
M. Alfonseca
M. L. Tavera

A Machine-Independent APL Interpreter

Abstract: The problem of writing machine-independent APL interpreters is solved by means of a systems programming approach making
use of an intermediate level language specially designed for that purpose. This paper describes the language, as well as the procedure
used to build universal interpreters. Three compilers that translate this language for three different machines have been written so far,
and an APL interpreter has been finished.

Introduction
When a new computer is developed, it generally has its
own machine and assembly languages, usually different
from those of other machines; most software, including
high level language translators, must be rewritten for the
new machine. The cost of this work would be greatly re-
duced if some of the software could be made machine-
independent.

One high level language not commonly provided with
new machines is APL [I]. This highly sophisticated inter-
pretive language includes a large number of symbolic
built-in functions (primitive functions) and operators that
render it possible to write complicated programs in a con-
cise form with a simple syntax.

Primitive APL functions and operators take arrays as
well as scalars as their working objects, so that loopless
programs may be written. Thus, good APL programming
somewhat counteracts the loss in translation time inher-
ent in interpretive systems compared to compiling sys-
tems. Besides, many of the common array-handling oper-
ations, such as matrix products, matrix inversions, and so
forth, are primitives in the language.

A universal APL interpreter which would make this lan-
guage available on many machines would be welcome,
especially in view of the fact that use of the language is
growing.

As an example of this need, when the IBM Systeml7 (a
sensor-based computer) was first announced, it was pro-
vided with only a disk support system and a primitive as-
sembler. More complete software was added later, in-
cluding a FORTRAN compiler. We were interested in being
able to manage the Systeml7 sensors by means of APL.

We could not simply use one of the different APL systems
available for the IBM Systeml370, because the assembly
languages and architectures of the systems are different.
Therefore, we built a System/7 APL interpreter, written in
assembly language [2].

A new sensor-based computer, the IBM Series/l [3],
has recently been announced as an alternative for Sys-
tem/7. If we want to use the programs we wrote for the
System/7 on the new computer, another APL interpreter
will have to be written, because the assembly languages
and architectures are again different.

Instead of building a Series/l APL interpreter, and prob-
ably having to face the same problem again in the future,
we decided to try to write a universal APL interpreter, as
independent as possible from the machine.

APL system requirements
An interpretive APL system should have the following
properties [4]:

I . Time sharing should be provided for, so that different
users may have access to it at the same time by means
of terminals. Each user is assigned a section of main
storage, called an active work space, where he may
keep and execute his data and APL functions. He is
also assigned a library in auxiliary memory where he
may store copies of his active work spaces. The avail-
able main memory is usually split up into several ac-
tive work spaces (slots). At a given moment, the num-
ber of users connected to the system may be greater
than the number of slots. In this case, copies of all

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish
other excerpts should be obtained from the Editor.

IOL. 22 NO. 4 J IULY 1978

41 3

M. ALFONSECA AND M. L. TAVERA

active work spaces are kept in an auxiliary file, and
whenever a user is given control, his active work
space is swapped into one of the memory slots.

2 . The data contained in a work space may be internally
represented as one of the following types:

Boolean, occupying one bit per element of data,
Integer, one, two, or four bytes per element,
Floating point, typically eight bytes per element,
Literal, one byte per element,
Pointer, the value of which is an address.

Memory allocation within the work space is dynamic;
some garbage collection procedure should be pro-
vided. Memory management requires an extensive use
of pointers.

3. The system is usually made up of the following parts:

A supervisor, which manages the time sharing and the
terminal and disk input/output operations.
An interpreter, which must be reentrant, i.e., all modi-
fications should be done only in the work space.

The supervisor is in itself machine-dependent and a
general operating system or subsystem has often been
used as such [5] . However, this is not the case with the
interpreter, where only slight details, like paper width
or floating point precision limits, may have to be var-
ied with the machine.

Therefore, we decided to build a machine-independent
APL interpreter with a machine-dependent supervisor to
be added for each particular implementation.

