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A Machine-Independent APL Interpreter 

Abstract: The problem of writing machine-independent APL interpreters is solved by means of a systems programming approach making 
use of an intermediate level language specially  designed for  that  purpose. This  paper describes the  language, as well as  the  procedure 
used to build universal interpreters.  Three compilers that  translate this language for three different  machines  have been written so far, 
and an APL interpreter  has been finished. 

Introduction 
When  a new computer is developed, it generally has its 
own machine  and  assembly  languages, usually different 
from those of other machines;  most software, including 
high level language translators, must be rewritten for  the 
new machine. The cost of this work would be greatly re- 
duced if some of the  software  could  be made machine- 
independent. 

One high level language not commonly provided with 
new machines is APL [I].  This highly sophisticated  inter- 
pretive  language  includes  a large number of symbolic 
built-in functions (primitive  functions)  and operators  that 
render it possible to write complicated  programs in a  con- 
cise form with a simple syntax. 

Primitive APL functions and operators take arrays  as 
well as  scalars  as  their working objects, so that  loopless 
programs may be written. Thus, good APL programming 
somewhat  counteracts  the loss in translation time inher- 
ent in interpretive  systems  compared  to compiling sys- 
tems. Besides, many of the  common  array-handling oper- 
ations,  such  as matrix products, matrix inversions, and so 
forth,  are primitives in the language. 

A universal APL interpreter which would make  this lan- 
guage  available on many machines would be  welcome, 
especially in view of the  fact that use of the language is 
growing. 

As an  example of this need, when the IBM Systeml7 (a 
sensor-based  computer) was first announced, it was  pro- 
vided with only a  disk support  system and a primitive as- 
sembler.  More  complete  software  was added  later, in- 
cluding a FORTRAN compiler. We were  interested in being 
able  to manage the Systeml7 sensors by means of APL. 

We could  not simply use  one of the different APL systems 
available for  the IBM Systeml370, because  the assembly 
languages and architectures of the  systems  are different. 
Therefore, we built a  System/7 APL interpreter, written in 
assembly  language [2]. 

A new sensor-based computer,  the  IBM  Series/l [3], 
has recently  been  announced as an alternative for Sys- 
tem/7. If  we want to use the programs we wrote for  the 
System/7 on the new computer,  another APL interpreter 
will have  to be written, because the assembly  languages 
and architectures  are again different. 

Instead of building a Series/l APL interpreter, and prob- 
ably having to  face  the  same problem again in the  future, 
we decided to try to write a universal APL interpreter,  as 
independent as possible from the machine. 

APL system  requirements 
An interpretive APL system  should  have  the following 
properties [4]: 

I .  Time  sharing should be  provided for, so that different 
users may have  access  to it at  the  same time by means 
of terminals. Each user is assigned  a  section of main 
storage, called an active  work space, where he may 
keep and execute his data and APL functions.  He is 
also assigned  a library in auxiliary  memory where he 
may store  copies of his active work spaces.  The avail- 
able main memory is usually split up into several ac- 
tive work spaces (slots). At a  given moment,  the num- 
ber of users  connected  to  the  system may be greater 
than  the number of slots. In this case, copies of all 
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active  work  spaces  are kept in an auxiliary file, and 
whenever a user is given control, his active  work 
space is swapped into  one of the memory  slots. 

2 .  The  data  contained in a work space may be internally 
represented  as  one of the following types: 

Boolean, occupying one bit per  element of data, 
Integer, one,  two,  or four bytes per element, 
Floating  point, typically eight bytes  per  element, 
Literal, one byte  per element, 
Pointer, the value of which is an  address. 

Memory  allocation within the  work space is dynamic; 
some  garbage  collection procedure should be pro- 
vided.  Memory  management requires an extensive use 
of pointers. 

3. The  system is usually made up of the following parts: 

A supervisor, which manages the time  sharing  and the 
terminal and disk input/output  operations. 
An interpreter, which must be reentrant, i.e., all modi- 
fications should  be done only in the work space. 

The  supervisor is in itself machine-dependent and a 
general operating  system  or  subsystem has  often  been 
used as such [5] .  However, this is not the  case with the 
interpreter,  where only slight details, like paper  width 
or floating point precision limits, may have  to be var- 
ied with the machine. 

