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Abstract:

A technique for the validation of protocols in communications systems is described. It can be used for systems composed of

processes that can be modeled as finite directed graphs. The validation exhaustively exercises the interaction domain of a system and
identifies all occurrences of a number of well-defined error conditions. The method can detect when individual processes have no
predefined response to incoming messages, as well as system deadlocks and potential loss of messages due to overflow conditions.

Introduction

A communications protocol may be defined as the set of
rules that govern the exchange of information between
processes in a communications system. A protocol pro-
vides a mechanism for system components to exchange
control information that ensures coordinated system be-
havior. It also enables transfer of data and recovery from
errors occurring in the transmission medium. The central
role of a protocol in a communications system and the
difficulty of testing until a system is at an advanced state
of development emphasize the importance of the correct-
ness of the protocol design. In this paper we are con-
cerned with the problem of examining the design of a
communications protocol to determine whether or not it
contains errors.

For the purposes of this paper, we use the term valida-
tion to distinguish it from verification because we are con-
cerned with determining whether or not the protocol is
sound and its logical structure complete. Verification is
more concerned with what the protocol is designed to do
and involves a comparison of particular aspects of the
protocol behavior with those intended by the designer.

A recent survey by Sunshine [1] on protocol veri-
fication points out that verification of the behavior of a
protocol presupposes a clear definition of the properties
to be verified. Many current protocols are so complex
that it is difficult to define a general method that permits
the verification of all properties of interest.

A similar situation exists in the related area of com-
puter program verification. Establishing the correctness
of a program presupposes a definition of what the pro-
gram is designed to do. Luckham [2] points out the neces-

sity of a specification on which to base a verification, and
also that certain properties of a program, such as range
bounds, might be automatically verified for large classes
of programs as they are independent of what the program
is supposed to do. Many errors in programs can be found
automatically. For example, a compiler can detect refer-
ences to undefined variables, an operating system can de-
tect out-of-range addresses and other error conditions
without information concerning what a program is de-
signed to do. Errors that can be detected in this way rep-
resent violations of general rules of program behavior.
Testing of complex software would be extremely difficult
if compilers and operating systems were not able to detect
and report many common errors of this type. A program
which contains no such errors is not necessarily correct
since it may not accomplish the aims of its designer.

The duologue matrix theory of Zafiropulo [3] addresses
the validation of a protocol between a pair of asynchro-
nous processes by defining a number of fundamental rules
of protocol behavior that are incorporated in a validation
function that can be applied to an interaction sequence to
determine whether it contains errors. By applying the val-
idation function to all possible interaction sequences de-
fined by a protocol, design errors in the protocol can be
found. The validation technique identifies design errors in
the form of areas of the protocol design that are in-
completely defined and thus result in unpredictable exe-
cution in a subsequent implementation.

The theory also detects deadlocks and the presence of
interaction steps that can never be executed. A protocol
design which is validated in this way and found to contain
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Figure 1 A loop example for a write/read protocol.

no errors will execute in a predictable way when correctly
implemented. This does not mean that it necessarily ac-
complishes the objectives of the designer.

In order to test the theory, a reformulated version has
been implemented [4] and used to validate the call estab-
lishment procedure specified by the CCITT recom-
mended X.21 interface [5]. OQur experience with this and
other protocols we have studied has shown that many er-
rors in protocol design lead to situations that can be de-
tected by the validation procedure.

The initial theory was restricted in the range of pro-
tocols it could validate, in that it could only be applied to
protocols between two processes that both return to their
initial state after a finite number of interaction steps.

In this paper we present a generalization of the above
validation technique that is applicable to a wider range of
protocols. We show that the restrictions of the initial the-
ory may be removed by reformulating the method used to
define the interaction domain of the two processes. The
initial theory does this by deriving all possible unilogues,
or paths through the state diagram representation of each
process that start at and return to the initial state. A set of
duologues, the Cartesian product of the sets of unilogues
for each process, is then systematically analyzed for a
number of well defined error conditions [3].

By applying the same fundamental error conditions to a
set of system states derived by an iterative perturbation
of the initial state of the communicating system, we dem-
onstrate that protocols among more than two interacting

processes can be validated without the restriction that the
processes need return to their initial states after a finite
number of interaction steps.

This state perturbation approach is first described in
terms of a few simple examples, which illustrate how it
overcomes the limitations of the initial theory. An imple-
mentation of the technique is then described in detail, and
finally possible extensions of the perturbation approach
are discussed.

