into Q2 immediately.
Analogously to (8), this storage requirement is

§* = 2 Ti!aNiWi .
2 T,, +T,

i€l i

®

Now, if §5 < § — §,, it follows that the assumption T, , =

0 for i € I, is acceptable. If §; > § — §, storage is
saturated, so that S, = § — §, or

TN W, =5-5 (10)
i;2 Ti,l + Ti,z + Ti,3 !

The solution of this equation depends on the system

IBM J. RES. DEVELOP. & VOL. 22 § NO. 5 ¢ SEPTEMBER 1978

Dormant -
N Ty
Trivial transaction
/
Nontrivial transaction Eligible Multiprogrammed
set o set
NioTia N3 5

Figure 2 Simplified transaction flow.

scheduling discipline, as shown in the next two sections.
One could easily model constraints on resources other
than main storage by introducing appropriate inequalities
analogous to (2).

7. FIFO scheduler

The FIFO scheduler treats all classes equally, so that ex-
pected Q2 admission wait time should be about the same
for all. Hence, we may assume

T,=Q (G(€I), (11)

where Q is an unknown constant. Substituting in (10) we
find
7‘1’ 3Ni Wi
> ot =858, (12)
i€l, Ti,1 +Q+ Ti,3
This is a single equation in the single unknown @, which
may be solved, say, by means of the Newton-Raphson

method.

8. Fair share scheduler
The fair share scheduler guarantees equal amounts of
CPU time to all CPU-bound users. Let ¢, (i € I,) be the
CPU time required per transaction. This quantity is given
in the workload description, but needs to be adjusted for
B-class users to include the contribution from the trivial
transactions generated by these users. The CPU con-
sumption rate for each class i user is
A

U =—itt
N,

1

(13)

Substituting for A, from (5), we find that U, = ¢ /(T, , + T,
+ T,,). Equating all U, to a common *‘fair share’’ value
U, we obtain the equation

t

T, +T,+T,= —[} (i €1, (14)

501

Y. BARD

502

Y. BARD

which, when substituted in (10), yields

T, NWU
Z - = S - S19
i€l, 4
or
S-S,

U=s ————, (15)
Z Ti,sNiWi
i€l 4

and, from (14),
t.

To=7 ~Tu—T, GEL (16)

It may turn out that (16) gives negative values for some
i € I1,. This indicates that the corresponding user classes
are not CPU bound. Let J be the set of indices for which
(16) is negative. We then assign

T,,=0 el
and modify (15) to compute a new value of U:
T..NW
S — S] . Z 3" 71
U - i€ Ti 1 + Ti,3 (17)
Ti,3NiWi .

z t

icly—J i

If resources other than the CPU are to be fair shared,
only a redefinition of the ¢, is required. In particular, the ¢,
may be defined as a weighted sum of different resources
used per transaction.

The fair share scheduler permits user priorities to be
specified. These priorities are interpreted by the sched-
uler as relative CPU utilizations [8]. That is, a user with a
higher than average priority is given a larger than fair
share of CPU time. These priorities are modeled as fol-
lows: Let b, be the relative CPU utilization assigned to
members of user class i. Hence, instead of having U, = U
for all i € 1,, we now have U, = b,U, and (15) must be
modified to

U= 53, 18
B -l Ti 3NiWibi ()
2T
i€l, i
Equation (16) becomes
ti
T, = bU T, - T, 19)

and (17) is also modified correspondingly.

If main storage is large enough to admit all transactions
immediately, the fair share scheduler controls CPU time
allocation by assigning to users in the multiprogrammed
set dispatching priorities inversely related to their CPU
utilizations. Users generating trivial transactions at a very

rapid rate may also become subject to the fair share re-
strictions. Since the model handles fair share scheduling
only through control of eligible-set time, both of these ef-
fects are not modeled properly.