Selection of the interpreter writing language
Having decided to write a universal APL interpreter, we
then had to face the problem of choosing the language we
would use to write it. Three criteria were considered: the
degree of machine independence of the language, the ex-
tent to which the APL system requirements described
above could be met, and finally the performance of the
APL interpreter in terms of both execution efficiency and
minimal storage requirements.

Since interpreters are usually about an order of magni-
tude slower than compilers for the same language, the
process of construction of our interpreter should not in-
troduce a noticeable degradation in its execution speed.
On the other hand, since we intend to make the system
available for both minicomputers and mainframes, it
should be as small as possible. Since these two conditions
are frequently opposed to each other, an optimal solution
for both cannot be met. We are thus prepared to trade off
slight losses in execution speed for significant reductions
in size.

41 4 Four different language classes were considered.

M. ALFONSECA AND M. L. TAVERA

Assembly languages
Assembly languages are the best suited to meet all the
system requirements; they allow maximum flexibility to
the system programmer, while providing the best size and
speed. However, they are completely inadequate for
meeting the independence criterion, since every machine
uses its own assembly language.

Macro language
A first approach to getting machine independence would
be to design a general macro language. Each macroin-
struction would be generated by means of the macro defi-
nition facilities provided in most assembly languages.

One advantage of this approach is that flexibility of the
language would be only slightly less than that of assembly
languages. On the other hand, machine independence
cannot be completely assured, because not all assemblers
are macroassemblers (as was the case with the first ver-
sion of the System/7 assembler), and not all of these have
the same power. There is a danger that either the number
of macroinstructions which must be defined will grow too
large or that each macro will become too complex. For
instance, suppose we want to define one or several
macros to add two or three arguments. Since we may
have to add arguments of different types (recall require-
ment 2) , there are two possible solutions to this problem:
define one macro for every possible combination and for
each number of arguments to be added (at least 30 macros
would be needed just for the addition operation); define a
single highly complex macro which would combine all
possible cases. The macroassembler would then have to
provide conditional macroinstructions and the ability to
ascertain the existence of an argument at preassembly
time.

High level languages
A second approach would be the use of an existing high
level language as the interpreter writing language. Ideally,
there would be a good, high level programming language
and, for each machine, a compiler to translate this lan-
guage into efficient machine code. However, this situa-
tion does not exist yet, and current high level languages,
while highly readable and capable of providing concise
programs, add both to size and execution time due to the
compilation process and the run-time environment. Two
high level languages were considered:

I . FORTRAN is a widely used high level language which
assures some degree of machine independence, be-

m e compilers for different machines differ only in
minor details. However, the limited flexibility of this
language makes it difficult to meet some of the APL

system requirements. In particular, FORTRAN data rep-
resentation does not allow easy management of Bool-

IBM J. RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

ean data or of integers occupying only one byte. The
required Boolean operations would include logical
AND, OR, exclusive OR, and negation of bit strings,
plus selection and testing of individual bits or groups
of bits. More important is the fact that FORTRAN com-
pilers cannot usually generate reentrant code, a neces-
sary condition for writing a time sharing system.

2 . PL/I is another commonly used high level language, and
compilers for it are provided for most machines. It is a
more flexible language than FORTRAN, and data types
are reasonably well managed. Reentrant code genera-
tion can be selected as an option. A drawback is that
PL/I compilers for different machines usually imple-
ment different subsets of the language. Thus, should
we select a given subset, there is no guarantee that the
one implemented in a new machine will contain all the
features we have selected. The P L ~ I compiler provided
with the machine might have to be extended to meet
our requirements.

0 Systems programming approach
The systems programming approach consists in the use of
a language higher than assembly language but lower than
high level languages as the systems programming lan-
guage. Assembler languages are obviously the most flex-
ible and efficient, while high level languages give the max-
imum machine independence and readability. Systems
programming languages usually combine the properties of
both in the sense that they provide the option of including
built-in functions and assembly language statements
within the high level environment. They are also provided
with good optimizing compilers which produce very effi-
cient code.