Limitations of the duologue matrix theory of
validation

The duologue matrix theory of protocol validation [3] has
the following limitations, which we discuss in detail be-
low.

1. The theory is restricted to the validation of protocols
in which the interacting processes must return to-
gether to their initial states after a finite number of in-
teraction steps.

2. The theory only addresses protocols between two
processes.

® Return to the initial state

The limitation of the duologue matrix theory that requires
that both processes return to the initial state after a finite
number of interaction steps has two consequences. First,
it limits the range of protocols that can be validated to
those that do not contain embedded loops, i.e., sequences
of interaction steps that can be repeated an arbitrary num-
ber of times without the processes traversing the initial
state. This limitation appears because the presence of
loops makes both the number and length of unilogues that
each process can execute potentially infinite.

Second, both processes must traverse the initial state
with the same periodicity. The division of a continuously
progressing interaction into sequences of duologues re-
quires, for example, that one process cannot execute two
unilogues while the other is executing one. Such an inter-
action would require an extension of the theory which is
not presently defined.

o Validation of protocols containing loops

Considering the first part of this limitation, we examine
the protocol between the two processes shown in Fig. 1.
This shows two processes that will execute a protocol
that ensures that a sequence of write and read instruc-
tions is executed, that each instruction can be followed by
either a positive or negative acknowledgment, and that in
the latter case the instruction will be repeated. This
simple protocol could be used, for example, to write data
to a storage device and to read them back again for check-
ing purposes.
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Throughout this paper we follow closely the nomencla-
ture used to represent protocols in the IBM Systems Net-
work Architecture Formats and Protocols Manual [6].
Processes are represented as directed graphs. A state is
shown as a vertical line with its name at the top. Transi-
tions between states are shown as directed links, with
text above the link indicating the receipt of an event or
message that initiates the transition. Text below the link
indicates an event that is transmitted to another process
as a result of the execution of the transition. When either
is omitted, the implication is that an unspecified action
either has initiated the transition or occurs as a result of
executing the transition.

The example shown exhibits a loop, i.e., a cycle not
traversing the initial state. In principle, when process B
receives a read instruction, it can always negatively ac-
knowledge it, producing a continuous cycling of both
processes between the WRITE and PEND.READ states,
without ever returning to the initial (RESET) state.

Such behavior can produce an infinite number of inter-
action sequences starting at and returning to the initial
state, each one with a different number of negative ac-
knowledgments.

The duologue matrix theory requires extension in order
to validate protocols of this type. One can validate such a
simple example by induction; a reasonable upper limit is
placed on the number of negative acknowledgments.
However, a general solution in terms of duologues ap-
pears to be quite complex.

The basic philosophy of the perturbation approach,
which we present by means of this example, is to examine
the complete interaction domain of the system by defining
an initial system state, comprising the state of all com-
ponents of the system when the interaction starts. The
interaction domain of the system is then examined by in-
vestigating all possible ways in which the initial state and
all subsequent states can be perturbed.

Each state that the system can reach is analyzed to de-
termine whether or not it represents a deadlock and
whether all processes are able to receive in their current
state all events that may have been transmitted to them.

This simple example (and most of the others we dis-
cuss) contains no errors. The detection of errors is dis-
cussed in detail in a subsequent section. Our current aim
is to show how the complete interaction domain of the
processes can be examined.

In order to define the state of the system at all times, it
is important to realize that the system state not only com-
prises states of the individual processes of which it is
composed, but also of the communications medium
which may contain events being transmitted between
processes.

Sunshine [7] has made use of this to verify properties
of connection establishment protocols in packet switching
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networks. His analysis is conceptually similar to the one
presented here. The state of the communications medi-
um has also been discussed by Bochmann [8], who sug-
gests that in certain types of transmission media it may
only be necessary to consider system states in which
the transmission medium is empty. For generality, we do
not assume that this is the case. The state of the commu-
nications medium has been used in [4] to determine the
error conditions at each vertex of the phase diagram used
to analyze the errors that can arise when a duologue is
executed.

In the current example, the communications medium
can be modeled as two simplex channels with their states
defined in terms of the events they contain. The state of
the system is then specified by the states of the two proc-
esses and of the two channels linking them.

Figure 2 shows a traversal of the complete interaction
domain of the example, which has been performed by
generating a complete list of possible states of the system
by a perturbation technique. Each system state is a one-
line entry in the list, giving the states of the two processes
and of the two channels that link them. The states of the
channels are represented in terms of the messages they
are transporting.

