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A Directed  Weather  Data  Filter 

Abstract: It is important to reduce the computational burden of energy-analysis computer programs (such as those that compute 
expected heating and cooling loads and the energy required to meet these loads) since the input may include, for example, hourly 
measurements of several weather variables over periods of time of up to ten years. It is possible to generate a small set of weather data to 
represent a larger, more comprehensive set by using computer programs called weather data filters. However, existing filters that are 
generally able to preserve statistical properties of the original data offer no a priori method for controlling or even estimating the errors 
they introduce in the output of the energy analysis programs. This problem exists because these filters deal only  with weather data and do 
not utilize any information regarding the building to be analyzed, its occupancy schedule, its mechanical systems, or the energy analysis 
function itself. This paper describes a weather filter that preserves the “energy content” of the data;  i.e., given a particular building 
design  and usage schedule, this filter generates a small set of weather data which, when properly weighted, produces the same total 
heating and cooling loads as the original data. Because the error caused by using the filtered weather data falls well  within acceptable 
bounds even when changes are made in the building design, the filter described allows the designer to test a large number of design or 
retrofit alternatives for energy efficiency at very low computational cost. 

Introduction 
In  order  to  compute  the  expected heating and cooling 
thermal loads  or energy  requirements for a particular 
building design, it is  necessary  to  know  the  weather vari- 
ables to which the building will be subjected.  The Na- 
tional Climatic Center in Asheville, North Carolina pub- 
lishes  magnetic tapes containing hourly  values of the fol- 
lowing weather  factors  over periods of one  year for each 
associated weather station:  dry-bulb temperature, wet- 
bulb temperature, dew-point temperature, barometric 
pressure, wind velocity, wind direction, cloud type, cloud 
amount,  and cloud modifier. At a limited number of sta- 
tions, direct  solar  radiation  and diffuse solar  radiation are 
also measured.  At  locations where solar  measurements 
are not taken,  direct  and diffuse radiation  intensities are 
approximated from  the cloud modifier, the known posi- 
tion of the  sun,  and estimates of the clear-sky  radiation 
intensities [ 1-31. 

Several algorithms [ l ,  4-81 that use such  weather  data 
enable analysts  to  compute  the thermal loads and the en- 
ergy required to meet  them for buildings in the design 
stage. We refer to all such algorithms by the generic  term 
E (see Fig. 1). A  partial list of the energy  analysis pro- 
grams appears in the Appendix.  A few filtering algorithms 
[5, 9, 101 reduce computational costs by filtering the 
year’s  weather data  to output  a small set of weather  data 

for repetitive use by the designer in thermal load compu- 
tations, but such  weather  data filters reflect only weather 
characteristics;  they  incorporate neither an energy  func- 
tion E nor  any building or building usage data. 

The relative scarcity of scientific journal articles  con- 
cerning weather  data filtering for  the hour-by-hour  energy 
analysis computer programs is worthy of comment. In  the 
opinion of the  author  there  are  two primary reasons. 
First, most of the work in this area is by researchers in 
private industry, who have elected to  keep their results 
confidential. Second, not until very recently has there  ex- 
isted an interest  or a requirement  for the repeated execu- 
tion of these relatively  sophisticated and time-consuming 
computer  programs.  There is increasing pressure  from 
governments and public interest  groups  to  mandate ex- 
tensive  energy analysis of building designs before build- 
ingpermits  are  issued.  Thus, it is becoming  advantageous 
(and in some cases,  necessary)  to  analyze  the energy  con- 
sequences of design  decisions as they are  made through- 
out the design process,  rather than simply to  evaluate  the 
final product of the design.  Also, constrained opti- 
mization, with its  demands  for many (in some  cases  sev- 
eral  hundred)  program executions,  is  just beginning to  be 
applied to energy conservation in buildings. The natural 
consequences of these  factors  are  efforts,  such  as  the 
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Figure 1 Schematic of typical energy analysis computer pro- 
gram (referred to in the text generically as E ) .  Heating and cool- 
ing loads are given in energy units  and represent deficiencies and 
excesses of heat, respectively. Energy requirements are  the 
amounts of fuel energy (gas, oil,  electricity, etc.) necessary to 
operate the heating, ventilating, and air-conditioning (HVAC) 
equipment so that the loads are satisfied. 

work  presented  here,  to  reduce  the  cost of using these 
programs,  augmented by attempts  to simplify the  pro- 
grams themselves. 

