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Adaptive  Variation  of  the  Transfer  Unit  in a Storage 
Hierarchy 

Abstract: Consider a paged storage  hierarchy with at least two levels L, and L,, where L ,  denotes main storage  and Lz secondary 
storage.  Suppose  that the unit of replacement  for L,  is a single page,  and that the L,-to-L, transfer  unit, given a page fault, is an integer 
number of pages. Then, given a  suitable  replacement policy for L, ,  increasing  the unit of transfer often  results in a  lower  miss  ratio at  the 
expense of increased paging traffic. This paper  explores the  possibility of adaptively  varying  the L,-to-L, transfer unit as a  function of the 
reference  history of the  data  to be fetched.  Experiments on traces  drawn from two large data  base  systems suggest that such  adaptation 
can result in improved tradeoffs between miss  ratios and paging traffic. 

1. Introduction 

a  computing  system is assuming greater importance be- 
cause of the increasing  emphasis on  data base  appli- 

The question of alternative methods  for managing data in Figure 1 A two-level  storage hierarchy. L,:  main storage (ran- 
dom  access); L,: secondary  storage. 

cations. One  proposed method is to handle data by means 
of paging, analogously to the way programs are managed 
in virtual memory systems. Such paged storage  hierar- 
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chies might include an automatic  mechanism  for  con- 
trolling data  transfers and placements to suit patterns of I 

usage.  This  paper  investigates  problems  related to  trans- 
fers of data between main and secondary  storage. Specifi- r-""""" 1 1  """_" 
cally, the  notion is introduced of varying  the unit of trans- I 

fer  as a  function of the  reference  history of the  data in I 
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Figure 1 illustrates  a  storage  hierarchy which for sim- I El Pages 
I 

plicity has only two  levels: L,  and L,. Level L ,  represents I I 

main or random access  storage;  L, is the backing store, 
implemented by direct  access  devices such as drums  or L-"" -----"-- """ 

disks; and L,  is allocated in units  termed puge  jrumes, Pagea I [,ubsets of blocks 

each of which can hold onepuge. It is assumed  that  each r - - - - -  ---_----- ----- 
page has an L, home address, a  location in L,  where a I 
copy  resides, and that  the set of pages is partitioned into I 
blocks of N pages,  where the home addresses of the pages I 

in each block are contiguous. I Blocks of N pages 

Included in the set of policies for managing L ,  is the I 
fetching policy, which determines which pages are  trans- 

I 
I 

I 
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1 L2: secondary  storage 

I 

ferred into L ,  and  the times of such  transfers. An example I I 

of a  class of fetching policies is demand puging. Here L . . . . . . . . . . . . . . . . . . . . .  A 
I I 
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fetches are  initiated only by faults,  and each fetch in- 
cludes only the faulted page. This paper  treats a class of 
policies termed demund blocking or block prefetching. AS 
with demand paging, fetches  are initiated  only on faults. 
Each  fetch,  however, may cause  the  transfer into L,  of 
not just  the faulted page, but any  subset of pages from  the 
block containing  it.  Since a block of pages is stored con- 
tiguously on L,, fetching  more than  one page causes few 
additional  device delays. If the grouping of pages into 
blocks  reflects the likely reference patterns, such pre- 
fetching may save an appreciable  number of faults. The 
number of pages  fetched from a block given a fault will be 
termed the L,-to-L, transfer unit or TU. Main storage is 
managed on a page basis.  Thus if a block of N pages is 
fetched, and N pages are  to be removed  from L , ,  the lat- 
ter may be members of more than  one block. 

It is well known that block prefetching may result in a 
significant reduction in the fault rate [ 1-31. However, a 
large transfer unit incurs a  number of costs, which include 

I .  An increase in channel traffic. This  results in greater 
memory interference  between  the channels and cen- 
tral processing  units, as well as longer queues for 110. 

2. Wastage of storage  space due  to  the  transfer of pages 
that will not be referenced. 

3 .  Greater processing  overhead in the L ,  page replace- 
ment  algorithm. 

