
C. H. West 

I 

General  Technique  for  Communications  Protocol 
Validation 

Abstract: A technique  for the validation of protocols in communications  systems is described. It can be used for systems composed of 
processes  that can be modeled as finite directed  graphs.  The validation  exhaustively exercises the  interaction  domain of a  system and 
identifies all occurrences of a  number of well-defined error conditions.  The method can  detect when individual processes  have  no 
predefined response  to incoming messages, as well as system deadlocks  and potential loss of messages due to  overflow  conditions. 

Introduction 
A communications  protocol may be defined as the set of 
rules that govern  the exchange of information  between 
processes in a  communications system. A protocol  pro- 
vides a  mechanism for system components to exchange 
control  information that  ensures coordinated  system be- 
havior. It also  enables transfer of data and recovery  from 
errors occurring in the transmission  medium. The  central 
role of a protocol in a  communications  system  and the 
difficulty of testing until a  system is at an advanced state 
of development  emphasize  the  importance of the  correct- 
ness of the protocol  design. In this paper we are  con- 
cerned with the  problem of examining the design of a 
communications  protocol to determine  whether  or not it 
contains errors. 

For  the  purposes of this  paper, we use the  term valida- 
tion to distinguish it from verification because we are  con- 
cerned with determining whether  or not the protocol is 
sound  and  its logical structure  complete. Verification is 
more concerned with what the protocol is designed to  do 
and  involves  a  comparison of particular aspects of the 
protocol  behavior with those  intended by the  designer. 

A recent  survey by Sunshine [ I ]  on protocol veri- 
fication points out that verification of the behavior of a 
protocol presupposes a  clear definition of the  properties 
to be verified. Many current  protocols  are so complex 
that it is difficult to define a  general  method that permits 
the verification of all properties of interest. 

A similar situation exists in the related area of com- 
puter  program verification. Establishing the  correctness 
of a  program presupposes a definition of what the pro- 
gram is designed to  do. Luckham [2] points out the  neces- 

sity of a  specification on which to  base a  verification,  and 
also  that  certain properties of a program, such as range 
bounds, might be  automatically verified for large classes 
of programs as  they  are independent of what the  program 
is supposed to  do. Many errors in programs can be found 
automatically. For example,  a  compiler can  detect refer- 
ences  to undefined variables, an operating  system can  de- 
tect out-of-range addresses  and  other  error  conditions 
without information  concerning  what  a  program is de- 
signed to  do.  Errors  that can be detected in this way rep- 
resent  violations of general  rules of program  behavior. 
Testing of complex  software would be extremely difficult 
if compilers  and  operating systems were  not  able to  detect 
and report  many  common errors of this type. A program 
which contains no such errors is not  necessarily correct 
since it may not accomplish  the  aims of its  designer. 

The duologue  matrix  theory of Zafiropulo [3] addresses 
the validation of a  protocol  between  a  pair of asynchro- 
nous processes by defining a  number of fundamental  rules 
of protocol  behavior that  are  incorporated in a  validation 
function that  can be applied to  an interaction sequence  to 
determine whether it contains errors. By applying the val- 
idation  function to all possible interaction sequences  de- 
fined  by a protocol, design errors in the protocol  can  be 
found. The validation  technique identifies design errors in 
the  form of areas of the  protocol  design that  are in- 
completely defined and thus result in unpredictable exe- 
cution in a subsequent implementation. 

The  theory  also  detects  deadlocks and the  presence of 
interaction steps  that can  never be executed. A protocol 
design which is validated in this way and found to contain 
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processes  can  be validated  without the restriction that  the 
processes need return to their initial states  after a finite 
number of interaction  steps. 

This state  perturbation approach is first described in 
terms of a few simple examples, which illustrate how it 
overcomes  the limitations of the initial theory. An imple- 
mentation of the  technique is then described in detail,  and 
finally possible extensions of the  perturbation  approach 
are  discussed. 
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Figure 1 A loop example for a writehead protocol. 

no errors will execute in a predictable way when correctly 
implemented. This  does not mean  that it necessarily  ac- 
complishes the objectives of the  designer. 

In order  to  test  the  theory, a  reformulated  version has 
been  implemented [4] and used to validate the call estab- 
lishment procedure specified by the  CCITT recom- 
mended X.21 interface [5]. Our  experience with this  and 
other protocols we have  studied  has shown  that many er- 
rors in protocol  design lead to situations that  can be de- 
tected by the validation procedure. 

The initial theory was  restricted in the range of pro- 
tocols it could  validate, in that it could only  be applied to 
protocols between two processes  that both return to their 
initial state  after a finite number of interaction  steps. 

In this  paper we present  a  generalization of the above 
validation technique  that is applicable to a  wider  range of 
protocols. We show  that the restrictions of the initial the- 
ory may be removed by reformulating the method  used to 
define the  interaction domain of the  two  processes.  The 
initial theory  does this by deriving all possible  unilogues, 
or  paths  through  the  state diagram representation of each 
process that  start  at and  return to  the initial state. A set of 
duologues, the  Cartesian product of the  sets of unilogues 
for each process, is then  systematically  analyzed for a 
number of well defined error conditions [3]. 

