E. B. Ferndandez
T.Lang
C. Wood

Effect of Replacement Algorithms on a Paged Buffer
Database System

Abstract: In a database system a buffer may be used to hold recently referenced pages. If this buffer is in virtual memory, the database
paging system and the memory paging system affect its performance. The study of the effect of main memory replacement algorithms on
the number of main memory page faults is the basic objective of this paper. We assume that the buffer replacement algorithm is least
recently used (LRU), and page fault rates for LRU, random (R), and generalized least recently used (GLRU) main memory replacement
algorithms are calculated and compared. A set of experiments validates these fault rate expressions and establlshes some conditions for

the practical application of the results.

Introduction

An important aspect of the performance analysis of a data
management system (DMS) is the behavior of the buffer
where previously referenced pages are held for possible
future reference. If the DMS executes in a virtual mem-
ory system the buffer is in the virtual address space and,
at a given time, some of the buffer pages are also in real
storage. Two paging mechanisms participate in the proc-
ess of accessing a database page, a DMS-controlled buf-
fer paging and a virtual memory paging under the control
of the operating system. This structure is of practical im-
portance since it represents the operating environment
for IMS and other commercial database systems, and sev-
eral studies of its behavior have been made. In particular,
the effect of the buffer size on performance has been eval-
uated analytically by using models that incorporate dif-
ferent assumptions [1-3], and also by actual measurement
[1,2,4,5].

While the performance of replacement algorithms has
been studied analytically for virtual memory systems, for
DMS only empirical evaluations have been made
[2, 4, 5]. The database virtual buffer environment is dif-
ferent due both to the presence of two memory levels,
and to the different characteristics of the reference strings
found in these applications.

We analyze here the effect of main memory replace-
ment algorithms on the performance of the buffer system,

when the buffer replacement algorithm is LRU (least re-
cently used). In a demand paging environment this per-
formance can be characterized by the number of main
memory page faults. '

If the reference string is described by the least recently
used (LRU) stack model [6], known probabilities of refer-
ence can be associated with specific positions of the
stack. In non-database applications the stack probabili-
ties usually have a decreasing characteristic with respect
to stack distance, and for this case the LRU replacément
algorithm has been shown to be optimal [7]. However, for
database applications the stack probabilities could exhibit
a different distribution, and it is shown in [8] that in gen-
eral the optimal algorithm belongs to a class of which the
LRU algorithm is a particular case. This optimal al-
gorithm is denoted here as generalized LRU (GLRU).
Another important replacement algorithm is the random
algorithm (R), where the page to be replaced is selected
with a uniform probability. These three algorithms (LRU,
GLRU, and R) are considered here since they are of prac-
tical importance and possess tractable analytical charac-
teristics.

The next section presents a model of the buffer system
and introduces basic concepts. Models are then devel-
oped for the three memory replacement algorithms
(LRU, R, and GLRU), and expressions are presented for

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish
other excerpts should be obtained from the Editor. 185

IBM J. RES. DEVELOP. ¢ VOL. 22 8,NO. 2 ¢ MAR 1978 FERNANDEZ, LANG, AND WOOD

186

Database Buffer

Buffer faults
D
N
s/
Virtual memory /
mapping //
4 g Data requests
/
e
Iy Memory faults

Main memory Paging device

Figure 1 Model of a database buffer system.

0.20 *
* Distribution A
0.18 O Distribution B
*
0.16 [~
014
0.12
0.10
[e]
0.08 FO
[0}
o] o}
*
o]
0.06 I~]]
]
[¢]
0.04] fo)
Q o
*
(o} (o]
0.02 ~ c00 o o
*
o~ (o]
— * k%
) 0 | *f****f****?*QQG?GQOQ
0 5 10 15 20 25 30
N

Figure 2 Representative probability distributions.

the expected number of main memory page faults per
database reference. The nature of the reference strings in
a database application is also discussed and two examples
of stack reference probability distributions are given. The
page fault rates are calculated for these distributions in

FERNANDEZ, LANG, AND WOOD

order to compare the 1/O cost for the different replace-
ment algorithms, and a set of experiments are described
to validate these results and evaluate their practical appli-
cability.

Model and basic concepts

Consider a DMS consisting of a database of D pages, a
virtual buffer of N pages, and M page frames available for
the buffer in main memory (Fig. 1). When a database page
is requested, the DMS first determines whether it resides
in the virtual buffer. 1f the page is in the buffer, it is ac-
cessed through the virtual memory manager. If the page is
not in the buffer, a buffer page has to be replaced by the
requested database page, and then accessed through the
virtual memory manager. Two paging mechanisms are
thus involved in this process. We talk of buffer faults
when an access to the database is needed because a re-
guested page has not been found in the buffer, and of
memory faults when an access to the virtual memory pag-
ing device is needed. The corresponding replacement al-
gorithms are denoted as buffer replacement algorithm
and memory replacement algorithm. The cost ratio r is
the ratio between the cost of a database access and the
cost of an access to the virtual memory paging device.
The cost factor » depends on the specific devices used to
store the database, on the paging device for virtual mem-
ory, and on the overhead associated with the correspond-
ing access. Because of the smaller size of the virtual
memory it is possible to use drums or fixed head disks as
paging devices. This results in a practical range for r be-
tween 1 and 10. Furthermore, the introduction of high
speed secondary memories, with technologies such as
charge coupled devices or magnetic bubbles, could result
in a larger r. Therefore, this two-level buffer would pro-
vide an effective way of taking advantage of a memory
hierarchy. The /0 cost is the sum of the costs of memory
faults and buffer faults. The expected 1/0 cost, measured
in units of database faults, is given by T = Q + (1/r)F,
where (is the expected number of buffer faults per data
request or the miss ratio, and F is the expected number of
memory faults per data request (page fault rate). Q de-
pends on the database organization, the application pro-
gram, the size of the virtual buffer, and the buffer replace-
ment algorithm. In multiuser systems, Q also depends on
the memory replacement algorithm because memory
faults cause task switches and hence changes in the pat-
tern of references. When comparing the performance of
memory replacement algorithms we neglect this latter ef-
fect, i.e., we assume that Q is empirically determined for
one user at a time. '