Standard systems programming languages, however,
can only be used at the expense of a loss in machine inde-
pendence, because of their machine language features,
which are obviously dependent on the computer. In addi-
tion, some of the most widely used systems programming
languages do not manage floating point data, obviously
necessary to write an APL interpreter.

Even a subset of an existing systems programming lan-
guage would not be an optimal solution to our threefold
problem of machine independence, flexibility, and effi-
ciency. In the first place, the language would have to be
stripped of some of its flexible features to assure machine
independence. Thus, such languages would again become
high level languages, discussed in the preceding para-
graph. In the second place, the semantics of these lan-
guages, usually PUI- or ALGOL-like, would make it diffi-
cult and time-consuming to build good optimizing com-
pilers. For these reasons, to solve our specific problem,
we decided to design our own ad hoc systems program-
ming language. It should be really intermediate in the
sense that it should have the semantics of assembly lan-

guages but with a higher level syntax, and it should be as
easy to analyze as possible, with an eye to reducing the
programming effort required to build compilers that pro-
duce highly efficient code. We shall call such a language
an “intermediate language (IL).”

The procedure followed to design the IL instructions
was to select the most common operations in the assem-
bly languages of different IBM machines [6] and to repre-
sent them with a high level syntax. Instructions not aris-
ing naturally from the assembly level, such as IF-THEN-

ELSE, Do, and so forth, are not a part of IL because our
objective was only to define a substitute for assembly lan-
guages; we were not concerned with high level language
properties such as complex operations and those making
structured programming easier. Also, special instructions
such as BXLE, TR (Systed370 assembler) appearing in a
few assembly languages have not been selected, to safe-
guard machine independence.

The language
The only assumption about the machine in which IL may
eventually be implemented is that its memory is consid-
ered to be a vector of units of fixed but not defined size,
consecutively numbered. Appendix A shows the syntax
of IL.

Data objects
The data objects of the language are numeric constants
(fixed point integers and floating or decimal rational num-
bers) and identifiers which may name different types of
data: four types of variables; pointers; labels; routine
names; and parameters.

A variable has four different attributes:

The memory address associated with it,
Its type,
Its length (number of elements),
The actual values of the elements.

The address of the variable defines the location of the first
memory unit of the space allocated to the variable.

Variable values may be integer or rational. Integer val-
ues may be of three different types, corresponding to the
assignment of one, two, or four memory units per ele-
ment.

A variable may contain one or several elements in a
linear structure. The fact that we have defined IL seman-
tics to be as close as possible to machine language level
precludes the inclusion of more complex structures (ma-
trices, lists, etc.) which must always be ultimately repre-
sented in a linear memory.

A pointer is a name the associated value of which is
considered to be the address of some variable. In most
cases a register would be assigned to it, although memory
locations may also be used.

M. ALFONSECA P IND M. L. 1

41 5

’AVERA IBM J. RES. DEVELOP. e VOL. 22 e NO. 4 e JULY 1978

B -
w

b. Variables of undefined length,
I C 0 1 IC11 c. Variables of undefined address, depending on the

value of a pointer on which the variable is based.
The address assigned to the variable is computed
as the addition of the value of the pointer plus an
offset.

I ! I I I ! I I ! I

I l l I l l I l l
1 1 l i t 1 ' 1 I

I I I I I

1 ' 1

All preceding possibilities are mutually compatible and
\ I\ A /

A I 0 1 A C l l A C 2 1
" v Y can be combined in a single statement with the following

syntax:

Figure 1 Space allocation for example 1. variable-name optional-index = variable-name optional-
index p'm

1 ' 1 I '

p'[I ! I I I !

Figure 2 Space allocation for example 2.

Labels are names that may be associated with instruc-
tions, whereas routine names are entry points to the dif-
ferent subprograms which may make up a complete pro-
gram. A subprogram may have several entry points.

A parameter is an identifier the value of which cannot
be changed during program execution.

The first letter of the name assigned to an identifier im-
plicitly declares its type. Appendix B shows the conven-
tions used.

Program organization
An IL program consists of two different parts: declara-
tions and executable statements, separated by a separa-
tion statement.

