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A Directed Weather Data Filter

Abstract: It is important to reduce the computational burden of energy-analysis computer programs (such as those that compute
expected heating and cooling loads and the energy required to meet these loads) since the input may include, for example, hourly
measurements of several weather variables over periods of time of up to ten years. It is possible to generate a small set of weather data to
represent a larger, more comprehensive set by using computer programs called weather data filters. However, existing filters that are
generally able to preserve statistical properties of the original data offer no a priori method for controlling or even estimating the errors
they introduce in the output of the energy analysis programs. This problem exists because these filters deal only with weather data and do
not utilize any information regarding the building to be analyzed, its occupancy schedule, its mechanical systems, or the energy analysis
function itself. This paper describes a weather filter that preserves the ‘‘energy content’” of the data; i.e., given a particular building
design and usage schedule, this filter generates a small set of weather data which, when properly weighted, produces the same total
heating and cooling loads as the original data. Because the error caused by using the filtered weather data falls well within acceptable
bounds even when changes are made in the building design, the filter described allows the designer to test a large number of design or

retrofit alternatives for energy efficiency at very low computational cost.

Introduction

In order to compute the expected heating and cooling
thermal loads or energy requirements for a particular
building design, it is necessary to know the weather vari-
ables to which the building will be subjected. The Na-
tional Climatic Center in Asheville, North Carolina pub-
lishes magnetic tapes containing hourly values of the fol-
lowing weather factors over periods of one year for each
associated weather station: dry-bulb temperature, wet-
bulb temperature, dew-point temperature, barometric
pressure, wind velocity, wind direction, cloud type, cloud
amount, and cloud modifier. At a limited number of sta-
tions, direct solar radiation and diffuse solar radiation are
also measured. At locations where solar measurements
are not taken, direct and diffuse radiation intensities are
approximated from the cloud modifier, the known posi-
tion of the sun, and estimates of the clear-sky radiation
intensities [1-3].

Several algorithms [1, 4-8] that use such weather data
enable analysts to compute the thermal loads and the en-
ergy required to meet them for buildings in the design
stage. We refer to all such algorithms by the generic term
E (see Fig. 1). A partial list of the energy analysis pro-
grams appears in the Appendix. A few filtering algorithms
(5,9, 10] reduce computational costs by filtering the
year’s weather data to output a small set of weather data

for repetitive use by the designer in thermal load compu-
tations, but such weather data filters reflect only weather
characteristics; they incorporate neither an energy func-
tion E nor any building or building usage data.

The relative scarcity of scientific journal articles con-
cerning weather data filtering for the hour-by-hour energy
analysis computer programs is worthy of comment. In the
opinion of the author there are two primary reasons.
First, most of the work in this area is by researchers in
private industry, who have elected to keep their results
confidential. Second, not until very recently has there ex-
isted an interest or a requirement for the repeated execu-
tion of these relatively sophisticated and time-consuming
computer programs. There is increasing pressure from
governments and public interest groups to mandate ex-
tensive energy analysis of building designs before build-
ing permits are issued. Thus, it is becoming advantageous
(and in some cases, necessary) to analyze the energy con-
sequences of design decisions as they are made through-
out the design process, rather than simply to evaluate the
final product of the design. Also, constrained opti-
mization, with its demands for many (in some cases sev-
eral hundred) program executions, is just beginning to be
applied to energy conservation in buildings. The natural
consequences of these factors are efforts, such as the
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Figure 1 Schematic of typical energy analysis computer pro-
gram (referred to in the text generically as E). Heating and cool-
ing loads are given in energy units and represent deficiencies and
excesses of heat, respectively. Energy requirements are the
amounts of fuel energy (gas, oil, electricity, etc.) necessary to
operate the heating, ventilating, and air-conditioning (HVAC)
equipment so that the loads are satisfied.

work presented here, to reduce the cost of using these
programs, augmented by attempts to simplify the pro-
grams themselves.