Therefore, we decided to build a machine-independent 
APL interpreter with a  machine-dependent supervisor  to 
be  added for  each particular  implementation. 

Selection of the  interpreter  writing  language 
Having decided to write a universal APL interpreter, we 
then had to  face  the problem of choosing  the language we 
would use to write  it. Three  criteria were considered:  the 
degree of machine  independence of the language, the ex- 
tent to which the APL system  requirements  described 
above could be met, and finally the performance of the 
APL interpreter in terms of both  execution efficiency and 
minimal storage requirements. 

Since interpreters  are usually about  an  order of magni- 
tude  slower than compilers for  the  same language, the 
process of construction of our  interpreter should  not in- 
troduce a noticeable  degradation in its  execution speed. 
On the  other  hand, since we intend to make the  system 
available for  both minicomputers  and  mainframes, it 
should  be as small as possible. Since  these  two conditions 
are  frequently opposed to each other,  an optimal  solution 
for both cannot be met. We are  thus prepared to  trade off 
slight losses in execution  speed for significant reductions 
in size. 
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Assembly languages 
Assembly languages are  the best  suited to meet all the 
system requirements; they allow maximum flexibility to 
the  system programmer, while providing  the  best  size and 
speed.  However, they are completely  inadequate for 
meeting the  independence  criterion, since every machine 
uses its  own  assembly language. 

Macro  language 
A first approach to getting machine independence would 
be to design  a  general  macro  language. Each macroin- 
struction would be  generated by means of the  macro defi- 
nition facilities provided in most  assembly  languages. 

One  advantage of this approach is that flexibility of the 
language would be only slightly less  than that of assembly 
languages. On the  other  hand, machine independence 
cannot be completely assured,  because not all assemblers 
are  macroassemblers  (as was the  case with the first ver- 
sion of the  System/7  assembler), and  not all  of these  have 
the  same  power.  There is a danger that  either the number 
of macroinstructions which must be defined will grow too 
large or  that each  macro will become too complex. For 
instance, suppose we want to define one  or several 
macros to add two  or three arguments. Since we may 
have to add arguments of different types (recall  require- 
ment 2 ) ,  there  are two possible solutions  to this  problem: 
define one  macro  for  every possible  combination and  for 
each  number of arguments to be added (at  least 30 macros 
would be needed just for  the  addition operation); define a 
single highly complex  macro which would combine all 
possible cases.  The macroassembler would then have  to 
provide  conditional  macroinstructions and the ability to 
ascertain the  existence of an argument  at  preassembly 
time. 

High level  languages 
A second approach would be the use of an existing high 
level language as  the  interpreter writing language. Ideally, 
there would be a good, high level programming language 
and,  for  each  machine, a  compiler to translate this lan- 
guage into efficient machine code.  However, this  situa- 
tion does not exist yet, and current high level languages, 
while highly readable and capable of providing concise 
programs,  add both  to size and execution time due  to  the 
compilation process and the  run-time environment.  Two 
high level languages  were considered: 

I .  FORTRAN is a widely used high level language which 
assures some degree of machine independence, be- 

m e  compilers for different machines differ only in 
minor details.  However,  the limited flexibility of this 
language makes it difficult to meet  some of the APL 

system  requirements. In particular, FORTRAN data rep- 
resentation does not allow easy management of Bool- 
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ean  data  or of integers  occupying  only one byte. The 
required  Boolean operations would include logical 
AND, OR, exclusive OR, and  negation of bit strings, 
plus selection  and  testing of individual  bits or  groups 
of bits. More  important is the  fact  that FORTRAN com- 
pilers cannot usually generate reentrant  code, a neces- 
sary condition for writing a  time  sharing system. 

2 .  PL/I is another commonly  used high level language,  and 
compilers for it are provided for most  machines. It is a 
more flexible language than FORTRAN, and data  types 
are  reasonably well managed. Reentrant  code genera- 
tion can be selected as an option.  A  drawback is that 
PL/I compilers for different machines usually imple- 
ment different subsets of the language. Thus, should 
we select a  given subset,  there is no guarantee that the 
one implemented in a new machine will contain all the 
features we have  selected.  The P L ~ I  compiler  provided 
with the machine might have to be extended  to meet 
our requirements. 