By applying the  same fundamental error conditions to a 
set of system  states  derived by an iterative  perturbation 
of the initial state of the communicating system, we dem- 
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Limitations of the duologue matrix theory of 
validation 
The duologue matrix theory of protocol validation [3] has 
the following limitations, which we discuss in detail  be- 
low. 

1. The  theory is restricted to  the validation of protocols 
in which the interacting processes must return to- 
gether  to their initial states  after a finite number of in- 
teraction  steps. 

2 .  The  theory only addresses protocols  between two 
processes. 

e Return to the initial state 
The limitation of the duologue  matrix theory  that  requires 
that both processes return to  the initial state  after a finite 
number of interaction steps has two  consequences.  First, 
it limits the  range of protocols that  can be validated to 
those  that  do not contain embedded loops,  i.e.,  sequences 
of interaction steps  that can be repeated  an  arbitrary num- 
ber of times  without the  processes traversing the initial 
state. This  limitation appears  because  the  presence of 
loops makes both the number  and length of unilogues that 
each  process can execute potentially infinite. 

Second, both processes must traverse  the initial state 
with the  same periodicity. The division of a  continuously 
progressing  interaction into sequences of duologues re- 
quires,  for  example,  that one process  cannot  execute  two 
unilogues while the  other is executing one. Such an inter- 
action would require an extension of the  theory which is 
not presently  defined. 

Validation of protocols containing loops 
Considering  the first part of this  limitation, we examine 
the protocol  between the  two  processes shown in Fig. 1 .  
This  shows two  processes  that will execute a protocol 
that  ensures  that a sequence of write  and read instruc- 
tions is executed,  that  each instruction  can be followed by 
either a  positive or negative acknowledgment, and  that in 
the  latter  case  the instruction will be repeated.  This 
simple protocol  could  be used,  for  example,  to write data 
to a storage  device  and  to read them back again for  check- 
ing purposes. 
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Throughout  this  paper we follow closely the nomencla- 
ture used to  represent protocols in the IBM Systems  Net- 
work Architecture  Formats and  Protocols Manual [6]. 
Processes  are  represented  as  directed  graphs. A state is 
shown as a vertical line with its name  at  the  top.  Transi- 
tions between  states  are shown as directed  links, with 
text above the link indicating the  receipt of an  event  or 
message that initiates  the  transition. Text below the link 
indicates an event that is transmitted to  another  process 
as a  result of the execution of the  transition. When either 
is omitted, the implication is that an unspecified action 
either  has initiated the transition or  occurs  as a  result of 
executing the  transition. 

The  example shown  exhibits a loop, i.e., a  cycle  not 
traversing the initial state. In principle, when process B 
receives  a read instruction, it can  always negatively ac- 
knowledge it, producing  a continuous cycling of both 
processes between the WRITE and PEND.READ states, 
without ever returning to the initial (RESET) state. 

Such  behavior can produce an infinite number of inter- 
action sequences starting  at  and  returning to  the initial 
state,  each one with a different number of negative ac- 
knowledgments. 

The duologue  matrix  theory requires extension in order 
to validate protocols of this  type. One can  validate  such  a 
simple example by induction;  a  reasonable upper limit is 
placed on the number of negative acknowledgments. 
However, a  general solution in terms of duologues  ap- 
pears to be quite complex. 

The basic  philosophy of the  perturbation  approach, 
which we present by means of this example, is to examine 
the  complete interaction domain of the system by defining 
an initial system  state, comprising the  state of all com- 
ponents of the  system when the interaction starts.  The 
interaction  domain of the  system is then  examined by in- 
vestigating all possible ways in which the initial state and 
all subsequent  states can be perturbed. 

Each state  that the  system  can  reach is analyzed to  de- 
termine whether  or not it represents a deadlock  and 
whether all processes  are able to receive in their current 
state all events  that may have been transmitted to them. 

This simple example (and most of the  others we dis- 
cuss)  contains  no  errors.  The  detection of errors is dis- 
cussed in detail in a subsequent  section. Our current aim 
is to show how the complete  interaction  domain of the 
processes can be  examined. 

In order  to define the state of the system  at all times, it 
is important to realize that the system state not only com- 
prises states of the individual processes of which it  is 
composed, but also of the  communications medium 
which may contain  events being transmitted between 
processes. 

Sunshine [7] has  made use of this to verify properties 
of connection  establishment  protocols in packet switching 

networks.  His analysis is conceptually similar to the one 
presented here.  The  state of the communications medi- 
um has also been  discussed by Bochmann [8], who sug- 
gests  that in certain types of transmission media it may 
only be necessary to consider  system states in which 
the transmission medium is empty.  For generality, we  do 
not assume  that this is the  case.  The  state of the  commu- 
nications medium has been used in [4] to  determine  the 
error conditions at each  vertex of the phase  diagram used 
to analyze the  errors that can arise when a  duologue is 
executed. 