This paper describes a weather data filter that sub-
stantially reduces computational requirements for the
class of thermal load and energy consumption algorithms
(and the computer programs that implement them) which
require periodic samplings of many weather factors. Be-
cause the filter also reflects the impact of building design
and building usage on the heating and cooling loads gener-
ated by the weather, the weater data filter described here
enables the designer to test the consequences (for energy
consumption) of a large number of design or retrofit alter-
natives within very small error tolerances. As a result, the

designer is able to discover economically which of the
many aesthetically and functionally acceptable designs is
the most energy efficient.

Weather data filtering

To the energy analyst, the process of designing a building
can be viewed as a sequence of designs B, B,, B,, - - -,
B,, the last representing the final design. Associated with
each design is an energy-related computation F (thermal
loads or energy consumption). If the energy computation
is to be meaningful, it must reflect information concerning
the building usage U (schedule of internal loads and me-
chanical system control strategy) and the weather W to
which the building will be subjected. Each design B, in-
cludes, if appropriate, specifications for the mechanical
systems as well as architectural and structural parame-
ters. Output from the computation includes hourly values
of heating and cooling loads (or energy requirements)
(h, ¢).

In order to reliably estimate annual energy consump-
tion, many different combinations of weather factors
must be simulated. To ensure that all realistic weather
situations will be encountered by the energy program,
from one to as many as ten years of actual hourly weather
measurements are regularly used. Since considerable
computation is required for each hour of simulated data,
it is natural to investigate the possibility that the thermal
loads (or energy requirements) for a year might be reason-
ably approximated from a carefully constructed smaller
set of weather data. A computer program F that can re-
duce weather data W to a shorter sequence of data W'
that accurately reflects W can be called a weather data
filter. The use of such a filter greatly reduces the compu-
tational time required for performing energy calculations
throughout a building design process.

Such filters generally preserve one or more statistical
properties of the original weather data, such as means and
extremes. The filter selects or constructs a small number
of ““weather days” to represent, e.g., each month of
weather data. The shortened weather data are then input
to an energy function in order to compute the thermal
loads for each of these ‘‘weather days.”” The output is
then scaled to predict anticipated annual thermal loads for
the building. Unfortunately, it is impossible to estimate
the error in energy requirements induced by such filters.
Thus, there is a recognized need [4] for the development
of a rational methodology for the selection of typical days
for each month or group of months in order to reduce the
number of calculations (e.g., 365 x 24 = 8760 for a year’s
worth of hourly weather data).

We present a filter that does provide such a methodol-
ogy for reducing the cost of energy function calculations,
while at the same time maintaining very small error
tolerances.
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Directed filter concept

The central thesis of this paper is that the energy function
E, incorporating building design B and building usage U,
should direct the weather filter as it reduces W to W'.
Consequently, the reduced set of weather data W' reflects
not only the weather W, but also generates precisely the
same heating and cooling loads generated by W in a spe-
cific building B used in a specific way U. This property is
called the ‘‘zero baseline error’ property.

In the directed filter hourly weather data W,
hourly usage data U, and building data B are input to the
energy function E, which then outputs hourly heating and
cooling loads (4, ¢) in BTUs (or joules). The generalized
weather filter F, which forms part of the directed filter
F, , - first aggregates and sums the hourly heating and
cooling loads into appropriate time periods (here, one
week). The aggregates, representing weeks of weather,
are then grouped (as described in the next section) and
these groups are input to a weather data synthesis func-
tion. This function constructs hourly weather data that
produce the precise mean heating and cooling loads of
each group. In this illustration the synthesis function pro-
duces for each group one ‘‘week’’ of hourly weather data
for each weather variable. Hence, if the heating and cool-
ing loads that were aggregated into 52 thermal load weeks
are combined into 15 groups, the filter function reduces
the year’s weather Wto 15 “‘weeks’’ of weather W'. If the
thermal loads are further condensed into three groups,
the filter produces three “‘weeks’” of W' that reflect the
full year’s weather.

Grouping function

Since the internal heating and cooling loads often follow a
weekly cycle, we use seven days as the fundamental pe-
riod, although larger or smaller periods could have been
used. The hourly heating and cooling loads generated by
the energy function for the building as it is used are aggre-
gated by weeks and simply summed so that 52 pairs of
non-negative numbers (k, c) represent the weekly heating
and cooling loads or energy requirements for the year.
These pairs of numbers are plotted on a graph (see Fig. 2)
where the abscissa represents heating (4) and the ordinate
represents cooling (c).

