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Extrapolation of Seismic Waveforms by Fourier Methods

Abstract: The problem of constructing a cross section of reflectivity from the wave field recorded at the surface of the medium is
discussed with particular reference to migration of seismic records. The numerical procedures are formulated in the frequency and
wavenumber domain. The operations are defined in a fixed coordinate system, whereas finite difference methods require a downward-
moving reference frame. The numerical algorithms in the frequency wavenumber domain are simpler and give more accurate results than
finite difference methods. This is particularly true when the lateral velocity variation in the medium can be neglected. In this case the
downward wave extrapolation is accomplished by implementing a phase change in the Fourier coefficients. Numerically, this is equiva-
lent to a multiplication by a complex number of unit modulus. There is no stability condition associated with this operation. This means

that the source and recorder positions can be lowered by any amount within one computational step.

Introduction

The processing and analysis of data obtained from seis-
mic reflection procedures is crucial to the exploration and
discovery of new hydrocarbon deposits. The world en-
ergy crisis is, of course, now placing a higher premium on
this discovery process. With the aid of a regularly spaced
array of geophones (recording instruments), geophysi-
cists are able to 1) induce some acoustic wave in the
earth; 2) record the signals reflected by the subsurface; 3)
process and manipulate these records in order to learn
about the geological makeup of the subsurface.

Seismic data is the digitized (in time and space) version
of the reflected seismic wavefronts recorded at the sur-
face of the earth. However, these recordings of seismic
sections do not correspond exactly to the geological for-
mations of the subterrain. This can be seen by consid-
ering that the amplitude of a trace is the result of a super-
position of many wavefronts, propagating from all pos-
sible directions about the location of the geophone. The
information about the size, the shape, and the location of
the reflecting geological formations is contained in the
amplitude and phase relationship of the wavefront at the
surface as recorded by an array of geophones.

One of the most important procedures of seismic data
processing is the construction of a seismic reflectivity dis-
play from the seismic records. This is a mapping from
image space to object space, whereby the recorded im-
ages of the reflectors are mapped into their correct posi-
tions. This mapping process is referred to as migration. In
order to produce a cross section of reflectivity, the waves

observed at the surface must be extrapolated numeri-
cally, downward into the earth. This can be achieved by
using wave equation techniques for migration. In recent
years, J. F. Claerbout and his coworkers developed mi-
gration techniques based on the numerical approximation
of the wave equation by finite difference methods. By
treating the problem in a downward-moving coordinate
system, Claerbout [1, 2] derived simplified equations that
lend themselves conveniently to numerical treatment.

Migration using Fourier transform methods was stud-
ied by Stolt [3], Claerbout [4], and Lynn [5]. In these
studies Fourier transforms were used to obtain a direct
solution to the wave equation. Therefore, migration with
these methods is limited to homogeneous media in which
the velocity of the wave propagation can be regarded as
constant.

Numerical solution methods based on finite Fourier
transforms (FFT) for the migration of seismic data in lay-
ered media were reported by Gazdag[6, 7]. These works,
together with earlier results [8], demonstrate conclusively
that the effective use of FFT methods need not be re-
stricted to linear partial differential equations with con-
stant coefficients only. These methods are based on the
equations derived by Claerbout [2] and are formulated in
a downward-moving coordinate system.

In the present work we discuss numerical methods for
wave extrapolation in inhomogeneous media. These solu-
tion methods are defined in the frequency and wave-
number domain, and the numerical procedures are based
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Figure 1 A coordinate system for wave extrapolation.

on FFT techniques. The present approach differs from
previously reported works in that both the derivations as
well as the actual computations are performed in a sta-
tionary rather than a moving reference frame. The deriva-
tions are tractable because they are based on analytic re-
sults derived for simple idealized models, which are gen-
eralized for realistic situations. In the following section
we discuss the differential equation for downward-propa-
gating waves in an inhomogeneous medium. The third
section deals with the migration of zero offset seismic sec-
tions. The numerical results are discussed in the fourth
section, which is followed by the concluding remarks.

Equation for downward-propagating waves
Acoustic waves are described by the equation

a’p . ( a’p a’p )
ot ’

= 1)
ax* ozt

where p is pressure, ¢ is time, and x and z represent hori-

zontal and vertical distances, respectively. For constant

velocity v, the solution to (1) can be expressed as

px, z, 1)
= 2> Pk, k,t=0)explitkx + kz + wr)], 2)
ke k

where k,_ and k, are the wavenumbers, or spatial frequen-
cies, whereas w is the temporal frequency. For each wave
vector (k,, k,), there are two solutions, corresponding to
the two w values given by the dispersion relation

w = vk, + k)" 3)

These two solutions represent waves propagating in op-
posite directions. In seismic data processing it is often
essential to differentiate between upcoming and down-
going waves. An excellent treatment is given by Claer-
bout [2] on this topic.