Example 1 (see Fig. 1)

A t 1 2 3
B = A C 1 1
I C 2 l = B

Variable A is implicitly defined by its first letter as an
integer variable with four memory units per element. Its
length is three, and the initial values of its elements are 1 ,
2 , and 3. Variable B is defined as a single element variable
with the same address as the second element of A (in-
dexing uses origin zero). Variable I is declared as an in-
teger variable with two memory units per element, of
length two, and the address of which is the same as that of
B.

Example 2 (see Fig. 2)

W+4
CCWl=PC21

Variable W is defined as a single element integer vari-
able occupying a single memory unit and with an initial
value of 4.

Variable C is declared as an integer, four-unit-per-ele-
ment variable the address of which is offset two units

All variables appearing in a program must be declared. from that pointed to by pointer P; its length varies with
This can be done in either of the following ways: the value of W.

1. Assigning one or more initial values to the variable
name. The length of the variable is thus defined as the
number of values given. The syntax of these state-
ments is

Executable IL statements are analyzed from right to
left. Functions are executed without special precedence
rules, in the order they are found; parentheses are not
allowed. In addition to the assignment and the standard
arithmetic operations, the following functions are al-

variable name + values
lowed:

2 . Assigning a synonym to a variable name previously
declared. This feature permits the declaration of vari-
ables with undefined attributes, allowing the following
possibilities:

Pointing, P+X, assigns to pointer P the address of vari-
able X.
Incrementing, PAX, increments the value of pointer P by
the value of X.
Shifting, A 1. B , shifts the value of B to the left A bits (this

a. Variables of different type, sharing the same ad- operation is equivalent to a multiplication of B by the A
41 6 dress, power of 2) , while A $5' shifts B to the right.

Logical bit to bit operations, v (inclusive or), A (and),
(exclusive or), - (not). They operate on values of any in-
teger type on a bit to bit basis.

Data objects of any integer type and pointers can be
freely mixed in the IL statements. The assignment instruc-
tion also allows for conversion of integer to rational data
and vice versa.

Example 3

FtPtIxA
Primitive operations only affect data objects of length

one, including indexed variables and pointers. The as-
signment statement, A+B, is again an exception, in the
sense that if A is a variable of length different from one,
the required number of memory units is copied, one unit
at a time, from the address of B to the address of A in
ascending order (the unit with the lowest address is cop-
ied first).

The following transfer instructions have been included:
unconditional transfer, +E, corresponding to the uncon-
ditional branch in most machine languages; conditional
transfer, + F IF C 0 N D I T IO N, corresponding to the
conditional branch; test bits; +E IF V A I, correspond-
ing to the test under mask instruction and meaning that
the transfer is taken if the “logical and” of V and I is not
null.

IL does not contain special input/output instructions.
The reason is that all APL input/output operations are
managed by the supervisor and, whenever the interpreter
needs one, it calls a supervisor subroutine.

In an IL instruction, the symbol R indicates that every-
thing at its right up to the end of the line is a comment and
should be ignored.

General procedure
The procedure for building a universal APL interpreter US-

ing IL as a systems programming language is accom-
plished according to the following scheme:

An APL interpreter is written in IL.
A compiler is built that translates IL programs into assem-
bly language for machine M,.
The interpreter is compiled. The final product is an APL

interpreter directly executable on machine M,.

This procedure is displayed in Fig. 3, where square
boxes represent APL interpreters written in the language
at the bottom. The T-like figure represents a compiler
written in the language at the bottom and translating the
language at the left into the language at the right.

We have chosen APL as the language for writing the
compiler, in spite of the loss in efficiency inherent in any
interpretive language, because compiler performance is

IBM J. RES. DEVELOP. VOL. 22 NO. 4 0 JULY 1978

I APL I
Figure 3 General procedure for building a universal APL inter-
preter.

r’

\ u+-o I
il

Figure 4 Application of the general procedure to three different
cases.

not important at all in this environment; once the APL/IL

interpreter has been written, it must be compiled only
once for each machine. Besides that, APL is a very suit-
able language for writing compilers quickly [7, 81.