Each of the 52 dots represents the sum of the thermal
loads generated by hourly weather data over seven days.
We can now group the weeks of thermal load, using prox-
imity as a criterion, by reducing the 52 weeks of thermal
load data to, say, 15 ““weeks,’’ each represented by its
computed center of mass (arithmetic average). In all
cases tested, grouping by obvious proximity has served
quite well, but any valid grouping (defined in the next sec-
tion) would transmit the zero baseline error property to
the associated reduced weather W'. Thus, questions can
arise, such as which weather “‘weeks’’ should be included
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Figure 2 Cross plot of weekly heating-cooling load pairs (indi-
vidual points) for the building and usage illustrated in Fig. 3 for
Los Angeles weather in 1973 (see Fig. 6). The solid lines indicate
an initial grouping of the heating-cooling load pairs into 15
“weeks’’ of data, where each ‘‘week’ (a) is constructible by
convex combination from the actual weather weeks in the group,
and (b) produces, for the same building B and usage U, a heating-
cooling load pair equal to the center of mass of the load pairs in
the group. The dashed lines show a further grouping into nine
“‘weeks,”” while the dotted lines show the final grouping into
three “‘weeks.”

in a particular group, or which ‘“‘week’’ is to be con-
structed as the group representative. It is understood that
the error between W and W' can be minimized only if one
knows the sensitivity of building energy loads to particu-
lar weather variables. Work is continuing in this area.

The weather data synthesis function within the filter F
constructs a ‘“‘week’’ of hourly weather variables for each
of the 15 centers of mass presented to it. The 15 groups
(““weeks” of W') reflect one of several possible grouping
decisions; see solid lines in Fig. 2. Such ‘“‘weeks’” of W'
may be used by designers in their search for optimal de-
signs in terms of energy consumption within the design
constraints [11]. There are specific advantages to design-
ers in using either a small or a large number of groups. A
small number of groups permits computation of prelimi-
nary estimates of the consequences of design changes at
low cost in computational time, while a larger number of
groups results in more refined estimates.
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BUILDING OPERATION
Thermostat: 64.4°F (18°C), constant
Room relative humidity = 50 percent, constant
Weekly schedule = Five workdays, two-day weekend.
Workday schedule = Full occupancy (20 persons)
from 8:00 to 17:00
Full lighting (2000 BT U/hr)
from 7:00 to 18:00
Weekend schedule = Half occupancy (10 persons)
from 8:00 to 17:00
Half lighting (1000 BTU/hr)
from 7:00 to 18:00

DESCRIPTION
Ceiling:
Wood, 7/8 in. (inside)
Building paper
Green slate, 1/2 in. (outside)
Floor:
Asphalt tile, 1/8 in. (inside)
Wood floor, 3/4 in.
Wood subfloor, 2 in. (outside)
over 2 ft air space
Windows:
All windows regular plate glass,
1/4 in., four sides
symmetric as shown

KEY

1 = Gypsum board, 0.0312 ft
2 = Insulation, 0.15 ft

3 = Air layer, 0.0625 ft

4 = Insulation, 0.15 ft

S = Brick, 0.28 ft

HHHHHH

Figure 3 Description of the test building and its usage sched-
ule. The five-layer wall cross section is shown at the bottom.

Constructing a representative weather period

Once the center of mass (#, ¢), has been determined for
each group i, one must construct a single ‘‘week”’ wi* of
weather (hourly values for each weather variable over the
length of a period) with the following property:

(h, ¢), = EB, U, w). (1

Table 1 Glossary of mathematical symbols.