For the sake of definiteness we carry out all derivations
with reference to the coordinate system shown in Fig. 1,
in which the variable z is directed downward and repre-
sents depth. In this representation the (x, z) plane is the
object space and the (x, 7) plane is the image space. The
true physical reality is described by Eqgs. (2) and (3), ac-
cording to which any source in the (x, z) plane radiates in
all directions. An example for this is shown in Fig. 2(a).
However, if the solution is restricted to temporal frequen-
cies

o = vk[1 + (k,/k)"", 4

Eq. (2) represents only upward-going waves. Downward-
propagating waves, whose wave vector is directed within
plus or minus 90° of the positive z axis, are characterized
by the dispersion relation

o= —vk[1 + (k /k)]". (5)

For a homogeneous medium, in which v is constant, we
can immediately write the differential equation which de-
scribes downward-propagating waves as

BTI: = —ivk[1 + (k /k)*1"* P. (6)
The physical interpretation of (6) is simple. Each wave
component with k, > 0 is displaced in the direction of its
wave vector (k_, k,). On the other hand, plane waves with
k, < 0 are convected in the direction opposite to that of
their wave vector. All the waves move with velocity v
measured in the (x, z) space.

The physical picture is not as simple in the more gen-
eral case, when v is some function of the space variables x
and z. In this case the multiplication by v is replaced by
the convolution operation, which is denoted by the sym-
bol @. Thus the general form of (6) reads

P
5 = & k[l + (k/k)T1" P. @

The convolution operation in the (k,, k,) domain corre-
sponds to a multiplication by »(x, z) in the (x, z) domain.
Within regions of constant velocity Egs. (6) and (7) are
essentially equivalent. At velocity discontinuities (7) does
not have the same reflection and transmission coefficients
as the full wave equation. The fact that (7) does not de-
scribe an actual physical phenomenon is of no con-
sequence to us in this application. We are interested only
in some descriptive information regarding the composi-
tion of the subterrain, which is provided by the solution
of (7).
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We have tested (7) by means of numerical experiments.
The aim was to show that the extension of (6) to the vari-
able velocity case, as given by (7), is valid for downward-
propagating waves in inhomogeneous media. The numeri-
cal simulation results shown in Figs. 2 and 3 provide a
contrast between the solution of the full wave equation (1)
and that of (7). In these examples we find a good qualita-
tive agreement between the downward-moving parts of
the waves.

Reconstruction of wave fields from measurements
We consider now the problem of determining the field
existing in a propagation medium from the record of the
wave field taken at z = 0 depth, as shown in Fig. 1. In
exploration geophysics, the application of this process is
the construction of cross sections of reflectivity within
the earth from seismic sections. We begin with the uni-
form velocity case, for which the solution can be ex-
pressed in analytic form. We then generalize this result to
inhomogeneous media.

We shall assume that the wave p (x, z, ) induced over
the x, z plane is propagating upward. Such a wave field
can be expressed in the form of (2), in which w is given by
(4). The recorded wavefront is obtained by setting z = 0in
2); i.e.,

plx, 0, )
= > > Pk, k,, t=0)exp [i

ky ke

kx + o). ®)

From this record we wish to reconstruct the field that ex-
isted in the propagation medium at ¢+ = 0, which can be
written from (2) as

plx, z, 0)

= S Pl k

ky k

t = 0) exp [ilkx + k, z)]. 9

In order to obtain the desired expression relating (8) and
(9) we obtain a Fourier transformation of (8) with respect
to x and ¢, which gives

Pk, z=0,w) = Pk, k,, t = 0). (10)

The correspondence between &, and w is given by the dis-
persion relation (4). The substitution of (10) and (4) into
(9) gives

px,z,0)= > > Pk, z=0,w)exp (i{er

ky ks

+ 1= G /m)')"2}), (11)
in which
m= w/v. (12)

We can easily verify that (11) is the solution to
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Figure 2 Time sequences showing the evolution of an acoustic
wave from a point source: (a) solution of the full wave equation
(1), and (b) solution of the equation for downward-propagating
waves (7).
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(b)
Figure 3 Time sequences showing the evolution of an acoustic
wave from a line source: (a) solution of the full wave equation
(1), and (b) solution of the equation for downward-propagating
waves (7).