To obtain an APL interpreter directly executable on a
different machine, M,, only the code generator of the
compiler need be rewritten.

The compilers can be executed on any base machine
where APL is available. We are presently using APLSV on a
Systed370, but the base machine can be changed at any
time with no further cost.

Let us consider three machines M,, M,, and M,. With
our procedure one interpreter and three compilers must
be programmed in order to implement APL on all of them
(see Fig. 4).

Efficiency of the procedure
Suppose we intend to implement an APL interpreter on n
different machines. Here we compare the effort by the
programmer, the amount of space required in storage,
and the execution speed of three different approaches.

* ”

M. ALFONSECA A ND F

~ ~~

41 7

ki. L. TAVERA

41 8

0 ~ 0 ” - - - - ~

* * c2 *

c 3

I I I
1 2 3

klachines

Figure 5 Total programming effort of different approaches vs
number of machines, where X indicates assembly language ap-
proach, 0 IL approach, and * high level language approach.

1. The first solution would be to build one APL interpreter
directly in the assembly language of each machine.
Let W, be the cost of building each of these APL inter-
preters. The total cost of this approach would be

C, = n x W,. (1)

2 . The second approach would be to write a universal
APL interpreter in one of the present high level lan-
guages. We assume that a compiler for the base lan-
guage is available for every machine and implements
the required subset of the language. Let W, be the cost
of writing the high-level-language-based APL inter-
preter. The total cost of this approach would be

c, = w,. (2)

3. Our approach consists in the use of IL as the system
programming language. Let W, and W, be the cost of
writing the IL-based APL interpreter and the cost of
building an IL compiler, respectively. The total cost of
this approach would be

C, = W, + n W,. (3)

We have previously built [2] an APL interpreter in as-
sembly language at the cost of about four person-years.
The cost of writing each assembly language APL inter-
preter, W,, would be much lower, because of our pre-
vious experience and because most algorithms would be
available. We estimate it at about two person-years.

We have already written an IL APL interpreter at a cost
(WJ of over one person-year, a smaller figure than the
one estimated for W,, due to the programming and de-
bugging ease provided by the high level syntax of IL. We
also assume it is not possible to write an APL interpreter in
any high level language at a cost (W,) lower than one per-
son-year.

A first compiler written in APL and translating IL pro-
grams into IBM System/370 assembly language has been
built at a cost of two person-months. The cost of changing
the code generator so as to translate IL into the assembly
languages of IBM Series/l and another experimental com-
puter was only one person-month. We take this to be the
value of W,.

Substituting the indicated values for W,, W,, W,, and
W, in Eqs. (1-3), we find (see Fig. 5)

C, = 24 x n, (4)

To gain insight into the relative merits of the three ap-
proaches in terms of size, we have written several portions
of the APL interpreter (those most frequently executed
[9], totaling about 3 percent of the whole program) in IL,
FORTRAN, PL/I, and directly in assembly language, and we
have compiled them into System/370 machine language.
The FORTRAN programs have been compiled by FORTRAN
G and also extended FORTRAN H compilers with the option
for maximum optimization. The results are shown in
Table 1, where the figures refer to the size in bytes of the
part of the object program corresponding to executable
instructions. The figures give directly a good estimate of
size. Since the same algorithms were used in all cases,
execution speed may also be roughly estimated as being
proportional to the number of machine instructions gener-
ated and thus to the space these instructions occupy. In
order to get a better estimate, the number of instructions
within the inner loops and the number of times they are
executed should be taken into consideration.

M. ALFONSECA AND M. L. TAVERA IBM J . RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

We may estimate from the above examples that there is
a loss of efficiency of about 10 percent when writing the
program in IL as compared to assembly language. On the
other hand there is a loss of at least 70 percent when the
interpreter is written in FORTRAN or 150 percent when it is
written in PLII, respectively (even with the optimizing
compilers available), as compared to the program written
in IL.