This paper  describes a weather  data filter that sub- 
stantially reduces computational requirements  for  the 
class of thermal load and  energy consumption algorithms 
(and the  computer programs that implement them) which 
require periodic  samplings of many weather  factors. Be- 
cause  the filter also reflects the impact of building design 
and building usage on  the heating  and  cooling loads gener- 
ated by the  weather,  the  weater  data filter described here 
enables the designer to  test  the  consequences (for  energy 
consumption) of a large  number of design or retrofit alter- 
natives within very small error  tolerances. As a result,  the 

designer is able to discover economically  which of the 
many aesthetically  and  functionally acceptable designs is 
the most  energy efficient. 

Weather  data filtering 
To the energy analyst,  the  process of designing a building 
can  be viewed as a sequence of designs B,,  B,, B3, . . ., 
Bn, the last representing  the final design.  Associated with 
each design is an energy-related  computation E (thermal 
loads or energy  consumption). If the energy  computation 
is to be  meaningful, it  must reflect information  concerning 
the building usage U (schedule of internal loads  and me- 
chanical system control  strategy) and  the  weather W to 
which the building will be subjected.  Each design Bi in- 
cludes, if appropriate, specifications for  the mechanical 
systems  as well as  architectural  and  structural parame- 
ters.  Output from the computation  includes  hourly  values 
of heating  and  cooling loads (or energy  requirements) 
(h ,  c ) .  

In  order  to reliably estimate annual  energy  consump- 
tion, many different  combinations of weather  factors 
must  be  simulated. To  ensure  that all realistic weather 
situations will be  encountered by the energy program, 
from one  to  as  many  as  ten  years of actual  hourly weather 
measurements  are regularly used.  Since considerable 
computation is  required  for each hour of simulated data, 
it is natural to investigate the possibility that  the thermal 
loads (or energy requirements)  for a year might be  reason- 
ably  approximated  from a carefully constructed smaller 
set of weather  data. A computer program F that  can re- 
duce weather data W to a shorter  sequence of data W’ 
that  accurately reflects W can  be  called a weather  data 
filter. The  use of such a filter greatly reduces  the compu- 
tational time required for performing  energy  calculations 
throughout  a building design process. 

Such filters generally preserve  one  or more  statistical 
properties of the original weather  data,  such  as  means and 
extremes.  The filter selects  or  constructs a small number 
of “weather  days” to represent,  e.g.,  each month of 
weather data.  The  shortened  weather  data  are  then input 
to  an energy  function in order  to  compute  the thermal 
loads for  each of these  “weather  days.”  The  output is 
then  scaled to predict  anticipated  annual  thermal  loads for 
the building. Unfortunately, it is impossible to  estimate 
the  error in energy  requirements  induced by such filters. 
Thus,  there  is a  recognized  need [4] for  the  development 
of a rational methodology for  the selection of typical days 
for each month or  group of months in order  to  reduce  the 
number of calculations (e.g., 365 X 24 = 8760 for a  year’s 
worth of hourly weather data). 

We present a filter that  does  provide  such a methodol- 
ogy for reducing the  cost of energy  function calculations, 
while at  the same  time  maintaining  very  small error 
tolerances. 

IBM I. RES. DEVELOP. VOL. 22 NO. 5 e SEPrEMBER 1978 



Directed  filter  concept 
The  central  thesis of this  paper  is  that  the energy  function 
E,  incorporating building design B and building usage U ,  
should direct  the  weather filter as it reduces W to W‘. 
Consequently,  the  reduced  set of weather  data W’ reflects 
not only the  weather W, but also  generates precisely the 
same heating and cooling  loads generated by Win a  spe- 
cific building B used in a specific way U .  This property  is 
called the  “zero baseline error”  property. 

In the directed filter FB,os, hourly weather  data W, 
hourly  usage data U ,  and building data B are input to  the 
energy  function E,  which then  outputs hourly  heating  and 
cooling loads (h ,  c )  in BTUs  (or  joules).  The generalized 
weather filter E ,  which forms part of the  directed filter 
FB,ua, first aggregates and  sums  the hourly  heating  and 
cooling loads  into  appropriate time  periods (here,  one 
week). The aggregates,  representing weeks of weather, 
are then grouped  (as described in the next  section)  and 
these  groups  are  input  to a weather  data  synthesis func- 
tion. This  function  constructs hourly weather  data  that 
produce  the  precise mean  heating  and cooling loads of 
each  group.  In  this illustration the  synthesis function  pro- 
duces  for each group  one  “week” of hourly weather  data 
for  each  weather variable. Hence, if the heating and cool- 
ing loads that were  aggregated into 52 thermal load weeks 
are combined into 15 groups,  the filter function reduces 
the year’s weather W to 15 “weeks” of weather W‘.  If the 
thermal  loads are  further condensed into  three  groups, 
the filter produces  three  “weeks” of W’ that reflect the 
full year’s weather. 