9. Overall system model
Once the T, , are computed, all other quantities are easily
determined. In particular, we obtain

= aral (el,1) (20)

v Ti,l + Ti,Z + Ti,3 v

Recall that N, is the average number of class i members
who are in the multiprogrammed set. When in that set,
users receive CPU bursts, execute 1/O operations, etc.
These events occur frequently, on a milliseconds time
scale, while Fig. 2 state transitions occur relatively infre-
quently, on a seconds time scale. Hence, to the rest of the
system, the multiprogrammed set appears to be in an
equilibrium state. The system may, therefore, be decom-
posed [6], and the multiprogrammed set may be treated as
a closed queuing network with a constant user population
N,lUel, I). A suitable queuing network model (see
Sections 10 and 11) may be used to find the steady state
solution for the network. This solution yields estimates
for the network residence times, which are the 7 . We
have, therefore, the makings of an iterative procedure:

1. Assume initial guesses for the T, ,.

2. Apply the transaction flow model to compute the T,
and N, ,.

3. Apply the queuing network model to recompute the
Ty

4. Return to step 2.

The cycle is broken when values of T, , + T, , from suc-
cessive iterations do not differ significantly. Although we
have no convergence proof, experience with hundreds of
practical cases shows that convergence generally takes
place in two to ten iterations, where as initial guesses we
take T,, = 0 and T, , to be equal to the CPU time plus the
sum of all channel data transfer times for all I/O opera-
tions generated by a class i transaction. To guard against
the possibility of infinite looping, if convergence has not
been attained after thirty iterations, the program termi-
nates with a warning message.

10. Multiprogrammed set model

The multiprogrammed users are cycled among a set of
queues: CPU queue, channel queues, and device queues.
We assume that no user can overlap his own I/O and CPU
operations. With suitable assumptions on service dis-
ciplines at the various queues, and ignoring the inter-
actions between channel and device queues, one could
solve this queuing network problem provided one only
knew the total service time required by each transaction
class at each queue [11].

IBM J. RES. DEVELOP. e VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

Unfortunately, if one does ignore these interactions, in-
valid solutions may be obtained. An 1/O operation to a
direct access device consists of seek, rotational delay,
and data transfer phases. During the first phase, only the
device is busy (although the phase cannot be initiated
without a brief access to the channel). During the second
phase, the channel too is busy if there is no rotational
position sensing. During the third phase, both channel
and device are busy, These partial overlaps cannot be
treated within the framework of classical queuing net-
work theory, but the following four approximate methods
can be suggested:

1. Ignore the overlap, and assign to each channel and de-
vice separately their full service times. Result: inflated
response time prediction, since the overlapped service
periods are counted twice.

2. Ignore the devices, and assign the entire service time
to the channels. Result: inflated response time predic-
tion, since overlap between seeks on different devices
is not allowed.

3. Ignore the channels, and assign the entire service time
to the devices. Result: underestimated response time,
since contention and serialization of channel time are
ignored.

4. Assign to the devices the phases when only they are
busy, and to the channels assign the time when both
channel and device are busy. Result: response time
may be underestimated, since solutions may be ob-
tained in which true device utilization exceeds 100
percent. Still, of the four possibilities, this one is by
far the best [12].

This approach was indeed applied in the first version of
this model. The convolution algorithm of [13] was used,
requiring on the order of

(1 + ML]_I (N*, + 1) operations,

where M is the number of channels + number of devices,
L is the number of transaction classes, and Nifs = [Ni’3 is
the smallest integer containing N, , (recall that since N, ,
is an average value, it need not be an integer).
Subsequently, an approach was introduced that solved
the problem of channel-device overlap and also consid-
erably reduced the amount of computation required.
There exist in the literature several open-queue models of
the channel-device configuration [14-16] which explicitly
model the complex interaction between these units. The
models assume that I/O requests arrive in a Poisson
stream, and they require as inputs the record lengths,
placement of data sets on devices, and access rates to all
data sets. The access rates are computed as follows: Let
z, ; be the number of 1/O operations requested by a class

IBM J. RES. DEVELOP. & VOL. 22 & NO. 5 ¢ SEPTEMBER 1978

transaction from data set j. According to (4), the class i
transaction rate is A, = N, /T, ,. Hence, the access rate to
data set j is

2 2N/ Ty
The I/O submodel produces as outputs the average re-
sponse times D, to an I/0 request from data set j. The
total average delay suffered by a class i transaction due to
its I/O requests is

0,= > z,,D,
i

But the same average delay would be suffered by the
transaction if all the channel and device queues were re-
placed by a single infinite-server queue with service time
6,. Thus, the (M + 1)-queue original network may be re-
placed by a two-queue network, consisting of a single-
server CPU queue and an infinite-server I/O queue. The
number of operations in the convolution algorithm is
thereby reduced to the order of

2L [T ivx, + 1.