0 Systems  programming  approach 
The  systems programming approach  consists in the use of 
a language higher  than  assembly  language but lower  than 
high level languages as the systems programming lan- 
guage.  Assembler languages are obviously the most flex- 
ible and efficient, while high level languages give the  max- 
imum machine  independence and readability. Systems 
programming  languages usually combine  the  properties of 
both in the  sense  that they  provide the  option of including 
built-in functions and assembly language statements 
within the high level environment.  They  are also  provided 
with good optimizing  compilers  which  produce  very effi- 
cient code. 

Standard  systems programming languages, however, 
can only be  used  at the  expense of a loss in machine inde- 
pendence,  because of their  machine language features, 
which are obviously dependent  on  the  computer. In addi- 
tion,  some of the most widely used systems programming 
languages do not manage floating point data, obviously 
necessary to write an APL interpreter. 

Even a subset of an existing systems programming lan- 
guage would not be an optimal solution to  our threefold 
problem of machine independence, flexibility, and effi- 
ciency. In the first place, the language would have  to be 
stripped of some of its flexible features  to  assure  machine 
independence.  Thus,  such languages would again become 
high level languages,  discussed in the  preceding para- 
graph. In the second  place, the  semantics of these lan- 
guages, usually PUI-  or ALGOL-like, would make it  diffi- 
cult and time-consuming to build good optimizing com- 
pilers. For  these  reasons,  to solve our specific problem, 
we decided to design our own ad hoc systems program- 
ming language.  It should be really intermediate in the 
sense  that it should have the semantics of assembly lan- 

guages  but with a higher level syntax, and it should be as 
easy to  analyze  as possible, with an  eye  to reducing the 
programming effort required to build compilers that  pro- 
duce highly efficient code. We shall call such a  language 
an  “intermediate language (IL).” 

The  procedure followed to design the IL instructions 
was to select  the most  common operations in the assem- 
bly languages of different IBM machines [6] and to  repre- 
sent them with a high level syntax.  Instructions not aris- 
ing naturally from the  assembly  level, such  as IF-THEN- 

ELSE, Do, and so forth,  are not  a  part of IL because our 
objective was only to define a substitute  for assembly  lan- 
guages; we were not concerned with  high level language 
properties  such  as complex operations  and  those making 
structured programming easier. Also,  special instructions 
such as BXLE, TR (Systed370  assembler) appearing in a 
few assembly  languages have not  been selected,  to safe- 
guard machine independence. 

The language 
The only assumption about the machine in which IL may 
eventually be implemented is that its  memory is consid- 
ered to be a vector of units of fixed but not defined size, 
consecutively  numbered.  Appendix  A shows the syntax 
of IL. 

Data  objects 
The  data  objects of the language are numeric constants 
(fixed point  integers and floating or decimal rational num- 
bers)  and identifiers which may name  different types of 
data: four types of variables; pointers; labels; routine 
names; and parameters. 

A variable  has  four different attributes: 

The memory address associated with it, 
Its  type, 
Its length (number of elements), 
The actual values of the elements. 

The  address of the variable defines the  location of the first 
memory unit of the  space allocated to  the variable. 

Variable values may be integer or rational.  Integer val- 
ues may be of three different types, corresponding to  the 
assignment of one,  two,  or four  memory  units  per  ele- 
ment. 

A variable may contain one  or  several  elements in a 
linear structure.  The  fact  that we have defined IL seman- 
tics to be  as close  as possible to machine language level 
precludes the inclusion of more  complex structures  (ma- 
trices,  lists,  etc.) which must  always  be ultimately repre- 
sented in a  linear  memory. 

A  pointer is a name the associated value of which is 
considered to be the  address of some variable. In most 
cases a register would be  assigned to  it, although  memory 
locations may also be used. 
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b. Variables of undefined length, 
I C 0 1  IC11 c. Variables of undefined address, depending on  the 

value of a  pointer on which the variable is based. 
The  address assigned to the  variable is computed 
as  the addition of the  value of the  pointer plus an 
offset. 