A  suitable  fetching policy thus involves  a  number of 
tradeoffs. These,  however,  are a  function of the system 
load and data usage patterns, which in general are time- 
varying and/or unknown.  This  suggests  the  use of an 
adaptive policy that  changes  as  a  function of a  number of 
observed  parameters. 

One approach  to such adaptation is to  concentrate on 
individual process behavior.  For example,  occurrences of 
sequential page references in a given process could be 
monitored and the units of transfer adjusted  accordingly. 
A potential  disadvantage of this  method is that if the  num- 
ber of processes is large, as is typically the  case in a data 
base system, monitoring the  reference  patterns for each 
process could result in a  substantial  computational over- 
head.  Moreover, the  presence of shared  data might re- 
quire that all references be monitored,  notjust  the  faults. 

This paper  introduces a  second alternative: adaptation 
based on observations of how the  data in question are 
referenced, as discussed briefly in Ref. 4. Note  that this 
alternative entails an assumption about reference  pat- 
terns. Programs in execution might be expected  to  have 
fairly regular patterns of reference, at  least sufficiently so 
for  adaptive prefetching to be advantageous.  However, it 
is not clear whether patterns of references  to  data  bases 
are sufficiently regular to be exploitable. Thus much of 
the emphasis of this  investigation is on experimental  re- 

sults and methodology. Also included is some  discussion 
of expected perforrnance benefits and approaches  to im- 
plementation. 

Section I1 descrilyes a  class of fetching policies. These 
give the option of letching  either  the faulted page or all 
missing pages  from  a  block.  Section 111 gives an approxi- 
mate  analysis of th,: prefetching process which explores 
the relation betwec:n gains associated with prefetching 
and the  average nullnber of prefetched pages that  are ref- 
erenced. Section W presents simple  heuristics for vary- 
ing the  transfer unit size based on  estimates of the ratio of 
prefetched  pages  referenced to overall traffic. This in- 
volves approximations, required as  the result of the  non- 
observability of relevant  variables  when  only  a  faulted 
page is fetched.  Er,periments on traces  drawn from two 
large data  base sysl.ems are  described in Section V. 

The  results indi1:ate that block prefetching  yields  a 
lower miss ratio than does demand paging, even when the 
page size for  the latl.er policy is tailored to  the  application. 
Adaptive variation of the  transfer unit size  substantially 
lowers the paging tl  affic required to maintain a given miss 
ratio in comparison with a fixed policy of block pre- 
fetching. Referencc: patterns in the two data  bases  thus 
appear  to be sufficiently stable as  to be exploitable by 
learning procedure,;. Section VI summarizes  the  results. 

II. Main  memory  management  and  the  fetching  policy 
Systems with demand paging policies generally have page 
replacement  algorithms  that favor  for retention in L,  
those pages most 1-ecently referenced [l]. The least-re- 
cently-used (LRU) algorithm is a well known idealization 
[ 11. Pages managed by LRU may be viewed as occupying 
a stack, with the most  recently  referenced page on  the  top 
and the  least  recently  referenced on the  bottom. A page 
occupying an intermediate  position  is, if referenced, 
moved to  the  top, ;tnd those which had been above it are 
moved down by one position. Replacements  are  made 
from the bottom of the  stack. 

Suppose main nlemory management incorporates  an 
LRU replacement policy. Consider  the  case  where the 
unit of transfer, given a page fault,  consists of several 
pages. These will irclude,  as well as the faulted page, pre- 
fetched  pages which have not been  referenced  since their 
last  residence in m,ain memory. How should these unref- 
erenced  puges be tl,eated on arrival in L,? One way would 
be to  determine  the average  probability of reference to 
such  pages, and to insert  them into a  corresponding level 
of the LRU stack. In general, however,  these pages may 
have  a reference  [robability  whose time dependency is 
substantially  different  from that of those pages which 
have been referenced during their  current sojourn in L,. 
This  suggests that prefetched (unreferenced) pages  be 
treated separately.  This is the approach taken  here and in 
several studies of Ikonadaptive prefetching [ I ,  21. 
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As shown in Fig. 2 ,  main storage is partitioned  into two 
sections Q, and e,. Section Q, holds  referenced  pages, 
and is managed by a  replacement algorithm such as LRU. 
Section Q, is a first-in-first-out (FIFO)  stack, holding un- 
referenced  pages. 