The 1O cost as a function of buffer size was analyzed in
[3] for three models which differ in their buffer search
methods. For the three models, it is assumed that real
pages, virtual pages, and database pages are all the same

IBM J. RES. DEVELOP. & VOL. 22 & NO. 2 & MAR 1978

size, and that the amount of main memory assigned to the
buffer is fixed at M page frames. We are concerned here
with one of these models (model C in [3]), where there
exists a prefix table in main memory indicating which
database pages are in the buffer (i.e., no memory faults
for searching the buffer). However, instead of assuming
both replacement algorithms to be LRU, as in [3], we as-
sume the buffer replacement algorithm to be LRU and
consider several main memory replacement algorithms.
Model C corresponds closely to an IMS/VS VSAM sys-
tem running under a virtual storage operating system.

In the environment of model C, main memory page
faults occur in two situations. One is when the requested
page is in the buffer, but not in the main memory. In such
a case this page has to be transferred to main memory.
The corresponding page fault rate is denoted as F, (refer-
ence paging). The second is when the requested page is
not in the buffer. In this case a buffer page is assigned to
it, and this page is transferred to main memory (if not
already there) to make the buffer replacement. This is the
double paging effect, and the corresponding fault rate is
called F,.

Our interest here is in analyzing the effect of buffer size
on I/O cost. For a buffer of size equal to or smaller than
the available number of main memory pages, F is zero
and, since Q is a decreasing function of the buffer size N,
we consider only the case N = M. In [3] it is shown, for
fixed M, that there may be a reduction in 1/O cost for N
beyond M.

In the following section we analyze the page fault rates
for the LRU, R and GLRU memory replacement al-
gorithms. Some specific assumptions of the LRU stack
mode) are used to develop expressions for these paging
rates.

Page fault rates for the memory replacement
algorithms

In order to provide a broader perspective, general ex-
pressions for page fault rates for the buffer system are
defined. These expressions are then restricted to the case
in which the buffer replacement algorithm is LRU, and
then F, and F, are obtained for GLRU, LRU, and R main
memory replacement algorithms.

o General model of the buffer system

Let S be the reference stack that contains at a given time
the database pages previously accessed and ordered ac-
cording to their time of reference. Its ith position is S(i),
with probability of reference p(i), and S(0) contains the
most recently referenced page. In the LRU stack model
the probabilities are time invariant [6, 7], but this restric-
tion is not required for some of the page fault expressions
developed here.

IBM J. RES. DEVELOP. ¢ VOL. 22 & NO. 2 « MAR 1978

P ()

Q(Ny)

i

Figure 3 Effect of double paging on probability distributions.

Let B be the buffer, whose jth page is B(j), and the
main memory MM, whose kth page is MM(k). In addi-
tion to p(i), the following probabilities are associated with
this system: SB(i), the probability that S(i) is in B; BM(j),
the probability that B(j) is in MM; and SM(i), the proba-
bility that S(i) is in MM.

The main memory fault rate is defined by the ex-
pressions

F.= Y p) [P{SG) € B A S() € MM}),

where P indicates probability, and

187

FERNANDEZ, LANG, AND WOOD

188

0.6
[]
o Random
° « LRU (@
05 o GLRU
04r ®o
o
® o
oo
0.3 @@ oo
@*x%x oo
OQ % + x ® 0
[eXe) * Kk
[eRe] 00 %k Kk k Kk %
- o oo ok ok ok ok %k
02 06 o
[ele]
(o} ° o
(el &) °
- 00 o
0.1 Q0o
Qoo
OQo °
« 0 | 1) 1 } ° ®
30 anma e e R DL EE SR R R O S S T RS DL AT T L TE L 2L L TE Y)
oy (b)
25 L %
20 [—
15
10
5r e90000OOOOOOOOOOOOOOOOOOOO
> @ ®
=2 0]® 1 1 1 L 1
0 5 10 15 20 25 30
M

Figure 4 (a) Page fault rates vs M for distribution A and N =
30. (b) Optimal r, and s, vs.M for distribution A and N = 30.

b

F, = Z p(H[P{S(i) &€ B /\ replaced page of B € MM}].

i=1

In particular, if the buffer replacement is LRU the N most
recently used pages are in the buffer, and

B(i) = S(i), i = N;
o 1fori=N;
SB(i) = .

