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Extrapolation of  Seismic  Waveforms by Fourier  Methods 

Abstract: The  problem  of  constructing a cross  section of reflectivity  from  the  wave  field  recorded  at  the  surface of the  medium  is 
discussed  with  particular  reference to migration of seismic  records.  The  numerical  procedures  are  formulated in the  frequency  and 
wavenumber  domain.  The  operations are defined in a fixed coordinate  system,  whereas  finite  difference  methods  require a downward- 
moving  reference  frame.  The  numerical  algorithms in the  frequency  wavenumber  domain  are  simpler and give  more accurate  results than 
finite  difference  methods.  This  is  particularly  true  when  the  lateral  velocity  variation in the medium  can  be  neglected. In this case  the 
downward  wave  extrapolation  is  accomplished by implementing a phase  change in the  Fourier  coefficients.  Numerically, this is equiva- 
lent  to a multiplication by a complex  number of unit modulus.  There  is no  stability  condition  associated with this  operation.  This  means 
that the  source and  recorder  positions  can  be  lowered by any  amount within one  computational step. 

Introduction 
The processing  and  analysis of data obtained from seis- 
mic reflection procedures is crucial to  the exploration and 
discovery of new hydrocarbon  deposits.  The world en- 
ergy crisis is, of course, now placing a higher premium on 
this discovery  process. With the aid of a regularly spaced 
array of geophones (recording instruments), geophysi- 
cists are  able  to 1) induce some acoustic  wave in the 
earth; 2)  record  the signals reflected by the  subsurface; 3) 
process  and manipulate these  records in order  to learn 
about  the geological makeup of the subsurface. 

Seismic data  is  the digitized (in time  and  space)  version 
of the reflected seismic  wavefronts recorded  at  the sur- 
face of the  earth.  However,  these recordings of seismic 
sections do  not correspond  exactly  to  the geological for- 
mations of the  subterrain.  This can be  seen by consid- 
ering that  the amplitude of a trace  is  the result of a super- 
position of many wavefronts, propagating  from all pos- 
sible directions  about  the location of the  geophone.  The 
information about  the size, the  shape, and the location of 
the reflecting geological formations is contained in the 
amplitude and  phase relationship of the wavefront at the 
surface as recorded by an array of geophones. 

One of the  most  important procedures of seismic data 
processing is the  construction of a  seismic reflectivity dis- 
play from  the seismic records.  This is a mapping from 
image space  to object space, whereby  the recorded im- 
ages of the reflectors are mapped  into  their correct posi- 
tions. This mapping process  is referred to  as migration. In 
order  to  produce a cross section of reflectivity, the  waves 

observed  at  the surface  must  be  extrapolated  numeri- 
cally, downward  into  the  earth. This  can  be  achieved by 
using wave  equation  techniques  for migration. In recent 
years, J. F. Claerbout  and his coworkers developed mi- 
gration techniques based on the numerical  approximation 
of the wave  equation by finite difference methods. By 
treating the problem in a downward-moving coordinate 
system,  Claerbout [ 1, 21 derived simplified equations  that 
lend themselves conveniently to numerical treatment. 

Migration using Fourier transform methods was stud- 
ied by Stolt [3], Claerbout [4], and Lynn [5]. In these 
studies Fourier transforms  were  used to obtain  a direct 
solution to  the wave equation.  Therefore, migration with 
these  methods  is limited to homogeneous media in which 
the  velocity of the wave  propagation can be  regarded as 
constant. 

Numerical  solution methods based on finite Fourier 
transforms (FFT)  for  the migration of seismic data in lay- 
ered  media  were  reported by Gazdag [6, 71. These  works, 
together with earlier results [8], demonstrate conclusively 
that  the effective  use of FFT methods need not be re- 
stricted to linear  partial differential equations with con- 
stant coefficients  only. These methods are based on the 
equations  derived by Claerbout [2] and are formulated in 
a downward-moving coordinate  system. 

In the  present work we discuss numerical methods  for 
wave extrapolation in inhomogeneous  media. These solu- 
tion methods  are defined in the  frequency  and wave- 
number domain, and the numerical procedures  are  based 
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Figure 1 A coordinate system for wave extrapolation. 

on FFT techniques.  The  present  approach differs from 
previously reported works in that  both  the  derivations  as 
well as the  actual  computations  are performed  in a sta- 
tionary rather  than a moving reference  frame.  The  deriva- 
tions are  tractable  because they are based on analytic re- 
sults  derived  for simple  idealized  models, which are gen- 
eralized for realistic  situations. In  the following section 
we discuss  the differential equation  for downward-propa- 
gating waves in an inhomogeneous  medium. The third 
section deals with the migration of zero offset seismic sec- 
tions. The numerical results  are  discussed in the  fourth 
section, which is followed by the concluding remarks. 