{x1, X9, ¢ ¢ 1, Xa} A set whose elements are
xly x2a T, -xn-
(g, X, s Xn) A vector whose components are
X1y Xgy © " "y Xpo
n
> x5 The sum x, + x, + -+« + x,.
=1
xXEA x is a member of the set A.
ACB A is a subset of B.
The empty set.
n Intersection
(xEANBifx € Aand x €B).
R" The set of all vectors containing
n real numbers.
f:A—>B The function f with domain A and
range B.
S An inverse function. If f:A — B, then

' B— A; f is defined only if for
each b € B there is only one a € A
such that f(a) = b.

Then, by the additive property of the center of mass, we
have

n

EB,U, W)= > mE®B, U, w", @

i=1

where n is the number of groups, and the sum of the
weights m (m;, is simply the number of points in group i)
equals the number M of periods in one year; i.e.,

M=3 m, ?3)

A numeric example is given in order to clarify the pro-
cess, but first a discussion of the method for constructing
wi*, i=1,2, -, nisgiven. (A glossary of mathematical
symbols is included in Table 1.)

Since the heating and cooling loads computed by E for
a given week are solutions to a system of partial dif-
ferential equations, it is necessary to specify the condi-
tions that apply at the beginning of the week. Because
buildings have ‘‘thermal memories’’ that affect future en-
ergy requirements, nine days of weather were chosen to
represent a week. The first two days were used solely for
initialization purposes; i.e., the loads computed for these
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two days were not added into the totals for the week. For
all tests with the building described in Fig. 3, it was found
that the use of two days for dynamic initialization gave
results within 0.1 percent of the results obtained by using
fifty days. A week’s worth of weather data is represented
by a matrix w of dimension 216 (i.e., 9 days x 24 hours
per day) by 10 (ten weather variables). For the remainder
of this section, we consider an arbitrary single group; for
simplicity of notation, the group index i is suppressed.
When m points are grouped on a heating-cooling scatter
plot (as in Fig. 2) there is also an implicit grouping of the
associated m matrices of weather data; these matrices are
numbered 1, 2, - - -, n. In order to ensure that the weather
matrix w* constructed for each group truly represents the
weather for the weeks in the group, the search is con-
strained to matrices that are convex combinations of ma-
trices within the group. That is, if w is to be a candidate
for w*, there must exist n non-negative numbers, 8,, B,
-+, B, such that

M =

B,=1landw= > Bw,. 4

1

[
[l

Thus, the solution w* represents the group of weeks in
two important senses: 1) the heating and cooling loads
obtained must equal the arithmetic mean of the heating
and cooling loads in the group, and 2) w* must be con-
structible by convex combination from the weather data
that generated the thermal loads in the group. The first
requirement allows one to use weighted sums of the ther-
mal loads of the various groups; the second ensures that
the constructed weather data are similar to the actual
weather data in the group.

On the heating-cooling graph, the group center of mass
(h, ¢) can be represented as a convex combination of the
heating-cooling pairs in the group. For a given group of
size n, define

n
A, =1a, -, a) Z a, = l;ajzo; j=1,+, nl.

=1

(5)
Then, there exists a vector a* of non-negative numbers
(@, - - -, a%) € A, such that
h, &) = Zl o’(h, ©), (6)
=

[an obvious choice is a” = (1/n, + -+, 1/n)].

We seek a w* that is expressible as a convex combina-
tion of the elements of {w, w,, - - -, w,} such that

(h, &) = EB, U, w")- @)

An alternate and more useful statement of this group-rep-
resentative problem is as follows: Let a™ be given. Find a
vector B* of nen-negative numbers (8%, - - -, B}) € A,
such that
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Figure 4 The two-dimensional sets P and G [see Eq. (9)]. The
difference between the two sets is due to the nonlinearity of the
thermal loads function E (in this example, NBSLD) with respect
to weather factors.
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Figure 5 The surrogate ‘“‘energy’’ function € corresponding to
the Pand G of Fig. 4. If w = 2_ Bw,, then (h, ¢) = 2]_ a(h, c);.
Points on the darker grid represent the (a,, a,) corresponding to
the associated points (8,, 8,) on the lighter grid.