The initial state of the system (system state 0) is the
first entry, with both processes in the RESET state and
both channels empty.

A perturbation of a system state is defined as the execu-
tion of a single transition in one process in the system,
which implies a change of state of a channel if an event is
transmitted or received. We refer to this as a perturbation
as it represents the smallest change that can take place in
the system at any instant of time.

The execution tree shown to the right indicates the exe-
cution paths possible in the system. Transitions between
states are shown as lines, and the system states that are
linked are shown as circles. An asterisk indicates a sys-
tem state that has been previously generated by per-
turbation of an earlier state.

In this example, the only perturbation of the initial state
is when A transmits a write instruction to B. This leads to
system state 1, with A in state PEND.WRITE, the channel
from A to B containing the event write, and the rest of the
system unchanged. System state 2 is reached from system
state 1 when B receives the write, which is thus removed
from the channel.

Both processes are then in the PEND.WRITE state, and
now two different perturbations of the system state are
possible, according to whether or not B transmits a posi-
tive or negative acknowledgment. If a negative acknowl-
edgment is sent, the system returns to its initial state.
This need not be further perturbed as we are already in-
vestigating all execution sequences that start in the initial
state.
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System State Channel State Channel Execution
state of A AtoB of B BioA tree
0 RESET — A RESET —
1 PEND.WRITE Write RESET —
2 PEND.WRITE — PEND.WRITE —
3 PEND.WRITE — RESET Nack
0 RESET — RESET — -
4 PEND.WRITE WRITE Ack
5 WRITE — WRITE —
6 PEND.READ Read WRITE —
7 PEND.READ — PEND.READ —
8 PEND.READ — WRITE Nack
5 WRITE — WRITE —
9 PEND.READ — RESET Ack
0 RESET — RESET — :

*Indicates a state already validated.

Figure 2 Analysis of loop example.

A positive acknowledgment leads on to further states
which have not yet been examined. When system state 7
is reached, a situation similar to that of system state 2
exists. Two alternative perturbations are possible: a nega-
tive acknowledgment leading back to system state 3,
which has already been traversed; a positive acknowledg-
ment leading on to more unexplored states until the initial
system state is reached and all possible states of the sys-
tem have been traversed.

If each of the traversed states of the system is system-
atically examined for error conditions, and all system
states are traversed, then all errors that can occur during
system execution can be found, irrespective of the partic-
ular sequence of transitions that leads to a system state
that manifests an error.

A complete discussion of the errors that can be found in
this way is given in a later section.

o Analysis of protocols between unmatched processes

The requirement of the duologue matrix theory that both
processes return to the initial state after a finite number of
interaction steps excludes from validation protocols such
as the one shown in Fig. 3. Here another write/read pro-
tocol is shown, but for simplicity, without any negative
acknowledgments. A significant difference from the pre-
vious example in Fig. 1 is that, whereas the first process is
constrained to transmit a read after each write instruc-

tion, the second can respond to any arbitrary sequence of
write and read instructions, since both write and read can
be received in their initial states.

The protocol is simple enough for inspection to show
that it contains no errors, yet the duologue matrix theory
would indicate an error. When process A executes the
unilogue resulting in the transmission of read and write to
process B, B executes two unilogues with an intermediate
traversal of the initial state. An error would be indicated
because B returns to the initial state without having re-
ceived all events transmitted during the execution of the
unilogue in A.

The perturbation approach can analyze such a pro-
tocol, as is shown in Fig. 3. When the second process
returns to its initial state, the system as a whole is in a
state that has not been previously executed, so that the
perturbation continues until the system as a whole returns
to its initial state.

The significance of protocols of the type shown in Fig.
3 is that the two processes have not been specifically de-
signed to operate together. Process B is a more general
process that may operate correctly with a number of dif-
ferent processes. In computer systems, a single process is
often designed to operate in several different environ-
ments, as an alternative to having different, special-pur-
pose processes for each. It is important that a general val-
idation technique be able to address such protocols.
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o Vulidation of protocols between multiple processes
Zafiropulo [9] has pointed out that an extension of the
duologue matrix theory to validate protocols among more
than two processes is possible if transitions between
states are labeled with the name of the process with which
an event is exchanged, as well as the event. However, the
details of such an extended theory have not been devel-
oped. We have used such a labeling convention in the ex-
amples discussed above.