Equation  for  downward-propagating  waves 
Acoustic waves  are described  by the equation 

where p is  pressure, t is time,  and x and z represent hori- 
zontal and vertical distances, respectively. For  constant 
velocity v ,  the solution to (1)  can  be  expressed  as 

= 1 P (k, ,   k, ,  t = 0) exp [i(k,x + k,z + ut)], (2) 
kz 

where k, and k, are  the  wavenumbers, or spatial frequen- 
cies, whereas w is  the  temporal  frequency.  For  each  wave 
vector ( k z ,   k J ,  there  are  two  solutions, corresponding to 
the  two w values given by the dispersion  relation 

w = ?v(k,’ + k,2)112. (3) 

These  two solutions represent  waves propagating  in op- 
posite directions.  In seismic data processing it is often 
essential to  dBerentiate  between upcoming and down- 
going waves. An excellent treatment  is given  by  Claer- 
bout [2] on this  topic. 

For  the  sake of definiteness we carry  out all derivations 
with reference  to  the  coordinate  system shown  in  Fig. 1, 
in which the variable z is  directed  downward  and  repre- 
sents  depth.  In  this  representation  the (x, z) plane is  the 
object space  and  the (x, t )  plane is the image space.  The 
true physical  reality is described by Eqs. (2) and (3), ac- 
cording to which  any source in the (x, z) plane radiates in 
all directions. An example  for this is shown in Fig. 2(a). 
However, if the solution is  restricted  to temporal frequen- 
cies 

u = vk,[l + (kz/k,)2]”2, (4) 

Eq. (2) represents only  upward-going  waves.  Downward- 
propagating waves, whose  wave vector  is directed within 
plus or minus 90” of the positive z axis,  are  characterized 
by the dispersion  relation 

o = -uk, [ l  + (k,/k,)2]l’/’. (5) 

For a homogeneous  medium, in which v is constant, we 
can immediately  write the differential equation which de- 
scribes downward-propagating waves  as 

The physical interpretation of (6) is simple. Each  wave 
component with k ,  > 0 is displaced in the direction of its 
wave vector (kx,  k,) .  On the  other  hand, plane waves with 
k, < 0 are  convected in the direction opposite  to  that of 
their wave  vector. All the  waves move with velocity v 
measured in the (x, z) space. 

The physical picture is not  as simple in the  more gen- 
eral case, when v is some  function of the  space variables x 
and z. In this case  the multiplication by v is replaced  by 
the convolution operation, which is denoted  by the  sym- 
bol @. Thus  the general form of (6) reads 

ap 
~ = -iv @ k,[l + (k,/kz)2]1iz P .  

at  
(7) 

The convolution operation in the ( k x ,  k,) domain corre- 
sponds  to a multiplication by v(x,  z )  in the ( x ,  z) domain. 
Within regions of constant velocity Eqs. (6) and (7) are 
essentially  equivalent. At velocity  discontinuities (7) does 
not have  the  same reflection and transmission coefficients 
as  the full  wave equation.  The  fact  that (7) does  not  de- 
scribe an  actual physical phenomenon is of no  con- 
sequence  to us in this  application.  We are  interested only 
in some  descriptive information  regarding  the  composi- 
tion of the  subterrain, which is provided by the solution 
of (7). 
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We have  tested (7) by means of numerical experiments. 
The aim was to  show  that  the extension of (6) to  the vari- 
able velocity case,  as given by (7), is valid for  downward- 
propagating  waves in inhomogeneous  media. The numeri- 
cal  simulation results  shown in  Figs.  2  and  3 provide a 
contrast  between  the solution of the full wave equation (1) 
and that of (7). In  these  examples we find a good qualita- 
tive agreement  between  the downward-moving parts of 
the  waves. 

Reconstruction of  wave fields  from  measurements 
We consider now the problem of determining the field 
existing in a propagation medium from the record of the 
wave field taken  at z = 0 depth,  as shown in Fig. 1. In 
exploration geophysics,  the application of this process is 
the  construction of cross  sections of reflectivity within 
the  earth  from seismic sections. We begin with the uni- 
form  velocity case,  for which the solution can  be ex- 
pressed in analytic form. We then generalize  this  result to 
inhomogeneous  media. 