I ! I  I I ! I  I ! I  

I l l  I l l  I l l  
1 1  l i t  1 ' 1  I 

I I I I I 

1 ' 1  

All preceding possibilities are mutually  compatible and 
\ I\ A / 

A I 0 1  A C l l  A C 2 1  
" v Y can be combined in a single statement with the following 

syntax: 

Figure 1 Space allocation for example 1. variable-name  optional-index = variable-name  optional- 
index p'm 

1 ' 1  I '  

p'[ I ! I  I I !  

Figure 2 Space allocation for example 2. 

Labels  are  names  that may be associated with instruc- 
tions,  whereas routine  names are  entry points to the dif- 
ferent subprograms which may make up a  complete pro- 
gram. A subprogram may have several entry points. 

A parameter is an identifier the value of which cannot 
be  changed  during  program execution. 

The first letter of the name assigned to an identifier im- 
plicitly declares its type. Appendix B shows  the conven- 
tions  used. 

Program  organization 
An IL program consists of two  different  parts: declara- 
tions and executable  statements,  separated by a separa- 
tion statement. 

Example 1 (see Fig. 1) 

A t 1  2 3 
B = A C 1 1  
I C 2 l = B  

Variable A is implicitly defined by its first letter  as an 
integer  variable with four memory  units per element. Its 
length is three, and the initial values of its elements  are 1 ,  
2 ,  and 3. Variable B is defined as a single element  variable 
with the  same  address  as the second element of A (in- 
dexing  uses origin zero). Variable I is declared  as an in- 
teger  variable with two memory units per  element, of 
length two, and the  address of which is the  same  as  that of 
B. 

Example 2 (see Fig. 2 )  

W+4 
CCWl=PC21 

Variable W is defined as a single element  integer vari- 
able  occupying  a single memory unit and with an initial 
value of 4. 

Variable C is declared  as  an  integer, four-unit-per-ele- 
ment  variable the  address of which is offset  two units 

All variables  appearing in a  program  must  be declared. from that pointed to by pointer P; its  length  varies with 
This  can be done in either of the following ways: the value of W. 

1. Assigning one  or more initial values to the  variable 
name. The length of the variable is thus defined as  the 
number of values  given. The  syntax of these  state- 
ments is 

Executable IL statements  are analyzed  from  right to 
left. Functions  are  executed without  special precedence 
rules, in the  order they are  found;  parentheses  are  not 
allowed. In addition to the  assignment  and the  standard 
arithmetic operations, the following functions  are al- 

variable  name + values 
lowed: 

2 .  Assigning a  synonym to a  variable name previously 
declared. This feature permits the declaration of vari- 
ables with undefined attributes, allowing the following 
possibilities: 

Pointing, P+X, assigns to pointer P the address of vari- 
able X. 
Incrementing, PAX, increments  the value of pointer P by 
the value of X. 
Shifting, A 1. B ,  shifts the value of B to  the left A bits  (this 

a. Variables of different type, sharing the  same  ad-  operation is equivalent to a  multiplication of B by the A 
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Logical bit to bit operations, v (inclusive or), A (and), 
(exclusive or), - (not). They operate  on values of any in- 
teger type  on a bit to bit basis. 

Data  objects of any integer type  and pointers can be 
freely mixed in the IL statements.  The assignment  instruc- 
tion also  allows for conversion of integer to rational data 
and vice versa. 

Example 3 

FtPtIxA 
Primitive operations only affect data  objects of length 

one, including indexed  variables and pointers. The  as- 
signment statement, A+B, is again an  exception, in the 
sense  that if A is a variable of length  different  from one, 
the required number of memory units is copied,  one unit 
at a time,  from  the address of B to the address of A in 
ascending order  (the unit with the lowest address is cop- 
ied first). 

The following transfer instructions have been  included: 
unconditional transfer, +E, corresponding  to  the uncon- 
ditional branch in most  machine  languages;  conditional 
transfer, + F  IF C 0 N D I T IO N, corresponding  to  the 
conditional branch;  test bits; +E IF V A I, correspond- 
ing to the test  under mask instruction  and meaning that 
the  transfer is taken if the “logical and” of V and I is not 
null. 

IL does not contain special input/output instructions. 
The reason is that all APL input/output  operations  are 
managed  by the  supervisor  and,  whenever  the  interpreter 
needs  one, it calls  a  supervisor subroutine. 