In the current  example, the  communications medium 
can be modeled as  two simplex channels with their states 
defined in terms of the  events they contain.  The  state of 
the  system is then specified by the  states of the two  proc- 
esses and of the two channels linking them. 

Figure 2 shows a traversal of the complete interaction 
domain of the example, which has been  performed by 
generating  a complete list of possible states of the  system 
by a perturbation  technique.  Each system  state is a one- 
line entry in the list, giving the states of the  two  processes 
and of the  two channels  that link them.  The  states of the 
channels  are  represented in terms of the messages they 
are transporting. 

The initial state of the  system (system  state 0) is the 
first entry, with both processes in the RESET state and 
both channels  empty. 

A perturbation of a  system state is defined as the execu- 
tion of a single transition in one  process in the system, 
which implies a  change of state of a channel if an  event is 
transmitted or  received. We refer to this as a  perturbation 
as it represents the smallest change that can  take place in 
the  system  at  any  instant of time. 

The execution tree shown to  the right indicates  the exe- 
cution  paths possible in the system.  Transitions between 
states  are shown as lines,  and the system states  that  are 
linked are shown as circles. An asterisk indicates a sys- 
tem state  that  has been previously generated by per- 
turbation of an earlier state. 

In this example,  the only  perturbation of the initial state 
is when A transmits a write  instruction to B. This  leads to 
system state I ,  with A in state  PEND.WRITE, the  channel 
from A to B  containing the  event write, and  the rest of the 
system  unchanged. System  state 2 is reached from system 
state 1 when B  receives the write, which is thus removed 
from the  channel. 

Both processes  are then in the PEND.WRITE state, and 
now two  different  perturbations of the system state  are 
possible, according  to  whether  or not B transmits a posi- 
tive or negative  acknowledgment. If a  negative  acknowl- 
edgment is sent,  the system returns  to its initial state. 
This need not be further perturbed as we are already in- 
vestigating all execution  sequences  that  start in the initial 
state. 
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System  State Channel State Channel  Execution 
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*Indicates  a  state  already  validated. 

Figure 2 Analysis of loop  example. 

A positive  acknowledgment leads on to  further  states 
which have  not yet been examined. When system state 7 
is reached, a  situation similar to that of system  state 2 
exists.  Two  alternative perturbations are possible:  a nega- 
tive  acknowledgment leading back to  system  state 5,  
which has already  been traversed; a  positive  acknowledg- 
ment  leading on to more  unexplored states until the initial 
system  state is reached  and all possible states of the  sys- 
tem  have  been traversed. 

If each of the  traversed states of the  system is system- 
atically examined  for error  conditions, and all system 
states  are  traversed, then all errors  that  can  occur during 
system execution can be found,  irrespective of the partic- 
ular sequence of transitions that leads to a system  state 
that manifests an error. 

A complete discussion of the errors  that can be found in 
this way is given in a later  section. 

Analysis of protocols  between  unmatched  processes 
The requirement of the  duologue  matrix  theory that both 
processes  return  to  the initial state  after a finite number of 
interaction steps  excludes from validation  protocols such 
as the one shown in Fig. 3. Here  another  writehead pro- 
tocol is shown, but for simplicity,  without any negative 
acknowledgments. A significant difference  from the  pre- 
vious example in Fig. 1 is that,  whereas  the first process is 
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tion,  the second can respond to  any  arbitrary  sequence of 
write and  read instructions, since both write  and read can 
be received in their initial states. 

The protocol is simple enough for inspection to show 
that it contains no errors, yet the duologue  matrix theory 
would indicate an  error. When process A executes  the 
unilogue resulting in the transmission of read and  write to 
process B ,  B executes  two unilogues with an intermediate 
traversal of the initial state. An  error would be indicated 
because B returns  to the initial state without having re- 
ceived all events transmitted  during the execution of the 
unilogue in A .  

The  perturbation approach can  analyze such  a  pro- 
tocol, as is shown in Fig. 3. When the second process 
returns  to its initial state, the system  as a whole is  in a 
state that has not  been previously executed, so that  the 
perturbation continues until the system  as a whole returns 
to its initial state. 

The significance of protocols of the  type shown in Fig. 
3 is that  the two processes have not  been specifically de- 
signed to  operate  together.  Process B is a  more  general 
process that may operate correctly with a  number of dif- 
ferent processes. In computer  systems, a single process is 
often  designed to  operate in several  different  environ- 
ments, as an alternative  to having different,  special-pur- 
pose processes for each. It is important that a  general val- 
idation technique be  able to address such  protocols. 
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Validation of protocols  between multiple processes 
Zafiropulo [9] has  pointed  out that an extension of the 
duologue matrix theory  to validate protocols among more 
than  two processes is possible if transitions  between 
states  are labeled with the name of the  process with which 
an event is exchanged, as well as the  event.  However, the 
details of such  an  extended  theory  have not been devel- 
oped. We have  used such a labeling convention in the  ex- 
amples  discussed above. 

