
P. A. Franaszek
B. T. Bennett

Adaptive Variation of the Transfer Unit in a Storage
Hierarchy

Abstract: Consider a paged storage hierarchy with at least two levels L, and L,, where L , denotes main storage and Lz secondary
storage. Suppose that the unit of replacement for L, is a single page, and that the L,-to-L, transfer unit, given a page fault, is an integer
number of pages. Then, given a suitable replacement policy for L, , increasing the unit of transfer often results in a lower miss ratio at the
expense of increased paging traffic. This paper explores the possibility of adaptively varying the L,-to-L, transfer unit as a function of the
reference history of the data to be fetched. Experiments on traces drawn from two large data base systems suggest that such adaptation
can result in improved tradeoffs between miss ratios and paging traffic.

1. Introduction

a computing system is assuming greater importance be-
cause of the increasing emphasis on data base appli-

The question of alternative methods for managing data in Figure 1 A two-level storage hierarchy. L,: main storage (ran-
dom access); L,: secondary storage.

cations. One proposed method is to handle data by means
of paging, analogously to the way programs are managed
in virtual memory systems. Such paged storage hierar-

r - - - - - - - - - - - 1

chies might include an automatic mechanism for con-
trolling data transfers and placements to suit patterns of I

usage. This paper investigates problems related to trans-
fers of data between main and secondary storage. Specifi- r-""""" 1 1 """_"
cally, the notion is introduced of varying the unit of trans- I

fer as a function of the reference history of the data in I

I 1 I / cache

L _ _ _ _ _ _ _ _ _ _ J

1 L,: main ?torage
I (random access)

I I
I

question. I I

Figure 1 illustrates a storage hierarchy which for sim- I El Pages
I

plicity has only two levels: L, and L,. Level L , represents I I

main or random access storage; L, is the backing store,
implemented by direct access devices such as drums or L-"" -----"-- """

disks; and L, is allocated in units termed puge jrumes, Pagea I [,ubsets of blocks

each of which can hold onepuge. It is assumed that each r - - - - - ---_----- -----
page has an L, home address, a location in L, where a I
copy resides, and that the set of pages is partitioned into I
blocks of N pages, where the home addresses of the pages I

in each block are contiguous. I Blocks of N pages

Included in the set of policies for managing L , is the I
fetching policy, which determines which pages are trans-

I
I

I
I

1 L2: secondary storage

I

ferred into L , and the times of such transfers. An example I I

of a class of fetching policies is demand puging. Here L . A
I I

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journd reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish
other excerpts should be obtained from the Editor. 405

IBM J . RES. I 3EVELOP. VOL. 22 NO. 4 JULY 1978 P. A. FRANASZEK AND B. T. BENNETT

406

fetches are initiated only by faults, and each fetch in-
cludes only the faulted page. This paper treats a class of
policies termed demund blocking or block prefetching. AS
with demand paging, fetches are initiated only on faults.
Each fetch, however, may cause the transfer into L, of
not just the faulted page, but any subset of pages from the
block containing it. Since a block of pages is stored con-
tiguously on L,, fetching more than one page causes few
additional device delays. If the grouping of pages into
blocks reflects the likely reference patterns, such pre-
fetching may save an appreciable number of faults. The
number of pages fetched from a block given a fault will be
termed the L,-to-L, transfer unit or TU. Main storage is
managed on a page basis. Thus if a block of N pages is
fetched, and N pages are to be removed from L , , the lat-
ter may be members of more than one block.

It is well known that block prefetching may result in a
significant reduction in the fault rate [1-31. However, a
large transfer unit incurs a number of costs, which include

I . An increase in channel traffic. This results in greater
memory interference between the channels and cen-
tral processing units, as well as longer queues for 110.

2. Wastage of storage space due to the transfer of pages
that will not be referenced.

3 . Greater processing overhead in the L , page replace-
ment algorithm.

A suitable fetching policy thus involves a number of
tradeoffs. These, however, are a function of the system
load and data usage patterns, which in general are time-
varying and/or unknown. This suggests the use of an
adaptive policy that changes as a function of a number of
observed parameters.