Grouping  function 
Since  the internal  heating  and cooling loads often follow a 
weekly cycle, we use  seven  days  as  the fundamental  pe- 
riod, although  larger or smaller  periods  could have been 
used. The hourly  heating and cooling loads generated by 
the energy  function for  the building as it is  used  are aggre- 
gated by weeks and simply summed so that 52 pairs of 
non-negative numbers (h ,  c) represent  the weekly heating 
and cooling loads  or energy requirements  for  the year. 
These pairs of numbers  are plotted on a graph (see Fig. 2) 
where  the abscissa represents heating (h) and  the  ordinate 
represents cooling ( c ) .  

Each of the 52 dots  represents  the sum of the  thermal 
loads  generated  by  hourly  weather data  over  seven  days. 
We can now group  the weeks of thermal load, using prox- 
imity as a criterion, by reducing the 52 weeks of thermal 
load data to, say, 15 “weeks,”  each  represented by its 
computed center of mass  (arithmetic  average). In all 
cases  tested, grouping by obvious  proximity has  served 
quite well, but any valid grouping (defined in the next  sec- 
tion) would transmit  the  zero baseline error  property  to 
the associated reduced weather W’. Thus,  questions  can 
arise.  such  as which weather  “weeks” should be included 

I o  2 3 4 

“----- 
I Weekly  heating load ( lo6 BTU) 

Weekly  heating load ( 10 I )  

Figure 2 Cross plot of weekly heating-cooling load pairs (indi- 
vidual points) for the building  and usage illustrated in Fig. 3 for 
Los Angeles weather in  1973 (see Fig. 6). The solid lines indicate 
an initial  grouping of the heating-cooling load  pairs into 15 
“weeks” of data, where each “week” (a) is constructible by 
convex combination from the actual weather weeks in the group, 
and (b) produces, for the same building B and usage U, a heating- 
cooling load pair equal to the center of mass of the load  pairs  in 
the group. The dashed lines show a further  grouping into nine 
“weeks,” while the dotted lines show the final  grouping into 
three “weeks.” 

in a particular group,  or which “week” is to be  con- 
structed  as  the  group  representative.  It is understood  that 
the  error  between  Wand W’ can be minimized only if one 
knows the sensitivity of building energy loads  to particu- 
lar weather  variables. Work is continuing in this area. 

The  weather  data  synthesis function within the filter F 
constructs a “week” of hourly weather variables for  each 
of the 15 centers of mass presented  to it. The 15 groups 
(“weeks” of W’) reflect one of several possible grouping 
decisions; see solid lines in Fig. 2. Such  “weeks” of W’ 
may be  used by designers in their search  for optimal  de- 
signs in terms of energy  consumption within the design 
constraints [ 111. There  are specific advantages  to design- 
ers in using either a small or a large number of groups. A 
small number of groups permits  computation of prelimi- 
nary  estimates of the  consequences of design  changes at 
low cost in computational  time, while a larger  number of 
groups results in more refined estimates. 
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25ft (7 .6m)  

BUILDING  OPERATION 
Thermostat: 64.4”F (18”C), constant 
Room  relative  humidity = 50 percent,  constant 
Weekly schedule = Five workdays, two-day weekend. 
Workday schedule = Full occupancy (20 persons) 

from 8:OO to 17:OO 

from 7:OO to 18:OO 

from 8:OO to 17:OO 

from 7:OO to 18:OO 

Full lighting (2000 BTU/hr) 

Weekend schedule = Half occupancy (10 persons) 

Half lighting (1000 BTU/hr) 

DESCRIPTION 
Ceiling: 

Wood, 7/8 in. (inside) 
Building paper 
Green  slate, 1/2 in.  (outside) 

Asphalt tile, 1/8 in.  (inside) 
Wood floor, 3/4 in. 
Wood  subfloor, 2 in. (outside) 

Floor: 

over 2 ft air space 
Windows: 

All windows  regular  plate glass, 
1/4 in., four  sides 
symmetric  as shown 

KEY 
1 = Gypsum board, 0.0312 ft 
2 = Insulation, 0.15 ft 
3 = Air layer, 0.0625 ft 
4 = Insulation, 0.15 ft 
5 = Brick. 0.28 ft 

5 4 3 2  1 

Figure 3 Description of the  test building and its  usage sched- 
ule.  The five-layer wall cross  section  is  shown  at  the  bottom. 

Constructing a representative  weather  period 
Once  the  center of mass (h, has been determined  for 
each group i ,  one must construct a single “week” wi* of 
weather  (hourly values  for  each  weather variable over  the 
length of a  period)  with the following property: 

490 (h ,  = E(B, u, Wi*). 

D. W. LOW 

Table 1 Glossary of mathematical symbols. 