Pk, z, w)

=im [1 — (k,/m)*]"* P(k
¥4

o 25 ) (13)
at t = 0. Thus, when solving (13) for P over the (£, )
domain, we obtain the correctly migrated section at some
depth z by implementing the equation

> 2 Pk,

ky ®

plx,z,0) = z, o) exp (i kx). (14)

We consider here the laterally homogeneous case, in
which the velocity is specified as a function of the depth;
i.e., v = v(z). Let the z axis be subdivided into N, in-
crements of Az length. The jth increment (layer) is de-
noted as ¢, where

&=z, =z<z,). (15)

Within each layer ¢, the velocity is assumed as constant.
Thus, (13) can be solved for P at z,,, by using P given at z;
as the initial conditions. This solution can be expressed as
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Figure 4 Modeling and migration of a dipping reflector. (a)
Model of dipping reflector. (b) Synthetic zero offset section of
(a). (c) Section (b) after migration by means of (13).

Plk,, 2, ,, @) = P(k,, z;, ®) exp (i$Az), (16)
in which
¢, = m;[1 — (kx/mj)z]llz, an

or more explicitly,

é, = (w/v) [1 = (vk, /0)T", (18)

where v, is the velocity of the jth layer (15).

It is evident from (16) that P is advanced to greater
depths by implementing a phase shift in its Fourier coeffi-
cients. The rate of phase change per unit depth is ¢, (18).
One of the noteworthy properties of this solution method
is that the phase shifts expressed in (16) are accumulative.
This also means that if we are interested in the migrated
section between some specified depths, it is not necessary
to solve (13) for other than the region of interest. We can
immediately write P at z, , in terms of P at zero depth z;
as

Plk,, z,,,, @) = P(k,, z,, w) exp (i;z), (19)

where

o= 2 b, (20
n=0

The remarkable simplicity of this solution method for
laterally homogeneous media is possible only because v =
v(z) is independent of both & and @, which appear under
the square root sign in (13). Unfortunately, we cannot use
(13) for problems with horizontal velocity variations. We
can, however, approximate the square root by series ex-
pansion, which gives

Pk, 2, @) ,(1)(1_:@ _ vk )
0z v 20° 8w*
X Plk,, z, ®). 20

The truncation of the fourth order and higher order terms
results in a second order approximation to (13). The sec-
ond order equation can be used for migrating dips up to
30° [7]. The fourth order term in (21) increases this angle
to 50°, which is adequate in most practical applications.
We can express (21) in the (x, ) domain as

ap(x, z, w) . w)
Tl St AN el
0z (v

2 2 4 4

v op v op
X + — + o )L
(p 20 ax’ 8o'  ax )

(22)

In this equation the dependence of v need not be restrict-
ed to the depth variable alone, but it can also include lat-
eral variations; i.e., v = v(x, z). The solution of (22) at
t = 0 gives an approximation to the wave field corre-
sponding to the migrated section.

Numerical results
We tested Eq. (7) for downward-moving waves and com-
pared the results with those of the full wave equation (1).
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Figure 5 Modeling and migration in a medium with vertical velocity variations. (a) Time sequence showing the evolution of the wave in

the (x, z) plane. (b) Zero offset section before and after migration.

In both examples shown in Figs. 2 and 3 we used a 64 X
64 computational grid. The initial conditions can be seen
in the first frame shown at t = 0. The evolution of the
waves is shown by the sequence of frames taken at equal
time intervals.

In the first example shown in Fig. 2, the wave is initi-
ated in a medium with v, = 1.0, from which it enters a
lower velocity medium with v, = 0.707. We can observe
very clearly the wave reflected from the interface with
opposite sign, indicating a negative reflection coefficient.
This is entirely absent in Fig. 2(b), which shows a remark-
able qualitative agreement with the downward-moving
portion of the full wave equation.

The initial conditions in Fig. 3 are set up to initiate a
plane wave in the medium with v, = 1.0. The downward-
propagating part of the wave impinges upon a prism in
which v, = 2.0. In Fig. 3(a) we observe the wave reflected
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from the top of the prism. We can also remark the circular
diffraction patterns developed about the upper corners of
the prism. Only a small fraction of these circular dif-
fraction patterns are noticeable in Fig. 3(b), which does
not include upward-moving waves. The downward-trav-
eling waves, including those which exit the prism at the
left and the bottom edges, are seen very clearly in both
Figs. 3(a) and 3(b).