In an IL instruction,  the symbol R indicates  that every- 
thing at  its right up to  the end of the line is a  comment  and 
should be ignored. 

General  procedure 
The  procedure  for building a  universal APL interpreter US- 

ing IL as a systems programming language is accom- 
plished according to the following scheme: 

An APL interpreter is written in IL. 
A  compiler is built that  translates IL programs  into assem- 
bly language for machine M,. 
The  interpreter is compiled. The final product is an APL 

interpreter directly  executable on machine M,. 

This procedure is displayed in Fig. 3, where  square 
boxes  represent APL interpreters written in the language 
at the bottom.  The T-like figure represents a compiler 
written in the language at the bottom  and  translating the 
language at  the left into the language at  the right. 

We have  chosen APL as  the  language for writing the 
compiler, in spite of the loss in efficiency inherent in any 
interpretive language,  because  compiler  performance is 
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Figure 3 General procedure for building a universal APL inter- 
preter. 

r’ 

\ u+-o I 
il 

Figure 4 Application of the general procedure to three different 
cases. 

not important at all  in this environment;  once  the APL/IL 

interpreter  has been written, it must  be  compiled  only 
once for each machine.  Besides that, APL is a  very  suit- 
able language for writing compilers  quickly [7, 81. 

To obtain an APL interpreter directly executable on a 
different machine, M,, only the  code  generator of the 
compiler  need be rewritten. 

The compilers  can  be executed  on any base machine 
where APL is available. We are presently using APLSV on a 
Systed370, but the base  machine can be changed at any 
time with no  further  cost. 

Let us consider  three machines M,, M,, and M,. With 
our  procedure  one  interpreter  and  three compilers  must 
be programmed in order  to implement APL on all of them 
(see Fig. 4). 

Efficiency of the procedure 
Suppose we intend to implement an APL interpreter  on n 
different machines. Here we compare  the effort by the 
programmer, the amount of space required in storage, 
and the  execution speed of three different approaches. 

* ”  
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c 3  

I I I 
1 2 3 

klachines 

Figure 5 Total programming effort of different approaches vs 
number of machines, where X indicates  assembly language ap- 
proach, 0 IL approach, and * high level language approach. 

1. The first solution would be to build one APL interpreter 
directly in the  assembly  language of each machine. 
Let W, be the  cost of building each of these APL inter- 
preters.  The  total  cost of this approach would be 

C,  = n x W,. (1) 

2 .  The second approach would be to write  a  universal 
APL interpreter in one of the  present high level lan- 
guages. We assume  that a  compiler for  the  base lan- 
guage is available  for every machine  and  implements 
the  required  subset of the language. Let W, be the  cost 
of writing the high-level-language-based APL inter- 
preter.  The total cost of this approach would be 

c, = w,. ( 2 )  

3. Our approach  consists in the use of IL as  the system 
programming language. Let W,  and W, be the  cost of 
writing the IL-based APL interpreter and the  cost of 
building an IL compiler,  respectively.  The total cost of 
this approach would be 

C, = W,  + n W,. (3) 

We have  previously built [2] an APL interpreter in as- 
sembly  language  at the  cost of about  four  person-years. 
The  cost of writing each  assembly  language APL inter- 
preter, W,, would be  much lower,  because of our  pre- 
vious experience and because  most  algorithms would be 
available. We estimate it at  about  two  person-years. 

We have  already  written an IL APL interpreter  at a cost 
(WJ of over  one  person-year, a  smaller figure than the 
one estimated for W,, due to the programming and  de- 
bugging ease provided by the high level syntax of IL. We 
also assume it is not  possible to write an APL interpreter in 
any high level  language at a cost (W,) lower  than one per- 
son-year. 

A first compiler written in APL and translating IL pro- 
grams  into IBM System/370 assembly  language has been 
built at  a cost of two  person-months.  The  cost of changing 
the  code  generator so as  to  translate IL into  the  assembly 
languages of IBM Series/l and another experimental com- 
puter was  only one person-month.  We take this to be the 
value of W,. 