0 fori > N.
Therefore,
SM(i) = BM(i), i = N;

and

=

1

F = > p([1 - BM@)). (M

FERNANDEZ, LANG, AND WOOD

In the LRU buffer replacement algorithm the Nth position
of the buffer is replaced. Since the probability that the
Nth position is not in main memory is 1 — BM(N), we
have

D

Fy= X p@)[1 - BMN).)
i=N+1

It is convenient to define the distribution p’, which corre-

sporids to the probabilities of referencing the buffer

pages, as

pli), i < N;
PO=Y S i i=N 3)
i=N

Then, from (1) and (2), the expression for the total num-
ber of page faults when the buffer replacement algorithm
is LRU becomes

F=F +F,= > p'()[l - BM(]. @)

i=

-

In the rest of the paper we assume LRU buffer replace-
ment. We analyze now the effect of different main mem-
ory replacement algorithms on F_and F,. For conve-
nience we define

k

k) =1- 3 pli), (5)
i=1

which corresponds to the probability of not finding a ref-

erenced page in the first £ pages of the buffer.

® GLRU algorithm

In [8] it is shown that for the LRU stack model the opti-
mal BM distribution, which minimizes the number of page
faults for a given distribution p’, is a member of the class
defined by

1, l=i=v¥
BMG) =3 M —1r/(s — r), r<i=s;
0, s<i=< N,

where l=rs=Mand M = s= N.Forthecaser=s=M,
the second term of BM(J) is zero, and this distribution cor-
responds to that obtained by the LRU algorithm. The op-
timal values of r and s, r, and s, depend on the distribu-
tion p’ and can be found by enumeration techniques.

It is also shown in [8] that the following generalized
LRU replacement algorithm (GLRU) provides this distri-
bution and is, therefore, optimal for reference strings that
satisfy the LRU stack model:

If B(i) is referenced and is hot in memory, then if B(s)) is
in main memory and i > s, then replace B(s,), else replace
B(r,) [B(r,) is always in main memory].

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 2 ¢ MAR 1978

The reference and double paging rates in this case are

So N
F.= % p)lis,— M/, — r)]+ > pl)

i=re+1 i=gg+1

= [Q(ry) = Qs)] [(s, = M)/ (s, — 1,)]

+ Qsy) — Q(N), (6
and

_[o,
QN) [(s, — M)/(s, — r,)],

These expressions are still valid if, instead of having time-
invariant probabilities p(i), the probabilities vary and
their averages over a reference string are used. In this
case, while this algorithm is still the optimal for its class,
there may be another type of algorithm which is optimal
overall. When applying this algorithm, it is possible to
calculate r, and s_ in a portion of the reference string and
use these parameters in other parts of this string. The per-
formance of the algorithm in those other strings depends
only on the stability of r, and s,. These requirements are
considerably less restrictive than having time-invariant
probabilities, and therefore these expressions (and the al-
gorithm) are applicable to a wider range of practical situa-

5, < N,
s, = N. (7

Fy

tions.

® LRU memory replacement algorithm
For the LRU memory replacement algorithm (a special
member of the previous class) the M most recently used

buffer pages are in main memory, i.e.,
. I, l=i=M,
BM(i) =)
0, M<i=<N.

Hence, from (1), (2), and (4),

Fo= Y pl) = QM) — QN), ®)
i=M+1

Fo= Y pl) = Q(N), ©)

and

F= Z p'(i) = QM). (10)
i=M+1

As for the general class, we emphasize that these ex-
pressions are still valid if average values over a reference
string are used for the stack probabilities.

® Random memory replacement algorithm
For the purpose of comparison, we now consider the ran-
dom replacement algorithm, which is also of practical im-

IBM J. RES. DEVELOP. ¢ VOL. 22 ® NO. 2 ¢ MAR 1978

1.0
a
® o Random (@
09+ « LRU
® o GLRU
°
®
0.8 o
@o
*
Oe
*
0.7 0o *
o *
o *
o x
o *
0.6 o
o *
o
o
o %
0.5+ o]
o
O o *
o o
0.4 *
O o
°
o]
* 0
0.3 o] [¢]
oO* o
o
o] o
02 *
[e] °
o
®
DO x %
0.1 O *® k%
[¢] o *
[eXe] [}
0 oo
& I 1 | L I °
30 Fekokokok-k-k-k-@
(b)
o7y
251 * 5,
®00000000
20F ok ok kK ok ok Kk k k k ok ok k¥ @D
5+
10
51+
= eQOOOOOOOOOOOOOOOO
= O] ® I 1 1 1 I
0 5 10 5 20 25 30
M

Figure 5 (a) Page fault rates vs M for distribution B and N =
30. (b) Optimal r, and s, vs M for distribution B and N = 30.

portance [2, 4]. In this algorithm the page to be replaced
is selected with a uniform probability of 1/M. We deter-
mine the effect of a reference at time ¢ on the probabilities
BM at time ¢t + 1.

First we define the following events:

a(i, 1): the access to the buffer at time ¢ is to page /;

b(k, 1): the kth page in the buffer is in main memory at
time ¢ [=~b(k, 1) denotes the complement of
bk, 1)].

189

FERNANDEZ, LANG, AND WOOD

0.9

0.8 * F

0.7 (o)

0.6 - oo

04

0.3} [e]

02

0.1+ o]

* ok ok ok ok ok ok ko k ok ok ok ok ko ko k ok k kok ok ok ok k k¥ k% Kk

S 0ooq;oo
L 1 1]
0 5 10 15 20 25 30

M
Figure 6 F,and F, vs M for LRU (distribution B and N = 30).