It is convenient  to introduce  notation in which Bj,  
where j = 1, 2, . . ., is the set of blocks in the  storage 
hierarchy.  Each Bj  contains  a set of pages P,, where i = 

Consider a set of pages belonging to Bj,  which are 
transferred to L,  as  the result of a  fault to page P,; is 
immediately placed in Q,. The  other  (prefetched) pages 
are placed in the Q, FIFO  stack. A  prefetched page refer- 
enced  before  deletion  from Q, is transferred  to Q,. For 
simplicity, it is assumed that Q, and Q, are each  allotted  a 
fixed percentage of the L,  page frames. Replacements are 
from Q, unless Q, exceeds its  allocation. 

As mentioned above, given a page fault, the  fetching 
policy determines the unit of transfer.  The policy may in- 
clude  a  set of parameters, the setting of which is per- 
formed by another mechanism. The policy to be consid- 
ered is 

Al:  Associated with each block Bj is a transfer  number 
TN( j ) ,  which determines, given a  fault to a page Pij, 
whether  just this page or all missing pages from this block 
should be fetched. 

An implementation of  A1 may be  based on a  system  di- 
rectory with entries in the following format: 

1 ,  2 ,  . . ., N .  

1 Block ID I Block Address I TN 1 
The  transfer  number may be regarded as a  summary of 
the  reference  statistics for  a  block. The form of the TN is 
a  function of the specific implementation. The fetching 
policy may be either fixed or  adaptive. In the  adaptive 
case,  the block transfer numbers are modified dynami- 
cally as  a  function of observed page references. 

111. Analysis 
Let R = { r , ,  r,, . . .} denote  the  reference string, where r, 
represents a reference  to P ,  at  time t,. Consider a fault to 
page Pi, E Bj at time t,. Let B,d(m) denote  those pages in 
Bj absent from L, at t,, and let Bj"(m) be B,"(m) minus the 
faulted  page. For simplicity, it  will be  assumed that all 
pages transferred  to Q, at a  time t ,  will be removed  simul- 
taneously at  some time (t ,  + A,) if unreferenced. Let $ 
denote  the  expected number of pages  from BJ'(m) refer- 
enced in the interval (t,, t ,  + A,). Suppose  that the fetch- 
ing policy A1 is stationary with respect to Bj in the inter- 
val (t,, t ,  + A,). That  is, either  (a) B,d(m) is fetched as  the 
result of each fault to Bj in (t,, t ,  + A,) or (b) there is a 
policy of demand paging with respect  to  the block Bj in 
the interval (t,, t ,  + A,). Fetching Br(m) will then  reduce 
the  expected  number of page faults by $. 
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Figure 2 Memory management for demand blocking. 
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Fetching B,"(m) will push down the pages in the FIFO 
stack, reducing their potential residence times.  Let V be 
the  expected  reduction due to prefetching Bj"(m) in the 
number of pages  resident in Q, that  are referenced  before 
removal. The value V provides an  upper bound to  the in- 
creased  number of faults to pages other than B,ir(m), since 
an ejected page may  be prefetched  before the  fault,  or if 
faulted may result in the fetching of a page that would 
otherwise be faulted. 

Let C, and CD denote respectively  the cost of a page 
fault and the cost of prefetching a page. The above sug- 
gests that Bj"(m) should be fetched when 

where N[Bj"(rn)] is the  number of pages in Bj"(rn). Note 
that as $/N[B,"(m)] increases, V/N[B,"(m)] tends  to  de- 
crease, since the  sooner a  prefetched page is referenced, 
the less effect it has on the pages below it  in the  FIFO 
stack. In other  words, ($ - V ) / N  [B,"(m)] tends to grow 
monotonically with $ / N  [B,"(m)]. One might then con- 
clude that a  fetch is desirable when 

is sufficiently large. The value Rj  is simply the expected 
fraction of prefetched pages which are actually  refer- 
enced.  The fetching policies considered here operate on 
the principle of fetching all blocks Bj whose  estimated Rj  
is greater  than some  threshold value. 