{xl, x2, . . ., x,} A set whose elements  are 
XI, X23 * ‘ ‘ 3  Xn. 

* ,  x,) A vector  whose  components  are 
x19 x29 * * * >  x,. 

The  sum x,  + x2 + . . . + x,,. 

x is a member of the  set A .  

A is a subset of B .  

The  empty  set. 

Intersection 
(x E A f l  B if x E A and x E B).  

The  set of all vectors containing 
n real numbers. 

The  function f with  domain A and 
range B.  

An inverse  function. If f :A -+ B,  then 
f-’: B --f A ;  f is defined only if for 
each b E B there is only one a E A 
such  that f ( a )  = b.  

Then, by the additive property of the  center of mass, we 
have 

E(B, U ,  W )  = 1 m,E(B, U ,  wi*), 
n 

i= l  

where n is the  number of groups, and the sum of the 
weights mi(mi is simply the number of points in  group i )  
equals  the number M of periods in one  year;  i.e., 

M = 1 mi. (3) 

A numeric  example is given in order  to clarify the pro- 
cess,  but first a  discussion of the method for  constructing 
wi*, i = 1, 2 ,  . . + ,  n is given. (A glossary of mathematical 
symbols is included in Table 1.) 

Since  the heating and cooling loads computed by E for 
a given week are solutions to a system of partial dif- 
ferential equations, it is necessary to specify the condi- 
tions that  apply  at  the beginning of the week. Because 
buildings have  “thermal memories” that affect future en- 
ergy requirements, nine days of weather were chosen to 
represent a week.  The first two  days were  used solely for 
initialization purposes; i .e.,  the  loads  computed  for  these 

n 

i = l  
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two days were  not added into the  totals  for  the week. For 
all tests with the building described in Fig. 3,  it was found 
that  the  use of two  days for dynamic initialization gave 
results within 0.1 percent of the results  obtained by using 
fifty days. A  week’s  worth of weather  data is represented 
by a matrix w of dimension 216 (i.e., 9 days X 24 hours 
per day)  by 10 (ten  weather variables). For  the remainder 
of this section, we consider  an  arbitrary single group; for 
simplicity of notation,  the group  index i is suppressed. 

When m points  are grouped on a heating-cooling scatter 
plot  (as  in  Fig. 2) there  is also an implicit grouping of the 
associated m matrices of weather  data;  these matrices are 
numbered 1,2 ,  . . e, n. In  order  to  ensure  that  the  weather 
matrix w* constructed  for  each group  truly represents  the 
weather for  the  weeks in the group,  the  search is con- 
strained to matrices that  are  convex combinations of ma- 
trices within the  group. That is, if w is to be  a  candidate 
for w* ,  there must exist n non-negative numbers, pl, pz, 
. . ., p,. such  that 

n n 

2 pj = 1 and w = 1 pjwj .  
i= 1 j= 1 

Thus,  the solution w* represents  the  group of weeks in 
two  important  senses: 1) the heating  and  cooling  loads 
obtained  must  equal the arithmetic  mean of the heating 
and cooling loads in the group, and 2) w* must  be  con- 
structible  by convex combination  from the  weather  data 
that  generated  the thermal  loads in the  group.  The first 
requirement  allows one  to use weighted sums of the ther- 
mal loads of the  various groups; the second ensures  that 
the  constructed  weather  data  are similar to  the actual 
weather data in the  group. 

On the heating-cooling  graph, the group center of mass 
(h,  E )  can  be represented  as a convex combination of the 
heating-cooling pairs in the group. For a  given  group of 
size n ,  define 

I An = (u1, . . ., un)l uj = 1; uj 2 0; j = 1 ,  . . ., n ] .  
j= 1 

(5 )  
Then,  there exists  a vector a* of non-negative numbers 
(a:, . . ., a*,) E An such  that 

n 

( A ,  E )  = 2 a”A, “j (6) 
i= 1 

[an obvious choice is a* = (I/n> ’ ‘ ’ )  1/n)1. 

tion of the elements of {wl, w,, * . ., wn} such  that 
We seek a w* that is expressible  as a convex combina- 

(h,  C) = E(B, u, w*) .  (7) 
An alternate and more useful statement of this  group-rep- 
resentative problem is as follows: Let a* be given.  Find a 
vector @* of ncn-negative numbers (/3*,, . . ., 0;) E A,  
such  that 

r-“ 
Heating load ( lo6 BTU) 

Heating load ( IO9 J )  

Figure 4 The two-dimensional sets P and G [see Eq. (9)]. The 
difference between the two  sets  is due to the nonlinearity of the 
thermal loads function E (in this example, NBSLD) with respect 
to weather factors. 