One approach to such adaptation is to concentrate on
individual process behavior. For example, occurrences of
sequential page references in a given process could be
monitored and the units of transfer adjusted accordingly.
A potential disadvantage of this method is that if the num-
ber of processes is large, as is typically the case in a data
base system, monitoring the reference patterns for each
process could result in a substantial computational over-
head. Moreover, the presence of shared data might re-
quire that all references be monitored, notjust the faults.

This paper introduces a second alternative: adaptation
based on observations of how the data in question are
referenced, as discussed briefly in Ref. 4. Note that this
alternative entails an assumption about reference pat-
terns. Programs in execution might be expected to have
fairly regular patterns of reference, at least sufficiently so
for adaptive prefetching to be advantageous. However, it
is not clear whether patterns of references to data bases
are sufficiently regular to be exploitable. Thus much of
the emphasis of this investigation is on experimental re-

sults and methodology. Also included is some discussion
of expected perforrnance benefits and approaches to im-
plementation.

Section I1 descrilyes a class of fetching policies. These
give the option of letching either the faulted page or all
missing pages from a block. Section 111 gives an approxi-
mate analysis of th,: prefetching process which explores
the relation betwec:n gains associated with prefetching
and the average nullnber of prefetched pages that are ref-
erenced. Section W presents simple heuristics for vary-
ing the transfer unit size based on estimates of the ratio of
prefetched pages referenced to overall traffic. This in-
volves approximations, required as the result of the non-
observability of relevant variables when only a faulted
page is fetched. Er,periments on traces drawn from two
large data base sysl.ems are described in Section V.

The results indi1:ate that block prefetching yields a
lower miss ratio than does demand paging, even when the
page size for the latl.er policy is tailored to the application.
Adaptive variation of the transfer unit size substantially
lowers the paging tl affic required to maintain a given miss
ratio in comparison with a fixed policy of block pre-
fetching. Referencc: patterns in the two data bases thus
appear to be sufficiently stable as to be exploitable by
learning procedure,;. Section VI summarizes the results.

II. Main memory management and the fetching policy
Systems with demand paging policies generally have page
replacement algorithms that favor for retention in L,
those pages most 1-ecently referenced [l]. The least-re-
cently-used (LRU) algorithm is a well known idealization
[11. Pages managed by LRU may be viewed as occupying
a stack, with the most recently referenced page on the top
and the least recently referenced on the bottom. A page
occupying an intermediate position is, if referenced,
moved to the top, ;tnd those which had been above it are
moved down by one position. Replacements are made
from the bottom of the stack.

Suppose main nlemory management incorporates an
LRU replacement policy. Consider the case where the
unit of transfer, given a page fault, consists of several
pages. These will irclude, as well as the faulted page, pre-
fetched pages which have not been referenced since their
last residence in m,ain memory. How should these unref-
erenced puges be tl,eated on arrival in L,? One way would
be to determine the average probability of reference to
such pages, and to insert them into a corresponding level
of the LRU stack. In general, however, these pages may
have a reference [robability whose time dependency is
substantially different from that of those pages which
have been referenced during their current sojourn in L,.
This suggests that prefetched (unreferenced) pages be
treated separately. This is the approach taken here and in
several studies of Ikonadaptive prefetching [I , 21.

P. A. FRANASZEK AND B. T. BENNETT IBM J . RES. DEVELOP. 0 VOL. 22 NO. 4 JULY 1978

As shown in Fig. 2 , main storage is partitioned into two
sections Q, and e,. Section Q, holds referenced pages,
and is managed by a replacement algorithm such as LRU.
Section Q, is a first-in-first-out (FIFO) stack, holding un-
referenced pages.

It is convenient to introduce notation in which Bj,
where j = 1, 2, . . ., is the set of blocks in the storage
hierarchy. Each Bj contains a set of pages P,, where i =

Consider a set of pages belonging to Bj, which are
transferred to L, as the result of a fault to page P,; is
immediately placed in Q,. The other (prefetched) pages
are placed in the Q, FIFO stack. A prefetched page refer-
enced before deletion from Q, is transferred to Q,. For
simplicity, it is assumed that Q, and Q, are each allotted a
fixed percentage of the L, page frames. Replacements are
from Q, unless Q, exceeds its allocation.