It is interesting to consider  what happens if the station- 
ary assumption does not hold. Let P ,  E B t ( m )  be a page 
that is actually  referenced in (t,, t ,  + A,). Prefetching 
this page at time t ,  may not save a fault  because 

P. A. I 
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1. Another  fault at time tn > t ,  may occur, resulting in 
the prefetching of Pkj. 

2 .  A  fault to P,, if it occurs, may cause  the fetching of 
some other page that would have been  faulted other- 
wise. 

Moreover, prefetching  a page Pkj may cause  an additional 
fault, since 

3. If Pkj is not fetched at time t , ,  and not referenced in 
time ( t , ,  t ,  + A,), a reference  to it at time tn > t ,  + 
A,,, may cause a  fault. If,  however, P ,  had not been 
prefetched at t,, it might have been  prefetched  at  a 
time t,., such  that t,. < t,, < t ,  + A,,. 

Observations 1-3 illustrate features of demand blocking 
that make it difficult to obtain  optimal  algorithms  analo- 
gous to Belady's MIN policy [ 5 ]  for  demand paging. 

The primary  potential  advantage of adaptive  pre- 
fetching in the  system considered  here is a  lower paging 
rate required to obtain  a given miss ratio as compared to a 
fixed policy of block prefetching. It can be expected  that 
there is little  potential for lowering the miss  ratio.  To see 
why this is so, consider  a fixed prefetching policy with a 
block size of N pages and suppose N is such  as  to yield 
the minimum number of page faults for a given Q,  and Q2. 
If adaptive policy AI is adopted  and is successful,  the 
result is to lower  the number of useless pages transferred. 
Suppose  that  the overall traffic is reduced by a factor of 
two.  To a first degree of approximation, this implies that 
Q, may be halved with little effect on the page fault rate. 
For a fixed memory  size,  this means  that Q, may be in- 
creased correspondingly.  However, since Q, comprises 
(as shown subsequently) on the  order of ten to  twenty 
percent of L , ,  the resulting effect on the page fault rate is 
small. 

IV. Heuristics 
This  section discusses  methods  for varying the unit of 
transfer  associated with each block Bi  through  estimation 
of R,, the expected ratio of referenced to prefetched  pages 
that would be expected if a fixed policy of block pre- 
fetching  were in effect. Note  that, given such a policy,  a 
simple estimator of Rj is the fraction of prefetched  pages 
from E, that  are referenced  before  removal  from the FIFO 
stack. Since the actual policy is adaptive, this ratio, if  it is 
to be used, must first be estimated.  The  approach taken 
below is to perform  this  estimation by means of an ap- 
proximate  simulation of the effects of a fixed prefetching 
policy. Let R j  denote  the estimated  ratio. 

Let {Vi}, i = 1, 2 ,  . . ., be the  sequence of references to 
pages not contained in Q,. The  contents of Q, are  inde- 
pendent of the prefetching  policy, so that  the  sequence of 
faults under  either fixed or  adaptive block prefetching will 
be a subsequence of {Vi}. Let {Vi}  denote that  sub- 
sequence which corresponds to the faults  indicated by the 

simulation of  fixell block prefetching. These will be 
termed  the simulate dfaults. Let Fi represent  the  number 
of such  faults up tc but not including the time of V i .  

Two  methods of simulation were tried. 

Method 1 
Associated with tile main memory directory  for  each 
block Bj is a numbe- D j ,  which is equal to Fi(jl, the number 
of simulated  faults up to but not including the time rf(,) of 
the  most recent simulated  fault to B j ,  Vi;,). If no pages 
from E, are in Q,,  1 hen let Dj = -m. 

Suppose V i ,  i > i ( j ) ,  is a reference  to E,; then V i  is a 
simulated fault if 

where 

M ,  represents the  number of page frames allocated to e,. 
N is the number ol' pages per block. 

( N  - p)  represents the  average  simulated  number of 
pages transferred lo L ,  as the result of a fault. This in- 
cludes  the  faulted ,is well as the  prefetched  pages. 