Figure 7 F,and F, vs M for random algorithm R (distribution B

0-0-®

Noting that the kth page in the buffer at time ¢ + 1 may
have been in either position k or £ — 1 in the buffer at time
t, depending on the reference at time ¢, we have:

k-1

P{bk, t + 1)} = > [Plblk, 1) | ali,) N\ b(i, 0}
x Pla(i, n} x P{b(i, 1}
+ P{b(k, 1) |a(i, 1) N\ =b, 1)}
X Pla(i,)} x P{=b(i, N} x (1 — 1/M)}
+ 2 [Ptk — 1,) | al, 1) A b, 1)}
i=k
X Pla(i,)} x P{b(i, 1)}
+ Pk — 1, 0 |ali, £) /\ =b(i, 1)}
x Pla(i,)} x P{=b(i, 1)}
x (1 - 1/M)], an

where (1 — 1/M) is the probability of not replacing the
predecessor of page k when the referenced page is not in
the main memory (the predecessor of page k could be
page k or page k — 1, depending on the stack distance of
the reference). In equilibrium the probabilities are inde-
pendent of ¢+ and thus the subscript ¢ can be dropped. It
can be shown that the conditional probability P{b(k) | a(i)
N b()} is independent of a(i). By definition, P{b(k)} &

and N = 30).
BM(k), and P{a(i)} = p’(i). Then, (11) becomes
0.9
o] e} F[o . . .
osk ., BM(k) = X p'()[Pibik) | b} x BM()
3 i=1
o
% + P{bk) | ~b(D)} x (1 — BM(i)) x (1 — 1/M)]
07} o
o N
L o + 2 p'0) [Pk — 1) 6@} x BM()
. o i=k
0 + P{b(k — D)| =b(i)} x (1 — BM(i))
05+ o
oo x (1 — 1/M)]. (12)
041 OO The conditional probabilities can be written as
o
03 o P{b() | b(i)} = P{b(1) | =b()} = 1,
°, Plb(k) | b(i)} = BM(k) X w, (i), k> 1,and
02} o
o Plb(k) | ~b(i)} = BM(k) X w,(D), k> 1,
o
o

L °s where w, (i) and w, (i) are defined below. Also, the follow-
Y e So0 ing conditions must be satisfied:
w 0 !) ! 1 1 8

0 5 10 15 20 25 30 N N
> Pib(| by = 2 Pb(k)| =)} = M — 1,
190 M k=2 k=2

FERNANDEZ, LANG, AND WOOD

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 2 ® MAR 1978

Pb() | b0} = 1,
and
Pib(i)| =b(i)} = 0.

As an approximation we assume that w, (i) and w,:(i) are
independent of k for k # i. Consequently,

1, i=1;

M-2))
w@d =% ar _ parn 1 I<i=Nandi#k;
k M - BM(i) — 1
1/BM(i), i=k,
and
M -1
w (i) = ; , l<i=Nandi#k;
k M — BM(@) — 1
0, i=k.

The conditional probabilities do in fact satisfy the ex-
pression

BM(k) = P{b(k) | b(i)} x BM() + P{b(k)| =b(i)}
x (1 — BM()).

Substituting for the conditional probabilities in (12) we
have

BM(1) =1,

BMQ) = l > P GIBMG + M ~ 1]] / M1 - (D],

BM(k) =
[BM(k xS M- 1) - BM.(I') <P (i)]
- M —1- BM() M
k-1 2 . T
+{1 S M -1 BM'(I) AU]
i M —1- BM() M
for3 =k = N.

The BM(k) can now be found by numerical iteration, and
from these, the page fault rates, by using expressions (1),
(2), and (4). For the examples analyzed, the solutions for
BM(k) converged rapidly.

Characteristics of the reference stack

In order to provide a framework for comparing replace-
ment algorithms, two probability distributions have been
selected. Distributions A and B, illustrated in Fig. 2, have
been obtained from the experimental miss ratios obtained
by Tuel {1], and Sherman and Brice [2], respectively.

IBM J. RES. DEVELOP. ¢ VOL. 22 ¢ NO. 2 ¢« MAR 1978

0.31
*
» LRU
* o Random
0.30 o GLRU
*
*
0.29 - *
*
*
0.28 —
*
-2 -2 o
o o *
o ©
0.27 o e
o L]
0 0 0 0 °
[e] [o] *
o] -
0.26@ o O
(o]
o]
[e] o
o] °
0.25 1~ (o] * °
o * °
o *
[e] *
o
0.24 — [o}
[o]
S
= 0n I | I
10 15 20 25 30
N

Figure 8 [/O cost vs N for distribution A, r = 5, M = 10.

(These miss ratios correspond to averages over a refer-
ence string.) The modified distributions p’ [see Eq. (3)]
are presented for N = 30. Distribution A (without the
peak at i = N) is representative of the reference strings of
some database applications, and also corresponds to the
characteristics exhibited by most non-database programs
[6]. Distribution B is representative of some database ap-
plications.

While non-increasing distributions seem to adequately
represent many user and system programs, many data-
base applications cannot be well characterized by them.
There are several reasons for this.

