A. Franaszek
T.

P.
B. T. Bennett

Adaptive Variation of the Transfer Unit in a Storage
Hierarchy

Abstract: Consider a paged storage hierarchy with at least two levels L, and L,, where L, denotes main storage and L, secondary
storage. Suppose that the unit of replacement for L, is a single page, and that the L,-to-L, transfer unit, given a page fault, is an integer
number of pages. Then, given a suitable replacement policy for L,, increasing the unit of transfer often results in a lower miss ratio at the
expense of increased paging traffic. This paper explores the possibility of adaptively varying the L,-to-L, transfer unit as a function of the
reference history of the data to be fetched. Experiments on traces drawn from two large data base systems suggest that such adaptation
can result in improved tradeoffs between miss ratios and paging traffic.

I. Introduction

The question of alternative methods for managing data in Figure 1 A two-level storage hierarchy. L,: main storage (ran-
. . . . dom access); L : secondary storage.

a computing system is assuming greater importance be- 2

cause of the increasing emphasis on data base appli-

cations. One proposed method is to handle data by means r-==-—=-—=="7=7"777 1
of paging, analogously to the way programs are managed cPU

| [
| |

in virtual memory systems. Such paged storage hierar- : and :

chies might include an automatic mechanism for con- | cache |

trolling data transfers and placements to suit patterns of ' ____J'

usage. This paper investigates problems related to trans-

fers of data between main and secondary storage. Specifi- _l__}

cally, the notion is introduced of varying the unit of trans-

fer as a function of the reference history of the data in

question.

1 L;: main storage

|
|
1
|
I

Figure 1 illustrates a storage hierarchy which for sim- :
[
I
[

(random access)

|
|
|
|
t
|
|
|
|
|

Pages
plicity has only two levels: L and L,. Level L, represents
main or random access storage; L, is the backing store,
implemented by direct access devices such as drums or e B it sty -
disks; and L, is allocated in units termed page frames, Pages Subsets of blocks

each of which can hold one page. It is assumed that each r————r L __
page has an L, home address, a location in L, where a
copy resides, and that the set of pages is partitioned into
blocks of N pages, where the home addresses of the pages
in each block are contiguous.

Included in the set of policies for managing L, is the
fetching policy, which determines which pages are trans-
ferred into L, and the times of such transfers. An example
of a class of fetching policies is demand paging. Here Lo 1

7 L, secondary storage

Blocks of V pages

|
|
|
I
|
|
|
|
|
|
|
|
|

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish
other excerpts should be obtained from the Editor. 405

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 4 e JULY 1978 P. A. FRANASZEK AND B. T. BENNETT

406

fetches are initiated only by faults, and each fetch in-
cludes only the faulted page. This paper treats a class of
policies termed demand blocking or block prefetching. As
with demand paging, fetches are initiated only on faults.
Each fetch, however, may cause the transfer into L, of
not just the faulted page, but any subset of pages from the
block containing it. Since a block of pages is stored con-
tiguously on L,, fetching more than one page causes few
additional device delays. If the grouping of pages into
blocks refiects the likely reference patterns, such pre-
fetching may save an appreciable number of faults. The
number of pages fetched from a block given a fault will be
termed the L,-to-L, transfer unit or TU. Main storage is
managed on a page basis. Thus if a block of N pages is
fetched, and N pages are to be removed from L, the lat-
ter may be members of more than one block.

It is well known that block prefetching may result in a
significant reduction in the fault rate [1—3]. However, a
large transfer unit incurs a number of costs, which include

1. An increase in channel traffic. This results in greater
memory interference between the channels and cen-
tral processing units, as well as longer queues for 1/0.

2. Wastage of storage space due to the transfer of pages
that will not be referenced.

3. Greater processing overhead in the L, page replace-
ment algorithm.

A suitable fetching policy thus involves a number of
tradeoffs. These, however, are a function of the system
load and data usage patterns, which in general are time-
varying and/or unknown. This suggests the use of an
adaptive policy that changes as a function of a number of
observed parameters.

One approach to such adaptation is to concentrate on
individual process behavior. For example, occurrences of
sequential page references in a given process could be
monitored and the units of transfer adjusted accordingly.
A potential disadvantage of this method is that if the num-
ber of processes is large, as is typically the case in a data
base system, monitoring the reference patterns for each
process could result in a substantial computational over-
head. Moreover, the presence of shared data might re-
quire that all references be monitored, not just the faults.