Note  that transfers  between Q, and Q ,  are ignored. This 
tends to result in an underestimation of the Q, residence 
times for prefetched pages that are not  referenced  before 
removal, leading 1.0 overestimation of the  number of 
faults  and thus to ;tn underestimation of the value of the 
{Rj}. However, this effect is not expected to be large. Only 
a minority of the { V i }  represent references  to pages  resi- 
dent in Q,, and each fault  generally results in the  transfer 
of several  pages. Thus the  residence  times are largely de- 
termined by the number of faults  and the average transfer 
unit size. 

Method 2 
A reference V ,  rep,l'esents a simulated fault if and only if it 
is to a page Pi3 wh'1)se block E, has  no  contents in Q,. 

This approach  rlsulted  from  the  observation  that, un- 
der a fixed policy of block prefetching, the  average num- 
ber of pages transferred due to a fault is close  to N ,  the 
block size, so that tnost faults are to blocks with no pages 
in Q,.  The advanklges are elimination of the  parameters 
{Dj} from the dire1:tory and the  computation associated 
with [ 2 ] .  The disatlvantage appears to be a substantially 
greater  error than with Method 1 in estimating the R j .  
Suppose  the residence time for a page Q, is,  as  expected, 
always greater thall for a page in Q,. Then if V ,  is a refer- 
ence  to a block B, with no pages in Q,, V,< would be  an 
actual fault.  However, the presence of some pages from 
Bj in  Q, does not nlxessarily imply that  the remainder are 
in Q,. Thus Metholi 2 tends  to  underestimate the  number 
of faults,  and  over'sstimate the {Rj}. 
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The decision on  the transfer  unit  size for Bj ,  given a 
fault to this  block, is based on whether R j ,  the estimated 
value of R j ,  is greater than a  given threshold.  Let this 
threshold  be denoted by a. Information  related to  the  cur- 
rent value of R j  is stored in the  directory  as  the  transfer 
number TN( j ) .  Storing the actual  value of R j  is inconven- 
ient,  since updating  requires  knowledge of the  number of 
faults.  A simple representation for T N ( j )  was chosen  for 
the  experiments, based on the observation  that  the  aver- 
age transfer unit size, if all missing pages are  prefetched, 
is close to N .  

Suppose a is such  that 

x, a =  (4) 
X,(N - 1 )  

for integer  values X, ,  X, .  Let T N ( j )  be as follows: 

1 .  Initially T N ( j )  = X, .  

Each time  a  page Pij  is transferred to Q, (either from L, or 
Q,), i.e.,  for  each Vi ,  

2. If this transfer  represents a  simulated  fault, 
TN( j )  +- TN( j )  - X,; 

3. Otherwise, 
T N ( j )  +- T N ( j )  + X, .  

If, given a fixed policy of block prefetching, the number 
of pages transferred  due  to a  fault is always N ,  then T N ( j )  
2 0 whenever R j  2 a. In an actual  system, it might be 
advantageous  to  introduce modifications that would en- 
sure  that  the  recent reference  history of a block is 
weighted more  heavily.  A simple way of doing this is to 
introduce  bounds for TN.  

V. Experimental  results 
A number of experiments were  performed on traces of 
references to  two large data  bases;  the IBM Advanced 
Administrative System (AAS) data  base [6] and one  data 
base of an IBM IMS [7] system. 

The  AAS  trace  represents approximately three  days of 
transactions and consists of 6 X lo6 references  to a data 
base of about  two million 1693-byte physical records.  For 
the  purpose of these  experiments,  each physical record 
was taken to be one page. Blocks represent N con- 
secutive  physical records from a particular AAS file. That 
is,  each file was  partitioned  into  blocks of size N starting 
with records 1 ,  N + 1 ,  2N + 1 ,  . . .. 

The  reference string for IMS represents approximately 
one day of references to one data  base and  index of an 
IMS system. It consists of 520 000 references.  The refer- 
ence string  was created by J. H.  Mommens of IBM Re- 
search,  Yorktown, from  a trace of DL/1 calls  and  a  map 
of the  data  base. It represents  references  to  the  data  base 
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nect  results for block  sizes  4 and 8. Results are  for the five mil- 
lion to six million reference interval in AAS. Memory  size is 2048 
pages with five percent  reserved for unreferenced  pages. 

mapped into a  linear space. This  linear space is regarded 
as being divided  into  pages.  Blocks are  sets of N con- 
secutive pages. 