* _ *
S olEB, U, w) = E(B, U, S B’ wj). ®)
i=1 i=1

Note that if E were linear with respect to weather (which
it most certainly is not), then B* = a* would be a solu-
tion. Next, define the two sets (examples are shown in
Fig. 4):

491

D. W. LOW




492

D. W. LOW

100 @ R = (e)
o & E &
oz M M I
=l il
IR G| S o i
5 10 = 5 E
O I H Jh]ﬁﬂlﬂl (it
a o & | A 1000 & 295 i
g 20( % - ﬂlmll (b) 5]
P 60 l 1 ﬂ j. ﬂulh.lll. {51 ll lﬂ 1 §
g R l g or
§ o § E
E k= o st
8 g 20 %D
z -0~ = g
A A L < 0 1
(c) Lg fg _ (g)
~ - T _aop E'd
i‘f ol E 40k §N§ 3001 ; §100r—
Ei a0 :‘i 2ol “ igzoo ié b
b T ) EEN H 1
. @] s 5 )
250 AP S
It 23 | &%
E 2 900 52 53
% D\/\/MW\M’,\N\ SHRS
26 52 26 52

Time (weeks)

Figure 6 Weekly summaries of selected weather variables in Los Angeles for 1973.

G = [(h, ol(h, ) = E(B, U, ZB,wJ), Be An]
=1

and

p= [(h, Mk, )= 3 afh o), ac An], ©

=1
where G is the set of all heating-cooling-load pairs that
can be obtained by convex combinations of {wy o w )
while P is the set of all convex combinations of {(%, ¢),,
-+, (h, ©) }. In general, these two sets intersect but are
not equal;i.e., PN G Zbut P # G. If a* is a member of
both P and G, it is said that the group {w,, - - -, w,} is
valid. If not, a solution 8* does not exist and new weather
“‘weeks’” must be inserted into the group or current ones
deleted until validity is obtained. Note that a singleton
group is always valid. Suppose that a valid group exists.

It will prove useful in the sequel to extend the range of &
fromA,toA, = {8, - -, 8,)%_ 8 = 1},ie., relaxing the

=1
restriction that (&, c¢) lie in the con\j'ex hull of {(h, ¢),, - *
(h, c),}. tis also assumed, without loss of generality, that
for a given (4, ¢) € IR? a canonical (unique) @ € A, canbe
defined such that (h, ¢) = 3"_ a (h, c);, We are now in a
position to define a surrogate ‘‘energy’’ function, e:A, —

A, with respect to B, U, and the group {w,, w,, - - -, w,}.
For g € A,, we define
&p) = a, (10)
where a is the unique element of A, such that

n n

S a,EB, U, w) = E(B, v,y ﬁ,w,). an
J=1 =1

If the group is valid, then 8* is a solution to the equation
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eB) —a*=0. (12)

This formulation is considerably more tractable because
the dimensions of the domain and range spaces are the
same; indeed,

A, CA CR" (13)

A number of solution approaches exist for the problem of
finding 8*. The first is the construction of a contraction
map T:A, — A,, whose fixed point is B*. An example of
such a contraction map is

T(B) = B — d[=(B) — &™), (14

where 8§ = 0 is sufficiently small. Experimental results in-
dicate that this approach is successful but slow in con-
verging.

The second approach, the one we adopted, is to form a
sequence of simple functions {e,} that approximates &,
and to continually refine ¢, in such a way that e,?l(a*) —
B*. A detailed description of the approximating function
e, A, — A will appear in a later publication [12]. The
form of ¢ is of interest in that it reveals the very simple
underlying structure of E. Figure 5 illustrates £:4, — A,
for a particular {w , w,, w,}. Note that neither a, nor 3,
need be considered explicitly since they are completely
determined by {a,, a,} and {8,, B,}, respectively.

Numerical example

In order to illustrate the concepts of the weather data fil-
ter a simple example is presented and solved. For the pur-
pose of this illustration the filter was based on heating and
cooling loads, although actual energy consumption could
have been used.