As mentioned above, given a page fault, the fetching
policy determines the unit of transfer. The policy may in-
clude a set of parameters, the setting of which is per-
formed by another mechanism. The policy to be consid-
ered is

Al: Associated with each block Bj is a transfer number
TN(j) , which determines, given a fault to a page Pij,
whether just this page or all missing pages from this block
should be fetched.

An implementation of A1 may be based on a system di-
rectory with entries in the following format:

1 , 2 , . . ., N .

1 Block ID I Block Address I TN 1
The transfer number may be regarded as a summary of
the reference statistics for a block. The form of the TN is
a function of the specific implementation. The fetching
policy may be either fixed or adaptive. In the adaptive
case, the block transfer numbers are modified dynami-
cally as a function of observed page references.

111. Analysis
Let R = { r , , r,, . . .} denote the reference string, where r,
represents a reference to P , at time t,. Consider a fault to
page Pi, E Bj at time t,. Let B,d(m) denote those pages in
Bj absent from L, at t,, and let Bj"(m) be B,"(m) minus the
faulted page. For simplicity, it will be assumed that all
pages transferred to Q, at a time t , will be removed simul-
taneously at some time (t , + A,) if unreferenced. Let $
denote the expected number of pages from BJ'(m) refer-
enced in the interval (t,, t , + A,). Suppose that the fetch-
ing policy A1 is stationary with respect to Bj in the inter-
val (t,, t , + A,). That is, either (a) B,d(m) is fetched as the
result of each fault to Bj in (t,, t , + A,) or (b) there is a
policy of demand paging with respect to the block Bj in
the interval (t,, t , + A,). Fetching Br(m) will then reduce
the expected number of page faults by $.

IBM J . RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

r----
I
I

I
I

I
I
I
I

I
I
I
I
I
I
I
I

I Q 2

Referenced I
pages I

I
I
I
I
I

FIFO LRU

Referenced
pages Ql I

I
I
I
I
I
I

I I
I I
L - - - - - - """"""""--J 4 1

1 Pages

--"""""""""""""-
Secondary storage

Figure 2 Memory management for demand blocking.

Subsets
of blocks

Fetching B,"(m) will push down the pages in the FIFO
stack, reducing their potential residence times. Let V be
the expected reduction due to prefetching Bj"(m) in the
number of pages resident in Q, that are referenced before
removal. The value V provides an upper bound to the in-
creased number of faults to pages other than B,ir(m), since
an ejected page may be prefetched before the fault, or if
faulted may result in the fetching of a page that would
otherwise be faulted.

Let C, and CD denote respectively the cost of a page
fault and the cost of prefetching a page. The above sug-
gests that Bj"(m) should be fetched when

where N[Bj"(rn)] is the number of pages in Bj"(rn). Note
that as $/N[B,"(m)] increases, V/N[B,"(m)] tends to de-
crease, since the sooner a prefetched page is referenced,
the less effect it has on the pages below it in the FIFO
stack. In other words, ($ - V) / N [B,"(m)] tends to grow
monotonically with $ / N [B,"(m)]. One might then con-
clude that a fetch is desirable when

is sufficiently large. The value Rj is simply the expected
fraction of prefetched pages which are actually refer-
enced. The fetching policies considered here operate on
the principle of fetching all blocks Bj whose estimated Rj
is greater than some threshold value.

It is interesting to consider what happens if the station-
ary assumption does not hold. Let P , E B t (m) be a page
that is actually referenced in (t,, t , + A,). Prefetching
this page at time t , may not save a fault because

P. A. I

407

'RANASZEK AND B. T. BENNETT

408

1. Another fault at time tn > t , may occur, resulting in
the prefetching of Pkj.

2 . A fault to P,, if it occurs, may cause the fetching of
some other page that would have been faulted other-
wise.

Moreover, prefetching a page Pkj may cause an additional
fault, since

3. If Pkj is not fetched at time t , , and not referenced in
time (t , , t , + A,), a reference to it at time tn > t , +
A,,, may cause a fault. If, however, P , had not been
prefetched at t,, it might have been prefetched at a
time t,., such that t,. < t,, < t , + A,,.