This paper introduces a second alternative: adaptation
based on observations of how the data in question are
referenced, as discussed briefly in Ref. 4. Note that this
alternative entails an assumption about reference pat-
terns. Programs in execution might be expected to have
fairly regular patterns of reference, at least sufficiently so
for adaptive prefetching to be advantageous. However, it
is not clear whether patterns of references to data bases
are sufficiently regular to be exploitable. Thus much of
the emphasis of this investigation is on experimental re-

P. A. FRANASZEK AND B. T. BENNETT

sults and methodology. Also included is some discussion
of expected perforrnance benefits and approaches to im-
plementation.

Section II describes a class of fetching policies. These
give the option of fetching either the faulted page or all
missing pages from a block. Section 111 gives an approxi-
mate analysis of the prefetching process which explores
the relation between gains associated with prefetching
and the average number of prefetched pages that are ref-
erenced. Section 1V presents simple heuristics for vary-
ing the transfer unit size based on estimates of the ratio of
prefetched pages rzferenced to overall traffic. This in-
volves approximations, required as the result of the non-
observability of relevant variables when only a faulted
page is fetched. Experiments on traces drawn from two
large data base systems are described in Section V.

The results indicate that block prefetching yields a
lower miss ratio than does demand paging, even when the
page size for the latrer policy is tailored to the application.
Adaptive variation of the transfer unit size substantially
lowers the paging traffic required to maintain a given miss
ratio in comparison with a fixed policy of block pre-
fetching. Reference patterns in the two data bases thus
appear to be sufficiently stable as to be exploitable by
learning procedures. Section VI summarizes the results.

II. Main memory management and the fetching policy
Systems with demand paging policies generally have page
replacement algorithms that favor for retention in L,
those pages most recently referenced [1]. The least-re-
cently-used (LRU) algorithm is a well known idealization
[1]. Pages managed by LRU may be viewed as occupying
a stack, with the most recently referenced page on the top
and the least recently referenced on the bottom. A page
occupying an intermediate position is, if referenced,
moved to the top, and those which had been above it are
moved down by one position. Replacements are made
from the bottom of the stack.

Suppose main memory management incorporates an
LRU replacement policy. Consider the case where the
unit of transfer, given a page fault, consists of several
pages. These will irclude, as well as the faulted page, pre-
fetched pages which have not been referenced since their
last residence in main memory. How should these unref-
erenced pages be treated on arrival in L,? One way would
be to determine the average probability of reference to
such pages, and to insert them into a corresponding level
of the LRU stack. In general, however, these pages may
have a reference probability whose time dependency is
substantially different from that of those pages which
have been referenced during their current sojourn in L,.
This suggests that prefetched (unreferenced) pages be
treated separately. This is the approach taken here and in
several studies of nonadaptive prefetching [1, 2].

[BM J. RES. DEVELOP. ® VOL. 22 & NO. 4 ¢ JULY 1978

As shown in Fig. 2, main storage is partitioned into two
sections Q, and @,. Section Q, holds referenced pages,
and is managed by a replacement algorithm such as LRU.
Section Q, is a first-in-first-out (FIFO) stack, holding un-
referenced pages.

It is convenient to introduce notation in which B,
where j = 1, 2, - - -, is the set of blocks in the storage
hierarchy. Each B, contains a set of pages P, where i =
1,2,--+, N.

Consider a set of pages belonging to B, which are
transterred to L, as the result of a fault to page P; P, is
immediately placed in Q,. The other (prefetched) pages
are placed in the Q, FIFO stack. A prefetched page refer-
enced before deletion from Q, is transferred to Q,. For
simplicity, it is assumed that Q| and Q, are each allotted a
fixed percentage of the L, page frames. Replacements are
from Q, unless Q, exceeds its allocation.

As mentioned above, given a page fault, the fetching
policy determines the unit of transfer. The policy may in-
clude a set of parameters, the setting of which is per-
formed by another mechanism. The policy to be consid-
ered is

Al: Associated with each block B, is a transfer number
TN(j), which determines, given a fault to a page P,

whether just this page or all missing pages from this block
should be fetched.