The disadvantage of such an extension of the duologue
matrix theory would appear to lie in the interaction do-
main being defined by the Cartesian product of unilogue
sets, which becomes very large if many processes are in-
volved.

Figure 4 shows a simple protocol among three pro-
cesses, which is examined to illustrate how multiprocess
protocols can be analyzed. In the simple protocol shown,
A may represent a program, C a file, and B an inter-
mediate access mechanism. Figure 4 also shows how the
system can be validated.

A system is defined which consists of the three pro-
cesses and four channels that link the process pairs as
defined by the specified event exchanges. Starting with all
processes in the RESET state, successive perturbations
traverse the interaction domain in the same way as in the
previous examples. An examination of each system state
traversed for errors enables a complete validation of the
system to be performed. Note that the number of system
states traversed is less than the number of states in the
Cartesian product of the three processes. The per-
turbation technique only explores the accessible states of
the system, and so is intrinsically efficient.

Error conditions detected by validation
In the previous sections we have shown by a series of
examples how the perturbation technique can overcome
most of the limitations of the duologue matrix theory of
protocol validation by changing the method of traversing
the interaction domain of the processes executing the pro-
tocol. In order to concentrate on this, we have only con-
sidered examples that contain no errors. In this section
we discuss the error conditions that the validation proce-
dure can detect, and then in the following section we
show how the error detection and interaction domain
traversal can be combined in a validation procedure.
The errors that can be detected by the duologue matrix
theory of protocol validation are of two types when ex-
pressed in terms of the process and channel states [4].
First, there are deadlock errors, such that the two pro-
cesses are both in states from which further execution is
dependent on the reception of an event, but there are no
events underway in the channels that link them.
Second, there are reception errors, which can occur
when either process is in a state such that there is no de-
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Process A

RESET PEND.WRITE WRITE
Ack from B
Write to B "
PEND.READ
Ack from B "
r T‘ Read to B
Process B
RESET READ
Read from A
Ack to A
LWrite from A WRITE
Ack to A f
Nonmatching example analysis
System State Channel State Channel Execution
state of A AtoB of B BroA tree
0 RESET — RESET —
1 PEND.WRITE Write RESET —
2 PEND.WRITE —  WRITE —
3  PEND.WRITE — RESET Ack
4 WRITE —  RESET —
S PEND.READ Read RESET —
6 PEND.READ — READ —
7 PEND.READ —  RESET Ack
0 RESET —  RESET —

*Indicates a state already validated.

Figure 3 Example with nonmatching processes.

parting transition which corresponds to the reception of
an event which is underway to it in a channel.

These two types of error conditions can be simply gen-
eralized within the framework of the perturbation ap-
proach and are formally stated in the next section.

A third error condition that can also be detected is
overflow. Any communications medium has a storage ca-
pacity that limits the amount of information it can contain
at any instant. An attempt to exceed this capacity may
result in loss of information being transferred between
processes.

Bochmann [8] has discussed the representation of the
communications medium in terms of queues of messages
in transit and points out that the number of messages in
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transit may be large. He is able to simplify the verification
of properties of protocols by using regular expressions to
characterize the contents of message queues but points
out that this does not capture all of the properties of the
communications medium. One such property is that a
communications medium has a finite capacity for infor-
mation that it can be transporting at any time. In a net-
work or computer system this is governed by the capacity
of the buffers that the information must pass through on
its way between processes and possibly by the overall
level of traffic in the network. In communications hard-
ware it is governed by the number and size of inter-
mediate registers.

An important function of a protocol is to ensure that no
overflow of the storage capacity takes place that may re-
sult in loss of information.

Protocols generally do this by controlling the transfer
of information into the communications medium. Two

Figure 4 Multiprocess example.

Process A Process C
RESET PEND RESET PEND
Get from B
Readto B
Data from B
Data to B
Process B
RESET PEND.READ GET
Read from A
Getto C '
PEND.DATA
Data from C

r Data to A r

control mechanisms are available. The first is to make use
of timing constraints. If the communications medium and
receiving process can accept information at a well-de-
fined rate, the transmitting process can be physically de-
signed to transmit at a compatible rate. In other circum-
stances, transmission is made conditional on acknowledg-
ments, which indicate the successful completion of
information transfer.

This latter mechanism can be directly expressed in the
protocol representation we are using. The former implies
reference to timing constraints, which are not currently
considered as part of our validation procedure. However,
the timing constraints are generally of such a nature that
their verification can be treated independently of the vali-
dation of the logical structure of the protocol.

