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Abstract: In a database system  a buffer may be used to hold recently  referenced  pages. If this buffer is in virtual memory,  the  database 
paging system and the memory paging system affect its performance. The  study of the effect of main memory replacement  algorithms  on 
the  number of main memory page faults is the basic  objective of this  paper. We assume  that  the buffer replacement  algorithm is least 
recently used (LRU), and page fault rates for LRU, random (R), and generalized  least  recently  used (GLRU) main memory  replacement 
algorithms are calculated  and compared. A set of experiments validates these fault rate  expressions  and establishes some  conditions  for 
the  practical  application of the results. 

Introduction 
An important aspect of the performance  analysis of a data 
management system  (DMS) is the behavior of the buffer 
where  previously  referenced pages are held for possible 
future reference. If the DMS executes in a virtual mem- 
ory  system  the buffer is in the virtual address  space  and, 
at a given time, some of the buffer pages are also in real 
storage.  Two paging mechanisms  participate in the proc- 
ess of accessing a database page,  a DMS-controlled buf- 
fer paging and a virtual memory paging under  the  control 
of the operating system. This structure is of practical im- 
portance since it represents  the operating  environment 
for IMS and  other commercial database  systems, and sev- 
eral studies of its behavior have been made. In particular, 
the effect of the buffer size on performance has been eval- 
uated analytically by using models that incorporate dif- 
ferent assumptions [ 1-31, and also by actual  measurement 
[ l ,  2, 4, 51. 

While the  performance of replacement  algorithms  has 
been studied analytically  for virtual memory systems,  for 
DMS only empirical  evaluations  have been made 
[ 2 ,  4, 51. The  databqse virtual buffer environment is dif- 
ferent due both to  the presence of two memory levels, 
and  to  the different characteristics of the  reference  strings 
found in these applications. 

We analyze here  the effect of main memory replace- 
ment  algorithms on  the performance of the buffer system, 

when the buffer replacement algorithm is LRU  (least re- 
cently used). In  a  demand paging environment  this  per- 
formance  can  be  characterized by the number of main 
memory page faults. 

If the  reference string is described by the least  recently 
used (LRU)  stack model [6], known probabilities of refer- 
ence can be associated with specific positions of the 
stack. In non-database  applications the  stack probabili- 
ties usually have a decreasing characteristic with respect 
to stack distance, and for this case  the  LRU replacement 
algorithm has been shown to be optimal [7]. However,  for 
database applications the stack  probabilities could exhibit 
a different distribution, and it is shown in [8] that in gen- 
eral  the  optimal algorithm belongs to a class of which the 
LRU algorithm is a  particular case. This optimal al- 
gorithm is denoted  here  as generalized LRU'(GLRU). 
Another important  replacement algorithm is the random 
algorithm (R),  where  the page to be replaced is selected 
with a uniform probabili(y. These  three algorithms (LRU, 
GLRU, and R) are considered here since  they are of prac- 
tical importance  and  possess  tractable  analytical charac- 
teristics. 

The next section presents a model of the buffer system 
and introduces  basic concepts. Models are then devel- 
oped for  the  three memory replacement  algorithms 
(LRU,  R, and GLRU), and expressions  are presented for 
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Figure 1 Model of a database  buffer  system. 
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Figure 2 Representative  probability  distributions. 

the  expected number of main memory page faults per 
database  reference.  The nature of the reference  strings in 
a database application is also  discussed and  two examples 
of stack reference probability distributions are given. The 

186 page fault rates  are calculated for  these distributions in 

order to compare  the 1/0 cost for  the different replace- 
ment algorithms, and a set of experiments  are described 
to validate these  results and  evaluate their practical appli- 
cability. 