An implementation of Al may be based on a system di-
rectory with entries in the following format:

Block Address | N I

r Block ID

The transfer number may be regarded as a summary of
the reference statistics for a block. The form of the TN is
a function of the specific implementation. The fetching
policy may be either fixed or adaptive. In the adaptive
case, the block transfer numbers are modified dynami-
cally as a function of observed page references.

lll. Analysis

Let R = {r, r,, - - '} denote the reference string, where r,,
represents a reference to P at time 7, . Consider a fault to
page P, € B, at time 7, . Let Bj"(m) denote those pages in
B, absent from L, at ¢, and let B"(m) be Bj”(m) minus the
faulted page. For simplicity, it will be assumed that all
pages transferred to Q, at a time ¢,, will be removed simul-
taneously at some time (¢, + A,) if unreferenced. Let ¢
denote the expected number of pages from B, (m) refer-
enced in the interval (¢, f,, + A). Suppose that the fetch-
ing policy Al is stationary with respect to B, in the inter-
val(z,,t, + A,). Thatis, either (a) B].d(m) is fetched as the
result of each fault to B, in(,,t, + A,) or(b)there is a
policy of demand paging with respect to the block B, in
the interval (z,,, t,, + A,). Fetching B, (m) will then reduce
the expected number of page faults by .

IBM J. RES. DEVELOP. ® VOL. 22 ¢ NO. 4 e JULY 1978

Unreferenced
pages Referenced
pages

FIFO LRU

|

|

|

|

|

|

: Referenced
I 2, pages o,
I

|

|

|

|

|

!

|

|

4 Subsets
of blocks

Secondary storage

Figure 2 Memory management for demand blocking.

Fetching B, (m) will push down the pages in the FIFO
stack, reducing their potential residence times. Let V be
the expected reduction due to prefetching Bj."(m) in the
number of pages resident in ¢, that are referenced before
removal. The value V provides an upper bound to the in-
creased number of faults to pages other than B_‘."(m), since
an ejected page may be prefetched before the fault, or if
faulted may result in the fetching of a page that would
otherwise be faulted.

Let C; and C denote respectively the cost of a page
fault and the cost of prefetching a page. The above sug-
gests that B(m) should be fetched when

Gy -V)

; , 1
> = NIBm)] @

where N[B, (m)] is the number of pages in B,(m). Note
that as 4/ N[B,"(m)] increases, V/N[B,(m)] tends to de-
crease, since the sooner a prefetched page is referenced,
the less effect it has on the pages below it in the FIFO
stack. In other words, (¢ — V)/N [B/(m)] tends to grow
monotonically with /N [B/ (m)]. One might then con-
clude that a fetch is desirable when
¥

is sufficiently large. The value R, is simply the expected
fraction of prefetched pages which are actually refer-
enced. The fetching policies considered here operate on
the principle of fetching all blocks B; whose estimated R,
is greater than some threshold value.

It is interesting to consider what happens if the station-
ary assumption does not hold. Let P,; € Bj"(m) be a page
that is actually referenced in (¢,,, £, + A,). Prefetching
this page at time ¢, may not save a fault because

407

P. A. FRANASZEK AND B. T. BENNETT

408

1. Another fault at time ¢, > ¢,, may occur, resulting in
the prefetching of P,;.

2. A fault to P, if it occurs, may cause the fetching of
some other page that would have been faulted other-
wise.

Moreover, prefetching a page P,; may cause an additional

fault, since

3. If P, is not fetched at time z,,, and not referenced in
time (¢, t,, + A,), a reference to it at time ¢, > ¢, +
A, may cause a fault. If, however, P,; had not been
prefetched at ¢, it might have been prefetched at a
time ¢, such that 7z, <t <t + A

Observations 1-3 illustrate features of demand blocking
that make it difficult to obtain optimal algorithms analo-
gous to Belady’s MIN policy [5] for demand paging.