The figures given in Table 1 contain in all instances the
overheads associated with call-return management, data
management, and so forth, allowing the chosen examples
to be incorporated into a full running interpreter, so that
they are truly comparable.

We have seen above that approaches 2 and 3 are much
more advantageous than approach 1 with respect to pro-
gramming effort measured in person-time. Now, com-
paring approaches 2 and 3, we see that the latter, while
slightly unfavorable with respect to programming effort
(with the assumption that FORTRAN or PL/I compilers will
ever be available), from a space point of view is consid-
erably better. We have thus chosen the IL approach,
which meets our severest requirement, namely, limiting
the size of the interpreter.

The reason for the negligible overhead of IL programs
compared with equivalent assembly programs does not lie
in optimization properties of the compiler (which would
have made it too complex to be written in two months)
but in the semantic closeness of IL to assembly language;
many of the IL primitive operations produce a single ob-
ject instruction. The only optimization feature introduced
in the compiler design is the propagation of the constants
or parameters contained in the registers of the machine in
order to save load and store instructions.

Optimization is thus a responsibility of the IL program-
mer, as is also the case with any assembly programmer.
This agrees with our purpose in using IL as a substitute for
assembly languages, not for high level languages.

If the need for even better performance arises once the
interpreter has been compiled for a given machine, an as-
sembler programmer (who obviously need not know I L)
could manually optimize the object assembly program by
taking advantage of the special instructions of the ma-
chine.

State of the work
An APL-IL interpreter has already been written, in which
the full APL language and a set of system commands have
been implemented. It includes an editor to build and mod-
ify user functions.

The first IL compiler we built translates IL programs
into System/370 assembly language, in order to profit
from the fact that one of these machines is available to us.
This compiler has allowed us to translate and test the in-
terpreter, which is now being debugged. Two other com-

Table 1 Results using different approaches.

Program PLiI FORTRAN IL Assembler
compiled with

F-G F-X
-~

Lexical
analysis 2690 2324 1924 1260 1096
of numeric
constants

analysis
of 2504 2062 1368 702 640
constants
and
variables.
Assignment
function

Syntax

Vector 3302 2762 1900 1044 964 catenation
Total 8496 7148 5192 3006 2700

pilers are already available, translating IL into the assem-
bly languages of the Series/l and an experimental com-
puter.

A machine-dependent supervisor has been added to the
System/370-translated interpreter to provide manage-
ment of the work space library and terminal input/output,
resulting in a prototype system that is currently being
used to test the interpreter and to compare its perform-
ance with that of APLSV, also available in the same ma-
chine. The translated interpreter occupies a total space of
74 Kbytes (where K = 1024), which is less than that
needed for the APLSV interpreter. Execution speed is not
easily compared, because different algorithms have been
used in both systems (ours trying to minimize size). How-
ever, figures currently obtained indicate that our system
is, on the average, about 1.15 times slower than APLSV.

Conclusions
The systems programming approach has been found opti-
mal to solve the problem of building a machine-indepen-
dent APL interpreter. However, a special systems pro-
gramming language has been designed to meet all the re-
quirements of our problem. The intermediate level
language IL has a higher level syntax than assembly lan-
guages. Its semantics are closely related to those of as-
sembly languages, notwithstanding the fact that it main-
tains machine independence. This approach eases pro-
gramming, debugging, and readability (because of its
syntax) compared to assembly languages. Also, com-
pilers for IL, producing efficient code, can be built at little
cost (because of its semantics). 41 9

IBM J. RES. DEVELOP. 0 VOL. 22 0 NO. 4 0 JULY 1978 M. ALFONSECA AND M. L. TAVERA

We are using IL as a tool for systems programming, in
order to build a universal APL interpreter. It could also
serve as a kind of machine-independent assembly lan-
guage, once compilers for different machines have been
built.

We do not intend to present IL as an alternative to pro-
gramming in high level or other systems programming
languages. It was designed to meet the severe require-
ments imposed by our particular application, i.e., a uni-
versal APL interpreter implementable both in small and
large computers.