0 0.5 1.1 

‘onvex multipher, a, (-); p,(-) 

Figure 5 The surrogate “energy” function E corresponding to 
the P and G of Fig. 4. If w = s:=, pjwj, then (h ,  c)  = Z,3=, cu,(h, c)). 
Points on the  darker  grid represent the (a,, a,) corresponding to 
the associated points p,) on the lighter grid. 

i i aj*E(B, U ,  w j )  = E B ,  U ,  /3j*wj). (8) 

Note  that if E were  linear with respect  to  weather (which 
it most  certainly is not), then @* = a* would be a solu- 
tion.  Next, define the  two  sets (examples are  shown in 
Fig. 4): 

j=1 j=1 
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Figure 6 Weekly  summaries of selected weather  variables  in Los Angeles for 1973. 

1 i j:l i I G = (h,  c ) h ,  c) = E B ,  U ,  1 f l y j  . P E A ,  

and 

P = c)kh, 4 = a,@, c),, a E A,], (9) 

where G is  the  set of  all heating-cooling-load  pairs that 
can be obtained by convex combinations of {w,, . . ., w,}, 
while P is the  set of all convex combinations of {(h,  c), ,  
. . ., (h ,  c ) ~ } .  In  general,  these  two  sets  intersect  but  are 
not equal; i.e., P r l  G # M but P Z C. If a* is a member of 
both P and G, it is said  that  the group {w l ,  . ., w,} is 
valid. If not, a solution p* does not  exist and new weather 
“weeks” must be  inserted  into  the  group  or  current  ones 
deleted until validity is  obtained.  Note  that a singleton 

492 group is always valid. Suppose that a valid group  exists. 

1= 1 

It will prove useful in the  sequel  to extend the range of a 
from A,  to A, = {(61, . ., S,)lZ,”,, 6, = l}, i.e., relaxing the 
restriction that (h ,  c) lie in the  convex hull of {(h,  c ) ] ,  . ., 
(h,  c),}. It is also  assumed,  without  loss of generality, that 
for a given (h ,  c)  E IR2 a canonical  (unique) a E A, can  be 
defined such  that (h,  c) = Z;=,aj(h, c )~ .  We are now in a 
position to define a surrogate  “energy”  function, &:A, -+ 

A,, with respect  to B ,  U ,  and  the group {wl, ws, . * a, w,}. 
For /3 E A,, we define 

4 P )  = a, 

where (Y is the unique element of A, such  that 

j=1 aiE@, u, w1) = E ( B ,  U, i=1 $ fl,wi). 

If the  group is valid, then P * is a solution to  the  equation 
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E ( P )  - (Y* = 0. (12) 

This formulation is considerably  more  tractable  because 
the dimensions of the domain and range spaces  are  the 
same;  indeed, 

An An R“. (13) 

A number of solution approaches  exist  for  the problem of 
finding p* .  The first is the  construction of a contraction 
map T:An + A,, whose fixed point is P * .  An example of 
such a  contraction  map is 

T(P) = P - S [ E ( P )  - *I, (14) 

where 6 2 0 is sufficiently small.  Experimental results in- 
dicate  that this approach  is successful but slow in con- 
verging. 

The  second  approach,  the  one we adopted, is to form  a 
sequence of simple functions {e,} that  approximates E ,  

and to continually refine e, in such a way that e,’(a*) + 

p*. A  detailed  description of the approximating  function 
e,:A, + A, will appear in a later publication [12]. The 
form of E is of interest in that it reveals the very simple 
underlying structure of E .  Figure 5 illustrates &:A3 + A3 
for a particular { w l ,  wq,  w3}. Note  that neither a3 nor /3, 
need  be  considered explicitly since they are completely 
determined by {a,, a*} and {p , ,  &}, respectively. 

Numerical  example 
In order  to illustrate the  concepts of the weather  data fil- 
ter a  simple  example is presented and  solved. For  the pur- 
pose of this illustration the filter was  based on heating  and 
cooling loads, although actual energy  consumption  could 
have been  used. 

To  compute  these  loads,  the energy  function E was 
chosen  to be the National  Bureau of Standards program 
for thermal loads,  NBSLD [7]. Los Angeles was  chosen 
as  the  site  for  the simulation because a significant number 
of weather  “weeks” produced  both  heating and cooling 
loads,  thus offering a more interesting  test  than  a  location 
where  weeks of heating and weeks of cooling are mu- 
tually exclusive.  Preliminary tests with New York 
weather were  also performed, producing  essentially the 
same  results with respect  to  the  accuracy and robustness 
of the grouping. There  are different sufficient subsets of 
weather  factors  for  NBSLD.  For this example we use 
hourly values of the following, over a period of one year: 
dry-bulb temperature (“C), dew-point temperature (“C), 
wind speed (m/s), wind direction (“), air pressure  (bars), 
cloud amount (0-lo), direct  solar radiation (W/m2), dif- 
fuse  solar radiation (W/m2), declination of sun (“), and 
hour angle (“). Thus,  the volume of weather  data measure- 
ments is 87 600 (10 variables X 24 hours x 365 days). 
Weekly summaries of the first eight of these variables are 
displayed in Fig. 6. 