The primary potential advantage of adaptive pre-
fetching in the system considered here is a lower paging
rate required to obtain a given miss ratio as compared to a
fixed policy of block prefetching. It can be expected that
there is little potential for lowering the miss ratio. To see
why this is so, consider a fixed prefetching policy with a
block size of N pages and suppose N is such as to yield
the minimum number of page faults for a given Q, and Q,.
If adaptive policy Al is adopted and is successful, the
result is to lower the number of useless pages transferred.
Suppose that the overall traffic is reduced by a factor of
two. To a first degree of approximation, this implies that
Q, may be halved with little effect on the page fault rate.
For a fixed memory size, this means that Q, may be in-
creased correspondingly. However, since Q, comprises
(as shown subsequently) on the order of ten to twenty
percent of L, the resulting effect on the page fault rate is
small.

IV. Heuristics

This section discusses methods for varying the unit of
transfer associated with each block B, through estimation
of R, the expected ratio of referenced to prefetched pages
that would be expected if a fixed policy of block pre-
fetching were in effect. Note that, given such a policy, a
simple estimator of R, is the fraction of prefetched pages
from B, that are referenced before removal from the FIFO
stack. Since the actual policy is adaptive, this ratio, if it is
to be used, must first be estimated. The approach taken
below is to perform this estimation by means of an ap-
proximate simulation of the effects of a fixed prefetching
policy. Let RJ. denote the estimated ratio.

Let{V},i= 1,2, -, bethe sequence of references to
pages not contained in Q,. The contents of Q, are inde-
pendent of the prefetching policy, so that the sequence of
faults under either fixed or adaptive block prefetching will
be a subsequence of {V}. Let {V'} denote that sub-
sequence which corresponds to the faults indicated by the

P. A. FRANASZEK AND B. T. BENNETT

simulation of fixed block prefetching. These will be

termed the simulated faults. Let F; represent the number

of such faults up tc but not including the time of V;.
Two methods of simulation were tried.

® Method 1
Associated with the main memory directory for each
block B, is a numbe- D, which is equal to F,,» the number
of simulated faults up to but not including the time #,,, of
the most recent simulated fault to B, Vi;].). If no pages
from B; are in Q,, then let D, = —oo,
Suppose V'l., i > i(J), is a reference to B;; then V; is a
simulated fault if
M,

F-D)=[—-2 \
F=D) ===) 3)

where
M, represents the number of page frames allocated to (,.
N is the number of pages per block.

(N — B) represents the average simulated number of
pages transferred to L, as the result of a fault. This in-
cludes the faulted as well as the prefetched pages.

Note that transfers between @, and Q, are ignored. This
tends to result in an underestimation of the Q, residence
times for prefetched pages that are not referenced before
removal, leading 1o overestimation of the number of
faults and thus to an underestimation of the value of the
{R}. However, this effect is not expected to be large. Only
a minority of the {V} represent references to pages resi-
dent in Q,, and each fault generally results in the transfer
of several pages. Thus the residence times are largely de-
termined by the number of faults and the average transfer
unit size.

® Method 2
A reference V, represents a simulated fault if and only if it
is to a page P, whose block B, has no contents in Q.
This approach resulted from the observation that, un-
der a fixed policy of block prefetching, the average num-
ber of pages transferred due to a fault is close to N, the
block size, so that most faults are to blocks with no pages
in Q,. The advantuges are elimination of the parameters
{D;} from the dire:tory and the computation associated
with [2]. The disadvantage appears to be a substantially
greater error than with Method 1 in estimating the R,
Suppose the residence time for a page Q, is, as expected,
always greater than for a page in 0,. Then if V, is a refer-
ence to a block B, with no pages in Q,, V, would be an
actual fault. However, the presence of some pages from
B, in Q, does not necessarily imply that the remainder are
in Q,. Thus Method 2 tends to underestimate the number
of faults, and overzstimate the {R}.

IBM J. RES. DEVELOP. ¢ VOL. 22 e NO. 4 ¢ JULY 1978

The decision on the transfer unit size for B,, given a
fault to this block, is based on whether K, the estimated
value of R,, is greater than a given threshold. Let this
threshold be denoted by a. Information related to the cur-
rent value of Rj is stored in the directory as the transfer
number TN(j). Storing the actual value of R, is inconven-
ient, since updating requires knowledge of the number of
faults. A simple representation for TN(j) was chosen for
the experiments, based on the observation that the aver-
age transfer unit size, if all missing pages are prefetched,
is close to N.