Model and basic concepts 
Consider  a  DMS  consisting of a database of D pages, a 
virtual buffer of N pages, and M page frames available for 
the buffer in main memory (Fig. 1). When a database page 
is requested,  the DMS first determines  whether it resides 
in the virtual buffer. If the page is in the buffer, it is ac- 
cessed  through the virtual memory manager. If the page is 
not in the buffer,  a buffer page has to be replaced by the 
requested database page, and then accessed through  the 
virtual memory manager. Two paging mechanisms are 
thus involved in this process. We talk of buffer  faults 
when an access  to  the  database is needed because a  re- 
quested page has not been found in the buffer, and of 
memoryfaults when an access  to  the virtual merpory pag- 
ing device is needed.  The corresponding  replacement al- 
gorithms are  denoted  as buffer  replacement algorithm 
and memory replacement  algorithm. The cost ratio r is 
the  ratio  between the cost of a database  access and the 
cost of an access to the virtual memory paging device. 
The cost factor r depends on the specific devices used to 
store the database, on the paging device for virtual mem- 
ory, and on the  overhead associated with the correspond- 
ing access.  Because of the  smaller  size of the virtual 
memory it is possible to use drums  or fixed head disks as 
paging devices.  This results in a  practical  range for r be- 
tween l and 10. Furthermore, the  introduction of high 
speed  secondary  memories, with technologies  such as 
charge  coupled devices  or magnetic bubbles, could result 
in a larger r. Therefore, this two-level buffer would pro- 
vide an effective way of taking advantage of a memory 
hierarchy. TheZIO cost is the sum of the  costs of memory 
faults  and buffer faults.  The expected 1 / 0  cost, measured 
in units of database  faults, is given by T = Q + ( l / r ) F ,  
where Q is the expected number of buffer faults  per data 
request or  the miss  ratio, and F is the  expected number of 
memory faults per  data request (page  fault  rate). Q de- 
pends on the  database organization, the application pro- 
gram, the  size of the virtual buffer, and  the buffer replace- 
ment  algorithm. In multiuser systems, Q also depends on 
the memory replacement algorithm because memory 
faults cause task switches and  hence changes in the  pat- 
tern of references. When comparing the performance of 
memory replacement  algorithms we neglect this latter ef- 
fect,  i.e., we assume  that Q is empirically determined for 
one user at a time. 

The 1/0 cost  as a  function of buffer size was analyzed in 
[3] for three  models which differ in their buffer search 
methods.  For  the  three models, it is assumed  that real 
pages, virtual pages,  and  database pages are all the  same 
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size, and that the  amount of main memory assigned to  the 
buffer is fixed at M page frames. We are  concerned here 
with one of these models (model C in [3]), where  there 
exists a prefix table in main memory indicating which 
database pages are in the buffer (i.e., no memory faults 
for searching the buffer). However, instead of assuming 
both  replacement  algorithms to be  LRU,  as in [3], we as- 
sume the buffer replacement algorithm to be LRU  and 
consider  several main memory replacement  algorithms. 
Model C corresponds closely to a n  IMS/VS  VSAM sys- 
tem running under a virtual storage  operating system. 

In the environment of model C, main memory page 
faults occur in two situations.  One is when the requested 
page is in the buffer, but not in the main memory. In such 
a case this page has  to be  transferred to main memory. 
The corresponding page fault rate is denoted  as F, (refer- 
ence paging). The second is when the requested page is 
not in the buffer. In this case a buffer page is assigned to 
it,  and  this page is transferred to main memory (if not 
already there)  to  make  the buffer replacement.  This is the 
double  paging effect, and  the  corresponding fault rate is 
called Fd. 

Our  interest here is in analyzing the effect of buffer size 
on l/O  cost.  For a buffer of size equal to or smaller  than 
the  available number of main memory pages, F is zero 
and, since Q is a decreasing  function of the buffer size N ,  
we consider  only the  case N 2 M .  In [3] it  is shown,  for 
fixed M ,  that there may be  a  reduction in 110 cost  for N 
beyond M .  

In the following section we analyze the page fault rates 
for the LRU, R  and GLRU memory replacement al- 
gorithms. Some specific assumptions of the LRU  stack 
model are used to  develop  expressions for these paging 
rates. 

Page  fault rates for  the  memory  replacement 
algorithms 
In order  to provide  a  broader perspective, general  ex- 
pressions for page fault  rates for  the buffer system are 
defined. These  expressions  are then  restricted to  the  case 
in which the buffer replacement algorithm is LRU, and 
then F, and Fd are obtained for  GLRU, LRU , and R main 
memory replacement  algorithms. 

General  model of the buffer  system 
Let S be the reference  stack that contains at  a given time 
the  database pages previously accessed and ordered  ac- 
cording to their  time of reference. Its ith position is S(i), 
with probability of reference p ( i ) ,  and S(0) contains the 
most recently referenced page. In the LRU  stack model 
the probabilities are time invariant [6, 71, but  this  restric- 
tion is not required for some of the page fault expressions 
developed here. 

Figure 3 Effect of double  paging on probability  distributions. 

Let B be the buffer,  whose j th  page is B O ,  and the 
main memory M M ,  whose k t h  page i s  M M ( k ) .  In addi- 
tion to p ( i ) ,  the following probabilities are associated with 
this system: SB(i),  the probability that S(i)  is in E ;  BM( j ) ,  
the probability that B ( j )  is in M M ;  and S M ( i ) ,  the proba- 
bility that S(i) is in M M .  

The main memory fault rate is defined by the ex- 
pressions 
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Figure 4 (a)  Page fault rates vs M for distribution A and N = 
30. (b) Optimal r, and so V S M  for distribution A and N = 30. 

I) 

Fd = 2 p(i)[P{S(i) E B A replaced page of B E MM}].  