The disadvantage of such an  extension of the duologue 
matrix theory would appear  to lie  in the interaction do- 
main being defined by the Cartesian product of unilogue 
sets, which becomes  very large if many processes  are in- 
volved. 

Figure 4 shows a simple protocol  among  three  pro- 
cesses, which is examined to illustrate how multiprocess 
protocols  can be analyzed. In the simple protocol shown, 
A may represent a program, C a file, and B an inter- 
mediate access mechanism. Figure 4 also shows how the 
system  can be validated. 

A  system is defined which consists of the three pro- 
cesses and  four channels that link the  process pairs  as 
defined by the specified event  exchanges. Starting with all 
processes in the RESET state,  successive  perturbations 
traverse  the interaction domain in the  same way as in the 
previous examples. An examination of each system state 
traversed  for  errors enables a complete validation of the 
system  to be performed. Note that  the number of system 
states  traversed is less than the number of states in the 
Cartesian product of the three processes.  The per- 
turbation technique only explores  the accessible states of 
the system, and so is intrinsically efficient. 

I 

I 

l 

Error conditions detected by validation 
In the previous  sections we have  shown by a  series of 
examples how the perturbation technique  can  overcome 
most of the limitations of the duologue matrix theory of 
protocol  validation by changing the method of traversing 
the interaction  domain of the processes executing  the  pro- 
tocol. In order  to  concentrate on this, we have  only con- 
sidered examples  that contain no errors. In this  section 
we discuss the error conditions that  the validation proce- 
dure can detect, and then in the following section we 
show how the error detection and interaction  domain 
traversal can be combined in a validation procedure. 

The  errors that  can be detected by the duologue  matrix 
theory of protocol validation are of two types when  ex- 
pressed in terms of the process  and  channel states [4]. 

First,  there  are deadlock errors,  such that  the two pro- 
cesses  are both in states from which further execution is 
dependent on the reception of an  event, but there  are no 
events underway in the  channels  that link them. I 

I 
Second,  there  are reception errors, which can occur 

when either process is  in a state  such that there is no de- 
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System  State  Channel  State  Channel  Execution 
state of A A t o B  o f B  B t o A  tree 

0 RESET - RESET - P 
1 PEND.WRITE Write RESET - b 
2 PEND.WRITE - WRITE - 0 

3 PEND.WRITE - RESET  Ack 

5 PEND.READ Read RESET - 0 

0 4 WRITE - RESET - 

i) 

6 PEND.READ - READ - 0 

7 PEND.READ - RESET Ack 

0 RESET - RESET - 
~~ ~~ 

'Indicates a state already validated. 

Figure 3 Example with nonmatching  processes 

parting  transition which corresponds to the  reception of 
an event which is underway to it  in a channel. 

These  two  types of error conditions can be simply gen- 
eralized within the  framework of the perturbation  ap- 
proach and are formally stated in the next section. 

A third error condition  that can also be detected is 
overflow. Any communications  medium has a storage ca- 
pacity that limits the  amount of information it can contain 
at any instant. An attempt  to  exceed this  capacity  may 
result in loss of information being transferred  between 
processes. 

Bochmann [8] has discussed the representation of the 
communications  medium in terms of queues of messages 
in transit  and points out  that  the number of messages in 397 
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transit may be  large. He is able to simplify the verification 
of properties of protocols by using regular expressions  to 
characterize  the  contents of message queues but points 
out that  this does not capture all of the  properties of the 
communications  medium. One such property is that a 
communications medium has a finite capacity  for infor- 
mation that it can be transporting  at  any  time. In a net- 
work or  computer system this is governed by the capacity 
of the buffers that  the information must  pass  through on 
its way between processes and possibly by the  overall 
level of traffic in the  network. In communications hard- 
ware it is governed by the number and size of inter- 
mediate registers. 

An important  function of a protocol is to  ensure  that no 
overflow of the storage  capacity takes place that may re- 
sult in loss of information. 

Protocols  generally do this by controlling the  transfer 
of information into the  communications medium. Two 

Figure 4 Multiprocess  example. 
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control  mechanisms are available. The first is to  make use 
of timing constraints. If the communications  medium and 
receiving process can  accept  information  at a well-de- 
fined rate,  the transmitting process  can be physically de- 
signed to  transmit  at a compatible rate. In other circum- 
stances, transmission is made conditional on acknowledg- 
ments, which indicate  the successful completion of 
information transfer. 

This latter mechanism  can be directly expressed in the 
protocol representation we are using. The  former implies 
reference to timing constraints, which are not currently 
considered as part of our validation procedure.  However, 
the timing constraints  are generally of such a nature  that 
their verification can be treated  independently of the vali- 
dation of the logical structure of the protocol. 

In the  current  context, the main interest of protocols 
that rely on timing to avoid overflow is their behavior 
when their logical structure is validated by a perturbation 
technique. 