Suppose « is such that

Xl
=0 4
X, (N - 1) @

for integer values X, X,. Let TN(j) be as follows:
1. Initially TN(j) =

Each time a page P, is transferred to Q, (either from L, or
Q,), i.e., for each V,,

2. If this transfer represents a simulated fault,
TN(j) < TN(j) —

3. Otherwise,
TN(j) < TN(j) + X,.

If, given a fixed policy of block prefetching, the number
of pages transferred due to a fault is always N, then TN(j)
= (0 whenever Rj > o. In an actual system, it might be
advantageous to introduce modifications that would en-
sure that the recent reference history of a block is
weighted more heavily. A simple way of doing this is to
introduce bounds for TN.

V. Experimental results

A number of experiments were performed on traces of
references to two large data bases; the IBM Advanced
Administrative System (AAS) data base [6] and one data
base of an IBM IMS [7] system.

The AAS trace represents approximately three days of
transactions and consists of 6 X 10° references to a data
base of about two million 1693-byte physical records. For
the purpose of these experiments, each physical record
was taken to be one page. Blocks represent N con-
secutive physical records from a particular AAS file. That
is, each file was partitioned into blocks of size N starting
with records 1, N + 1, 2N + 1,

The reference string for IMS represents approximately
one day of references to one data base and index of an
IMS system. It consists of 520 000 references. The refer-
ence string was created by J. H. Mommens of IBM Re-
search, Yorktown, from a trace of DL/1 calls and a map
of the data base. It represents references to the data base

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 4 e JULY 1978

0.30
A
025
¥
A
N
020 +
A
|
+
0.15
m x
+
|
0.10 :
2
g
= o0s ! ! |
1024 2048 4096 8192 16 384
Memory size (pages)

Figure 3 Miss ratios for various memory management policies
for six million AAS references: &, LRU page replacement; +,
LRU replacement of a block of eight pages; and M, block pre-
fetching a block of eight pages with 20 percent of memory re-
served for unreferenced pages.

Figure 4 Miss ratios for block prefetching of six million AAS
references with a 2048-page memory. Results for various block
sizes (2, 4, 8, 16, 32) are presented for various percentages of
memory allocated to the unreferenced pages.

0.190
/2)
0.185 o
o\o__o/o/
0.180 |-
/.
0175 F .\'*_’—’./ K
3
< X \+ /i
\!~§ x— ZF/
S 0170 N

5 10 15 20

Memory used for unreferenced pages (percent)

409

P. A. FRANASZEK AND B. T. BENNETT

410

0.190

0.185+ \

0.180 |-

+
0.175+ \N“‘
~

0.170

T
+
>

Miss ratio

0.165 i 1 i 1 1

Pages transferred (105)

Figure 5 Miss ratio vs pages transferred comparison of pre-
fetching (A) and adaptive prefetching method 1 (+). Lines con-
nect results for block sizes 4 and 8. Results are for the five mil-
lion to six million reference interval in AAS. Memory size is 2048
pages with five percent reserved for unreferenced pages.

mapped into a linear space. This linear space is regarded
as being divided into pages. Blocks are sets of N con-
secutive pages.

Figures 3 to 6 represent the results of experiments on
the AAS trace. Figure 3 presents miss ratios vs memory
size for three management policies:

e Demand paging with LRU replacement.

® Demand paging with LRU replacement, but with a page
size eight times that for the first policy.

o A fixed policy of block prefetching with N = 8. @, is
managed by LRU, and Q, by a FIFO policy. Q, was
allotted 20 percent of L,.

Figure 4 shows that the miss ratio for block prefetching is
relatively insensitive to the percentage of main storage
devoted to holding unreferenced pages, at least in the
range of 5 to 15 percent. Significant improvements in the
miss ratio may be obtained over demand paging by block
prefetching with N = 2, and also by increasing the block
size to N = 4 and N = 8. However, each doubling of the
block size approximately doubles the number of page
transfers. Thus increasing the block size involves a
tradeoff between traffic and page fault rates.