In particular, if the buffer replacement is LRU the N most 
recently used pages are in the buffer, and 

B(i) = S( i ) ,  i 5 N ;  

i = l  

SB(i)  = 
1 for i I N ;  
0 for i > N. 

Therefore, 

SM(i)  = BM(i ) ,  i 5 N ;  

and 

In the LRU buffer replacement algorithm the  Nth position 
of the buffer is replaced. Since the probability that  the 
Nth position is not in main memory is 1 - BM(N),  we 
have 

It is convenient to define the distribution p ' ,  which corre- 
sponds  to  the probabilities of referencing the buffer 
pages, as 

Then, from (1) and ( 2 ) ,  the expression for  the total num- 
ber of page faults when the buffer replacement algorithm 
is LRU becomes 

N 

F = F, + F, = p ' ( i )  [ l  - BM(i)]. (4) 
i = l  

In the  rest of the  paper we assume LRU buffer replace- 
ment. We analyze now the effect of different main mem- 
ory replacement  algorithms on F, and Fd, For  conve- 
nience we define 

Q(k)  = 1 - 1 p ( i ) ,  (5 ) 

which corresponds to the probability of not finding a ref- 
erenced page in the first k pages of the buffer. 

k 

i = l  

GLR U algorithm 
In [8] it is shown  that for the LRU stack model the  opti- 
mai BM distribution, which minimizes the number of page 
faults  for  a given distribution p ' ,  is a  member of the  class 
defined by 

1 s i s r ;  
BM(i)  = ( M  - r ) / ( s  - r ) ,  r < i < s ;  

s < i < N ,  [ 1: 
w h e r e l s r s M a n d M s s s N . F o r t h e c a s e r = s = M ,  
the  second  term of BM(i)  is zero, and this  distribution  cor- 
responds to that obtained by the LRU algorithm. The op- 
timal values of r and s, rn and sn, depend on the distribu- 
tion p '  and can  be  found by enumeration  techniques. 

I t  is also shown in [8] that the following generalized 
LRU replacement algorithm (GLRU) provides  this  distri- 
bution and is,  therefore, optimal for  reference strings that 
satisfy the LRU stack model: 

If B(i) is referenced  and is hot in memory, then if&,) is 
in main memory and i > sn then replace B(s,) ,  else replace 
B(rJ [B(r,) is always in main memory]. 
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and 

These  expressions  are still valid if,  instead of having time- 
invariant  probabilities p( i ) ,  the probabilities vary and 
their  averages over a  reference  string are  used. In this 
case, while this algorithm is still the  optimal for its class, 
there may be another type of algorithm which is optimal 
overall. When applying this algorithm, it is possible to 
calculate yo and so in a portion of the reference string and 
use these parameters in other parts of this  string. The per- 
formance of the algorithm in those other strings depends 
only on the  stability of ro and s o .  These requirements are 
considerably less restrictive than having time-invariant 
probabilities, and  therefore these expressions (and the al- 
gorithm) are applicable to a wider range of practical situa- 
tions. 

L R U  memory replacement  algorithm 
For the LRU memory  replacement algorithm (a special 
member of the previous  class) the M most recently used 
buffer pages are in main memory, i.e., 

Hence, from ( l ) ,  (2), and (41, 

'I' 

F = 2 p ' ( i )  = Q ( M ) .  
i = M + 1  

As for the general class, we emphasize  that these ex- 
pressions are still valid if average values over a  reference 
string are used for  the stack  probabilities. 

0 Random memory replacement  algorithm 
For the  purpose of comparison, we now consider the ran- 

I dom replacement  algorithm, which is also of practical im- 
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Figure 5 (a) Page fault rates vs M for  distribution B and N = 
30. (b) Optimal ro and sa vs M for distribution B and N = 30. 

portance [ 2 ,  41. In this algorithm the page to be  replaced 
is selected with a uniform probability of 1 / M .  We deter- 
mine the effect of a  reference at time t on the probabilities 
BM at time t + I .  

First we define the following events: 

a( i ,   t ) :  the  access to the buffer at  time t is to page i ;  
b(k, t ) :  the kth page in the buffer is in main memory at 

time t [=b(k, t )  denotes  the complement of 
b(k, 01. 189 
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Figure 7 Fd and F, vs Mfor random  algorithm R (distribution B 
and N = 30). 