In the current context, the main interest of protocols
that rely on timing to avoid overflow is their behavior
when their logical structure is validated by a perturbation
technique.

Consider the simple example shown in Fig. 5. Here a
simplex protocol is shown by means of which one process
sends a continuous sequence of messages to the other.
The protocol obviously contains no deadlock. Also the
protocol is such that the receiver is always in a state such
that it can accept the first incoming message; therefore, it
does not manifest the first two error conditions discussed
above. The protocol as shown may cause overflow in the
communications medium since the sender is always in a
state from which it can transmit, and there is nothing in
the logical structure of the processes that prevents it from
transmitting an infinite number of messages before any
are received. A traversal of the interaction domain will

Multiprocess example analysis

System State Channel State Channel Channel State Channel Execution
state of A AtoB of B BtoA Bt C of C CtoB tree

0 RESET — RESET — RESET —

1 PEND READ RESET — RESET —

2 PEND — PEND.READ —_ RESET —

3 PEND — GET GET RESET —

4 PEND — GET — PEND —

5 PEND — GET — RESET DATA

6 PEND — PEND.DATA — RESET —

7 PEND — RESET DATA — RESET —

0 RESET — RESET — RESET — *

*Indicates a state already validated.
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not terminate since there is an infinite number of system
states, differing from one another in the number of mes-
sages underway in the communications medium.

The addition of a timing constraint that prevents the
overflow has the effect of putting an upper bound on the
number of messages underway, thus limiting the number
of distinct states of the system. Conversely, the assump-
tion of an upper bound on the number of messages under-
way is equivalent to assuming a timing constraint.

The assumption of a finite storage capacity for a chan-
nel linking a pair of processes is thus useful to bound the
interaction domain when validating the logical structure
of protocols that have certain implied timing constraints.
In protocols which rely on acknowledgments to prevent
overflow, the generation during validation of an overflow
that exceeds a predefined storage capacity indicates a
protocol error. It is also possible to use overflow to verify
particular properties of protocols. For example, Synchro-
nous Data Link Control [10] normally requires no more
than seven messages to be sent without acknowledgment.
A validation with a storage capacity of seven messages
would verify this design rule.

Throughout this paper we use the number of messages
or events underway as a measure of storage capacity, as
we are considering events as indivisible entities. In prac-
tice, it may be more useful to measure storage capacity in
terms of bits or bytes and associate an appropriate length
with each message.

An overflow is considered to take place if the transmis-
sion of an event results in a channel containing a number
of events greater than a predefined maximum. The inter-
pretation of an overflow depends on which of the two
mechanisms described above is assumed to prevent over-
flow during protocol execution.

An overflow in a protocol that uses acknowledgments
to limit transmission represents an error. On the other
hand, if timing is used as part of the protocol to prevent
overflow, transmission of an event which implies over-
flow represents a region of the interaction domain of the
processes which will not be executed in practice. In this
case, it does not represent an error; it is merely necessary
to suppress perturbations that generate overflow condi-
tions to avoid investigating regions of the interaction do-
main which have no practical significance.

Algorithms for validation by perturbation

In the previous sections we discussed how a technique of
system state perturbation can be used to explore the in-
teraction domain of communicating processes and the na-
ture of the error conditions that may be detected.

In this section we present the algorithms that have been
used in an implemented system for validating protocols
for a particular model of a communicating system in order
to present in a more complete way the validation con-
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RESET
Data from sender

RESET

Data to receiver

-

Figure 5 A simplex protocol.

h—

cepts discussed informally in the previous sections. We
first define the model of the communications system we
are considering.

e Communications system modeled

The communications system we consider is assumed to
be composed of N processes G(I), where I = 1to N. Each
process is represented as a directed graph whose nodes
represent process states and whose arcs represent transi-
tions between states. We denote the current state of pro-
cess G(I) at any time by Gs(I).

Communication between processes is assumed to take
place via a communications medium, which we model as
a set of simplex channels, each linking a pair of pro-
cesses, so that C(, J) represents a channel that can trans-
port information from process I to process J.

The unit of information transferred is defined as an
event, which is assumed to be indivisible.

The execution of a transition in any process in the sys-
tem changes the current state of that process according to
the topology of the directed graph. A transition may also
be associated with the exchange of an event with a chan-
nel connecting the process with another, so that it can
take place only within the framework of a set of rules gov-
erning the interaction of a process with the communica-
tions medium. The exchange of events that accompanies
the execution of a transition is defined by a label associ-
ated with the transition.