To compute these loads, the energy function E was
chosen to be the National Bureau of Standards program
for thermal loads, NBSLD [7]. Los Angeles was chosen
as the site for the simulation because a significant number
of weather “‘weeks”” produced both heating and cooling
loads, thus offering a more interesting test than a location
where weeks of heating and weeks of cooling are mu-
tually exclusive. Preliminary tests with New York
weather were also performed, producing essentially the
same results with respect to the accuracy and robustness
of the grouping. There are different sufficient subsets of
weather factors for NBSLD. For this example we use
hourly values of the following, over a period of one year:
dry-bulb temperature (°C), dew-point temperature (°C),
wind speed (m/s), wind direction (°), air pressure (bars),
cloud amount (0-10), direct solar radiation (W/m?), dif-
fuse solar radiation (W/m%), declination of sun (°), and
hour angle (°). Thus, the volume of weather data measure-
ments is 87 600 (10 variables X 24 hours X 365 days).
Weekly summaries of the first eight of these variables are
displayed in Fig. 6.
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Figure 7 Heating and cooling loads for the modified Fort Myer
test building (shown in Fig. 3), and the given usage schedule and
weather.

The test building B is a slightly modified version of the
building used by Kusuda [7] in testing NBSLD. The
building and its usage schedule are pictured in Fig. 3.

With W, B, and U specified, the hourly heating and
cooling loads can be computed for the entire year. The
result of this computation and subsequent aggregation by
week is shown in Fig. 7, while Fig. 2 shows the actual
cross plot of these weekly loads. In addition, the grouping
shown in Fig. 2 was actually performed. At this stage,
there are 15 ‘““weeks” of hourly weather data that yield
(when the 15 heating-cooling load pairs are properly
weighted by the number of weeks in each group) precisely
the same annual heating and cooling load as the 52 actual
weeks of the year, at less than one-third the computa-
tional cost. This result assumes, of course, that the build-
ing B and the usage schedule U are fixed.

The next step is to construct a hierarchy of groups, i.e.,
to further group the 15 ““weeks.”’ The dashed lines in Fig.
2 define nine of the 15 groups, which were consolidated
into three larger groups. At the conclusion of the second
grouping, we have nine ‘‘weeks’’ of weather precisely
representing the original 52 for the same B and U.

Finally, as shown by the dotted lines in Fig. 2, the re-
maining nine groups are consolidated into three. These
three ‘“weeks’’ of hourly weather data accurately repre-
sent the ten weather variables mentioned previously (see
Fig. 8). For fixed B and U, the annual heating and cooling
load can be computed with no error and at a computa-
tional cost of less than six percent of that required for the
entire 52 weeks. Thus, there is zero error if the building B
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Figure 8 Hourly weather profiles (w*) representing each of the final three groups. The weighting factors for the upper left (week 1, red
curves), the middle (week 2, black curves), and the lower right (week 3, blue curves) groups shown in Fig. 2 are 24, 14, and 14,

respectively.

does not change. The next section demonstrates, how-
ever, that the error incurred by using filtered weather data
is small, even when B changes.

Validation experiments

In order to demonstrate the validity of the directed data
filter when changes are made in the building, two experi-
ments are presented. Although building parameters were
varied in these validation experiments, one could also
have chosen to vary the building usage parameters, in-
cluding heating, ventilating, and air conditioning (HVAC)
equipment set points, control strategies for the use of out-
side air, and schedules for internal loads such as those
caused by people, equipment, and lights.

The first experiment involved rotating the building in
fifteen-degree increments through a full 180°. (Since the
building is symmetrical about the axis of rotation, it need
not be rotated more than 180°.) At each rotation angle, the
annual heating and cooling loads were computed by using
the full 52 weeks (8760 consecutive hours) of weather
data, and by using the three ‘‘weeks’’ of filtered data.
(Note: The entire experiment with filtered data can be
completed in less time than that required for a single rota-
tion angle with the unfiltered data.)

The experimental results are presented in Fig. 9. There
are three points to be made about the results. First, the
error is zero at 0° and 180° rotation (since both these val-
ues represent the original building). Second, the maxi-
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mum error incurred in either heating or cooling load is on
the order of one percent. Finally, the same 75° optimal
orientation for the building was found by using either fil-
tered or unfiltered data. Within the precision of the exper-
iment (15° increments), the computation with filtered data
gave sufficient accuracy (0.0 to 0.6 percent error) in 1/17
the time required for the computation with unfiltered
data.