We shall assume  that  the wave p (x, z ,  t )  induced over 
the x, z plane is propagating upward. Such  a wave field 
can  be expressed in the form of (2), in which w is given by 
(4). The  recorded wavefront is obtained by setting z = 0 in 
(2); i.e., 

P b ,  0 ,  t )  

= 2 P (kz,  k,, t = 0)  exp [i(kzx + at)]. (8) 

From this record we wish to  reconstruct  the field that  ex- 
isted in the propagation medium at t = 0, which can  be 
written from (2) as 

kz kz 

P(X ,  2 ,  0)  

= 2 2 P(kz,   k , ,  t = 0)  exp [i(kzx + k,  z) ] .   (9 )  

In  order  to obtain the desired expression relating (8) and 
(9) we obtain a Fourier transformation of (8) with respect 
to x and t ,  which gives 

P(kz ,  z = 0 ,  w) = P(kz,   k , ,  t = 0).  (10) 

The  correspondence  between k, and w is given by the dis- 
persion  relation (4). The substitution of (10) and (4) into 
(9) gives 

p ( x ,  z ,  0)  = 1 P(kz,  z = 0 ,  o) exp i{kzx 

kz kz 

ks kz i 
+ m[l - (kz/m)2]1'zz}) ,  (11) 

in which 

m = w / v .  

We can easily verify that (1 1) is the solution to 

(b) 

Figure 2 Time  sequences showing  the  evolution of an  acoustic 
wave from a point source:  (a) solution of the full wave  equation 
( l ) ,  and (b) solution of the equation  for downward-propagating 
waves (7). 

(b1 

Figure 3 Time sequences showing  the  evolution of an  acoustic 
wave from a line  source:  (a)  solution of the full wave  equation 
( I ) ,  and (b) solution of the  equation  for downward-propagating 
waves (7). 

at t = 0. Thus, when solving (13) for P over  the (kz ,  w) 
domain, we obtain  the  correctly migrated section at  some 
depth z by implementing  the equation 

p ( x ,  z ,  0 )  = 1 2 P(kxc ,   z ,  0) exp ( i  kzx).  (14) 
ks w 

We consider  here  the laterally  homogeneous case, in 
which the velocity is specified as a  function of the  depth; 
i.e., u = u(z) .  Let  the z axis be subdivided  into N ,  in- 
crements of Az length. The j th increment  (layer) is de- 
noted as f j ,  where 

tj = ( z  I z j  5 z < z j + l ) .  (15) 

Within each  layer f j  the velocity is assumed as  constant. 
Thus, (13) can be solved for P at zj+l by using P given at zj  
as  the initial conditions.  This  solution  can  be expressed  as 483 
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Figure 4 Modeling and  migration of a dipping reflector. (a) 
Model of dipping reflector. (b) Synthetic zero offset section of 
(a). (c) Section (b)  after  migration by means of (13). 

J. GAZDAG 

+j = (w/uj) [l  - ( ~ ~ k , / w ) ~ ] " * ,  (18) 

where vi is  the velocity of the j th  layer (15). 
It is evident  from (16) that P is  advanced  to  greater 

depths by  implementing a phase shift  in its  Fourier coeffi- 
cients. The  rate of phase  change  per unit depth  is 4j (18). 
One of the  noteworthy  properties of this  solution  method 
is that  the  phase shifts expressed in (16) are accumulative. 
This also  means  that if we are  interested in the migrated 
section between  some specified depths, it is not necessary 
to  solve (13) for  other  than  the region of interest. We can 
immediately  write P at zj+l in terms of P at  zero  depth zo 
as 

P(k,, zj+lj w )  = W , ,  zo, a) exp (i$j4, (19) 

where 

The  remarkable simplicity of this  solution method  for 
laterally homogeneous media is possible only because v = 

v(z) is independent of both k, and o, which appear  under 
the square  root sign in (13). Unfortunately, we cannot  use 
(13) for  problems with horizontal velocity  variations. We 
can,  however,  approximate  the  square  root by series  ex- 
pansion, which gives 

dP(k,, z . 01 = i ( + ) ( 1 -  - u2kz2 - ~ u4kX4 
az 2w2 8w4 "1 

x P&,, z ,  0). (21) 

The  truncation of the  fourth  order and higher order  terms 
results in a second  order approximation to (13). The  sec- 
ond order  equation  can  be  used  for migrating dips  up to 
30" [ 7 ] .  The  fourth  order term in (21) increases this  angle 
to 50", which is adequate in most practical  applications. 
We can  express (21) in the ( x ,  w )  domain as 

dP(X, Z,@)  = 

dZ 

u2 a'p 
X i. + 202 ax2 8w4 ax4 

a4p + . . . 1. 
(22) 

In this equation  the  dependence of u need  not  be restrict- 
ed to  the  depth variable alone,  but it can  also  include  lat- 
eral variations;  i.e., u = v ( x ,  z ) .  The solution of (22) at 
t = 0 gives an approximation to the wave field corre- 
sponding to  the migrated section. 