Three types of labels are assumed for a transition in
process G(I):

1. ““Event-name to J,”” which indicates that execution of
the transition results in the named event being inserted
into the channel leading from process I to process J.

2. ““Event-name from J,”’ indicating that the transition
takes place when the named event is detected in the
channel from process J to process 1.

3. “No output,” signifying a transition that can take
place without exchange of events with the communi-
cations medium.

The state of a channel C(I, J) at any time is represented
as Cs(I, J), an ordered set of the names of events that it is
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Gs(1) Cs(1,2) - Cs(1, D) Cs(1, N)
Cs(2, 1) Gs(2) .

Cs(1, 1) - Gs(D Cs(I, N)
Cs(N, 1) Cs(I.V, D és(M

Figure 6 Matrix representation of a system state.

transporting between processes, where Cs(I, J)[L] repre-
sents the Lth member of the set.

We assume that channels have the following proper-
ties.

1. The channel C(Z, J) will accept events inserted in it by
process G(I) and deliver them to process G(J) in the
same order as they are received.

2. The time taken to transport events between processes
is variable and unspecified.

3. Each channel C(I, J) has a predefined maximum num-
ber of events that it can be transporting at any instant
of time. This we refer to as its storage capacity,
Cap(l, J).

® System behavior
At any instant of time the condition of the system can be
completely represented by a system state.

We define a system state S(M) as being a unique set of
the current states of the processes Gs{(I) for all I from 1 to
N and of all channels Cs(I, J) for all I and J from 1 to N
but not I = J. The index M identifies a particular system
state.

System state S(M) can be envisaged as a matrix of
states as shown in Fig. 6.

We define a perturbation of a given system state S(M)
as being another system state which can be reached by
executing a single transition in one process G(I) from its
current state Gs(I). By definition, the perturbation can
only change the current state of the one process G(I), and
it follows that the state of only one channel Cs(I, J) or
Cs(J, I will change, dependent on the executed transition
representing a transmission to process J or a reception
from process J. Any change in the system state involving
simultaneous transitions of more than one process can be
represented as a sequence of perturbations.

® Rules governing transitions

1. When an event arrives at a process, it must be immedi-
ately received, and as a consequence it is removed
from the channei. Because the time taken for a chan-
nel to transport events from one process to another is
not specified, it follows that the current state of a pro-

cess must at all times be able to absorb the first in-
coming event in all channels incident on the process.
2. At any time any transition from the current state of a
process which does not correspond to the reception of
an event may be executed.
3. No transition may take place that results in an over-
flow of a channel’s storage capacity.

® Errors
There are three classes of errors, which correspond to
violations of the above rules.

Reception errors

An incoming channel C(J, I) to process G(I) contains an
event, but there is no departing transition from the cur-
rent state Gs(I) by which the first incoming event
Cs(J, D[1] can be received, i.e., no transition having a la-
bel equivalent to ““Cs(I, J)[1] from J.”’

Deadlock errors

For all I, the current state Gs(I) of G(I) is such that there
are no transitions from it corresponding to the transmis-
sion of an event or no output, and the state of all incident
channels Cs(J, I) is an empty set for all J.

Overflow error

For a given process G(I), there exists a transition from
the current state with a label ““Event-name to J°’ such
that its execution will result in the storage capacity
Cap(l, J) of channel C(I, J) being exceeded.

o Algorithm for validation by system state perturbation
The validation algorithm may be stated as follows.

Step 1. Define a set of system states S, initially contain-
ing only the initial state S(0) of the system when execu-
tion commences.

Step 2. Find a member S(N) of the set of system states
whose perturbations have not been determined. If no
such member exists, terminate as the validation is com-
pleted.

Step 3. Calculate the set of system states Sp that can be
reached by a perturbation of S(N). There will be one
member of Sp for each executable transition of all pro-
cesses from their current states as defined in S(NV).

Step 4. If Sp is an empty set, report S(N) as a terminal
(or deadlock) state of the system.

Step 5. Remove all states manifesting a reception error or
overflow condition from Sp, and report the errors found.
Step 6. Add all remaining members of Sp which are not
already members of S to the set .

Step 7. Repeat from step 2.

During the validation a record of each perturbation exe-
cuted can be maintained. Each perturbation can be char-
acterized by parameters identifying the two system states
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linked by the perturbation, the process executing the
transition, and the actual transition executed by the pro-
cess.