I M  

Noting  that the kth page in the buffer at time t + 1 may 
have  been in either  position k or k - 1 in the buffer at  time 
t ,  depending on the reference at time t ,  we have: 

8-1 

P{b(k, t + 1)) = 2 [P{b(k, t )  I a(i ,  f) A b(i ,  t)} 
i = l  

x P{a(i, t ) }  X P{b(i, t ) )  

+ P{b(k, t )  I a(i ,  t )  A ==b(i, t ) }  

X P{a(i, t)} X P{=b(i, t)} X ( 1  - l / M ) ]  

N 

+ 1 [P{b(k - 1 ,  t )  I a(i, t )  A b(i, t)]  

X P{a(i, t)} X P{b(i, t ) }  

+ P{b(k - 1 ,  t )  1 a(i ,  t )  A =b(i, t)} 

X P{a(i, t ) }  X P{=b(i, t ) ]  

x ( 1  - 1/WI7 ( 1  1 )  

i =k 

where ( 1  - I/M) is the probability of not replacing the 
predecessor of page k when the  referenced page is not in 
the main memory (the  predecessor of page k could be 
page k or page k - 1 ,  depending on the  stack  distance of 
the  reference). In equilibrium the probabilities are inde- 
pendent of t and thus the  subscript t can  be dropped. I t  
can be shown  that the conditional probability P{b(k) 1 a(i) 
A b(i)} is independent of a(i). By definition, P{b(k)} f. 
BM(k) ,  and P{a(i)} = p’(i). Then, (1 1) becomes 

BM(k) = 1 p’( i ) [P{b(k)  I b(i)}  X BM(i)  
k-1 

i = l  

+ P { b ( k ) ) = b ( i ) }  X (1 - BM(i) )  X (1 - l/M)] 

Y 

+ 1 p’(i) [P{b(k - 1) I b(i)} X BM(i) 

+ P{b(k - I )  I =b(i)} x (1  - BM(i))  

i=k 

x ( I  - l/M)]. (12) 

The conditional  probabilities can be  written as 

where wk(i) and wL(i) are defined below. Also, the follow- 
ing conditions must be satisfied: 

Y N 

2 P{b(k) I b(i)} = 1 P{b(k) I =b(i)} = M - 1 ,  
k=2 k=2 
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P{b( i )  I b( i ) }  = I ,  

and 

P{b(i) 1 =b(i)} = 0. 

As an approximation we assume that wk(i )  and wL(i) are 
independent of k for k # i .  Consequently, 

0.31 1 I 

x LRU 
D Random 
o GLRU 

c i =  I ;  

and 

f O ,  
i =  1; 

1 0, i = k .  

The conditional  probabilities do in fact  satisfy the ex- 
pression 

BM(k)  = P{b(k )  I b( i ) }  X BM(i)  + P{b(k)  1 =b(i)} 

X ( 1  - BM(i)) .  

Substituting for  the conditional  probabilities in (12) we 
have 

BM(k)  = 

( M  - 1)2 - BM(I) 

i = k  M - 1 - BM(i)  M 

+ [ I -  2 '" ( M  - 1)' - BM(i)  
i = ,  M - 1 - BM(i)  

for 3 5 k 5 N. 

The BM(k)  can now be found by numerical iteration, and 
from these,  the page fault rates, by using expressions (I) ,  
(2), and (4). For  the examples analyzed, the  solutions for 
BM(k)  converged  rapidly. 
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Figure 8 I/O cost vs N for distribution A,  r = 5 ,  M = 10. 

(These miss ratios  correspond  to  averages  over a refer- 
ence string.) The modified distributions p' [see Eq. (3)] 
are presented for N = 30. Distribution A (without the 
peak at i = N) is representative of the reference strings of 
some database  applications, and  also corresponds  to  the 
characteristics exhibited by most non-database programs 
[6]. Distribution B is representative of some  database ap- 
plications. 

While non-increasing  distributions seem  to adequately 
represent many user and  system programs, many data- 
base  applications cannot be well characterized by them. 
There  are  several  reasons  for this. 

Characteristics of the  reference  stack 1. The double paging effect can  be represented by a  peak 
In order  to provide a framework for comparing  replace- at i = N in the  distributionp'  as defined by (3) (Fig. 3). 
ment  algorithms, two probability distributions have been 2. A set of several  transactions could produce a distribu- 
selected.  Distributions A and B, illustrated in Fig. 2, have tion such  as B ,  because the pages of a given transac- 
been obtained  from the experimental miss ratios obtained tion are  pushed  down  the stack by the  other  transac- 
by Tuel [I], and Sherman and Brice [ 2 ] ,  respectively. tions  before being rereferenced. 191 
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3. A  set of several transactions sharing  common  records 
(e.g.,  tables  for indirect  addressing of records), could 
give distributions  such as B since these  records  are 
reused when they are in different stack positions [9]. 

4. The probability distributions of Spirn  and Denning 
were  obtained for programs  where the essential be- 
havior is dictated by instruction  (and not data) refer- 
encing, which is normally very sequential, and  where 
data  requests  are mainly satisfied from  CPU  registers 
rather  than from memory. On the other  hand, for data- 
base  systems we are only concerned with data refer- 
ences to the virtual buffer. 