Figure 5 illustrates the effect of adaptive prefetching
with adaptation on a per-block basis. Miss ratios and traf-
fic are given for a segment of 10° references after a learn-
ing period of 5 x 10° references. Method 1 (Section 1V)
was used to vary the block transfer numbers for a range of
parameters (X,, X,) to generate miss ratio vs traffic
curves for N = 4 and N = 8. The initial value for TN, X,

P. A. FRANASZEK AND B. T. BENNETT

0.190
0.185 r—
0.180 —
B A
0.175 - \ \
A
.\ \A\
0.170 A
.2 r— -
5 0.165 | N)) A
2 4 6 8 10 12 14
Pages transferred (105)

Figure 6 Miss ratio vs pages transferred for AAS references
five million to six million for a memory size of 2048 pages, with
five percent reserved for unreferenced pages and eight pages per
block: B, adaptive prefetching method 1; A, adaptive pre-
fetching method 2.

was chosen so that a policy of block prefetching was in
effect at the beginning of the simulation. It can be seen
that adaption can result in a substantial reduction in traf-
fic with little effect on the miss ratio. The results show the
effect of continuous adaptation. Experiments were also
tried using the first 5 X 10° references to set the block
transfer numbers, which were then fixed for the remain-
ing 10° references. The results were quite similar to those
shown in Fig. §, with only a slight increase in traffic and
miss ratios in comparison with continuous adaptation.

Figure 6 compares the two methods for varying the
transfer numbers described in Section 1V. Method 1,
which gives a more accurate simulation, yields better re-
sults.

Figures 7 to 9 represent results of experiments on the
IMS trace. Figure 7 gives miss ratios vs memory size for
three management policies:

® Demand paging with LRU replacement and a page size
of 512 bytes.

® Demand paging with LRU replacement and a page size
of 2048 bytes.

e A fixed policy of block prefetching with blocks of N = 4
512-byte pages and 10 percent of main storage allotted
to Q,.

Figure 8 shows the effect of varying the percentage of
main storage devoted to Q,.

Figure 9 illustrates the effect of adaptive prefetching us-
ing policy Al with adaptation on a per-block basis, with
Method 1 used to vary the block transfer numbers. Re-

IBM J. RES. DEVELOP. ® VOL. 22 @ NO. 4 e JULY 1978

sults are for the 4 x 10° to 5 X 10° reference interval,
allowing an initial learning period of 4 x 10° references.
The curves were obtained by varying the parameters X,
and X,. As X, and X, are modified to obtain less traffic,
there is an initial point with a substantial decrease in traf-
fic and slightly lower miss ratio than fixed prefetching.
Experiments using Method 2 rather than Method 1 obtain
essentially the same results for this trace.

In observing the IMS results, a possible conjecture is
that the adaptive algorithm selects data blocks for pre-
fetching and disqualifies index blocks, and therefore that
a data base administrator could do as well. However, half
the blocks disqualified are index and half data (the ratio of
index to data base blocks observed in the trace was 1:5).
A policy of fixed demand paging for index pages coupled
with block prefetching for data was simulated for the 4 X
10° to 5 x 10° reference interval. A miss ratio of 0.0356
was obtained, with approximately 15 000 page transfers.
The adaptive method results in a similar number of page
transfers and a 15 percent lower miss ratio.

VI. Discussion and conclusion

Experiments on traces drawn from the AAS data base
and an IMS system produced lower fault rates for block
prefetching than for demand paging, even with a page size
tailored to the application. A possible drawback of block
prefetching, i.e., that it might be difficult to implement a
practical page replacement policy that guarantees a given
percentage of allocated page frames to prefetched as dis-
tinct from referenced pages from a given data base, ap-
pears not to be a problem. The results indicate that pre-
fetching performance is insensitive to the ratio of frames
allocated to Q, vs Q,. Thus a replacement policy that does
not separate referenced from prefetched pages (as, for ex-
ample, inserting prefetched pages into some intermediate
level of the LRU stack) may yield similar results.

Increasing the transfer unit to more than a single page
appears to offer substantial benefits in terms of lowering
the L, miss ratio. However, doubling the transfer unit
tends to almost double the number of page transfers.
Adaptive prefetching appears to yield substantial traffic
reductions compared to such a fixed policy, with little ad-
verse effect on the page fault rate. The results were ob-
tained with a policy that provides only the options of
fetching one page or the entire block. An interesting ques-
tion is what additional benefits could be obtained from a
more flexible policy, such as one which would view each
block as comprising a hierarchy of sub-blocks.