This record specifies the interaction domain of the sys-
tem validated in the form of a single directed graph whose
nodes are system states and whose arcs identify possible
transitions between system states. This is a state machine
for the system as a whole; it has similar properties to a
token machine that can be derived from a Petri net de-
scription of a protocol [11].

It completely specifies the communications system be-
havior and can be used as a basis for further analysis.
Bochmann {12] has discussed the suitability of such state
machines for the verification of particular protocol prop-
erties. Cyclic behavior and synchronization, for example,
can be investigated, the latter by means of the concept of
adjoint states [13].

Performance of the perturbation validation system
The validation procedure defined in the previous section
has been implemented in APL; validation of a simple pro-
tocol is discussed in the Appendix to show how the sys-
tem can be used. It is of interest to discuss briefly the
computer time required for validation when the proce-
dure presented above is used, as this is an important pa-
rameter which limits the complexity of protocols that can
be validated.

In this context we are primarily concerned with the
complexity of a protocol or part of a protocol that must be
validated as an entity. Many protocols can be considered
as separate layers or be otherwise subdivided into parts
that may be validated separately.

We repeated the validation of the X.21 protocol dis-
cussed in [5] using the perturbation approach. The results
obtained were equivalent to those obtained in the pre-
vious validation, except that a few problems identified
with limitations of the earlier validation technique were
removed.

The validation required approximately 30 seconds of
cpu time on an IBM System 370, model 158. An imple-
mentation of the perturbation method in a compilable lan-
guage and suitably optimized should require an order of
magnitude less time. A protocol of the order of com-
plexity of the X.21 may thus be validated in a few sec-
onds.

The principal limitation of the validation algorithm is
the necessity to check whether or not each state reached
by a perturbation has already been validated. The time
required depends on the total number of possible system
states, the number of parameters required to represent
each state, and the efficiency of the search algorithms
used. Experience with the X.21 validation suggests that
protocols which are several orders of magnitude more
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complex might be validated in this way before computer
time or storage become serious limitations.

A difficulty in trying to foresee what limits the com-
plexity of protocols that might be validated is that it de-
pends on the size of the system interaction domain rather
than the number and complexity of the processes in the
system. The number of system states is strongly depen-
dent on the degree of coupling between processes and the
possible number of events that may be underway in the
channels.

Extensions to the validation procedure
A number of extensions to the validation procedure as
described above can be envisaged.

The validation method and communications model
used do not currently address the validation of protocols
where specific timing constraints are important. These
are commonly associated with timeouts, which can only
be of unspecified length in the current model. Merlin [14]
has discussed the modeling of time constraints in time
Petri nets as applied to an analysis of the ability to re-
cover from failures. A similar extension to the per-
turbation approach should be possible.

A number of extensions to the communications model
are of interest to permit the validation of a wider range of
systems.

A channel as currently defined in the model links only a
single pair of processes and does not reorder the events it
is transporting. Both of these limitations can be removed
by suitable reformulation of the procedure and channel
model.

Processes are represented as directed graphs, their
function in the model being to generate and accept events
in predefined sequences. The directed graph representa-
tion is inconvenient for modeling processes containing
counters or internal logic which is crucial to the correct
operation of the protocol. Such processes are more con-
veniently modeled in terms of procedures rather than di-
rected graphs. Both Bochmann [12] and Danthine [15] use
procedural modeling in terms of a programming language
for protocol definition and verification. Similar modeling
techniques could also be used in the validation procedure.
It should, however, be noted that errors in the procedures
would only be detected if they resulted in the error condi-
tions discussed in previous sections.

Conclusions
In this paper we have discussed an extension of the duo-
logue matrix theory of communications protocol valida-
tion which overcomes a number of limitations of the origi-
nal theory.

By defining a system state, consisting of the states of all
processes in the system and the states of all channels link-
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Figure 7 Protocol modeled with transmission error.

ing processes, the interaction domain of the system can
be traversed by a series of perturbations of the current
system state.

This permits a search of the interaction domain for er-
ror conditions similar to those detected by the duologue
matrix theory and permits a unified extension of the vali-
dation technique to a larger class of protocols.

The perturbation technique can be used to validate pro-
tocols among multiple processes, protocols in which the
processes do not necessarily return to the initial state af-
ter a finite number of interaction steps, and it enables cer-
tain classes of transmission errors to be modeled.