For these reasons,  the  LRU algorithm may not be optimal 
in a database  environment described by the  LRU  stack 
model. It is therefore of practical importance to compare 
the  performances of different algorithms. 

Comparison of replacement  algorithms 
The performances of the GLRU, random (R), and LRU 
algorithms are now compared, where the difference be- 
tween the  respective page fault rates is used as a  means 

192 of comparison. 

e LRU and GLRU 
From (6), (7) ,  and (10) we have 

= { [ ( M  - r,,)(s,) - M)l/(s,, - y o ) )  

[P’ (M + 1, so) - p’(rn + 1 ,  M)1, 

wherep’ ( a ,  b) is the average ofp‘(i) between i = a and i = 

b.  This difference depends on M and the  distribution p’ .  I t  
is zero when‘ 

min p’ (yo + I ,  M )  5 max p’ ( M  + 1, so), 
i r r  <M “ < S O < N  

which is the condition for  LRU to be optimal [7]. FL,KU - 

FGI,RU is a maximum when p ( i )  = 0 for i 5 M and p ( M  + 1) 
= 1 (worst case  for LRU). In this case, rn = 1 and .so = M 
+ 1, resulting in (FLR,, - F),,, = (1  - l/M). For example, 
for M = 10, (Fl,RU - FGl&,,ax = 0.9. 

Random  and GLRU 
Although the random  replacement algorithm can never be 
optimal [i.e. (FRaND - FGLRU) > 01, its worst case is never 
as bad as the  LRU worst case  because max FRAN11 is never 
1 [i.e., ( F R A N D  - F G I . w ) m a x  < ( F ~ . R u )  - FGI.RU)maul. As an 
example, for M = 10, ( F R A N D  - FGI,RU)max = 0.278. 

Random  and  LRU 
Fl,Ru - F R A N D  is a maximum for the  same reference  distri- 
bution p’ as the  one that gives a maximum for (FLRU - 

FOP,.), namely: p’( i )  = 0 for i # M + 1 and p’ (M + I )  = 1 .  
For the case when M = 10, (FLRU - FRAND)max  = 0.82. 
Again for M = 10, F K A N D  - Fl,RRu can be shown to be a 
maximum for the following distribution: p’( i )  = 0 for i # 
10 and i < N ,  p’(l0) = 0.8, and p ’ ( N )  = 0.2 ( N  >> M).   In  
this case, ( F R A N D  - FLRU)max  = 0.31. 

Effect of main memory size 
In general, LRU is better than R when main memory is 
large enough to contain the locality of the  database refer- 
ences [ Q ( M )  - Q(N)  << I], and double paging is not sig- 
nificant [Q(N)  << I]. For M close to N ( M  < N), and for 
significant values of Q ( N ) ,  R is  better than LRU  because, 
as M increases,  the double paging rate remains constant 
for  LRU while it decreases for R.  Since  the  reference pag- 
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ing decreases with increasing M for both LRU and R, the 
double paging effect eventually dominates  for  LRU. 

Graphic  comparison 
The I/O costs  for  the  three replacement  algorithms are 
now compared for  the distributions A and B.  Because  the 
values of Q used to obtain these  distributions are  aver- 
ages over reference strings, the costs obtained are  exact 
for the  GLRU  and  LRU algorithms, while they are only 
approximated for  the random algorithm. (The  costs  for 
this case depend on the time-invariance of the probabili- 
ties of the  stack  model.) 

The I/O costs  depend on M ,  N ,  and r .  First, we com- 
pare the total  cost for varying M. Since N will be fixed for 
this comparison, Q(N)  is constant  and we can concentrate 
on the page fault rates. Figures  4(a)  and 5(a) show the 
performance of the  three algorithms as a  function of M for 
distributions A and B, respectively,  and for N = 30. The 
corresponding  values of ro and so are  also given [Figs.  4(b) 
and  5(b)].  Figure 6 shows Fr and Fd for  the LRU al- 
gorithm applied to distribution B. Figure 7 does the same 
for the random algorithm. 

From Figs. 4(a) and S(a), it can be seen  that in the re- 
gion whete M approaches N ,  LRU  does poorly because 
of the  dominance of the double paging effect (Fig. 6). 
When M is close to N the random algorithm is close to the 
GLRU algorithm [Figs. 4(a) and 5(a)],  since the probabil- 
ity of having a page in main memory increases with M, 
and double paging is not significant in this range for this 
algorithm (Fig. 7). In the region between M = 6 and M = 

15 the random algorithm does  better than LRU [Fig.  5(a)], 
due to the high reference paging needed by LRU in this 
case  (Fig. 6). For distribution A, LRU is better than R for 
M 5 13 [Fig. 4(a)]. For distribution A, LRU is optimal for 
M 5 6, while for distribution B,  LRU is optimal in the 
ranges 1 5 M 5 3 and 20 5 M 5 21. 