1. The double paging effect can be represented by a peak
ati = N in the distribution p’ as defined by (3) (Fig. 3).

2. A set of several transactions could produce a distribu-
tion such as B, because the pages of a given transac-
tion are pushed down the stack by the other transac-
tions before being rereferenced.

191

FERNANDEZ, LANG, AND WOOD

192

0.260 -
+ LRU
* o Random
0.255 OGLRU
*
0.250 |- *
*
0.245 % *
*
0.240 |- *
*
*
0.235 F
0.230 |-
0.225 - ° ° ° ° ° ° !
-]
o
o
0.220 |-
® [e] [e] [} o) ¢}
o]
—_ a
= ° o
~ 0215 L L L L 4?
20 2 24 26 28 30
N

Figure 9 /O cost vs N for distribution A, r = 5, M = 20.

3. A set of several transactions sharing common records
(e.g., tables for indirect addressing of records), could
give distributions such as B since these records are
reused when they are in different stack positions [9].

4. The probability distributions of Spirn and Denning
were obtained for programs where the essential be-
havior is dictated by instruction (and not data) refer-
encing, which is normally very sequential, and where
data requests are mainly satisfied from CPU registers
rather than from memory. On the other hand, for data-
base systems we are only concerned with data refer-
ences to the virtual buffer.

For these reasons, the LRU algorithm may not be optimal
in a database environment described by the LRU stack
model. It is therefore of practical importance to compare
the performances of different algorithms.

Comparison of replacement algorithms

The performances of the GLRU, random (R), and LRU
algorithms are now compared, where the difference be-
tween the respective page fault rates is used as a means
of comparison.

FERNANDEZ, LANG, AND WOOD

e LRUand GLRU
From (6), (7), and (10) we have

F LRU

N "’p’ SO - M
— Fgre = z P'(i) - Z 1 40) ()

i=M+1 i=rgtl S, ™

y [t}
- > PO

i=gy+1

S0 . M-,
> p(i)()

ll

i=M+1 SO -t

M , s, — M
- 2P0 (~)

i=rg+1 S() - }"0

={l(M = r)(s, = M)/ (s, — ry)}
[p—,(M + 1, SQ) - ﬁ,(rn + 15 M)]9

where p’ (a, b) is the average of p'(i) between i = g and i =
b. This difference depends on M and the distribution p’. It
is zero when,

min p’' (r, + 1, M) = max p’ (M + 1, s,),

isr0<M M<s =N

which is the condition for LRU to be optimal [7]. F gy —
Fgiru is @a maximum when p(i) = O for i = M and p(M + 1)
= 1 (worst case for LRU). In this case, r, = 1 and s, = M
+ 1, resulting in (Firy — F)max = (1 = 1/M). For example,
for M = 10, (Fire = Forru)max = 0.9.

® Random and GLRU

Although the random replacement algorithm can never be
optimal [i.e. (Frano — FoLru) > 0], its worst case is never
as bad as the LRU worst case because max Fgranp iS never
I [i.e., (Franp — Forgomax < (Fiar) — Foiru)max). AS an
example, for M = 10, (Frano — Forru)max = 0.278.

® Random and LRU

Fire — Frano is @ maximum for the same reference distri-
bution p’ as the one that gives a maximum for (Fpy —
Fopr), namely: p'()) = Ofori#= M + land p' (M + 1) = 1.
For the case when M = 10, (Firy — Franp)max = 0.82.
Again for M = 10, Fganp — Firue can be shown to be a
maximum for the following distribution: p’(}) = 0 for i #
10and i< N, p'(10) = 0.8, and p'(N) = 0.2 (N >> M). In
this case, (Franp — Frru)max =~ 0.31.

o Effect of main memory size

In general, LRU is better than R when main memory is
large enough to contain the locality of the database refer-
ences [Q(M) — Q(N) << 1], and double paging is not sig-
nificant [Q(N) << 1]. For M close to N (M < N), and for
significant values of Q(N), R is better than LRU because,
as M increases, the double paging rate remains constant
for LRU while it decreases for R. Since the reference pag-

IBM J. RES. DEVELOP. @ VOL. 22 @ NO. 2 » MAR 1978

ing decreases with increasing M for both LRU and R, the
double paging effect eventually dominates for LRU.

® Graphic comparison

The 1/O costs for the three replacement algorithms are
now compared for the distributions A and B. Because the
values of Q used to obtain these distributions are aver-
ages over reference strings, the costs obtained are exact
for the GLRU and LRU algorithms, while they are only
approximated for the random algorithm. (The costs for
this case depend on the time-invariance of the probabili-
ties of the stack model.)

The 1/0 costs depend on M, N, and r. First, we com-
pare the total cost for varying M. Since N will be fixed for
this comparison, Q(N) is constant and we can concentrate
on the page fault rates. Figures 4(a) and 5(a) show the
performance of the three algorithms as a function of M for
distributions A and B, respectively, and for N = 30. The
corresponding values of r and s are also given [Figs. 4(b)
and 5(b)]. Figure 6 shows F, and F, for the LRU al-
gorithm applied to distribution B. Figure 7 does the same
for the random algorithm.