Substituting the indicated  values for W,, W,, W,, and 
W, in Eqs. (1-3), we find (see Fig. 5 )  

C, = 24 x n, (4) 

To gain insight into the  relative  merits of the  three ap- 
proaches in terms of size, we have  written  several  portions 
of the APL interpreter (those  most  frequently executed 
[9], totaling about 3  percent of the whole  program) in IL, 
FORTRAN,  PL/I, and directly in assembly  language,  and we 
have  compiled them into System/370 machine  language. 
The FORTRAN programs have been  compiled by FORTRAN 
G and also  extended FORTRAN H compilers with the  option 
for maximum optimization. The  results  are shown in 
Table 1, where  the figures refer to  the size in bytes of the 
part of the  object program corresponding  to  executable 
instructions. The figures give directly  a good estimate of 
size.  Since the  same algorithms were used in  all cases, 
execution speed may also be roughly estimated  as being 
proportional to  the number of machine instructions  gener- 
ated  and thus  to  the  space  these  instructions  occupy. In 
order  to get a better  estimate,  the number of instructions 
within the  inner loops and the number of times  they are 
executed should  be taken into consideration. 
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We may estimate from the  above  examples that there is 
a loss of efficiency of about 10 percent when writing the 
program in IL as compared to assembly  language. On the 
other hand there is a loss of at  least 70 percent when the 
interpreter is written in FORTRAN or 150 percent when it is 
written in PLII, respectively (even with the optimizing 
compilers  available), as compared to  the program written 
in IL. 

The figures given in Table 1 contain in  all instances  the 
overheads associated with call-return  management, data 
management, and so forth, allowing the  chosen examples 
to be incorporated  into a full running interpreter, so that 
they are truly comparable. 

We have  seen  above  that  approaches 2 and  3 are much 
more advantageous than  approach 1 with respect to pro- 
gramming effort measured in person-time. Now,  com- 
paring approaches 2 and 3, we see that  the  latter, while 
slightly unfavorable with respect to programming effort 
(with the  assumption  that FORTRAN or PL/I compilers will 
ever be available),  from  a space point of view is consid- 
erably better. We have thus chosen  the IL approach, 
which meets  our  severest  requirement, namely, limiting 
the size of the  interpreter. 

The  reason  for  the negligible overhead of IL programs 
compared with equivalent  assembly  programs does not lie 
in optimization properties of the compiler (which would 
have  made it too complex to be written in two months) 
but in the  semantic closeness of IL  to assembly  language; 
many of the IL  primitive  operations produce a single ob- 
ject  instruction.  The only  optimization feature introduced 
in the  compiler design is the propagation of the  constants 
or  parameters contained in the  registers of the machine in 
order  to  save load and store  instructions. 

Optimization is thus a  responsibility of the IL program- 
mer,  as is also the  case with any assembly  programmer. 
This  agrees with our purpose in using IL as  a substitute  for 
assembly  languages, not for high level languages. 

If the need for  even better performance  arises  once  the 
interpreter has been compiled for a given machine, an as- 
sembler  programmer  (who  obviously  need not know I L )  
could manually optimize  the object assembly program by 
taking advantage of the special instructions of the ma- 
chine. 

State of the work 
An APL-IL interpreter  has already  been written, in which 
the full APL language and a set of system  commands  have 
been  implemented. It includes an  editor  to build and mod- 
ify user  functions. 

The first IL compiler we built translates IL programs 
into  System/370  assembly  language, in order  to profit 
from  the  fact  that  one of these  machines is available to us. 
This  compiler has allowed us to  translate and test  the in- 
terpreter, which is now being debugged. Two  other  com- 

Table 1 Results using different approaches. 

Program PLiI FORTRAN IL Assembler 
compiled with 

F-G F-X 
-~ 

Lexical 
analysis 2690 2324 1924 1260 1096 
of numeric 
constants 

analysis 
of 2504 2062 1368 702 640 
constants 
and 
variables. 
Assignment 
function 

Syntax 

Vector 3302 2762 1900  1044 964 catenation 
Total 8496 7148 5192 3006 2700 

pilers are  already available,  translating IL into the  assem- 
bly languages of the  Series/l and an experimental  com- 
puter. 