Figures 3 to 6 represent the  results of experiments on 
the AAS trace. Figure 3 presents miss ratios vs memory 
size  for  three  management policies: 

Demand paging with LRU  replacement. 
Demand paging with LRU replacement,  but with a  page 
size eight times  that  for the first policy. 

0 A fixed policy of block prefetching with N = 8. Q, is 
managed by LRU, and Q, by a FIFO policy. Q, was 
allotted 20 percent of L , .  

Figure 4 shows  that  the miss ratio for block prefetching is 
relatively insensitive to the  percentage of main storage 
devoted to holding unreferenced  pages, at least in the 
range of 5 to IS percent. Significant improvements in the 
miss ratio may be  obtained over  demand paging by block 
prefetching with N = 2, and also by increasing  the block 
size to N = 4 and N = 8. However,  each doubling of the 
block size approximately  doubles  the  number of page 
transfers.  Thus increasing the block size  involves  a 
tradeoff between traffic and page fault rates. 

Figure 5 illustrates the effect of adaptive prefetching 
with adaptation on a  per-block  basis.  Miss  ratios  and  traf- 
fic are given for a segment of 10' references  after a  learn- 
ing period of 5 X 10' references.  Method 1 (Section IV) 
was used to vary the block transfer  numbers  for a range of 
parameters ( X , ,  X,)  to  generate miss ratio vs traffic 

41 0 curves  for N = 4 and N = 8.  The initial value for T N ,  X , ,  

Figure 6 Miss  ratio vs pages transferred for AAS references 
five million to six million for  a  memory  size of 2048 pages, with 
five percent reserved  for unreferenced  pages  and  eight  pages per 
block: H, adaptive prefetching  method I ;  A, adaptive  pre- 
fetching  method 2. 

was chosen so that a policy of block  prefetching  was in 
effect at the beginning of the  simulation.  It can  be  seen 
that adaption can result in a  substantial  reduction in traf- 
fic  with little effect on  the miss ratio. The results  show the 
effect of continuous  adaptation.  Experiments were also 
tried using the first 5 x IO6 references  to  set the block 
transfer  numbers, which were  then fixed for  the remain- 
ing IO' references.  The results  were quite similar to  those 
shown in Fig. 5 ,  with only  a slight increase in traffic and 
miss ratios in comparison with continuous  adaptation. 

Figure 6 compares the two methods  for varying the 
transfer  numbers described in Section IV. Method 1, 
which gives a more  accurate simulation, yields better  re- 
sults. 

Figures 7 to 9 represent results of experiments on the 
IMS trace. Figure 7 gives miss ratios vs memory size for 
three  management policies: 

0 Demand paging with LRU replacement and a page size 
of 512 bytes. 
Demand paging with LRU replacement and a page size 
of 2048 bytes. 

0 A fixed policy of block  prefetching with blocks of N = 4 
512-byte pages and 10 percent of main storage allotted 
to Q2. 

Figure 8 shows the effect of varying the percentage of 
main storage  devoted  to Q2. 

Figure 9 illustrates the effect of adaptive prefetching  us- 
ing policy A1 with adaptation on a  per-block basis, with 
Method 1 used to vary  the block transfer  numbers. Re- 

P. A. FRANASZEK AND B .  T. BENNETT IBM J .  RES. DEVELOP. VOL. 22 NO. 4 JULY 1978 



fic and slightly lower miss ratio than fixed prefetching. 
Experiments using Method 2 rather  than Method 1 obtain 
essentially the  same results for this trace. 

In observing the IMS  results, a possible conjecture is 
that the adaptive algorithm selects  data blocks for pre- 
fetching  and disqualifies index blocks, and  therefore that 
a data  base  administrator could do  as well. However, half 
the blocks disqualified are index and half data  (the ratio of 
index to  data  base blocks observed in the  trace was  1:5). 
A policy of  fixed demand paging for index  pages  coupled 
with block prefetching for  data  was simulated  for the 4 x 
lo5 to 5 X l o 5  reference  interval.  A  miss ratio of 0.0356 
was obtained, with approximately 15 000 page transfers. 
The  adaptive method  results in a  similar number of page 
transfers and  a 15 percent lower  miss  ratio. 