From Figs. 4(a) and 5(a), it can be seen that in the re-
gion where M approaches N, LRU does poorly because
of the dominance of the double paging effect (Fig. 6).
When M is close to N the random algorithm is close to the
GLRU algorithm [Figs. 4(a) and 5(a)], since the probabil-
ity of having a page in main memory increases with M,
and double paging is not significant in this range for this
algorithm (Fig. 7). In the region between M = 6 and M =
15 the random algorithm does better than LRU {Fig. 5(a)],
due to the high reference paging needed by LRU in this
case (Fig. 6). For distribution A, LRU is better than R for
M = 13 [Fig. 4(a)]. For distribution A, LRU is optimal for
M = 6, while for distribution B, LRU is optimal in the
ranges | = M <3 and 20 = M < 21.

We now consider the total cost for varying N. Figures
8, 9, and 10 compare T (expected 1/0 cost) as a function
of N for the three replacement algorithms, the two dis-
tributions A and B, a suitable value of r, and two values
of M.

For distribution A, a value of r = 5 has been used to
obtain a decrease in cost. For M = 10 (Fig. 8), the GLRU
algorithm produces a decrease in cost with respect to the
case for which N = M for N > 20. Because r = §, the
difference in 1/0 cost between the algorithms is not very
significant. For M = 20 (Fig. 9), in the range of N consid-
ered, only the GLRU algorithm gives a decrease in cost.

For distribution B, r = 2 has been selected. (A lower r
is sufficient here since this distribution has a steeper slope
at M = 10 than does distribution A.) It can be seen from
Fig. 10 that with this value of r, a decrease in cost (with
respect to the case N = M) is obtained for values of N >

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 2 ¢ MAR 1978

1.0
*
« LRU
* ° Random
OGLRU
0.9 *
*
0.8 — *
o o
° ° *
07 © 0O
[e] o
[] [o] *
O o
0.6 [~
QO o *
QO o %
0.5
o
*
o] o L I 2
-] < o o * *
0.4 — © o o o o
’ [e]
o]
[oJNe]
0.3 0O 00o0O0
0O 00
=
~ 02 | i |
10 15 20 25 30
N

Figure 10 1/O cost vs N for distribution B, r = 2, M = 10.

15. In the range of values of N considered, the GLRU
algorithm is significantly better than both R and LRU,
with LRU being the worst.

Experimental results ‘

A series of measurements was performed by using a sec-
tion of the reference string described in [10] and [11]. This
section coiresponds to the operation of a hierarchical
database system (1BM’s IMS), with 6-segment types. The
objectives of these experiments were to compare the fault
rates obtained from the model developed here with mea-
surement on a real reference string; and to determine the
applicability of the GLRU algorithm in a real environ-
ment. Tables 1, 2, and 3 summarize the results for the
model validation. Table 1 indicates the stack probabilities
for a series of 10 000 record references. Tables 2 and 3
compare the paging rates obtained with the model by us-
ing the stack probabilities of Table 1 and the actual mea-
surement on the reference string.

193

FERNANDEZ, LANG, AND WOOD

194

Table 1 Stack probabilities of reference string.

Stack position Probability

0.9106
0.0313
0.0008
0.0023
0.0054
0.0012
0.0077
0.0029
0.0081

10 0.0088
Remainder 0.0128

OO0 NN AN e

’l_‘able 2 Validation of the model, fixed M = 4 and variable N.

Algorithm N ry s, Model Measurement
F, F, F F F, F

r r

S 2 s 28 165 194 25 167 192
6 2 6 48 242 290 44 242 286
7 2 7 104 244 349 102 254 356
GLRU ¢ 5 g 135 252 387 127 254 381
9 2 9 203 212 415 202 211 413
10 2 10 279 157 436 283 158 441
5 54 496 550
6 66 484 550
7 143 407 550
LRU 3 172 378 550 Same as model
9 253 297 550
10 341 209 550
5 s4 205 259 32 197 229
6 83 311 394 45 297 342
R 7 154 316 470 110 316 426
8 188 326 514 146 319 465
9 267 272 539 221 264 485
10 354 199 553 300 198 498

Table 3 Validation of the model, fixed N = 10 and variable M.

Model Measurement
F, F, F F, F F

r r d

Algorithm M r, s

2 2 10 372 209 581 372 208 580
3 2 10 325 183 508 331 181 512
4 2 10 279 156 435 283 158 441
5 2 10 232 131 363 245 130 375
GLRU 6 2 10 186 104 290 206 104 310
7 2 10 140 78 218 152 77 229
8§ 2 10 93 52 145 101 52 153
9 2 10 46 26 72 46 25 7
2 372 208 580
3 364 208 572
4 341 208 549
5 287 208 495
LRU 5 275 208 483 Same as model
7 198 208 406
8 169 208 377
9 88 208 296
3 413 207 620 333 206 539
4 353 199 552 292 192 484
S 297 182 479 245 180 425
R 6 239 158 397 202 148 350
7 181 127 308 150 122 272
8 122 89 211 95 85 180
9 61 47 108 54 49 103

FERNANDEZ, LANG, AND WOOD

For the LRU algorithm, experiment and model give the
same values since the fault rates in this case depend only
on the measured average probabilities. In addition, exam-
ination of expressions (6) and (7) shows that for the
GLRU algorithms the paging rates depend again on the
average probabilities (for a fixed pair of r and s values).
Agreement between model and measurement is very good
because of this reason, the small discrepancies being due
to the fact that the statistical nature of the expressions
results in exact values only for very long sequences of
references. Finally, there is good agreement in the results
for the random algorithm. The differences are due to the
stronger dependency on the LRU stack model in this case,
and also to the approximate solution of the expressions.