Adaptive prefetching requires some computational
overhead, as well as additional space in the L, directories.
However, computation is only required on transfers of
pages to (), at a time at which L, storage management is
already invoked. Moreover, this overhead should be
weighted against that required for coniputation associated

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 4 ¢ JULY 1978

0.15
A
010 A
+
A
N +
0.05p
u +
|
.2
=
s 0 1 1
64 128 256 512
Memory size in 512-byte pages

Figure 7 Miss ratios for various memory replacement policies
for 520 000 IMS references: A, LRU 512-byte page replacement;
+, LRU 2048-byte page replacement; and M, block prefetch of
four 512-byte pages with ten percent of memory used for unrefer-
enced pages.

0.10
2 e
r— g———o————9
0.08 —
~— o __4 e
0.06 - e g L4
Y * 8 L]
0.04 —
2 6@
E
S om | 1 | |
0 5 10 15 20 25
Memory used for unreferenced pages (percent)

Figure 8 Miss ratio for 520 000 IMS references for block pre-
fetching with various numbers of pages per block and percent-
ages of memory reserved for unreferenced pages; page size: 512
bytes, memory size: 64 pages.

with space allocation for pages that otherwise would be
fetched. In the case where a dynamic variation of the
transfer numbers is impractical, a possible alternative is
to log the transfer of pages to ¢, and to update the units

411

P. A. FRANASZEK AND B. T. BENNETT

412

0.060
+
0.0551= A\ 2 pages/block
0.050—
0.045 - +
x|
0.040 — ":L-H_ A 4 pages/block
0.035—
+.
0.030 ~+ +s a
8 pages/block
2
€
S 0025 | | |
: 10 15 20 25
Pages transferred (103)

Figure 9 Miss ratio vs pages transferred comparison of pre-
fetching (A) and adaptive prefetching method 1 (+) for various
block sizes. Results are for the 400 000-500 000 reference inter-
val for IMS. Memory size: 64 pages, each of 512 bytes, with 15
percent reserved for unreferenced pages.

of transfer periodically. Experiments performed on the
AAS trace suggest that the reference patterns are suffi-
ciently stationary that this approach may also yield ad-
vantageous tradeoffs between traffic and miss ratios.

P. A. FRANASZEK AND B. T. BENNETT

In summary, a number of performance issues associ-
ated with block prefetching were explored. Heuristics
were constructed for dynamically varying the L,-to-L,
unit of transfer, and experimental results were obtained
which show that this approach may yield useful benefits
in the form of decreased traffic.

The overall question of whether block prefetching
rather than demand paging should be chosen for a data
base system with paged main storage involves a number
of issues not considered in this paper. An example is the
costs associated with maintaining L, home addresses.
Consider a storage system where L, consists of several
units of drum storage. The requirement that a page, when
written out, must be placed in a specific location com-
plicates the problem of I/O load balancing. It is not clear
to what extent techniques such as random allocation of
blocks to drums would mitigate this problem. This and
other issues remain as areas for further investigation.

References

1. M. Joseph, ‘‘An Analysis of Paging and Program Behavior,”’
Comput. J. 13, 48 (1970).

2. B.T. Bennett and P. A. Franaszek, ‘‘Permutation Clustering:
An Approach to On-Line Storage Reorganization,”” IBM J.
Res. Develop. 21, 528 (1977).

3. J. Rodriguez-Rosell, “‘Empirical Data Reference Behavior in
Data Base Systems,”’ Computer 9, 9 (1976).

4. P. A. Franaszek, ‘‘Adaptive Transfer Unit Size Variation,”’
IBM Tech. Disclosure Bull. 18, 2348 (1975).

5. L. A. Belady, ‘A Study of Replacement Algorithms for Vir-
tual Storage Computers,”” IBM Syst. J. 2, 78 (1966).

6. J. H. Wimbrow, ‘‘A Large Scale Interactive Administrative
System,”” IBM Syst. J. 4, 260 (1971).

7. “IMS/VS General Information Manual,”’ Order no. SH20-
1260, IBM Corporation, White Plains, NY 10604.

Received December 16, 1976; revised Feb. 10, 1978

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

i1BM J. RES. DEVELOP. e VOL. 22 ¢ NO. 4 ¢ JULY 1978