Observations 1-3 illustrate features of demand blocking
that make it difficult to obtain optimal algorithms analo-
gous to Belady's MIN policy [5] for demand paging.

The primary potential advantage of adaptive pre-
fetching in the system considered here is a lower paging
rate required to obtain a given miss ratio as compared to a
fixed policy of block prefetching. It can be expected that
there is little potential for lowering the miss ratio. To see
why this is so, consider a fixed prefetching policy with a
block size of N pages and suppose N is such as to yield
the minimum number of page faults for a given Q, and Q2.
If adaptive policy AI is adopted and is successful, the
result is to lower the number of useless pages transferred.
Suppose that the overall traffic is reduced by a factor of
two. To a first degree of approximation, this implies that
Q, may be halved with little effect on the page fault rate.
For a fixed memory size, this means that Q, may be in-
creased correspondingly. However, since Q, comprises
(as shown subsequently) on the order of ten to twenty
percent of L , , the resulting effect on the page fault rate is
small.

IV. Heuristics
This section discusses methods for varying the unit of
transfer associated with each block Bi through estimation
of R,, the expected ratio of referenced to prefetched pages
that would be expected if a fixed policy of block pre-
fetching were in effect. Note that, given such a policy, a
simple estimator of Rj is the fraction of prefetched pages
from E, that are referenced before removal from the FIFO
stack. Since the actual policy is adaptive, this ratio, if it is
to be used, must first be estimated. The approach taken
below is to perform this estimation by means of an ap-
proximate simulation of the effects of a fixed prefetching
policy. Let R j denote the estimated ratio.

Let {Vi}, i = 1, 2 , . . ., be the sequence of references to
pages not contained in Q,. The contents of Q, are inde-
pendent of the prefetching policy, so that the sequence of
faults under either fixed or adaptive block prefetching will
be a subsequence of {Vi}. Let {Vi} denote that sub-
sequence which corresponds to the faults indicated by the

simulation of fixell block prefetching. These will be
termed the simulate dfaults. Let Fi represent the number
of such faults up tc but not including the time of V i .

Two methods of simulation were tried.

Method 1
Associated with tile main memory directory for each
block Bj is a numbe- D j , which is equal to Fi(jl, the number
of simulated faults up to but not including the time rf(,) of
the most recent simulated fault to B j , Vi;,). If no pages
from E, are in Q,, 1 hen let Dj = -m.

Suppose V i , i > i (j) , is a reference to E,; then V i is a
simulated fault if

where

M , represents the number of page frames allocated to e,.
N is the number ol' pages per block.

(N - p) represents the average simulated number of
pages transferred lo L , as the result of a fault. This in-
cludes the faulted ,is well as the prefetched pages.

Note that transfers between Q, and Q , are ignored. This
tends to result in an underestimation of the Q, residence
times for prefetched pages that are not referenced before
removal, leading 1.0 overestimation of the number of
faults and thus to ;tn underestimation of the value of the
{Rj}. However, this effect is not expected to be large. Only
a minority of the { V i } represent references to pages resi-
dent in Q,, and each fault generally results in the transfer
of several pages. Thus the residence times are largely de-
termined by the number of faults and the average transfer
unit size.

Method 2
A reference V , rep,l'esents a simulated fault if and only if it
is to a page Pi3 wh'1)se block E, has no contents in Q,.

This approach rlsulted from the observation that, un-
der a fixed policy of block prefetching, the average num-
ber of pages transferred due to a fault is close to N , the
block size, so that tnost faults are to blocks with no pages
in Q,. The advanklges are elimination of the parameters
{Dj} from the dire1:tory and the computation associated
with [2] . The disatlvantage appears to be a substantially
greater error than with Method 1 in estimating the R j .
Suppose the residence time for a page Q, is, as expected,
always greater thall for a page in Q,. Then if V , is a refer-
ence to a block B, with no pages in Q,, V,< would be an
actual fault. However, the presence of some pages from
Bj in Q, does not nlxessarily imply that the remainder are
in Q,. Thus Metholi 2 tends to underestimate the number
of faults, and over'sstimate the {Rj}.