As indicated previously, the performance of the GLRU
algorithm depends on the stability of r, and s, along the
reference string. Even in the presence of variations this
performance can be adequate if the variation of r, and s,
has little effect on the paging rates. Table 4 indicates the
stack probabilities for seven reference sequences of 5000
records each. Their averages over this complete string
(35 000 references) are also given. Table 5 shows the vari-
ation of r, and s, as a function of M for N = 10, for the
seven reference strings and for the complete string. It can
be seen that these values are relatively stable. The value
s, = N is characteristic when the stack probabilities are
rapidly decreasing and the double paging peak pre-
dominates.

Brice and Sherman [4] have performed a series of ex-
periments, some of which are relevant to this study. In
particular, they report on double paging rates and refer-
ence paging rates for LRU buffer replacement and ran-
dom memory replacement. Table 6 compares their results
with those obtained from our model for that particular
case. It can be seen that there is a reasonable agreement.
(These results are approximate because they depend on
the exact form of @, which was interpolated from only
five points.)

Conclusions

Studies of the effect of replacement algorithms on the per-
formance of database systems that use a paged buffer are
of practical importance since many commercial data man-
agement systems use buffers to improve performance.
Analyses of the effect of varying both the buffer and the
main memory replacement algorithms are very complex
and simulation studies may be needed. However, if the
buffer replacement algorithm is LRU, at least some main
memory replacement algorithms can be analyzed. Three
main memory replacement algorithms (LRU, R, and
GLRU) have been considered in this paper. Expressions
for reference paging rate and for double paging rate were
developed for these three algorithms, and their relative
performances compared. The expressions for the LRU

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 2 « MAR 1978

Table 4 Stack probabilities of four reference strings for study of r, and s,.

Stack String 1 String 2 String 3 String 4 String 5 String 6 String 7 Complete string
position

1 0.8512 0.9150 0.9210 0.9293 0.9294 0.9175 0.9267 0.9399

2 0.1165 0.0278 0.0004 0.0004 0.0000 0.0053 0.0059 0.0088

3 0.0000 0.0011 0.0000 0.0000 0.0000 0.0055 0.0029 0.0034

4 0.0011 0.0029 0.0000 0.0000 0.0000 0.0072 0.0019 0.0037

5 0.0011 0.0064 0.0034 0.0021 0.0000 0.0080 0.0026 0.0038

6 0.0000 0.0016 0.0000 0.0000 0.0039 0.0161 0.0034 0.0024

7 0.0000 0.0073 0.0086 0.0004 0.0008 0.0044 0.0042 0.0034

8 0.0000 0.0012 0.0207 0.0152 0.0000 0.0008 0.0047 0.0006

9 0.0000 0.0107 0.0000 0.0041 0.0042 0.0069 0.0054 0.0021

10 0.0022 0.0090 0.0030 0.0045 0.0000 0.0055 0.0081 0.0023
Remainder 0.0277 0.0168 0.0429 0.0440 0.0617 0.0225 0.0341 0.0294
and GLRU algorithms depend on stack probabilities aver- Table 5 Variation of r, and s, with M for N = 10 and for seven
aged over reference strings, but the expressions for the reference strings.
random algorithm (R) depend on the time invariance of String M
these probabilities. While the GLRU is always optimal
within its class, it is also globally optimal if the stack 2 3 4 5 6 7 & 9

probabilities are time invariant.

. . 1 2 2 2 2 2 2 2 2
S.ome conclusions that can be drawn from this com- :2 2 10 10 10 10 10 10 10
parison are: 2 r, 2 2 2 2 2 2 2 2
K 2 10 10 10 10 10 10 10
1. For fixed memory size M, LRU can be optimal in 3 r:: 1 1 1 1 1 1 i 1
some cases, but it is particularly bad for values of buf- S 1010010 10 10 1010 10
i . 4 L1 1t 1 1 1 11
fer size N just larger than M. On the other hand, the s 10 10 16 10 10 16 10 10
. N . 0
random replacement algorithm is never optimal, but 5 I 1 1 1 1 1 1 1 1
its worst case behavior is not as bad as the worst case 6 So “1) 1? 110 1? 1? 1(1) 1? 1?
behavior for the LRU algorlthm ;0 10 10 10 10 10 10 10 10
. . . . ’ . . . 0
2. When we plot a typical distribution p (Fig. 11), it is 7 A 1 1 1 1 1 1 1 1
possible to distinguish three regions according to the s 1010 10 10 10 10 10 10
. . . Complete r, 2 2 2 2 2 2 2 2
behavior of the main memory replacement algorithms. s 2 10 16 10 10 10 10 10
0
In region 1, R may be better than LRU when the local-
ity of the database cannot be contained in this memory
size. In region 2, LRU is optimal since the probabili-
ties satisfy the optimality condition [8]. In region 3, R
is again better than LRU because of the double paging
effect.
3. For arequired page-fault rate a tradeoff is possible be-
tween (he memory Size M and the Complexi[y Of the Table 6 Comparison of model to Brice and Sherman experi-
replacement algorithm; for example, in Fig. 5(a) for F ments.
= 0.4 the GLRU algorithm requires M = 13, and the M N Model BricelSherman
LRU, M = 16. F F F F
d r d r
4. The relative I/0 cost of these three algorithms depends - :
M, N, r, and p. Since the implementation of each of 3 10 331 147 390 113
T : . . 15 375 388 405 374
the algorithms has different complexity, to select an 20 85 687 94 682
algonthrp f(?r a specific situation an analysis si.milar to 10 15 247 197 275 199
the one indicated here should be performed, in order 20 78 478 85 448
19 see whether the improvement justifies the addi- 15 20 50 246 59 196
tional complexity. 195