Consider the simple example shown in Fig. 5. Here a 
simplex protocol is shown by means of which one process 
sends a continuous sequence of messages to the other. 
The protocol  obviously  contains no deadlock. Also the 
protocol is such  that  the receiver is always in a state  such 
that it can accept  the first incoming message; therefore, it 
does not  manifest the first two error conditions discussed 
above.  The protocol as shown may cause overflow in the 
communications medium since the  sender is always in a 
state from which it can transmit, and there is nothing in 
the logical structure of the  processes that prevents it from 
transmitting an infinite number of messages  before any 
are  received. A traversal of the  interaction  domain will 
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not terminate since there is an infinite number of system 
states, differing from one another in the number of mes- 
sages  underway in the communications  medium. 

The addition of a timing constraint that prevents  the 
overflow has  the effect of putting an  upper bound on  the 
number of messages  underway, thu5 limiting the number 
of distinct states of the  system.  Conversely,  the  assump- 
tion of an  upper bound on the number of messages under- 
way  is equivalent to assuming  a timing constraint. 

The assumption of a finite storage capacity for a chan- 
nel linking a pair of processes is thus useful to bound the 
interaction  domain  when validating the logical structure 
of protocols  that have  certain implied timing constraints. 
In protocols which rely on acknowledgments to  prevent 
overflow, the generation during validation of an overflow 
that exceeds a predefined storage capacity indicates a 
protocol error. It is also possible to use overflow to verify 
particular  properties of protocols. For  example,  Synchro- 
nous Data Link  Control [IO] normally requires no more 
than  seven messages to be sent without  acknowledgment. 
A  validation with a  storage  capacity of seven messages 
would verify  this design rule. 

Throughout this paper we use the number of messages 
or  events underway as a  measure of storage  capacity, as 
we are considering events as indivisible entities. In prac- 
tice, it may be more useful to measure storage  capacity in 
terms of bits  or  bytes and  associate an appropriate length 
with each  message. 

An overflow is considered to  take place if the transmis- 
sion of an  event  results in a  channel  containing  a  number 
of events  greater than  a predefined maximum.  The  inter- 
pretation of an overflow depends  on which of the  two 
mechanisms  described  above is assumed  to prevent over- 
flow during  protocol execution. 

An overflow in a protocol that uses  acknowledgments 
to limit transmission represents an error. On the other 
hand, if timing is used as part of the protocol to prevent 
overflow,  transmission of an event which implies over- 
flow represents a region of the interaction  domain of the 
processes which will not be executed in practice. In this 
case, it does not represent an error; it is merely necessary 
to  suppress  perturbations that generate overflow condi- 
tions to avoid investigating  regions of the interaction do- 
main which have no practical significance. 

Algorithms  for  validation by perturbation 
In the  previous sections we discussed how a technique of 
system  state  perturbation can be used to explore  the in- 
teraction  domain of communicating processes and the na- 
ture of the  error conditions  that may be detected. 

In this  section we present the algorithms that have  been 
used in an implemented  system for validating protocols 
for a  particular model of a  communicating  system in order 
to present in a  more  complete  way the validation  con- 

__ 

REP REP 
Sender Receiver 

Data from  sender 

Data to receiver 

Figure 5 A simplex protocol. 

cepts  discussed informally in the previous  sections. We 
first define the model of the communications  system we 
are considering. 

0 Communications system modeled 
The  communications  system we consider is assumed to 
be composed of N processes G(I ) ,  where I = 1 to N .  Each 
process is represented  as a directed  graph  whose  nodes 
represent  process  states and whose arcs  represent transi- 
tions  between states. We denote  the  current  state of pro- 
cess G(1) at  any  time by Gs(Z). 

Communication  between processes is assumed to take 
place via a  communications  medium, which we model as 
a set of simplex channels, each linking a pair of pro- 
cesses, so that C(I ,  J )  represents a  channel that can trans- 
port  information  from  process I to  process J .  

The unit of information transferred is defined as  an 
event, which is assumed to be indivisible. 

The  execution of a transition in any process in the  sys- 
tem changes  the  current  state of that process according to 
the topology of the directed graph. A  transition may also 
be associated with the exchange of an  event with a chan- 
nel connecting  the process with another, so that it can 
take place only within the  framework of a set of rules  gov- 
erning  the  interaction of a process with the communica- 
tions  medium. The exchange of events  that accompanies 
the execution of a  transition is defined by a label associ- 
ated with the transition. 

Three  types of labels are assumed  for  a  transition in 
process G(I) :  

1. “Event-name  to J,” which indicates that execution of 
the transition results in the  named event being inserted 
into  the channel leading from  process I to process J .  

2. “Event-name from J,” indicating  that  the  transition 
takes place  when the named event is detected in the 
channel from  process J to  process I .  

3 .  “No  output,” signifying a  transition that can  take 
place without exchange of events with the communi- 
cations medium. 

The  state of a  channel C(Z, J )  at any  time is represented 
as Cs(Z, J ) ,  an  ordered  set of the  names of events  that it is 399 
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Gs(l) Cs(l, 2) . . . Cs(l, I )  . . . Cs(1, N )  
Cs(2, 1) Gs(2) 

Cs(Z, I )  . . .  . Gs(I) . . ’ CS(Z, N )  

Cs(N,  1) . . .  . C s ( N ,  I )  . . . W W  
Figure 6 Matrix  representation of a system state. 

transporting  between  processes,  where Cs(Z, J ) [ L ]  repre- 
sents  the  Lth member of the  set. 