Appendix A: Formal syntax of IL

Languages similar to IL could be used in computer sci-
ence education as substitutes for assembly languages. IL
is easy to learn. Two staffmembers at this Scientific Cen-
ter who are fluent in FORTRAN, PL/I, and APL, but who had
never written programs in assembly language, were able
to write and successfully execute their first IL program
one day after they had been given the manual for the lan-
guage. The language is completely designed, and com-
pilers for three different machines have been built. The
universal APL interpreter has been completed and is in the
process of being debugged.

In the following representation, A represents the null string.

<PROGRAM> : : = < D E C L A R A T I O N S > < S E C O N D P A R T >
< S E C O N D P A R T > : : = X I < S E P A R A T I O N > < E X E C U T A B L E S T A T E M E N T S >
< S E P A R A T I O N > : : = / < E N D O F S T A T E M E N T > I / / < E N D O F S T A T E M E N T >
< D E C L A R A T I O N S > : : = X I <DECLARATIONSTATEMENT><END O F S T A T E M E N T >

< D E C L A R A T I O N S T A T E M E N T > : : = < I . V . A S S I G N M E N T > I < E Q U I V A L E N C E >
< I . V . A S S I G N M E N T > : : = V A R I A B L E NAME+<VNL><DIMENSION><VALUES> I

< V N L > : : = XI V A R I A B L E N A M E + < V N L >
< D I M E N S I O N > : : = X I I N T E G E R C O N S T A N T p
< V A L U E S > : : = C O N S T A N T < L I S T 1 > I P A R A M E T E R < L I S T 2 >
< L I S T 1 > : : = X I B L A N K C O N S T A N T < L I S T I > I < V A L U E S >
< L I S T 2 > : : XI < V A L U E S >
< L I S T 3 > : : = XI, L A B E L NAME < L I S T 3 >
< E Q U I V A L E N C E > : : = V A R I A B L E NAME < I N D E X I > = < E Q U O B J E C T > I

< E Q U O B J E C T > : : = V A R I A B L E NAME < I N D E X 2 > I P O I N T E R

< I N D E X I > : : = XI C < O B J E C T l > 3
< I N D E X 2 > : : = A I C < P A R A M E T E R E X P R E S S I O N > 1
< O B J E C T l > : : = V A R I A B L E NAME I < P A R A M E T E R E X P R E S S I O N >
< P A R A M E T E R E X P R E S S I O N > : : = < C O N S T A N T O B J E C T > I < P A R A M E T E R E X P R E S S I O N >

< E X E C U T A B L E S T A T E M E N T S > : : = X I < L A B E L E D S T A T E M E N T > < E N D O F S T A T E M E N T >

< L A B E L E D S T A T E M E N T > : : = < L A B E L > < S T A T E M E N T > I L A B E L N A M E :
< L A B E L > : : = XI L A B E L NAME :
< S T A T E M E N T > ::=<ASSIGNMENT>I<TRANSFER>I<ROUTINECALL>I

< A S S I G N M E N T > : : = P O I N T E R + < I N D E X E D V A R I A B L E > I P O I N T E R A < E X P R E S S I O N > I

< I N D E X E D V A R I A B L E > : : = V A R I A B L E NAME < I N D E X >
< I N D E X > : : = X I C < P A R A M E T E R E X P R E S S I O N > 3
< E X P R E S S I O N > : :=<OBJECT><DYADICFUNCTION><EXPRESSION>I

< O B J E C T > : : < I N D E X E D V A R I A B L E > I C O N S T A N T I P A R A M E T E R

< D E C L A R A T I O N S >

L A B E L N A M E + < D I M E N S I O N > L A B E L N A M E < L I S T 3 >

P A R A M E T E R = < P A R A M E T E R E X P R E S S I O N >

C < P A R A M E T E R E X P R E S S I O N > 3

< D Y A D I C F U N C T I O N > < C O N S T A N T O B J E C T >

< E X E C U T A B L E S T A T E M E N T S >

< R E T U R N > I S A V E

< I N D E X E D V A R I A B L E > + < E X P R E S S I O N >

<MONADICFUNCTION><EXPRESSION> 1 < O B J E C T >

< D Y A D I C F U N C T I O N > : : = + I t I - I X I + I + I j . I A I V I @ I A I I I +

< M O N A D I C F U N C T I O N > : : = - I I I -
420 < T R A N S F E R > : : = -t L A B E L N A M E < C O N D I T I O N A L S T A T E M E N T >