The number of operations in the solution of the open
queuing I/O submodel is independent of the size and na-
ture of the user population.

The convolution algorithm [13] is used to generate the
queue length probability generating function for the two-
queue network. An L-dimensional array G is initialized to

A
Gy i) = I = Gi=0,1, -

=1 Jit

L N%ED. Q1)

These quantities are proportional to the probabilities of
queue lengths j, j,, - - -, j, at the ““infinite server’” 1/0
subsystem. The array G is transformed by applying the
following feedback filter representing the CPU queue:

G(jl’jp T 'ij) <« G(jlaj25 te .’jL)
+ 2 GG, = L), 22
li>0)

where, as before, ¢, is the CPU time per class i transac-
tion. Equation (22) must be applied in order of increasing
values of the indices. The expected time in the multi-
programmed set for class i transactions with a population
of N* , is now given by

N* G(N* ,N*_,--- N*
T*;t,;; — *1,3 (1.3 " 2,3 L,3)* . (23)
G(Nl,s’ NG, L NL,S)

Similar equations hold for any other integral user popu-
lation not exceeding N*,. To determine average re-
sponses T, at the (possibly) nonintegral average popu-

503

Y. BARD

Table 1 Comparison of asymptotic and finite multiprogrammed

set models, with¢, =2, land 9, = 1, 1.

No. of users in Time in

multiprogrammed set

multiprogrammed set

_ Finite model [Eq. (23)]
Asymptotic model

[Eq. (29)]

N1,3 N2,3 T1,3 T2,3
1 1 4.00 2.67
3.56 2.28

2 2 7.44 4.37
7.53 4.27

3 3 11.43 6.31
11.52 6.26

4 4 15.45 8.30
15.52 8.26

5 5 19.46 10.29
19.51 10.26

10 10 39.48 20.27
39.51 20.25
4 1 9.78 5.50
9.82 5.41

8 2 19.79 10.45
19.81 10.40

16 4 39.79 20.42
39.80 20.40

lation N, ;, a set of L + 1 integral populations surrounding

N, , is selected, the corresponding responses are comput-

ed and T,, is estimated by interpolation.

11. Asymptotic multiprogrammed set model

The computational and storage demands of the algorithm
described in the preceding section grow rapidly as the
number of transaction classes and the multiprogramming
level increase. It is, therefore, of interest to determine

what happens as the N,

increase beyond bounds and

whether such asymptotic results can provide useful ap-

proximations in practical cases.

Before proceeding, we define the following quantities:

N=2X%N, i3

is the total multiprogramming level.

a, = N,,/N is the fraction of class i transactions in the

multiprogrammed set.

x; = fraction of multiprogrammed transactions in the

Jjth server queue.

7,; = average jth server service time for a class i trans-

504 action.

Y. BARD

f{n) = jth server service rate when there are n, transac-
tions in its queue. Clearly, on the average, n; =
xN.

Assume that N approaches infinity in such a way that
the a, remain constant (i.e., all transaction classes in-
crease proportionately). Then, it has been shown [17]
that, for a network satisfying the separability criteria with
processor sharing servers, the x; approach values which
can be computed by using the following iterative scheme:

LD @ 4Ty
Z T (24)

X A
i (v)
N) Z
ey
where the superscript v refers to the iteration number.
The iterations may be started with any set of positive x,.
In our case, we have two servers:

lis the single server CPU, with 7, = 1, and fi(n)
= 1.

J

2 is the infinite server 1/O subsystem, with 7,, = 6

and f,(n,) = n

Substituting these values into (24), we find after sim-
plification:

(v+1) _ (v) 2
2

0
) i
o

= S ab;)

: N(tx‘”’+ %)
N

.
i

i

It is clear that meaningful results can be obtained only if it
is assumed that the @, increase in proportion with N.
Hence, let 8, = Gi/N be assumed constant. Then

w+1) _ (L) Z
x =
1

i

(v) + B 25)

@+ aiBi

= —t (26)
)
It is now possible to apply the iterative scheme (25) by
itself, then substitute x, in (26) to compute x, directly (or,
more simply, set x, = 1 — x). We shall show, however,
that even (25) need not be used in some cases. From (25)
it is evident that

v
a;t,
@ - O iti

1 1 - ﬂ
Therefore, if 2.4, t,/8, < 1, then

= lim x\” = 0.
v—>0
We now compute the average time T, , spent by a class i
transaction in the multiprogrammed set when N is large.