A machine-dependent supervisor has  been  added to  the 
System/370-translated interpreter  to provide manage- 
ment of the work space library and terminal input/output, 
resulting in a prototype system that is currently being 
used to  test  the  interpreter and to  compare its  perform- 
ance with that of APLSV, also  available in the same ma- 
chine.  The translated interpreter  occupies a  total space of 
74 Kbytes  (where K = 1024), which is less  than  that 
needed for  the APLSV interpreter.  Execution speed is not 
easily compared,  because different algorithms  have  been 
used in both  systems (ours trying to minimize size). How- 
ever, figures currently obtained  indicate that  our  system 
is, on the  average,  about 1.15 times  slower  than APLSV. 

Conclusions 
The  systems programming approach has  been found opti- 
mal to  solve  the problem of building a  machine-indepen- 
dent APL interpreter.  However, a  special  systems  pro- 
gramming language has been designed to meet all the re- 
quirements of our problem. The intermediate  level 
language IL  has a higher level syntax than  assembly  lan- 
guages. Its  semantics  are closely  related to those of as- 
sembly languages,  notwithstanding the  fact  that it main- 
tains  machine  independence.  This approach  eases  pro- 
gramming,  debugging, and readability (because of its 
syntax)  compared  to assembly  languages.  Also, com- 
pilers for IL,  producing efficient code, can  be built at little 
cost  (because of its semantics). 41 9 
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We are using IL  as a tool for  systems programming, in 
order  to build a  universal APL interpreter.  It could also 
serve  as a kind of machine-independent  assembly  lan- 
guage, once compilers for different machines have been 
built. 

We do not  intend to  present IL as an alternative to  pro- 
gramming in high level or  other  systems programming 
languages. It  was designed to meet the  severe require- 
ments  imposed  by  our  particular  application, i.e., a uni- 
versal APL interpreter implementable  both in small and 
large computers. 

Appendix  A: Formal syntax of IL 

Languages similar to IL could be used in computer sci- 
ence  education as substitutes  for assembly  languages. IL 
is easy to  learn.  Two  staffmembers at  this Scientific Cen- 
ter who are fluent in FORTRAN,  PL/I, and APL, but who had 
never  written programs in assembly  language,  were able 
to write  and  successfully execute  their first IL program 
one day after  they had been given the manual for  the lan- 
guage. The language is completely designed,  and  com- 
pilers for  three different  machines have been  built. The 
universal APL interpreter  has been  completed  and is in the 
process of being  debugged. 

In the following representation, A represents  the null string. 

<PROGRAM> : : = < D E C L A R A T I O N S >   < S E C O N D   P A R T >  
< S E C O N D   P A R T >  : : = X I < S E P A R A T I O N >   < E X E C U T A B L E   S T A T E M E N T S >  
< S E P A R A T I O N >  : : = / < E N D   O F S T A T E M E N T >  I / / < E N D   O F S T A T E M E N T >  
< D E C L A R A T I O N S >  : : = X I <DECLARATIONSTATEMENT><END O F S T A T E M E N T >  

< D E C L A R A T I O N   S T A T E M E N T >  : : = < I .  V .   A S S I G N M E N T >  I < E Q U I V A L E N C E >  
< I . V . A S S I G N M E N T >  : : = V A R I A B L E  NAME+<VNL><DIMENSION><VALUES> I 

< V N L >  : : =  XI V A R I A B L E N A M E + < V N L >  
< D I M E N S I O N >  : : = X I I N T E G E R   C O N S T A N T  p 
< V A L U E S >  : : = C O N S T A N T   < L I S T 1 >  I P A R A M E T E R   < L I S T 2 >  
< L I S T 1 >  : : =  X I  B L A N K C O N S T A N T < L I S T I >  I < V A L U E S >  
< L I S T 2 >  : : XI < V A L U E S >  
< L I S T 3 >  : : = XI, L A B E L  NAME < L I S T 3 >  
< E Q U I V A L E N C E >  : : = V A R I A B L E  NAME < I N D E X I > = < E Q U   O B J E C T >  I 

< E Q U   O B J E C T >  : : = V A R I A B L E  NAME < I N D E X 2 >  I P O I N T E R  

< I N D E X I >  : : =  XI C < O B J E C T l > 3  
< I N D E X 2 >  : : = A I C < P A R A M E T E R   E X P R E S S I O N >  1 
< O B J E C T l >  : : = V A R I A B L E  NAME I < P A R A M E T E R   E X P R E S S I O N >  
< P A R A M E T E R   E X P R E S S I O N >  : : = < C O N S T A N T   O B J E C T >  I < P A R A M E T E R   E X P R E S S I O N >  