I I Coolingload- 
Heatingload- 

0 10 20 30 40 50 

Time  (week) 

Figure 7 Heating and cooling loads for the modified Fort Myer 
test building (shown in Fig. 3) ,  and the given usage schedule and 
weather. 

The  test building B is a slightly modified version of the 
building used by Kusuda [7] in testing NBSLD.  The 
building and its  usage schedule  are pictured in Fig. 3.  

With W, B ,  and U specified, the hourly  heating  and 
cooling  loads  can be computed  for  the  entire year. The 
result of this  computation  and subsequent aggregation by 
week is shown in Fig. 7, while Fig. 2 shows  the  actual 
cross plot of these weekly loads.  In addition, the grouping 
shown in Fig. 2 was  actually  performed.  At  this stage, 
there  are 15 “weeks” of hourly  weather data  that yield 
(when the 15 heating-cooling load pairs are properly 
weighted by the number of weeks in each group)  precisely 
the  same annual  heating and cooling load as  the 52 actual 
weeks of the  year, at less than  one-third the  computa- 
tional cost. This  result assumes, of course,  that  the build- 
ing B and the usage schedule U are fixed. 

The  next  step is to  construct a  hierarchy of groups,  i.e., 
to  further group the 15 “weeks.”  The  dashed lines in Fig. 
2 define nine of the 15 groups, which were consolidated 
into  three larger  groups. At the conclusion of the  second 
grouping, we have nine “weeks” of weather precisely 
representing  the original 52 for the  same B and U .  

Finally, as shown by the  dotted lines in Fig. 2, the re- 
maining nine  groups are consolidated  into three.  These 
three  “weeks” of hourly weather  data  accurately  repre- 
sent  the  ten  weather variables  mentioned  previously  (see 
Fig. 8). For fixed B and U ,  the annual  heating and cooling 
load  can  be  computed with no  error and at a computa- 
tional cost of less  than six percent of that required for  the 
entire 52 weeks. Thus,  there  is  zero  error if the building B 
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Figure 8 Hourly  weather  profiles (w*) representing  each  of  the final three  groups.  The  weighting  factors for the  upper  left  (week 1, red 
curves),  the  middle  (week 2, black  curves),  and  the  lower right (week 3, blue  curves)  groups  shown in Fig. 2 are 24, 14, and 14, 
respectively. 

does not  change. The  next section demonstrates, how- 
ever,  that  the  error  incurred by using filtered weather  data 
is small, even when B changes. 

Validation experiments 
In  order  to  demonstrate  the validity of the  directed  data 
filter when  changes  are  made in the building, two experi- 
ments  are  presented. Although building parameters  were 
varied in these validation experiments,  one could  also 
have  chosen  to vary the building usage parameters, in- 
cluding  heating,  ventilating, and  air conditioning  (HVAC) 
equipment  set  points,  control strategies for the  use of out- 
side air,  and  schedules  for internal  loads such  as  those 

494 caused by people, equipment, and lights. 

The first experiment involved  rotating the building in 
fifteen-degree increments through a full 180". (Since  the 
building is symmetrical about  the axis of rotation, it need 
not  be rotated more than 180°.) At each  rotation  angle,  the 
annual heating  and  cooling loads were computed by using 
the full 5 2  weeks (8760 consecutive  hours) of weather 
data, and by using the  three "weeks" of filtered data. 
(Note:  The  entire  experiment with filtered data  can be 
completed in less  time than  that required for a single rota- 
tion angle with the unfiltered data.) 

The  experimental  results  are  presented in Fig. 9. There 
are  three  points  to  be  made  about  the  results.  First,  the 
error is zero at 0" and 180" rotation (since both  these val- 
ues  represent  the original building). Second,  the maxi- 
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mum error incurred in either heating or cooling load is  on 
the  order of one  percent. Finally, the  same 75” optimal 
orientation  for  the building was found by using either fil- 
tered or unfiltered data. Within the precision of the  exper- 
iment (15’ increments), the  computation with filtered data 
gave sufficient accuracy (0.0 to  0.6  percent  error) in 1/17 
the time  required for  the  computation with unfiltered 
data. 