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 o SEPTEMBER 1978

The time spent in the I/O subsystem is 6,, and the CPU
service time is #,. Hence

T, =6, +1, @n

When x, = 0, CPU queuing time is negligible compared to
6, = N@,, and (27) holds with equality sign. If x, > 0, then
the CPU queue contains, on the average, Nx, transac-
tions, and, for large N, is almost never empty. Hence
CPU utilization is 100 percent, and the CPU utilization
per transaction in queue is 1/Nx,. To obtain ¢, seconds of
CPU time, a transaction must spend ¢,Nx, seconds in the
CPU queue. Therefore,

T, = 6, + t,Nx,, (28)

but, because of (27), this result can be valid only for
Nx, = 1. We may combine this remark with Eq. (28)
into the single result

T,, =6, + max (¢, Nx, t). (29)

Equation (29) gives remarkably accurate results even for
fairly small values of N, as illustrated in Tables 1 and 2,
and its computation is much faster than (23). In view of
this, the following strategy has been adopted for the mod-
el:

1. Apply the overall iterative scheme of Section 9 using
Eq. (29) in step 3 until convergence is obtained. The
convergence criterion used is that no value of 7,, + 7,
has changed by more than 5 percent from one iteration
to the next.

2. If storage capacity is insufficient to contain the entire
G array, or if N > 15, terminate. (The value 15 was
chosen somewhat arbitrarily, but experience has
shown that Eq. (29) is generally accurate for N > 15,
and Eq. (23) is not too costly to evaluate for N = 15.)
Otherwise, go to step 3.

3. Continue the iterations of Section 9, using Eq. (23) in
step 3, until once more convergence is obtained.

In small problems, this scheme is slightly slower than
using Eq. (23) from the start, since the total number of
iterations is somewhat increased. In large problems, this
scheme can be several fold faster, since generally only
one or two applications of Eq. (23) are required.

12. Auxiliary processing unit

The VM/370 System can be run on a so-called auxiliary
processor (AP) configuration containing dual instruction
processing units. One of these, the CPU, can handle all
instructions, including I/0. The other one, the APU, can-
not execute /O instructions. Any program can be dis-
patched on either unit, but, if an I/O instruction is en-
countered on the APU, the task must be suspended and
scheduled to run on the CPU. In addition, /O interrupts
occur only on the CPU, so that the interrupt handler runs

IBM J. RES. DEVELOP. @ VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978

Table 2 Comparison of asymptotic and finite multiprogrammed
set models, with s, = 6,3, 1 and 8, = 2, 8, 5.

Time in multiprogrammed set
Finite model [Eq. (23)]
Asymptotic model [Eq. (29)]

No. of users in
multiprogrammed set

N1,3 N2.3 N3,3 T1,3 T2,3 T3,3
1 2 3 19.19 18.51 8.71
20.87 17.43 8.14

2 4 6 53.28 34.57 14.03
54.98 34.49 13.83

4 8 12 125.31 70.02 25.77
126.12 70.06 25.69

8 16 24 269.32 141.82 49.66
. 269.72 141.86 49.62
3 2 1 28.46 22.47 10.00
29.17 21.59 9.53
6 4 2 63.48 39.39 15.60
64.04 39.02 15.34
12 8 4 135.05 74.84 27.36
135.39 74.69 27.23

24 16 8 278.86 146.58 51.24
279.04 146.52 51.17

only there. Thus, a certain fraction, say F, of all the in-
structions can only be executed on the CPU. The value of
F has been measured as about 10 percent of total supervi-
sor time. Furthermore, it has been determined that about
50 percent more supervisor time is incurred by a transac-
tion running on an AP configuration than on a uni-
processor (UP) configuration, due to additional dis-
patching and scheduling overhead, lock spinning, and sig-
naling between processors. Thus, measured CPU
supervisor time has to be inflated by 50 percent before a
workload measured on a UP can be modeled on an AP.