M. ALFONSECA AND M. L. TAVERA IBM I . RES. DEVELOP. 0 VOL. 22 NO. 4 JULY 1978

1 < C O N D I T I O N A L
S T A T E M E N T > : : = X I

< C O N D I T I O N > : :=<INDEXEDVARIABLE><RELATION><EXPRESSION>I
< C O N D I T I O N >

< I N D E X E D V A R I A B L E > A < C O N S T A N T E X P R E S S I O N > I
< C O N S T A N T E X P R E S S I O N >

< C O N S T A N T E X P R E S S I O N > I <MONADIC FUNCTION>
< C O N S T A N T E X P R E S S I O N > I <CONSTANT OBJECT>

~

i < C O N S T A N T E X P R E S S I O N > : : = < C O N S T A N T O B J E C T > < D Y A D I C F U N C T I O N >

<CONSTANT OBJECT> : : = INTEGE_R CONSTANT I PARAMETER
< R E L A T I O N > : : = < I I I = I f I > I 2
< R O U T I N E C A L L > : : = E X T E R N A L R O U T I N E NAME I L A B E L NAME

<END O F S T A T E M E N T > : : = <COMMENT> CARRIAGE RETURN
<COMMENT> : : = h I A < C H A R A C T E R S T R I N G >
< C H A R A C T E R S T R I N G > : : = h I & O N CARRIAGE RETURN CHARACTER

P < R E T U R N > : : = I + I N T E G E R C O N S T A N T < C O N D I T I O N A L S T A T E M E N T >

< C H A R A C T E R S T R I N G >

I Appendix B: Identifier type conventions
Type of identifer

Integer
One memory unit per element
Two memory units per element
Four memory units per element

i. Rational
Pointer
Label
Routine names
Parameters

I

I References and notes
1. APL Language, Publication No. GC26-3847-0, IBM Corpo-

ration, Data Processing Division, White Plains, NY, 1975. 1 2. M. Alfonseca, M. L. Tavera, and R. Casajuana, “An APL
I Interpreter and System for a Small Computer,” ZBM Syst. J .

16, 18 (1977).
3. Seriesll Model 54955 Processor and Processor Features

Description, Publication No. GA34-0021, IBM Corporation,
General Systems Division, Atlanta, GA, 1977.

4. VS APL Program Logic, Publication No. LY20-8032-1, IBM
Corporation, Data Processing Division, White Plains, NY,
1976.

5 . VM/370-CMS and VSPC.
6. IBM 1620, 1130,7040,7090, S/3, S/7, S/360, S/370, Seriedl.
7. M. Alfonseca, “An APL-written APL-subset to System/7-

MSP Translator,” Proceedings of the APL Congress 73,
North-Holland, Amsterdam, 1973.

First letter of identifer

O R T U V W
I J K L M N
A B C D G H
F
P
E
S
X Y Z

8. R. Aguilar, M. Alfonseca, and J. Bondia, APL to System/7
Assembler Compiler, SCR.05.73, Centro de Investigacion
UAM-IBM, Madrid, 1973.

9. H. J. S a l and Z. Weiss, “Some Properties of APL Pro-
grams,” Proceedings of the APL Congress 75, ACM, New
York, 1975.

10. Machine Oriented Higher Level Languages, W. L. van der
Poel and L. A. Maarssen, eds., North Holland Publishing
Co., Amsterdam, 1974.

Received September 12, 1977; revised January 10, 1978

The authors are located at the IBM Scientific Centre, Ma-
drid, Spain.

i 421

IBM J. RES. DEVELOP. VOL. 22 NO. 4 JULY 1978 M. ALFONSECA AND M. L. TAVERA