We now consider  the total cost for varying N .  Figures 
8, 9, and 10 compare T (expected 1/0 cost)  as a  function 
of N for the three replacement  algorithms,  the  two dis- 
tributions A and B, a  suitable value of r ,  and two values 
of M. 

For distribution A ,  a value of r = 5 has been used to 
obtain a decrease in cost.  For M = 10 (Fig. 8), the  GLRU 
algorithm produces a decrease in cost with respect to the 
case  for which N = M for N > 20. Because r = 5 ,  the 
difference in 110 cost  between  the  algorithms is not very 
significant. For M = 20 (Fig. 9), in the range of N consid- 
ered, only the GLRU algorithm gives a decrease in cost. 

For distribution B, r = 2 has  been selected. (A lower r 
is sufficient here  since this  distribution  has  a steeper slope 
at M = 10 than does distribution A.)  It can  be  seen from 
Fig. 10 that with this value of r ,  a decrease in cost (with 
respect to the case N = M) is obtained for values of N > 

1.0 * 
* LRU 

* 0 Random 
0 GLRU 

0.9 - 
* 

0.8 - * 

0 0  

0 

0.7 - 0 0 
o *  

0 0 

41 0 
0 0  

0.6 - 
o o *  

o o *  
0.5 - 

o *  

* *  
0 0  * * * * *  

0 0 0 0  

0.4 - 0 0 0 0 0  * * I  
0 

0 
0 0  

0.3 - 0 0 0 0 0  
0 0 0  

,-. 
2 
h 0.2 I I I 

10 15 x 25 30 

N 

Figure 10 1/0 cost vs N for distribution B,  r = 2, M = 10. 

15. In the  range of values of N considered, the GLRU 
algorithm is significantly better than both  R and LRU, 
with LRU being the  worst. 

Experimental  results 
A series of measurements  was performed by using a sec- 
tion of the  reference  string  described in [IO] and [ 1 I]. This 
section corresponds  to  the operation of a hierarchical 
database system (1BM’s IMS), with 6-segment types.  The 
objectives of these experiments  were to  compare the  fault 
rates obtained from the model developed  here with mea- 
surement on a real reference  string;  and to determine the 
applicability of the  GLRU algorithm in a real environ- 
ment.  Tables 1, 2,  and 3 summarize the results for the 
model validation.  Table 1 indicates the stack  probabilities 
for  a  series of 10 000 record  references.  Tables 2 and 3 
compare  the paging rates obtained with the model by us- 
ing the  stack  probabilities of Table 1 and  the actual mea- 
surement on the reference string. 193 
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Table 1 Stack  probabilities of reference  string. 

Stack position  Probability 

1 
2 

0.9106 
0.0313 

3 0.0008 
4  0.0023 
5 0.0054 
6 0.0012 
7 0.0077 
8 0.0029 
9 0.0081 

10 0.0088 
Remainder 0.0128 

Table 2 Validation of the  model, fixed M = 4 and variable N .  

Algorithm N r,, so Model  Measurement 
F, Fd F F, Fd F 

5  2 5 28 165 194 25 167 192 
6  2 6 48 242 290 44 242 286 
7  2 7  104 244 349 102 254 356 

GLRU 8  2  8  135  252 387 127 254 381 
9  2 '9 203 212 415 202 211  413 

10  2  10  279  157 436 283 158 441 

- 

5 54 496 550 
6 66 484 550 
7 143 407 550 Sameasmodel 

172 378 550 
9  253 297 550 

10  341 209 550 

LRU 

5 54 205 259 32 197 229 
6 83 31 1 394 45 297 342 
7 154 316 470 110 316 426 
8 188 326 514 146 319 465 
9 267 272 539 221 264 485 

I O  354 199 553 300 198 498 

R 

Table 3 Validation  of  the  model,  fixed N = 10 and  variable M .  

Algorithm M ro so Model  Measurement 
F ,  F,, F F ,  F,, F 

2  2 10 372 209 581 372 208 580 
3  2 10 325 183 508 331 181 512 
4  2 I O  279 156 435 283 158 441 
5  2 10 232 131 363 245 130 375 

GLRU 6 2 10 186 104  290 206 104 310 
7  2  10 140 78 218  152 77 229 
8 2 10 93 52 145  101  52  153 
9 2 I O  46 26 72 46 25 71 