P. A. FRANASZEK AND B . T. BENNETT IBM J . RES. DEVELOP. 0 VOL. 22 0 NO. 4 JULY 1978

The decision on the transfer unit size for Bj , given a
fault to this block, is based on whether R j , the estimated
value of R j , is greater than a given threshold. Let this
threshold be denoted by a. Information related to the cur-
rent value of R j is stored in the directory as the transfer
number TN(j) . Storing the actual value of R j is inconven-
ient, since updating requires knowledge of the number of
faults. A simple representation for T N (j) was chosen for
the experiments, based on the observation that the aver-
age transfer unit size, if all missing pages are prefetched,
is close to N .

Suppose a is such that

x, a = (4)
X,(N - 1)

for integer values X, , X, . Let T N (j) be as follows:

1 . Initially T N (j) = X, .

Each time a page Pij is transferred to Q, (either from L, or
Q,), i.e., for each Vi ,

2. If this transfer represents a simulated fault,
TN(j) +- TN(j) - X,;

3. Otherwise,
T N (j) +- T N (j) + X, .

If, given a fixed policy of block prefetching, the number
of pages transferred due to a fault is always N , then T N (j)
2 0 whenever R j 2 a. In an actual system, it might be
advantageous to introduce modifications that would en-
sure that the recent reference history of a block is
weighted more heavily. A simple way of doing this is to
introduce bounds for TN.

V. Experimental results
A number of experiments were performed on traces of
references to two large data bases; the IBM Advanced
Administrative System (AAS) data base [6] and one data
base of an IBM IMS [7] system.

The AAS trace represents approximately three days of
transactions and consists of 6 X lo6 references to a data
base of about two million 1693-byte physical records. For
the purpose of these experiments, each physical record
was taken to be one page. Blocks represent N con-
secutive physical records from a particular AAS file. That
is, each file was partitioned into blocks of size N starting
with records 1 , N + 1 , 2N + 1 ,

The reference string for IMS represents approximately
one day of references to one data base and index of an
IMS system. It consists of 520 000 references. The refer-
ence string was created by J. H. Mommens of IBM Re-
search, Yorktown, from a trace of DL/1 calls and a map
of the data base. It represents references to the data base

0.20 -

0.15 -

A

+
A

+
f

I
0.10 1 I

I

0

m
.-
L I

L

I

16 384

Memory size (pages)

Figure 3 Miss ratios for various memory management policies
for six million AAS references: A, LRU page replacement: +,
LRU replacement of a block of eight pages; and W , block pre-
fetching a block of eight pages with 20 percent of memory re-
served for unreferenced pages.

Figure 4 Miss ratios for block prefetching of six million AAS
references with a 2048-page memory. Results for various block
sizes (2, 4, 8, 16, 32) are presented for various percentages of
memory allocated to the unreferenced pages.

0.190

0.185

0. I80

0.175

0

c1
L
(0

.-
I

2 0.170

2

4

x\

5 10 I5

4emory used for unreferenced pages (percent) 409

P. A. FRANASZEK AND B. T. BENNETT IBM J . RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

0. I Y O

n.185

0 . I N 1

0.175

0.170
0
I e
2 0.165
VI

+

A8

I I I I I
2 4 6 8 10 12 I .

Pages transferred (I O 5)

Figure 5 Miss ratio vs pages transferred comparison of pre-
fetching (A) and adaptive prefetching method 1 (+). Lines con-
nect results for block sizes 4 and 8. Results are for the five mil-
lion to six million reference interval in AAS. Memory size is 2048
pages with five percent reserved for unreferenced pages.

mapped into a linear space. This linear space is regarded
as being divided into pages. Blocks are sets of N con-
secutive pages.

Figures 3 to 6 represent the results of experiments on
the AAS trace. Figure 3 presents miss ratios vs memory
size for three management policies:

Demand paging with LRU replacement.
Demand paging with LRU replacement, but with a page
size eight times that for the first policy.

0 A fixed policy of block prefetching with N = 8. Q, is
managed by LRU, and Q, by a FIFO policy. Q, was
allotted 20 percent of L , .