VI. Discussion and conclusion 
Experiments on traces  drawn from the AAS data  base 
and an IMS system produced  lower  fault rates  for block 
prefetching  than for demand paging, even with a  page  size 
tailored to  the application. A possible drawback of block 
prefetching, i.e.,  that it might be difficult to implement  a 
practical page replacement policy that  guarantees a given 
percentage of allocated page frames  to prefetched as dis- 
tinct  from referenced pages from  a given data  base,  ap- 
pears not to be a  problem. The  results indicate  that  pre- 
fetching  performance is insensitive to  the ratio of frames 
allocated to Q, vs Q,. Thus a replacement policy that  does 
not separate referenced from prefetched pages (as,  for  ex- 
ample, inserting  prefetched pages into some intermediate 
level of the LRU stack) may yield similar results. 

Increasing the  transfer unit to more  than  a single page 
appears  to offer substantial benefits in terms of lowering 
the L ,  miss  ratio. However, doubling  the transfer unit 
tends  to almost  double  the number of page transfers. 
Adaptive  prefetching appears  to yield substantial traffic 
reductions compared  to such a fixed policy, with little ad- 
verse effect on the page fault rate.  The  results were ob- 
tained with a policy that provides  only the  options of 
fetching one page or  the entire  block. An interesting ques- 
tion is what additional benefits could be  obtained  from  a 
more flexible policy,  such  as  one which would view each 
block as comprising  a  hierarchy of sub-blocks. 

Adaptive  prefetching  requires  some  computational 
overhead,  as well as additional space in the L, directories. 
However,  computation is only  required on  transfers of 
pages to Ql, at a time at which L,  storage management is 
already invoked.  Moreover, this overhead should  be 
weighted against that required for  computation associated 
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+ 
A 

+ 

1 
Memory size in 5 12-byte pages 

Figure 7 Miss ratios for  various  memory  replacement  policies 
for 520 000 IMS references: A, LRU 512-byte  page replacement; 
f ,  LRU 2048-byte page replacement; and W ,  block prefetch  of 
four 512-byte pages with ten percent of memory used for  unrefer- 
enced pages. 
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Figure 8 Miss ratio for 520 000 IMS references  for block pre- 
fetching with various  numbers of pages  per  block and percent- 
ages of memory reserved  for unreferenced pages; page size: 512 
bytes, memory  size: 64 pages. 

with space allocation for pages that  otherwise would be 
fetched. In the  case  where a  dynamic  variation of the 
transfer numbers is impractical,  a  possible alternative is 
to log the  transfer of pages to Ql, and to  update  the units 41 1 
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Figure 9 Miss ratio vs pages transferred  comparison of pre- 
fetching (A) and  adaptive  prefetching  method 1 (+) for  various 
block sizes.  Results  are  for  the 400 000-500 000 reference  inter- 
val  for IMS. Memory  size: 64 pages,  each of 512 bytes, with 15 
percent  reserved  for  unreferenced  pages. 

of transfer periodically. Experiments performed on  the 
AAS trace suggest that  the  reference  patterns  are suffi- 
ciently stationary  that this  approach may also yield ad- 
vantageous  tradeoffs between traffic and  miss ratios. 

41 2 
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In summary, a number of performance issues associ- 
ated with block  prefetching were  explored.  Heuristics 
were constructed  for dynamically  varying the L,-to-L, 
unit of transfer,  and experimental results were  obtained 
which show that this approach may yield useful benefits 
in the  form of decreased traffic. 

The overall question of whether block  prefetching 
rather than demand paging should  be chosen  for a data 
base system with paged main storage involves  a number 
of issues  not considered in this paper. An example is the 
costs  associated with maintaining L, home addresses. 
Consider  a storage  system  where L, consists of several 
units of drum storage.  The  requirement  that a page,  when 
written out, must be placed in a specific location com- 
plicates the problem of I/O load balancing.  It is not clear 
to  what  extent  techniques such as random  allocation of 
blocks to drums would mitigate this  problem.  This  and 
other  issues remain as  areas  for  further investigation. 
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