IBM J. RES. DEVELOP. e VOL. 22 e NO. 2 ¢ MAR 1978 FERNANDEZ, LANG, AND WOOD

196

()

Figure 11 Regions of the modified probability along M.

Region |

T

|
|
I
|
|
[
!
Region 11 | Region 111
)
|
|
|
[
|
|

5. For a suitable value of r, the I/O cost decreases with
increasing buffer size. Even for r = 1, it was shown in
[3] that the total I/O cost for the LRU memory re-
placement algorithm may be reduced for N > M if M
increases with N. If the variation of M with N is
known, the expressions in this paper may be used to
compare the I/O cost of the three algorithms.

An additional conclusion can be obtained by comparing
the page fault rate of the GLRU algorithm with the refer-
ence paging of the LRU algorithm. In the particular ex-
periments performed, the paging rate of the GLRU al-
gorithm was usually larger than the LRU reference paging
rate. In systems where this behavior occurs, it seems ad-
vantageous to attempt to eliminate double paging. Once
double paging has been eliminated, it is necessary to ob-
tain a new GLRU algorithm that minimizes reference pag-
ing.

Double paging could be eliminated (or reduced) by us-
ing one of the following strategies:

1. Communication between the DMS and the operating
system. This requires an integrated design of these
systems, which is not always possible in practice. It
also requires that buffer pages and virtual memory
pages be the same size or that they be aligned along
their boundaries.

2. Single level store. In this case, both the database and
its buffer lie in the same address space. However, be-
cause of the different reference characteristics of data-
base and non-database programs this approach may
not result in optimal performance.

FERNANDEZ, LANG, AND WOOD

3. Reservation of real pages for buffer use. Again this
does not produce optimal total performance. It has
been shown [3] that by using fast paging devices the
total I/O cost could be reduced by having a larger vir-
tual buffer.

Experimental validation has shown that good agree-
ment exists between the calculations of the model and the
actual measured values, and that the parameters of the
GLRU algorithm are relatively stable, indicating that it is
possible to apply this algorithm in databases which have
adequate parameter stability. This appears to be a com-
mon situation since these parameters depend only on av-
erage probabilities taken over reference strings.

References

1. W. G. Tuel, Jr., **An Analysis of Buffer Paging in Virtual
Storage Systems,”’ IBM J. Res. Develop. 20, 518 (1976).

2. S. W. Sherman and R. S. Brice, ‘‘Performance of a Database
Manager in a Virtual Memory System,” ACM Trans. Data-
base Syst. 1, 317 (1976).

3. T. Lang, C. Wood, and E. B. Ferndndez, ‘‘Database Buffer
Paging in Virtual Storage Systems,”” ACM Trans. Database
Syst. 2, 339 (1977).

4, R. S. Brice and S. W. Sherman, ‘‘An Extension of the Per-
formance of a Database Manager in a Virtual Memory Sys-
tem Using Partially Locked Virtual Buffers,”” ACM Trans.
Database Syst. 2, 196 (1977).

5. A. Reiter, ‘*A Study of Buffer Management Policies for Data
Management Systems,”” Technical Summary Report 1619,
Mathematics Research Center, University of Wisconsin,
Madison, 1976.

6. J. R. Spirn and P. J. Denning, ‘‘Experiments with Program
Locality,” Proc. AFIPS 41, 611 (1972).

7. E. G. Coffman, Jr. and P. J. Denning, Operating Systems
Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973, p.
276.

8. C. Wood, E. B. Ferndndez, and T. Lang, ‘‘Minimization of
Demand Paging for the LRU Stack Model of Program Be-
havior,”” Research Report G320-2689, IBM Los Angeles Sci-
entific Center, 1977.

9. J. Rodriguez-Rosell, ‘‘Empirical Data Reference Behavior in
Data Base Systems,”” Computer 9, 9 (1976).

10. W. G. Tuel, Jr. and J. Rodriguez-Rosell, ‘A Methodology
for Evaluation of Data Base Systems,”’ Research Report RJ
1668, IBM Research Laboratory, San Jose, CA, 1975.

11. D. P. Gaver, S. S. Lavenberg, and T. G. Price, Jr., “‘Explor-
atory Analysis of Access Path Length Data for a Data Base
Management System,”’ JBM J. Res. Develop. 20, 449 (1976).

Received May 31, 1977; revised November I, 1977

E. B. Ferndndez and C. Wood are located at the IBM
Scientific Center, Data Processing Division, 9045 Lincoln
Bivd., Los Angeles, California 90045. T. Lang is with the
Computer Science Department, University of California,
Los Angeles, California 90024.

IBM J. RES. DEVELOP. ® VOL. 22 ¢ NO. 2 ¢ MAR 1978