2 372 208 580 
3 364 208 572 
4  341 208 549 

275 208 483 
7 198 208 406 
8  169 208 377 
9 88 208 296 

3 413 207 620 333 206 539 
4 353 199 552 292 192 434 
5 297 182 479 245 180 425 

R 6 239 158 397 202 148 350 
7 181 127 308 150 122 272 
8 122 89 211 95 85 180 
9 61 47 108 54 49 103 

LRU 287 208 495 Same  as  model 

194 
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For  the  LRU algorithm,  experiment  and model give the 
same  values  since the fault  rates in this case depend only 
on the measured average probabilities. In addition,  exam- 
ination of expressions (6) and (7) shows that for the 
GLRU algorithms the paging rates  depend again on the 
average  probabilities  (for  a fixed pair of r and s values). 
Agreement between model and measurement is very good 
because of this reason,  the small discrepancies being due 
to  the fact that  the statistical nature of the  expressions 
results in exact  values only  for very long sequences of 
references.  Finally, there is good agreement in the  results 
for  the random algorithm. The differences are  due  to the 
stronger dependency on the LRU stack model in this case, 
and also to  the  approximate solution of the  expressions. 

As  indicated  previously,  the  performance of the GLRU 
algorithm depends on the stability of r(, and sl) along the 
reference  string. Even in the presence of variations  this 
performance can be adequate if the  variation of r0 and so 
has little effect on the paging rates. Table 4 indicates the 
stack  probabilities for seven  reference sequences of 5000 
records each.  Their averages over this  complete  string 
(35 000 references) are  also given.  Table 5 shows  the vari- 
ation of r,, and so as a function of M for N = 10, for  the 
seven reference  strings  and  for  the  complete  string. I t  can 
be seen that these values are relatively stable.  The value 
s,, = N is characteristic when the stack  probabilities are 
rapidly decreasing  and  the  double paging peak pre- 
dominates. 

Brice and  Sherman [4] have performed  a  series of ex- 
periments,  some of which are relevant to this study. In 
particular,  they  report on double paging rates and refer- 
ence paging rates  for  LRU buffer replacement and ran- 
dom memory replacement. Table 6 compares their  results 
with those obtained from our model for  that particular 
case. It can be  seen  that there is a  reasonable agreement. 
(These  results are approximate because they  depend on 
the  exact form of Q ,  which was interpolated from only 
five points.) 

Conclusions 
Studies of the effect of replacement  algorithms on the per- 
formance of database  systems that  use  a paged buffer are 
of practical importance since many commercial data man- 
agement systems use buffers to improve  performance. 
Analyses of the effect of varying both the buffer and the 
main memory replacement  algorithms are very complex 
and simulation studies may be needed.  However, if the 
buffer replacement algorithm is LRU, at least some main 
memory replacement  algorithms can be analyzed. Three 
main memory replacement  algorithms (LRU,  R, and 
GLRU) have  been  considered in this paper.  Expressions 
for reference paging rate and for double paging rate were 
developed for  these  three algorithms,  and  their  relative 
performances compared.  The  expressions  for the LRU 
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Stack  String 1 String 2 String 3 String 4 String 5 String 6 String 7 Complete  string 
position 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Remainder 

0.8512 
0.1165 
0.0000 
0.001 1 
0.001 1 
0.0000 
0.0000 
O . o o 0 0  
0.0000 
0.0022 
0.0277 

0.9150 
0.0278 
0.001 1 
0.0029 
0.0064 
0.0016 
0.0073 
0.0012 
0.0107 
0.0090 
0.0168 

0.9210 
0.0004 
0.0000 
0.0000 
0.0034 
0.0000 
0.0086 
0.0207 
0.0000 
0.0030 
0.0429 

0.9293 
0.0004 
0.0000 
0.0000 
0.0021 
0.0000 
0.0004 
0.0152 
0.0041 
0.0045 
0.0440 

0.9294 
0.0000 
O.oo00  
0.0000 
0.0000 
0.0039 
0.0008 
0.0000 
0.0042 
0.0000 
0.0617 

0.9175 
0.0053 
0.0055 
0.0072 
0.0080 
0.0161 
0.0044 
0.0008 
0.0069 
0.0055 
0.0225 

0.9267 
0.0059 
0.0029 
0.0019 
0.0026 
0.0034 
0.0042 
0.0047 
0.0054 
0.0081 
0.0341 

0.9399 
0.0088 
0.0034 
0.0037 
0.0038 
0.0024 
0.0034 
0.0006 
0.0021 
0.0023 
0.0294 

and GLRU algorithms  depend on stack probabilities aver- 
aged over reference strings, but the expressions  for the 
random algorithm (R) depend on the  time  invariance of 
these  probabilities. While the GLRU is always optimal 
within its  class, it is also globally optimal if the stack 
probabilities are time  invariant. 