Since AP configurations are generally designed to serve
heavy loads with many users, it was decided that only the
asymptotic model need be adapted. The only factor that
needs to be adjusted is f,(n,), the processing unit’s service
rate. Assume that n = 2. The probability that all n, pro-
grams require the CPU is F™. Hence, fi(n,) = 1 with
probability F™, and f,(n,) = 2 with probability 1 — F™.
Thus, on the average,

fin) = F™+ 201 — F") =2 — F". (30)

Remembering that n, = Nx,, we modify (25) to

at.
@+ _ @)
4 =% Z tx(v; ; . €2
i Lind WSV B,

2 — F'™

Similarly, (29) should be modified to

(32

1

Nx t,
T.’3 = ¢, + max (ti, —_—)

_ FN.l‘l

505

Y. BARD

506

Y. BARD

Table 3 Validation of model on real workloads. Note that predictions differ somewhat from those presented in [5] due to changes in the

model.

CPU Average Percent CPU

Percent virtual

Average trivial Average nontrivial

model logged utilization CPU time response (seconds) response (seconds)
users
Measured Predicted Measured Predicted Measured Predicted Measured Predicted

135 4 17.1 17.2 5.3 5.2 0.7 1.0 19.0 24.1
145 8 84.0 84.8 4.5 42.9 0.25 0.24 3.9 3.1
145 15 96.6 97.4 40.8 41.4 0.5t 0.44 26.6 19.7
155-11 20 222 22.2 6.7 6.6 0.05 0.06 1.2 1.1
155-11 23 36.9 35.7 10.7 10.3 0.08 0.11 2.8 3.6
158 37 59.2 554 31.5 28.7 0.21 0.26 21.8 18.4
158 46 70.3 69.0 37.8 36.7 0.14 0.12 2.5 1.6
158 24 68.8 71.3 52.2 55.5 0.07 0.09 6.1 5.3
168 72 36.0 35.2 14.5 14.6 0.13 0.11 7.8 6.7
168 117 96.3 99.7 56.0 57.9 0.46" 0.41 8.0 9.7

0.48° 0.53 13.9 10.7

0.55% 0.58 19.2 19.2

0.83% 0.73 28.3 26.0

*These response times refer to four separate user classes. Classification was based on ratio of trivial to nontrivial transactions.

Table 4 Description of benchmark workloads.

Class Description Number of users
name in workload
with total user
number equal to
20 40 60
TRVU Generates a trivial transaction 8 16 24
after every 10 seconds of think
time
MEDU Generates a nontrivial transac- 8 15 23

tion (FORTRAN compilation) after
every 40 seconds of think time

HVYA Generates a continuous stream 2 4 6
of pL/n compilations, FORTRAN
compilations, and assemblies

HVYB Generates a continuous stream 2 5 7
of assemblies

13. Model outputs

Once the model has converged, many performance mea-
sures can be computed easily from available quantities.
We list some of these below:

® (Class i transaction average response time:
I,=T,+T,

Note that this is the internal response time, i.e., the time
elapsed from the system scheduler’s recognition of the
iransaction’s arrival until the CPU’s completion of the
transaction processing. It does not include transmission
delays between the CPU and the user’s terminal. To the
model, such delays appear as part of the think time.

o Class i transaction rate, from Eq. (4):
A = Nig/T
® Class i CPU utilization:

V, =\,

i

e Total CPU utilization:

V= 2 v,

(1/O channel and device utilizations are obtained as by-
products of the /O system submodel.)

e Class i transaction wait and service time for each system
component (storage, CPU, paging and I/O data sets).

14. Model validation

The model is typically used in the following fashion: The
VM/370 monitor facility [9] is turned on to collect data
for, say, two hours of peak load time, on a running VM/
370 installation. The data are reduced to produce

1. A summary of the system’s performance during the
measured period;
2. A characterization of the installation’s workload.

The latter is input to the model, together with the de-
scription of the actual system configuration. The model’s
output is then compared to the observed system perform-
ance. If the two match to the user’s satisfaction, the
model is considered validated for this installation. It is
now possible to vary the model’s inputs to reflect changes
in workload, configuration, or both, and thus to explore

IBM J. RES. DEVELOP. VOL. 22 e NO. 5 ¢ SEPTEMBER 1978

Table 5 Validation of model on benchmark workload.