We assume  that  channels have the following proper- 
ties. 

1. The  channel C(Z, J )  will accept  events inserted in it by 
process G(Z) and deliver  them to  process G(J) in the 
same  order  as they are  received. 

2 .  The time taken  to  transport  events  between  processes 
is variable and unspecified. 

3 .  Each channel C(Z, J )  has a  predefined maximum num- 
ber of events  that it can be transporting at any instant 
of time.  This we refer to  as its storage capacity, 
Cap([ ,  4. 

0 System behavior 
At any instant of time the condition of the  system can be 
completely represented by a system  state. 

We define a system  state S ( M )  as being a unique set of 
the  current  states of the  processes Gs(Z) for all I from 1 to 
N and of all channels Cs(Z, J )  for all I and J from 1 to N 
but not I = J .  The index M identifies  a  particular system 
state. 

System  state S ( M )  can be  envisaged  as a matrix of 
states as shown in Fig. 6. 

We define a  perturbation of a given system state S ( M )  
as being another  system  state which can  be  reached by 
executing  a single transition in one  process C(Z) from  its 
current  state Gs(Z). By definition, the perturbation  can 
only  change the  current  state of the  one process G(Z), and 
it follows that  the  state of only one channel Cs(Z, J )  or 
Cs(J, I )  will change,  dependent  on  the  executed transition 
representing a transmission to  process J or a  reception 
from process J .  Any change in the  system  state involving 
simultaneous  transitions of more than  one  process  can be 
represented as a sequence of perturbations. 

Rules governing transitions 
1. When an  event  arrives  at a process, it must be immedi- 

ately received, and as a consequence it is removed 
from the  channel. Because the time  taken for a chan- 
nel to  transport  events from one  process  to  another is 
not specified, it follows that the  current  state of a pro- 

2 .  

3. 

cess  must at all times be able to  absorb  the first in- 
coming event in all channels incident on the  process. 
At any time  any  transition from  the  current  state of a 
process which does not correspond  to  the reception of 
an  event may  be executed. 
No transition  may take place that results in an over- 
flow  of a channel’s storage capacity. 

Errors 
There  are  three  classes of errors, which correspond  to 
violations of the  above rules. 

Reception errors 
An incoming channel C(J ,  I )  to  process G(I )  contains an 
event, but there is no departing  transition  from the  cur- 
rent  state Gs(Z) by which the first incoming event 
Cs(J ,  Z)[1] can be received,  i.e.,  no transition having a  la- 
bel equivalent to “Cs(Z, J)[l]  from J.” 

Deadlock errors 
For all I ,  the  current  state Gs(Z) of  G(Z) is such that  there 
are no transitions  from it corresponding  to the  transmis- 
sion of an  event  or no output, and the  state of all incident 
channels Cs(J,  I )  is an empty set  for all J .  

Overflow error 
For a  given process G(Z), there exists a  transition  from 
the current  state with a label “Event-name  to J” such 
that its execution will result in the  storage capacity 
Cap(Z, J )  of channel C(Z, J )  being exceeded. 

0 Algorithm for validation by system state  perturbation 
The validation algorithm may  be stated  as follows. 

Step 1. Define a set of system  states S ,  initially contain- 
ing only the initial state S(0) of the  system when execu- 
tion commences. 
Step 2 .  Find a  member S ( N )  of the  set of system  states 
whose perturbations have not been determined. If no 
such  member  exists, terminate as  the validation is  com- 
pleted. 
Step 3. Calculate  the  set of system  states Sp that can  be 
reached by a  perturbation of S ( N ) .  There will be one 
member of S p  for  each  executable transition of all pro- 
cesses from their  current  states  as defined in S ( N ) .  
Step 4. If S p  is an  empty  set,  report S ( N )  as  a  terminal 
(or  deadlock)  state of the system. 
Step 5.  Remove all states manifesting a  reception error  or 
overflow condition from S p ,  and report  the  errors  found. 
Step 6. Add all remaining members of S p  which are not 
already  members of S to the set S.  
Step 7. Repeat from step 2 .  

During the validation  a  record of each perturbation exe- 
cuted can be maintained.  Each perturbation  can be char- 
acterized by parameters identifying the  two  system  states 
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linked by the perturbation, the process  executing the 
transition, and the actual  transition executed by the pro- 
cess. 

This  record specifies the  interaction  domain of the sys- 
tem  validated in the form of a single directed graph whose 
nodes are  system  states and whose arcs identify possible 
transitions between  system  states. This is a state machine 
for  the system as a  whole; it has similar properties  to a 
token  machine that  can be derived  from a  Petri  net de- 
scription of a  protocol [ l l]. 