Figure 4 shows that the miss ratio for block prefetching is
relatively insensitive to the percentage of main storage
devoted to holding unreferenced pages, at least in the
range of 5 to IS percent. Significant improvements in the
miss ratio may be obtained over demand paging by block
prefetching with N = 2, and also by increasing the block
size to N = 4 and N = 8. However, each doubling of the
block size approximately doubles the number of page
transfers. Thus increasing the block size involves a
tradeoff between traffic and page fault rates.

Figure 5 illustrates the effect of adaptive prefetching
with adaptation on a per-block basis. Miss ratios and traf-
fic are given for a segment of 10' references after a learn-
ing period of 5 X 10' references. Method 1 (Section IV)
was used to vary the block transfer numbers for a range of
parameters (X , , X,) to generate miss ratio vs traffic

41 0 curves for N = 4 and N = 8. The initial value for T N , X , ,

Figure 6 Miss ratio vs pages transferred for AAS references
five million to six million for a memory size of 2048 pages, with
five percent reserved for unreferenced pages and eight pages per
block: H, adaptive prefetching method I ; A, adaptive pre-
fetching method 2.

was chosen so that a policy of block prefetching was in
effect at the beginning of the simulation. It can be seen
that adaption can result in a substantial reduction in traf-
fic with little effect on the miss ratio. The results show the
effect of continuous adaptation. Experiments were also
tried using the first 5 x IO6 references to set the block
transfer numbers, which were then fixed for the remain-
ing IO' references. The results were quite similar to those
shown in Fig. 5 , with only a slight increase in traffic and
miss ratios in comparison with continuous adaptation.

Figure 6 compares the two methods for varying the
transfer numbers described in Section IV. Method 1,
which gives a more accurate simulation, yields better re-
sults.

Figures 7 to 9 represent results of experiments on the
IMS trace. Figure 7 gives miss ratios vs memory size for
three management policies:

0 Demand paging with LRU replacement and a page size
of 512 bytes.
Demand paging with LRU replacement and a page size
of 2048 bytes.

0 A fixed policy of block prefetching with blocks of N = 4
512-byte pages and 10 percent of main storage allotted
to Q2.

Figure 8 shows the effect of varying the percentage of
main storage devoted to Q2.

Figure 9 illustrates the effect of adaptive prefetching us-
ing policy A1 with adaptation on a per-block basis, with
Method 1 used to vary the block transfer numbers. Re-

P. A. FRANASZEK AND B . T. BENNETT IBM J . RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

fic and slightly lower miss ratio than fixed prefetching.
Experiments using Method 2 rather than Method 1 obtain
essentially the same results for this trace.

In observing the IMS results, a possible conjecture is
that the adaptive algorithm selects data blocks for pre-
fetching and disqualifies index blocks, and therefore that
a data base administrator could do as well. However, half
the blocks disqualified are index and half data (the ratio of
index to data base blocks observed in the trace was 1:5).
A policy of fixed demand paging for index pages coupled
with block prefetching for data was simulated for the 4 x
lo5 to 5 X l o 5 reference interval. A miss ratio of 0.0356
was obtained, with approximately 15 000 page transfers.
The adaptive method results in a similar number of page
transfers and a 15 percent lower miss ratio.

VI. Discussion and conclusion
Experiments on traces drawn from the AAS data base
and an IMS system produced lower fault rates for block
prefetching than for demand paging, even with a page size
tailored to the application. A possible drawback of block
prefetching, i.e., that it might be difficult to implement a
practical page replacement policy that guarantees a given
percentage of allocated page frames to prefetched as dis-
tinct from referenced pages from a given data base, ap-
pears not to be a problem. The results indicate that pre-
fetching performance is insensitive to the ratio of frames
allocated to Q, vs Q,. Thus a replacement policy that does
not separate referenced from prefetched pages (as, for ex-
ample, inserting prefetched pages into some intermediate
level of the LRU stack) may yield similar results.

Increasing the transfer unit to more than a single page
appears to offer substantial benefits in terms of lowering
the L , miss ratio. However, doubling the transfer unit
tends to almost double the number of page transfers.
Adaptive prefetching appears to yield substantial traffic
reductions compared to such a fixed policy, with little ad-
verse effect on the page fault rate. The results were ob-
tained with a policy that provides only the options of
fetching one page or the entire block. An interesting ques-
tion is what additional benefits could be obtained from a
more flexible policy, such as one which would view each
block as comprising a hierarchy of sub-blocks.