Run Main No. of Percent CPU
storage users utilization
size
(Kbytes) Measured Predicted
1 512 20 48.4 48.0
2 1024 20 81.1 95.8
3® 1024 40 84.4 91.9
4 1024 60 86.7 82.2
5 2048 40 96.8 100
6 2048 60 98.5 100

Percent virtual Average response®

CPU time (seconds)
Measured Predicted Measured Predicted
35.0 29.7 TRVU 0.33 0.16
MEDU 32.0 50.5
HVYA36.7 46.0
HVYB 44.0 45.8
58.1 67.4 0.31 0.21
15.0 12.2
15.5 13.7
16.3 12.3
58.4 59.9 0.38 0.25
49.1 49.8
38.8 46.0
45.8 43.8
50.7 48.4 0.41 0.26
127.7 122.4
75.1 83.7
84.6 84.6
69.3 73.4 0.25 0.31
44 8 340
32.6 38.2
30.0 33.6
67.5 69.1 0.34 0.44
78.2 76.5
61.7 60.8
57.5 55.1

“Response times for HVYA and HVYB are per second of virtual CPU time.
"Workload characterization derived from run no. 3.

the system’s predicted performance under a wide variety
of circumstances. If the match is unsatisfactory, the
model can be ‘‘tuned’’ by manipulating some of the more
doubtful input parameters, e.g., I/O block lengths, seek
patterns, and assignment of disk areas to the various user
classes.

Table 3 presents the results of several such validations,
which show that the model can reasonably match the ob-
served performance of the measured systems. Of greater
interest, however, is the question of how accurately the
model can predict the performance of a projected system,
rather than that of the actually measured one. Since a true
workload measured on an existing system cannot gener-
ally be reproduced after the system has been changed,
this type of validation requires a controlled benchmark
environment. For this purpose, a benchmark stream con-
sisting of four user classes (see Table 4) was run repeat-
edly on a System/370 Model 158 with varying main stor-
age sizes and total number of users. The data from one of
these runs were used to derive the workload character-
ization, and the model was then invoked to predict the
performance for all the runs. Comparisons of predicted
and measured performance appear in Table 5. Once
more, the accuracy of the predictions is quite adequate
for the purposes of configuration and capacity planning.

IBM J. RES. DEVELOP. ®» VOL. 22 & NO. 5 @ SEPTEMBER 1978

The predictions are least accurate in the 512-Kbyte
case (where K = 1024), primarily due to the difficulty of
predicting the paging rate in such a squeezed-storage situ-
ation. Remember that in going from 1024 Kbytes to 512
Kbytes the storage available for user programs is actually
reduced by a factor of three.

All the above validation results were attained without
any attempt to ‘‘tune’’ the model. The results, therefore,
indicate what can be achieved by an inexperienced user in
a limited amount of time.

15. Conclusions

The model described here has been programmed in APL
for use by IBM personnel. A typical case requires 2-20
seconds of System/370 Model 168 time.

The model has proved to be very successful in practice,
mostly because of the ease with which input to the
model—primarily characterizations of existing work-
loads—can be obtained [5].

Improved model accuracy can probably be best at-
tained through better modeling of

1. The paging process—particularly better prediction of
the relation between paging rate, system configura-
tion, and workload characteristics;

507

Y. BARD

508

Y. BARD

2. Priority dispatching within the multiprogrammed set.

Our model ignores all delays incurred in data transmis-
sion between the CPU and remote user terminals. To pre-
dict response times actually experienced by users at re-
mote terminals, the model would have to be coupled to a
data transmission network model. The same type of itera-
tion described in Section 9 could be used to alternate be-
tween the network model and the host VM/370 model.

While some of the details are specific to the VM/370
System, the model should be readily applicable to many
other interactive multiprogrammed computer systems.
Perhaps the most important feature of VM/370 which
makes it easy to model is that the only interference be-
tween users in the multiprogrammed set is through con-
tention for physical resources: CPU and 1/O paths. Block-
ing through software locks to prevent simultaneous ac-
cess to data items is largely absent. However, it should be
possible to model software locks so the 6, computed by
the 1/O subsystem model reflect these delays, leaving the
logic of the rest of the model unchanged. The possibility
of modeling other scheduling algorithms would have to be
investigated on a case by case basis.