The technique has been discussed in terms of quite a
simple model of a communicating system. In the model,
individual channels link a single pair of processes and
obey a first-in/first-out queuing discipline. The per-
turbation technique can be generalized to encompass the
validation of a wider range of systems.

A number of extensions of the system remain to be de-
fined. The most significant is the validation of protocols
containing explicit timing constraints.

An important property of the validation technique is
that it detects protocol design errors by systematically
searching the interaction domain of the protocol for the
violation of a few simple and universal error conditions.
A protocol which has been validated without any errors
being identified will behave in a manner that can be pre-
dicted from the design. The validation does not permit
verification of particular protocol properties that may be

desired by a designer. However, many design errors re-
sult in unpredictable protocol behavior when particular
unforeseen conditions arise during execution of a sub-
sequent implementation. Such errors are extremely diffi-
cult to find during testing, yet can be identified by the
validation procedure we have described. The validation
procedure, therefore, promises to be an important tool for
protocol designers and will lead to enhanced reliability of
communications protocols.

The validation technique can be completely automated
and requires only a formal definition of a protocol in state
diagram form. Errors which the validation identifies can
be readily confirmed by referring to the design.
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Appendix: A sample validation of a positive
acknowledgment with retransmission protocol

The perturbation approach to validation has been imple-
mented in an APL based system as described in the al-
gorithm in the body of this paper. In this Appendix we
show how the system can be used to validate the simple
protocol shown in Fig. 7.

Here a simple Positive Acknowledgment, Retransmis-
sion on Timeout protocol is shown, by which a sender
communicates data to a receiver and thus changes the
state of the receiver. The sender transmits the data, waits
for an acknowledgment, and retransmits the data if no re-
sponse is received after a timeout. In this example, the
timeout is modeled by the transition labeled ““No out-
put.”” The receiver waits in its initial state for the data and
ignores any erroneous information, only responding to an
error-free event.

Errors are modeled by interposing a third process, link,
between the sender and receiver. Link receives the data
from the sender and can pass it to the receiver or transmit
an error. This permits the insertion of transmission errors
into the channel from the sender to the receiver and en-
ables particular classes of errors to be modeled during the
validation. This is an alternative to modeling errors by
inserting additional transitions in the transmitting process
as described in [3]. It has the advantage of localizing the
error modeling and is formally equivalent to the technique
described in [3].

Obviously, loss or duplication of events, and any other
specific error mechanisms, can be modeled in this way by
appropriately defining the intermediate process.

Figure 8 shows the definition of the example which is
used as input to the validation system. The user creates
an APL function which contains a definition of the system
to be validated; the name of the function, in this case PAR,
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is arbitrary. The function contains a number of state-
ments which define different aspects of the system. It
starts with a SYSTEM statement defining the names of the
processes composing the system, followed by one or
more EVENTS statements defining the names of events
which may be exchanged between processes.

Each channel is then defined by a separate CHANNEL
statement, which defines the processes linked by the
channel and the channel storage capacity, i.e., the maxi-
mum number of events it may be transporting at any in-
stant. This is defined as negative if overflows in the chan-
nel are not to be recorded as errors.

A PROCESS statement initiates the definition of a pro-
cess, with one or more STATES statements defining the
names of the process states. A state name starting with an
asterisk indicates a transient state, an internal state in
which the process cannot receive events. This is a useful
mechanism that permits the modeling of interrupt-driven
processes and indicates states where interrupts are dis-
abled. In this example, it prevents the link from accepting
an incoming event before it has processed a previous one.
The validation system treats a transient state as one that
must be immediately perturbed when entered and, by def-
inition, will not manifest reception errors.

Each transition is defined by a TRANSITION statement
giving the states it links and the event and destination/
source process involved in the communication. An END
statement terminates the definition.

Execution of the defined function checks the definition
for trivial errors and formats the definition for subsequent
validation. Figure 9 shows a typical error report gener-
ated when the example was validated. It shows the error
condition detected, the states of the processes and chan-
nel contents when it can occur, and the sequence of exe-
cution steps that each process has executed that have led
to the error. The latter are derived from the system state
machine defined by the traversal of the protocol inter-
action domain.

The sample error report shows one problem of this pro-
tocol when used in an environment where the transmis-
sion delay between the sender and recetver is not well
defined. Referring to Fig. 7, the report shows that the
sender can timeout back to its initial state, while an ac-
knowledgment is underway. The acknowledgment can
then be received in the reset state where it is not provided
for.
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