In  the second experiment, window  size  was  varied 
from 12.8 to 55.2 percent of the total wall area.  Note  that 
this causes  the cooling  load to vary by approximately 25 
percent of the nominal value and indicates the  importance 
of window  size as a determinant of cooling load in a cli- 
mate like that of Los Angeles. The original (nominal) 
building’s windows covered 33.6 percent of the wall area; 
thus,  the  error  vanishes  at this  point.  Figure 10 gives  both 
the experimental results  for  the whole year’s weather 
data  and  the results  obtained by using each of the  three 
different groupings developed  earlier in the  paper,  i.e., 
the  groups of fifteen, nine,  and three  “weeks.” Again, 
there is no  error in the nominal building (33.6 percent). 
The maximum error in either heating or cooling loads  was 
less  than  one  percent. Figure 11 summarizes the variation 
of the  total heating  and  cooling load with window  size. 
The maximum absolute  error varies from less  than 0.4 
percent  (for the  group of “three” weeks) to  less than 0.2 
percent (for the  group of 15 “weeks”).  To eliminate the 
0.4 percent  error,  one would have  to expend  more than 17 
times  as much computer  resource. 

Summary 
A method of reducing the  cost of computing  heating and 
cooling  loads in buildings has been presented.  The 
method is most useful in cases  where many such compu- 
tations are required  (as in optimization),  and where rea- 
sonably small changes  are  made  to  the building. The 
method produces  zero  error  for  the original building,  and 
experimental  results indicate that  errors  on  the  order of 
only one  percent  are  incurred  even when some building 
parameters  are changed over a wide range. In one experi- 
ment it was  shown that 99.6 percent  accuracy could  be 
maintained  at about six percent of the  cost of 100 percent 
accuracy.  (Here, 100 percent  accuracy  refers  to  the re- 
sults obtained by the energy  function E when the full 8760 
values of each of ten  weather variables are  used.) 

Jurovics [ 113, as a result of his formulation of first par- 
tial derivatives of thermal load with respect to various 
building design parameters,  has shown the feasibility of 
using constrained optimization  techniques to  arrive  at 
values of these  parameters  that minimize thermal  load, 
subject  to given constraints.  The  use of filtered weather 
data lowers  the cost of such optimization  runs by a factor 
of n/52, where n is  the  number of weather  groups. One 
possible sequence of events based on  the hierarchical 

0 20 40 60 X0 100 120 140 160 180 

Rotation angle (degrees ) 

Figure 9 Building rotation experiment with the building shown 
in Fig. 3. The total (heating and cooling) load is plotted for  each 
of eleven rotation angles, ranging from 0 to 180” in 15” in- 
crements. Results produced with  filtered weather data (thick 
line, 3 groups) are within one percent of the unfiltered-data re- 
sults (thin line, 52 weeks), at approximately six percent of the 
cost. 

Figure 10 Window area experiment. The heating and cooling 
load variation is given as  a function of the total percentage of 
wall area covered by glass. The  nominal  building has 33.6 per- 
cent window area.  The points on curve 1 represent individual 
values of percent glass. One year’s worth of weather data was 
used for each point on curve 1 (52 weeks), while curves 2 , 3 ,  and 
4 are  for grouped data (15, 9, and 3 grouped “weeks,” respec- 
tively). The figure demonstrates the sensitivities of the three lev- 
els of hierarchical grouping to changes in the glass area. 
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Figure 11 (a) Error and (b) cost  analyses of the glass area ex- 
periment. An accuracy of 99.6 percent in the total load can be 
obtained by the three-“week” grouping (curve 4 and A) at six 
percent of the cost of using the full year’s weather data (curve 1 
and 0).  Curve 3 (and A) and curve 4 (and 0) represent errors  and 
costs for the nine- and 1S“week” groupings, respectively. 

grouping  described in this paper might be: 1) optimize  a 
“weeks” of weather; 2 )  take  these results as  starting val- 
ues for  an optimization run, using the  group of nine 
“weeks”; 3) use  these  results in turn as  starting  values  for 
a run using 15 “weeks”; and 4) use  the 15“‘week” results 
as  starting values for  the run using the  entire  year’s 
weather  data.  Early  experience indicates that  the optimal 
results  from  one level of the hierarchical  grouping are 
very  nearly  optimal for  the  next finer (containing more 
groups)  level. Thus, it is  expected  that  the  total  cost of 
energy-function evaluations should  be  greatly reduced. 
This subject is currently  under investigation. 

The  directed  weather  data filter could also be  exploited 
to aid designers in complying with legislated energy  bud- 
gets [13, 141. For  example, in the interest of calculating 
stringent  but  economically feasible energy budgets 
[13, 151, the  state of California has standardized on the 
following: an energy function, nine classes of non- 
residential buildings, 15 weather regions (each with its 
corresponding  weather  data), and a single usage sched- 
ule. 