The numerical example for the reconstruction of the
wave field from a synthetic seismic record is shown in
Fig. 4. The synthetic record shown in Fig. 4(b) was gener-
ated by implementing the theory of Trorey [9] for seismic
diffractions. This is a zero offset record section in which
the source and the recorder positions are the same at the
z = 0 level. The same record would be obtained from a
line source shaped as the earth model shown in Fig. 4(a).
In such an experiment one would have to use one-half of
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the actual velocity in order to compensate for the two-
way travel of the waves in the zero offset sections. The
computations were performed over a 128 x 128 grid, with
Ax = Az = 50 m, and Ar = 50 ms. The migration velocity
was constant, v = 2000 m/s. The migrated section shown
in Fig. 4(c) is the result of the numerical solution of (13)
and (14). It is in excellent agreement with the model in
spite of its steep dip of 52°.

The last example deals with the generation of a syn-
thetic time section and its migration. The velocity varies
with the depth variable as shown in Fig. 5. The first frame
of Fig. S(a) shows the initial conditions for p at
t = 0, while its time derivation dp/dt is set uniformly to
zero at t = 0. A sequence of four frames shows the time
evolution of the wave. The wave field sampled at z = 0
depth gives the desired zero offset section. Figure 5(b)
shows this section before and after migration using (19)
and (20). Apart from numerical effects, the migrated sec-
tion corresponds to the initial conditions shown in Fig.
S@atz=0.

Concluding remarks
It has been shown [8] that numerical solution methods
based on the use of FFT techniques offer certain advan-
tages over finite difference methods. This is particularly
true when dealing with the simulation of wave phenomena,
the subject of the present paper, in which case the solution
is expressed most naturally by means of Fourier series.
Moreover, the operators used to formulate wave extrap-
olation processes are expressed more readily as the
function of the temporal and spatial frequencies, rather
than in terms of time and distance. Therefore, the solution
methods are simple, and the results are more accurate
than those obtained with finite difference methods. The
first reason for accuracy is that we are solving equations
which describe the desired process exactly. For (7) and
(13) we can only write approximate expressions in the
space-time domain. The second important factor is that
our methods are practically free from truncation errors.
The last but by no means the least significant character-
istic of the present solution methods is that they lend
themselves conveniently to parallel processing. For ex-

ample, there is no interdependence among the Fourier co-
efficients of (13) corresponding to different &, values.
Consequently, (13) can be solved for all depths over one
column (with a fixed k) of the (k,, w) plane. This de-
mands little storage for a considerable number of compu-
tations. This property can be particularly advantageous in
the effective utilization of array processors.

Acknowledgments

The author thanks J. F. Claerbout for the opportunity to
participate in the seminars of the Stanford Exploration
Project, whose stimulating discussions had an inspiring
influence on this work.

References

1. J. F. Claerbout, ‘“Coarse Grid Calculations of Waves in In-
homogeneous Media with Application to Delineation of Com-
plicated Seismic Structure,”” Geophysics 35, 407 (1970).

2. J. F. Claerbout, Fundamentals of Geophysical Data Process-
ing, McGraw-Hill Book Co., Inc., New York, 1976, chs. 10
and 11.

3. R. H. Stolt, ‘‘Migration by Fourier Transform,”” Geophysics
43, 23 (1978).

4. J. F. Claerbout, ‘‘Migration with Fourier Transforms,’’ Stan-
ford Exploration Project, Report No. 11, 3-5 (1977).

5. W. Lynn, “‘Implementing F-K Migration and Diffraction,”
Stanford Exploration Project, Report No. 11, 9-28 (1977).

6. J. Gazdag, ‘‘Wave Equation Migration by the Accurate Space
Derivative Method,”” Proceedings of the 39th Meeting of the
European Association of Exploration Geophysicists, Zagreb,
Yugoslavia, 1977, p. 34.

7. J. Gazdag, ‘“Wave Equation Migration with the Phase Shift
Method,”” Geophysics (to be published).

8. J. Gazdag, ‘‘Time-Differencing Schemes and Transform
Methods,”” J. Comput. Phys. 20, 196 (1976).

9. A. W. Trorey, ‘A Simple Theory for Seismic Diffractions,”’
Geophysics 35, 762 (1970).

Received September 12, 1977

The author is located at the IBM Scientific Center, 1530
Page Mill Road, Palo Alto, California 94304.

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 5 ¢ SEPTEMBER 1978