Some  conclusions that can be drawn from this com- 
parison are: 

I .  For fixed memory  size M ,  LRU can be optimal in 
some cases, but it is particularly bad for values of buf- 
fer size N just larger than M .  On the other hand, the 
random replacement algorithm is never  optimal, but 
its worst case behavior is not as bad as  the worst case 
behavior for  the  LRU algorithm. 

2 .  When  we plot a  typical  distribution p ‘  (Fig. I I ) ,  it is 
possible to distinguish  three regions according to the 
behavior of the main memory replacement  algorithms. 
In  region 1, R may be better than LRU when the local- 
ity of the  database cannot be contained in this memory 
size. In region 2, LRU is optimal  since  the probabili- 
ties satisfy the optimality condition [8]. In region 3 ,  R 
is again better than LRU because of the  double paging 
effect. 

3 .  For a required page-fault rate  a tradeoff is possible be- 
tween the memory  size M and the complexity of the 
replacement  algorithm;  for example, in Fig. 5(a) for F 
= 0.4 the  GLRU algorithm requires M = 13, and the 
LRU, M = 16. 

4. The relative I/O cost of these  three  algorithms depends 
M ,  N, r ,  and p.  Since the  implementation of each of 
the  algorithms  has different complexity, to select an 
algorithm for a specific situation an analysis similar to 
the one indicated  here should be performed, in order 
to see  whether  the improvement  justifies the addi- 
tional complexity. 

Table 5 Variation of rl, and so with M for N = I O  and  for  seven 
reference  strings. 

String M 

1 

2 

3 

4 

5 

6 

7 

Complete 

2 3 4 5 6 7 8 9  

2 2 2 2 2 2 2 2  
2 I O  I O  10 I O  10 10 10 
2 2 2 2 2 2 2 2  
2 I O  10 I O  10 10 IO 10 
1 1 1 1 1 1 1 1  

10 I O  10 I O  10 10  10 10 
1 1 1 1 1 1 1 1  

10 10  10 10 10 10 10 10 
1 1 1 1 1 1 1 I  

I O  I O  10 10 10  10 I O  10 
1 1 1 1 1 1 1 1  

10 10 10 10 I O  10 10 10 
1 1 1 1 1 1 1 1  

10 10 I O  I O  10 I O  10 10 
2 2 2 2 2 2 2 2  
2 10 I O  I O  10 10 10 10 

Table 6 Comparison of model to Brice and  Sherman  experi- 
ments. 

M N Model  BricelSherman 

Fd F r  Fd Fr 

5 I O  531 147 590 113 
15 375 388 405 374 
20 85 687 94 682 

I O  
20 
I5 247 I97 275 

78  478  85  448 
199 

15 20 50 246  59  196 
195 
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Figure 11 Regions of the modified probability  along M. 

- ._ 
a 

I I 
I 

5 .  For a suitable  value of r ,  the I/O cost  decreases with 
increasing buffer size. Even for r = I ,  i t  was shown in 
[3] that the total IiO cost  for  the LRU memory re- 
placement algorithm may be reduced for N > M if M 
increases with N. If the variation of M with N is 
known, the  expressions in this  paper may be used to 
compare  the IiO cost of the  three  algorithms. 

An additional  conclusion can be  obtained by comparing 
the page fault rate of the  GLRU algorithm with the  refer- 
ence paging  of the LRU algorithm. In the  particular  ex- 
periments performed,  the paging rate of the  GLRU al- 
gorithm was usually larger than the  LRU reference paging 
rate. In systems  where this  behavior occurs, it seems ad- 
vantageous to  attempt  to eliminate double paging. Once 
double paging has been eliminated, it is necessary to ob- 
tain a new GLRU algorithm that minimizes reference pag- 
ing. 

Double paging could be eliminated (or  reduced) by us- 
ing one of the following strategies: 

1 .  Communication between the DMS and the operating 
system. This requires an integrated design of these 
systems, which is not always possible in practice. It 
also  requires that buffer pages and virtual memory 
pages be  the  same size or that they be aligned along 
their boundaries. 

2 .  Single level store. In this case,  both  the  database and 
its buffer lie in the  same  address  space.  However, be- 
cause of the different  reference characteristics of data- 
base  and non-database programs  this  approach may 
not result in optimal  performance. 

3 .  Reservation of real pages  for  bufer  use. Again this 
does not produce optimal total  performance. It has 
been shown [3] that by using fast paging devices the 
total I/O cost could be reduced by having a  larger vir- 
tual buffer. 

Experimental  validation  has  shown  that good agree- 
ment exists between the calculations of the model and  the 
actual  measured values, and that the  parameters of the 
GLRU algorithm are relatively stable, indicating that it is 
possible to apply  this algorithm in databases which have 
adequate  parameter stability.  This appears  to be a com- 
mon situation  since these parameters depend only on av- 
erage  probabilities  taken over reference  strings. 
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