< E X E C U T A B L E   S T A T E M E N T S >  : : = X I < L A B E L E D   S T A T E M E N T >   < E N D  O F  S T A T E M E N T >  

< L A B E L E D S T A T E M E N T >  : : = < L A B E L > < S T A T E M E N T >  I L A B E L   N A M E :  
< L A B E L >  : : = XI L A B E L  NAME : 
< S T A T E M E N T >  ::=<ASSIGNMENT>I<TRANSFER>I<ROUTINECALL>I 

< A S S I G N M E N T >  : : = P O I N T E R +   < I N D E X E D   V A R I A B L E >  I P O I N T E R  A < E X P R E S S I O N >  I 

< I N D E X E D   V A R I A B L E >  : : = V A R I A B L E  NAME < I N D E X >  
< I N D E X >  : : = X I C < P A R A M E T E R   E X P R E S S I O N >  3 
< E X P R E S S I O N >  : :=<OBJECT><DYADICFUNCTION><EXPRESSION>I 

< O B J E C T >  : : < I N D E X E D   V A R I A B L E >  I C O N S T A N T  I P A R A M E T E R  

< D E C L A R A T I O N S >  

L A B E L   N A M E +   < D I M E N S I O N >   L A B E L   N A M E   < L I S T 3 >  

P A R A M E T E R  = < P A R A M E T E R   E X P R E S S I O N >  

C < P A R A M E T E R   E X P R E S S I O N >  3 

< D Y A D I C   F U N C T I O N >   < C O N S T A N T   O B J E C T >  

< E X E C U T A B L E   S T A T E M E N T S >  

< R E T U R N >  I S A V E  

< I N D E X E D   V A R I A B L E >  + < E X P R E S S I O N >  

<MONADICFUNCTION><EXPRESSION> 1 < O B J E C T >  

< D Y A D I C F U N C T I O N >  : : = + I  t I - I X I + I + I j .  I A I V I @ I A I  I I + 

< M O N A D I C F U N C T I O N >  : : =  - I I I - 
420 < T R A N S F E R >  : : = -t L A B E L   N A M E   < C O N D I T I O N A L   S T A T E M E N T >  
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1 < C O N D I T I O N A L  
S T A T E M E N T >  : : = X I 

< C O N D I T I O N >  : :=<INDEXEDVARIABLE><RELATION><EXPRESSION>I 
< C O N D I T I O N >  

< I N D E X E D   V A R I A B L E >  A < C O N S T A N T   E X P R E S S I O N >  I 
< C O N S T A N T   E X P R E S S I O N >  

< C O N S T A N T   E X P R E S S I O N >  I <MONADIC  FUNCTION> 
< C O N S T A N T   E X P R E S S I O N >  I <CONSTANT  OBJECT> 

~ 

i < C O N S T A N T   E X P R E S S I O N >  : : = < C O N S T A N T   O B J E C T >   < D Y A D I C   F U N C T I O N >  

<CONSTANT  OBJECT> : : = INTEGE_R  CONSTANT I PARAMETER 
< R E L A T I O N >  : : = < I I I = I f I > I 2 
< R O U T I N E   C A L L >  : : = E X T E R N A L   R O U T I N E  NAME I L A B E L  NAME 

<END O F  S T A T E M E N T >  : : = <COMMENT>  CARRIAGE  RETURN 
<COMMENT> : : = h I A < C H A R A C T E R   S T R I N G >  
< C H A R A C T E R   S T R I N G >  : : = h I & O N  CARRIAGE  RETURN  CHARACTER 

P < R E T U R N >  : : = I + I N T E G E R   C O N S T A N T   < C O N D I T I O N A L   S T A T E M E N T >  

< C H A R A C T E R   S T R I N G >  

I Appendix B: Identifier  type  conventions 
Type of identifer 

Integer 
One memory unit per element 
Two memory  units per element 
Four memory  units per element 

i. Rational 
Pointer 
Label 
Routine names 
Parameters 

I 
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