It completely specifies the communications  system be- 
havior  and can be used as  a basis for  further analysis. 
Bochmann [ 121 has discussed the suitability of such state 
machines for  the verification of particular  protocol  prop- 
erties. Cyclic  behavior and synchronization, for example, 
can be investigated,  the  latter by means of the  concept of 
adjoint states [ 131. 

Performance of the perturbation  validation  system 
The validation procedure defined in the previous  section 
has been  implemented in APL; validation of a simple pro- 
tocol is discussed in the  Appendix to show how the  sys- 
tem  can be used. It is of interest to  discuss briefly the 
computer time  required  for validation when the proce- 
dure  presented  above is used,  as this is an important pa- 
rameter which limits the complexity of protocols  that can 
be validated. 

In this context we are primarily concerned with the 
complexity of a  protocol or part of a  protocol  that  must be 
validated as an entity. Many protocols can be considered 
as  separate layers or be otherwise  subdivided into parts 
that may be validated separately. 

We repeated  the validation of the X.21 protocol  dis- 
cussed in [5]  using the perturbation approach.  The  results 
obtained  were  equivalent to those obtained in the  pre- 
vious  validation, except that a few problems identified 
with limitations of the  earlier validation technique  were 
removed. 

The validation required approximately 30 seconds of 
cpu time on an IBM System 370, model 158. An imple- 
mentation of the perturbation  method in a  compilable  lan- 
guage and suitably optimized should  require an order of 
magnitude  less time. A  protocol of the  order of com- 
plexity of the X.21 may thus be validated in a few sec- 
onds. 

The principal limitation of the validation algorithm is 
the  necessity to  check whether or not each state reached 
by a  perturbation has already been validated. The time 
required depends on the total number of possible  system 
states,  the number of parameters  required to  represent 
each state, and the efficiency of the search  algorithms 
used.  Experience with the X.21 validation suggests that 
protocols which are several orders of magnitude  more 

complex might be validated in this way before computer 
time or  storage become  serious  limitations. 

A difficulty in trying to  foresee what limits the com- 
plexity of protocols  that might be validated is that it de- 
pends  on  the  size of the system interaction  domain rather 
than the  number and complexity of the  processes in the 
system.  The number of system  states is strongly depen- 
dent  on  the degree of coupling between processes and the 
possible  number of events  that may be underway in the 
channels. 

Extensions  to  the  validation  procedure 
A  number of extensions  to the  validation  procedure as 
described above can be envisaged. 

The validation method and communications model 
used do not currently address  the validation of protocols 
where specific timing constraints  are  important.  These 
are commonly  associated with timeouts, which can only 
be of unspecified length in the  current model. Merlin [ 141 
has  discussed  the modeling of time constraints in time 
Petri nets  as applied to an analysis of the ability to re- 
cover  from failures. A similar extension  to the per- 
turbation approach should be possible. 

A  number of extensions  to  the communications model 
are of interest to permit the validation of a wider range of 
systems. 

A channel as currently defined in the model links only a 
single pair of processes and does not reorder the events it 
is transporting. Both of these  limitations  can be removed 
by suitable  reformulation of the  procedure and channel 
model. 

Processes  are represented  as directed  graphs, their 
function in the model being to  generate and  accept events 
in predefined sequences. The  directed  graph representa- 
tion is inconvenient  for modeling processes containing 
counters  or internal logic which is crucial to the correct 
operation of the  protocol. Such processes  are more con- 
veniently modeled in terms of procedures rather  than  di- 
rected graphs. Both Bochmann [12] and  Danthine [15] use 
procedural modeling in terms of a  programming language 
for protocol definition and verification. Similar modeling 
techniques  could also be used in the  validation procedure. 
It should,  however, be noted that  errors in the  procedures 
would only be detected if they  resulted in the  error condi- 
tions  discussed in previous sections. 

Conclusions 
In this paper we have  discussed an extension of the duo- 
logue matrix theory of communications  protocol  valida- 
tion which overcomes a  number of limitations of the origi- 
nal theory. 

By defining a system  state, consisting of the  states of all 
processes in the system and the  states of  all channels link- 
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Figure 7 Protocol modeled with transmission error. 

ing processes,  the interaction  domain of the system  can 
be traversed by a  series of perturbations of the  current 
system  state. 

This  permits  a  search of the  interaction  domain for  er- 
ror conditions similar to those detected by the  duologue 
matrix theory and permits  a unified extension of the vali- 
dation technique  to a  larger  class of protocols. 

The  perturbation technique can be used to validate pro- 
tocols  among multiple processes, protocols in which the 
processes  do not necessarily return to the initial state af- 
ter a finite number of interaction steps, and it enables cer- 
tain classes of transmission errors  to be modeled. 

The  technique has been discussed in terms of quite  a 
simple model of a  communicating system. In the model, 
individual channels link a single pair of processes  and 
obey a first-in/first-out queuing  discipline. The per- 
turbation technique can be generalized to  encompass  the 
validation of a wider range of systems. 

A number of extensions of the  system remain to be de- 
fined. The most significant is the validation of protocols 
containing  explicit timing constraints. 