In the second experiment, window size was varied
from 12.8 to 55.2 percent of the total wall area. Note that
this causes the cooling load to vary by approximately 25
percent of the nominal value and indicates the importance
of window size as a determinant of cooling load in a cli-
mate like that of Los Angeles. The original (nominal)
building’s windows covered 33.6 percent of the wall area;
thus, the error vanishes at this point. Figure 10 gives both
the experimental results for the whole year’s weather
data and the results obtained by using each of the three
different groupings developed earlier in the paper, i.e.,
the groups of fifteen, nine, and three ‘‘weeks.”” Again,
there is no error in the nominal building (33.6 percent).
The maximum error in either heating or cooling loads was
less than one percent. Figure 11 summarizes the variation
of the total heating and cooling load with window size.
The maximum absolute error varies from less than 0.4
percent (for the group of ‘‘three’’ weeks) to less than 0.2
percent (for the group of 15 ‘““weeks’”). To eliminate the
0.4 percent error, one would have to expend more than 17
times as much computer resource.

Summary
A method of reducing the cost of computing heating and
cooling loads in buildings has been presented. The
method is most useful in cases where many such compu-
tations are required (as in optimization), and where rea-
sonably small changes are made to the building. The
method produces zero error for the original building, and
experimental results indicate that errors on the order of
only one percent are incurred even when some building
parameters are changed over a wide range. In one experi-
ment it was shown that 99.6 percent accuracy could be
maintained at about six percent of the cost of 100 percent
accuracy. (Here, 100 percent accuracy refers to the re-
sults obtained by the energy function E when the full 8760
values of each of ten weather variables are used.)
Jurovics [11], as a result of his formulation of first par-
tial derivatives of thermal load with respect to various
building design parameters, has shown the feasibility of
using constrained optimization techniques to arrive at
values of these parameters that minimize thermal load,
subject to given constraints. The use of filtered weather
data lowers the cost of such optimization runs by a factor
of n/52, where n is the number of weather groups. One
possible sequence of events based on the hierarchical
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Figure 9 Building rotation experiment with the building shown
in Fig. 3. The total (heating and cooling) load is plotted for each
of eleven rotation angles, ranging from 0 to 180° in 15° in-
crements. Results produced with filtered weather data (thick
line, 3 groups) are within one percent of the unfiltered-data re-
sults (thin line, 52 weeks), at approximately six percent of the
cost.

Figure 10 Window area experiment. The heating and cooling
load variation is given as a function of the total percentage of
wall area covered by glass. The nominal building has 33.6 per-
cent window area. The points on curve 1 represent individual
values of percent glass. One year’s worth of weather data was
used for each point on curve 1 (52 weeks), while curves 2, 3, and
4 are for grouped data (15, 9, and 3 grouped ‘‘weeks,”’ respec-
tively). The figure demonstrates the sensitivities of the three lev-
els of hierarchical grouping to changes in the glass area.
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Figure 11 (a) Error and (b) cost analyses of the glass area ex-
periment. An accuracy of 99.6 percent in the total load can be
obtained by the three-‘*week’’ grouping (curve 4 and A) at six
percent of the cost of using the full year’s weather data (curve 1
and e). Curve 3 (and A) and curve 4 (and °) represent errors and
costs for the nine- and 15-**week’’ groupings, respectively.

grouping described in this paper might be: 1) optimize a
“‘weeks’’ of weather; 2) take these results as starting val-
ues for an optimization run, using the group of nine
“‘weeks’’; 3) use these results in turn as starting values for
arun using 15 “weeks’’; and 4) use the 15-*‘week’’ results
as starting values for the run using the entire year’s
weather data. Early experience indicates that the optimal
results from one level of the hierarchical grouping are
very nearly optimal for the next finer (containing more
groups) level. Thus, it is expected that the total cost of
energy-function evaluations should be greatly reduced.
This subject is currently under investigation.