Numerical  results 
We tested  Eq. (7) for downward-moving waves  and com- 
pared the  results with those of the full wave equation (1). 
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Figure 5 Modeling and migration in a medium with vertical  velocity  variations. (a) Time  sequence showing the evolution of the  wave  in 
the (x, z) plane.  (b)  Zero offset section  before and  after migration. 

In both examples  shown in Figs. 2 and 3 we used a 64 x 
64 computational  grid. The initial conditions can  be  seen 
in the first frame shown  at t = 0. The evolution of the 
waves is shown by the  sequence of frames taken at  equal 
time intervals. 

In the first example shown in Fig. 2,  the wave is initi- 
ated in a  medium with v1 = 1.0, from which it enters a 
lower  velocity medium with v2 = 0.707. We can observe 
very  clearly the wave reflected from  the interface with 
opposite sign,  indicating  a  negative reflection coefficient. 
This is entirely absent in Fig. 2(b), which shows  a remark- 
able qualitative  agreement with the downward-moving 
portion of the full wave equation. 

The initial conditions in Fig. 3 are  set up to initiate a 
plane wave in the medium with v1 = 1.0. The  downward- 
propagating  part of the wave impinges upon  a prism in 
which v 2  = 2.0. In Fig. 3(a) we observe the  wave reflected 

from the  top of the prism. We can  also remark the  circular 
diffraction patterns developed about  the  upper  corners of 
the  prism. Only a small fraction of these  circular dif- 
fraction patterns  are noticeable in Fig. 3(b), which does 
not include  upward-moving  waves. The  downward-trav- 
eling waves, including those which exit the prism at  the 
left and the  bottom  edges,  are  seen very clearly in both 
Figs. 3(a)  and  3(b). 

The numerical  example for  the  reconstruction of the 
wave field from a synthetic seismic  record is shown in 
Fig. 4. The  synthetic record shown in Fig. 4(b) was gener- 
ated by implementing the  theory of Trorey [9] for seismic 
diffractions. This is a zero offset record  section in which 
the source  and  the  recorder positions are the same  at  the 
z = 0 level. The  same  record would be obtained from a 
line source  shaped  as  the  earth model shown in Fig. 4(a). 
In such  an  experiment  one would have to use one-half of 
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the  actual velocity in order  to  compensate  for  the two- 
way travel of the waves in the  zero offset sections.  The 
computations  were  performed over a 128 X 128 grid, with 
Ax = Az = 50 m,  and At = 50 ms. The migration velocity 
was constant, v = 2000 mls. The migrated  section shown 
in Fig. 4(c) is the result of the numerical  solution of (13) 
and (14). It  is in excellent agreement with the model in 
spite of its steep  dip of 52”. 

The  last  example deals with the generation of a syn- 
thetic  time section  and  its migration. The velocity varies 
with the  depth variable as  shown in Fig. 5. The first frame 
of Fig. 5(a) shows  the initial conditions for p at 
t = 0, while its time derivation ap/at is set uniformly to 
zero  at t = 0. A sequence of four frames  shows the time 
evolution of the  wave.  The wave field sampled  at z = 0 
depth gives the desired zero offset section. Figure 5(b) 
shows  this section before  and after migration using (19) 
and (20). Apart from numerical  effects, the migrated sec- 
tion corresponds  to  the initial conditions  shown in Fig. 
5(a) at t = 0. 

Concluding  remarks 
It has been  shown [SI that numerical  solution methods 
based on  the use of FFT  techniques offer certain  advan- 
tages over finite difference methods.  This is particularly 
true when dealing with the simulation of wave phenomena, 
the  subject of the present paper, in which case  the solution 
is  expressed most  naturally by means of Fourier  series. 
Moreover,  the operators used to formulate wave extrap- 
olation processes  are  expressed more  readily as  the 
function of the temporal  and  spatial frequencies,  rather 
than in terms of time and  distance.  Therefore, the solution 
methods  are simple, and  the  results  are more accurate 
than  those obtained  with finite difference methods.  The 
first reason  for  accuracy is that  we  are solving equations 
which describe  the desired process exactly. For (7) and 
(13) we  can only  write approximate  expressions in the 
space-time  domain. The  second important factor  is  that 
our  methods  are practically free from truncation errors. 

The last  but by no  means  the least significant character- 
istic of the  present solution methods is that they lend 
themselves  conveniently to parallel  processing. For  ex- 

Consequently, (13) can  be solved for all depths  over  one 
column  (with  a fixed kz)  of the ( k z ,  w) plane. This  de- 
mands  little  storage for a considerable number of compu- 
tations.  This  property  can be  particularly advantageous in 
the  effective utilization of array  processors. 
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