An important  property of the  validation  technique is 
that it detects protocol design errors by systematically 
searching the interaction  domain of the protocol for  the 
violation of a few simple and universal error  conditions. 
A  protocol which has been validated without  any errors 

desired by a designer.  However, many design errors re- 
sult in unpredictable protocol behavior when particular 
unforeseen  conditions  arise during execution of a  sub- 
sequent implementation. Such errors  are extremely diffi- 
cult to find during  testing,  yet can be identified by the 
validation procedure we have described.  The validation 
procedure,  therefore, promises to be an important tool for 
protocol designers and will lead to enhanced reliability of 
communications protocols. 

The validation  technique  can  be  completely automated 
and requires only  a formal definition of a  protocol in state 
diagram form.  Errors which the  validation identifies can 
be readily confirmed by referring to  the design. 

Acknowledgments 
The  author  thanks E. Port,  H.  Rudin,  and P. Zafiropulo 
for many useful suggestions  and  discussions  during  the 
course of this work. 

Appendix:  A  sample  validation of a  positive 
acknowledgment  with  retransmission  protocol 
The  perturbation  approach to validation  has  been imple- 
mented in an APL based  system  as  described in the  al- 
gorithm in the body of this paper. In this Appendix we 
show how the  system  can be used to validate the simple 
protocol shown in Fig. 7. 

Here a simple Positive  Acknowledgment,  Retransmis- 
sion on Timeout protocol is shown, by which a sender 
communicates  data  to a  receiver  and thus changes the 
state of the  receiver.  The  sender  transmits  the  data, waits 
for  an  acknowledgment, and retransmits the data if no  re- 
sponse is received after a timeout. In this example,  the 
timeout is modeled by the  transition labeled “No out- 
put.”  The  receiver waits in its initial state  for the data and 
ignores any  erroneous information,  only  responding to  an 
error-free  event. 

Errors  are modeled by interposing  a  third process,  link, 
between the  sender and receiver. Link  receives the  data 
from  the  sender and  can  pass it to  the receiver or  transmit 
an error.  This permits  the  insertion of transmission errors 
into the channel from the sender to the receiver and en- 
ables  particular classes of errors  to be modeled during the 
validation.  This is an alternative to modeling errors by 
inserting  additional  transitions in the transmitting process 
as described in [3]. It has  the advantage of localizing the 
error modeling and is formally equivalent to  the  technique 
described in [3]. 

Obviously, loss or duplication of events, and any other 
specific error  mechanisms, can be modeled in this way by 
appropriately defining the intermediate process. 

Figure 8 shows  the definition of the  example which is 
being identified will behave in a manner  that can be pre- used as input to the validation system.  The  user  creates 
dicted from the design. The validation does not permit an APL function which contains  a definition of the  system 

402 verification of particular protocol properties  that may be to be validated;  the name of the  function, in this case PAR, 
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is arbitrary.  The function contains a  number of state- 
ments which define different aspects of the  system. It 
starts with a SYSTEM statement defining the names of the 
processes composing the  system, followed by one  or 
more EVENTS statements defining the names of events 
which may be  exchanged between  processes. 

Each channel is then defined by a separate CHANNEL 
statement, which defines the processes linked by the 
channel  and  the  channel  storage capacity,  i.e.,  the maxi- 
mum number of events it  may be transporting at  any in- 
stant.  This is defined as negative if overflows in the  chan- 
nel are not to be recorded  as errors. 

A PROCESS statement initiates the definition of a pro- 
cess, with one or more STATES statements defining the 
names of the  process  states. A state name  starting with an 
asterisk indicates  a  transient state, an internal state in 
which the process  cannot receive events. This is a useful 
mechanism that permits the modeling of interrupt-driven 
processes and indicates states  where interrupts are dis- 
abled. In this example, it prevents  the link from  accepting 
an incoming event before it has processed a  previous one. 
The validation system  treats a transient  state  as  one  that 
must  be  immediately  perturbed when entered  and, by def- 
inition, will not manifest  reception errors. 

Each transition is defined by a TRANSITION statement 
giving the  states it links and the  event and destination/ 
source  process involved in the  communication. An END 
statement  terminates  the definition. 

Execution of the defined function checks the definition 
for trivial errors and formats the definition for  subsequent 
validation.  Figure 9 shows a typical error report  gener- 
ated when the example was  validated. It shows the  error 
condition detected,  the  states of the  processes and chan- 
nel contents when it can  occur, and the  sequence of exe- 
cution steps  that each  process has  executed that  have led 
to  the  error.  The  latter  are derived from  the system state 
machine defined by the  traversal of the protocol  inter- 
action domain. 

The sample error  report shows one problem of this  pro- 
tocol  when used in an environment where  the transmis- 
sion  delay  between  the sender  and  receiver is not well 
defined.  Referring to Fig. 7 ,  the  report shows  that the 
sender  can timeout  back to its initial state, while an ac- 
knowledgment is underway. The acknowledgment  can 
then  be  received in the reset state  where it  is not provided 
for. 
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