The directed weather data filter could also be exploited
to aid designers in complying with legislated energy bud-
gets [13, 14]. For example, in the interest of calculating
stringent but economically feasible energy budgets
[13, 15], the state of California has standardized on the
following: an energy function, nine classes of non-
residential buildings, 15 weather regions (each with its
corresponding weather data), and a single usage sched-
ule.

In order to help building designers reduce the cost of
necessary energy computations, and to make opti-
mization economically feasible, the following steps could
be taken:

1. Perform a set of hierarchical weather data groupings
for each combination of building class (as represented
by an existing building) and weather region and dis-
tribute the resulting reduced weather sets along with
the (currently distributed) full year’s data.

. Perform a set of experiments (roughly similar to those
reported in this paper) for each such combination and
publish the results.

. Allow building designers, in the early stages of design,
to use the appropriate set of filtered weather data on
their own design(s). As a design progresses, finer and
finer groupings can be used until the last computation
(i.e., that required for the building permit), is made
with the full year’s data. Also, the building’s actual
usage schedule and HVAC system should reasonably
be considered during the finer stages.

It appears that the directed weather data filter can sub-
stantially reduce computational time without introducing
significant error. The filter has potential application in the
design process both in stagewise design optimization and
in helping governments and designers to define and com-
ply with energy budgets.

1t should be recognized that considerably more valida-
tion work must be done. Planned work and work in prog-
ress include the simulation of actual buildings with
grouped weather data from widely differing climatic re-
gions. Also, no particular physical significance is claimed
for the reduced weather data; rather, they have computa-
tional significance.

The potential value of this work is not simply that ener-
gy functions will consume less time, but that the magni-
tude of this reduction makes possible a qualitative change
in the way energy analysis can be done; i.e., constrained
optimization techniques become feasible. Thus, it is pos-
sible that buildings that use less energy can now be more
easily and economically designed.

Appendix: Partial list of energy analysis programs
In this list we enumerate a few of the more widely known
computer programs in the area of energy analysis in build-
ings. A more complete list, along with short descriptions,
can be found in [8].

(1) NBSLD: National Bureau of Standard Load Deter-
mination Program, developed by T. Kusuda, Na-
tional Bureau of Standards, Washington, DC, 1972.

(2) ACCESS: Alternate Choice Comparison for Energy
Systems Selection, developed by Seeyle, Stevenson,
Value, and Drecht under contract to the Edison
Electric Institute, New York, NY.

(3) ECUBE: Energy Conservation Utilizing Better Engi-
neering, developed by the American Gas Associa-
tion, Arlington, VA.

(4) M-27: Giffels Building Heating Energy Estimate, de-
veloped by M. N. Wahim, Giffels Associates, Inc.,
Detroit, MI.

(5) BUILDSIM: Honeywell Total Building Simulation,
developed by G. Shavit, Honeywell, Inc., Arlington
Heights, IL.
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(6) MACE: McDonnell Douglas Automation Com-
pany’s Annual Consumption Energy Program, de-
veloped by McDonnell Douglas Automation Com-
pany, St. Louis, MO.

(7) Meriwether Energy Systems Analysis Series, devel-
oped by Ross F. Meriwether and Associates, Inc.,
San Antonio, TX.

(8) NECAP: NASA’s Energy Cost Analysis Program,
developed by Gard, Inc. under contract to the Na-
tional Aeronautics and Space Administration, Uni-
versity of Georgia, Athens, GA.

(9 Program for Analysis of Energy Ultilization in Postal
Facilities, developed by General American Trans-
portation Corporation, Research Division, Niles,
IL.

(10) SCOUT: Gard Program for Facility/HVAC Design
and Energy Analysis, developed by GARD, Inc.,
Niles, IL.

(11) TRACE: Trane Air Conditioning Economics, devel-
oped by the Trane Company, LaCrosse, WL

(12 HACE: WTA Heating and Air Conditioning System
Energy Analysis, developed by William Tao and As-
sociates, Inc., St. Louis, MO.

(13) CAL/ERDA Computer Program, developed by Cali-
fornia State Energy Commission, Sacramento, CA,
and National Laboratories at Berkeley, CA, Ar-
gonne, IL, and Los Alamos, NM.
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