In order  to help building designers reduce  the  cost of 
necessary energy computations, and to  make opti- 
mization  economically feasible,  the following steps could 
be  taken: 

1 .  Perform a set of hierarchical weather  data groupings 
for  each combination of building class (as represented 
by an existing building) and  weather region and  dis- 
tribute  the resulting reduced  weather  sets along with 
the (currently distributed) full year’s data. 

2.  Perform  a set of experiments (roughly similar to  those 
reported in  this paper)  for  each  such combination and 
publish the  results. 

3. Allow building designers, in the  early  stages of design, 
to use the  appropriate  set of filtered weather  data on 
their  own design(s).  As a design progresses, finer and 
finer  groupings can  be used until the last computation 
(i.e., that required for  the building permit), is made 
with the full year’s data. Also, the building’s actual 
usage  schedule and  HVAC  system should  reasonably 
be  considered during  the finer  stages. 

It  appears  that  the  directed  weather  data filter can  sub- 
stantially reduce  computational time  without  introducing 
significant error.  The filter has potential  application in the 
design process both in stagewise design  optimization  and 
in helping governments  and  designers to define and  com- 
ply with energy  budgets. 

It should be recognized that considerably more valida- 
tion work  must  be done. Planned  work and work in  prog- 
ress include the simulation of actual buildings with 
grouped weather  data  from widely differing climatic re- 
gions.  Also, no  particular physical significance is claimed 
for  the reduced weather  data;  rather, they have computa- 
tional significance. 

The  potential value of this  work is  not simply that  ener- 
gy functions will consume less time,  but  that  the magni- 
tude of this  reduction makes possible a qualitative change 
in the way  energy analysis can  be done;  i.e.,  constrained 
optimization techniques become feasible,  Thus,  it  is  pos- 
sible that buildings that  use  less  energy  can now be more 
easily and economically  designed. 

Appendix: Partial  list of energy  analysis  programs 
In this list  we  enumerate a few of the  more widely known 
computer programs in the  area of energy  analysis in build- 
ings. A more  complete  list, along  with short  descriptions, 
can be found in [8]. 

(1) NBSLD:  National Bureau of Standard  Load  Deter- 
mination Program, developed by T. Kusuda,  Na- 
tional Bureau of Standards,  Washington,  DC, 1972. 

( 2 )  ACCESS: Alternate Choice Comparison for Energy 
Systems  Selection, developed by Seeyle,  Stevenson, 
Value, and Drecht  under  contract to the  Edison 
Electric  Institute,  New  York,  NY. 

(3) ECUBE: Energy Conservation Utilizing Better Engi- 
neering, developed  by the American Gas Associa- 
tion, Arlington, VA . 

(4) “27: Giffels Building Heating Energy Estimate, de- 
veloped  by M. N. Wahim, Giffels Associates,  Inc., 
Detroit, MI. 

(5 )  BUILDSIM: Honeywell Total Building Simulation, 
developed by G.  Shavit,  Honeywell,  Inc., Arlington 
Heights, IL. 
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(6) MACE:  McDonnell  Douglas  Automation  Com- 
pany’s  Annual  Consumption  Energy  Program, de- 
veloped  by McDonnell Douglas  Automation  Com- 
pany, St. Louis, MO. 

(7) Meriwether  Energy  Systems  Analysis  Series, devel- 
oped  by Ross F. Meriwether and  Associates,  Inc., 
San Antonio, TX. 

(8) NECAP:  NASA’s  Energy  Cost  Analysis  Program, 
developed  by  Gard, Inc. under  contract to the Na- 
tional Aeronautics  and  Space  Administration, Uni- 
versity  of  Georgia,  Athens,  GA. 

(9) Program  for  Analysis of Energy  Utilization in Postal 
Facilities, developed  by  General American Trans- 
portation Corporation,  Research Division, Niles, 
IL . 

(10) SCOUT:  Gard  Program  for  FacilitylHVAC  Design 
and  Energy  Analysis, developed  by  GARD,  Inc., 
Niles, IL. 
TRACE:  Trane  Air  Conditioning  Economics, devel- 
oped  by  the Trane Company, Lacrosse, WI. 
HACE:  WTA  Heating  and  Air  Conditioning  System 
Energy  Analysis, developed  by William Tao and As- 
sociates,  Inc., St. Louis, MO. 
CALIERDA  Computer  Program, developed  by  Cali- 
fornia State Energy Commission,  Sacramento,  CA, 
and  National  Laboratories at Berkeley,  CA,  Ar- 
gonne,  IL,  and Los Alamos, NM. 
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