References and note

1. Much of the material in this paper appears in Computer Per-
formance: Proceedings of the International Symposium on
Computer Performance Modeling, Measurement, and Eval-
uation, K. M. Chandy and M. Reiser, eds., North-Holland
Publishing Co., Amsterdam, 1977, p. 113. The symposium
was sponsored by IFIP Working Group 7.3.

2. IBM Virtual Machine Facility/370, Introduction, Form No.
G(C20-1800, IBM Data Processing Division, White Plains,
NY, 1972.

3. Y. Bard, “An Anaiytic Model of CP-67 and VM/370,”” Com-
puter Architectures and Networks, E. Gelenbe and R. Mahl,
eds., North-Holland Publishing Co., Amsterdam, 1974, p.
419.

4. J. E. Neilson, ‘‘An Analytic Performance Model of a Multi-
programmed Batch-Timeshared Computer,”” Proceedings of
the International Symposium on Computer Performance
Modeling, Measurement and Evaluation, Cambridge, MA,
1976, p. 59.

5. Y. Bard, ‘A Characterization of VM/370 Workloads,”’ Mod-
elling and Performance Evaluation of Computer Systems,
H. Beilner and E. Gelenbe, eds., North-Holland Publishing
Co., Amsterdam, 1977, p. 35.

6. P. J. Courtois, ‘‘Decomposability, Instabilities, and Satura-
tion in Multiprogrammed Systems,” Commun. ACM 18, 371
(1975).

7. C.J. Young, ¢“VM/370 Biased Scheduler,”” Technical Report
TR 75.0001, IBM New England Programming Center, Bur-
lington, MA, 1973.

8. IBM Virtual Machine Facility/370 System Extensions, Gen-
eral Information Manual, Form No. GC 20-1827, IBM Data
Processing Division, White Plains, NY, 1977.

9. IBM Virtual Machine Facility/370, System Programmer’s
Guide, Form No. GC20-1807, IBM Data Processing Divi-
sion, White Plains, NY, 1976.

10. J. D. C. Little, ‘“A Proof of the Queueing Formula L. = AW,”
Oper. Res. 9, 383 (1961).

11. H. Kobayashi and M. Reiser, ‘““On Generalization of Job
Routing Behavior in a Queueing Network Model,”’ Research
Report RC-5679, IBM Thomas J. Watson Research Labora-
tory, Yorktown Heights, NY, 1975.

12. M. A. Diethelm, ‘“An Empirical Evaluation of Analytic
Models for Computer System Performance Prediction,”
Computer Performance: Proceedings of the International
Symposium on Computer Performance Modeling, Measure-
ment, and Evaluation, K. M. Chandy and M. Reiser, eds.,
North-Holland Publishing Co., Amsterdam, 1977, p. 139.

13. M. Reiser and H. Kobayashi, ‘‘Queuing Networks with Mul-
tiple Closed Chains: Theory and Computational Al-
gorithms,”” IBM J. Res. Develop. 19, 283 (1975).

14. P. H. Seaman, R. A. Lind, and T. L. Wilson, ‘““On Tele-
processing System Design, Part IV: An Analysis of Aux-
iliary Storage Activity,” IBM Syst. J. 5, 158 (1966).

15. Y. Bard, “‘Task Queueing in Auxiliary Storage Devices with
Rotational Position Sensing,”” Technical Report G320-2070,
IBM Cambridge Scientific Center, Cambridge, MA, 1971.

16. N. C. Wilhelm, ‘*A General Model for the Performance of
Disk Systems,” J. ACM 24, 14 (1977).

17. B. Pittel, ““Closed Exponential Network of Queues with
Blocking, the Jackson type Stationary Distribution and its
Asymptotic Analysis,”” Research Report RC 6174, 1BM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1976.

Received May 23, 1977, revised April 26, 1978

The author is located at the IBM Cambridge Scientific
Center, 545 Technology Square, Cambridge, MA 02139.

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 5 ¢ SEPTEMBER 1978