Adaptive prefetching requires some computational
overhead, as well as additional space in the L, directories.
However, computation is only required on transfers of
pages to Ql, at a time at which L, storage management is
already invoked. Moreover, this overhead should be
weighted against that required for computation associated

A

+
A

+

1
Memory size in 5 12-byte pages

Figure 7 Miss ratios for various memory replacement policies
for 520 000 IMS references: A, LRU 512-byte page replacement;
f , LRU 2048-byte page replacement; and W , block prefetch of
four 512-byte pages with ten percent of memory used for unrefer-
enced pages.

0.04

0 .- -
f
VI

2 0.02

8
0-0-

16

5 10 15 20 25

I Memory used for unreferenced pages (percent)

Figure 8 Miss ratio for 520 000 IMS references for block pre-
fetching with various numbers of pages per block and percent-
ages of memory reserved for unreferenced pages; page size: 512
bytes, memory size: 64 pages.

with space allocation for pages that otherwise would be
fetched. In the case where a dynamic variation of the
transfer numbers is impractical, a possible alternative is
to log the transfer of pages to Ql, and to update the units 41 1

P. A. FRANASZEK AND B. T. BENNETT IBM J. RES. DEVELOP. VOL. 22 NO. 4 JULY 1978

0.068

0.05

0.05’

0.04

0.04’

0.03

0.03

0 .- *
E
VI
VI z 0.02

+
A 2 pages/block

+

+“+++-A
8 pagedblock

I I I
) 10 15 20 2

’ages transferred (IO3)

Figure 9 Miss ratio vs pages transferred comparison of pre-
fetching (A) and adaptive prefetching method 1 (+) for various
block sizes. Results are for the 400 000-500 000 reference inter-
val for IMS. Memory size: 64 pages, each of 512 bytes, with 15
percent reserved for unreferenced pages.

of transfer periodically. Experiments performed on the
AAS trace suggest that the reference patterns are suffi-
ciently stationary that this approach may also yield ad-
vantageous tradeoffs between traffic and miss ratios.

41 2

P. A. FRANASZEK AND B. T. BENNETT

In summary, a number of performance issues associ-
ated with block prefetching were explored. Heuristics
were constructed for dynamically varying the L,-to-L,
unit of transfer, and experimental results were obtained
which show that this approach may yield useful benefits
in the form of decreased traffic.

The overall question of whether block prefetching
rather than demand paging should be chosen for a data
base system with paged main storage involves a number
of issues not considered in this paper. An example is the
costs associated with maintaining L, home addresses.
Consider a storage system where L, consists of several
units of drum storage. The requirement that a page, when
written out, must be placed in a specific location com-
plicates the problem of I/O load balancing. It is not clear
to what extent techniques such as random allocation of
blocks to drums would mitigate this problem. This and
other issues remain as areas for further investigation.

References
1 . M. Joseph, “An Analysis of Paging and Program Behavior,”

Comput. J . 13, 48 (1970).
2. B. T. Bennett and P. A. Franaszek, “Permutation Clustering:

An Approach to On-Line Storage Reorganization,” IBM J .
Res. Develop. 21, 528 (1977).

3 . J. Rodriguez-Rosell, “Empirical Data Reference Behavior in
Data Base Systems,” Computer 9, 9 (1976).

4. P. A. Franaszek, “Adaptive Transfer Unit Size Variation,”
IBM Tech. Disclosure Bull. 18, 2348 (1975).

5 . L. A. Belady, “ A Study of Replacement Algorithms for Vir-
tual Storage Computers,” IBM Syst. J . 2, 78 (1966).

6. J. H . Wimbrow, “ A Large Scale Interactive Administrative
System,” IBM Syst. J . 4, 260 (1971).

7. “IMS/VS General Information Manual,” Order no. SH20-
1260, IBM Corporation, White Plains, NY 10604.

Received December 16, 1976; revised Feb. 10, 1978

The authors are located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. VOL. 22 e NO. 4 e JULY 1978

