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Steady Axisymmetric Solutions for Pressurized Rotating

Flexible Disk Packs

Abstract: Steady solutions are obtained for undisturbed pressurized flexible disk packs of various configurations. Simplified fluid equa-
tions of motion are coupled with the equations governing the deflection of flexible membranes in order to arrive at the differential
equations for the spacing between the disks of the pack. A simple asymptotic-solution formula is derived for computing the dependence
of the spacing between two neighboring disks on air density and viscosity, the volume rate of flow of air between the two disks, the

angular speed of rotation, and the radial position on the disks.

Introduction

A potentially useful configuration for high-density data
storage is the stacked flexible disk file configuration, con-
sisting of a large number of concentrically mounted disks
on a hollow spindle next to a flat, rigid base plate. The
spacing between the disks, which rotate with constant an-
gular velocity w, can be controlled by permeable spacers
through which a controlled quantity of air is delivered be-
tween each of the disks. A cross-sectional sketch of such
a configuration is shown in Fig. 1 [1].

During operation the disk pack must be entered at a
preselected disk by a read-write element suspended on a
suitably controlled inserter. Such a device will open the
pack, thereby disturbing the steady rotating configura-
tion. Since the steady spacing of the disks determines the
location of the particular disk to be addressed, it is neces-
sary for the operation of the disk file to know accurately
the position of each disk as a function of flow rate and
rotational speed.

In this paper, attention is confined to the study of the
steady configuration of the undisturbed pack. Fortunate-
ly, the fundamental problem of a single disk rotating next
to a fixed base plate has been studied both theoretically
and experimentally by Pelech and Shapiro [2]. They
treated the air between the base plate and disk as a vis-
cous, incompressible fluid and employed the appropriate
form of the Navier-Stokes equations of motion. These
equations were linearized for certain limits on the phys-
ical variables by use of arguments based on dimensional
analysis. The disk was modeled as an elastic membrane

(i.e., having no bending stiffness), and the fluid and disk
equations of motion were coupled through the fluid pres-
sure. A single nonlinear differential equation was derived
which governs the spacing between the membrane and
the base plate, and this equation was solved numerically
for several chosen values of the parameters in the prob-
lem.

The methods of analysis employed by Pelech and Sha-
piro are applied here to several different configurations
occurring in connection with the stacked flexible disk file.
After reviewing the analysis in [2] for a single membrane
with a fixed base, the problem of a single membrane with
a rotating base plate is considered. Thereafter, two rotat-

Figure 1 Cross-sectional View of stacked flexible disk file.
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Figure 2 Single membrane adjacent to rigid wall, rotating on a
thin air film.

ing membranes with no base plate are studied, and, final-
ly, the multimembrane configuration of the stacked flex-
ible disk pack is analyzed for both fixed and rotating base
plates.

Single membrane, fixed base pilate
Here we review the solution obtained in [2] for a single
membrane rotating on a thin air film next to a fixed base
plate, as shown in Fig. 2. Let r, 9, z be cylindrical polar
coordinates and let «, v, w be the components of the fluid
velocity vector in these directions. The solution to be ob-
tained is axisymmetric and therefore has no dependence
on §. Let w denote the angular speed and s(r) the spacing
between the membrane and the base plate at radial posi-
tion r. Let R, and R denote the radius at which the mem-
brane is fixed to the spindle and the outer membrane ra-
dius. ‘

The Navier-Stokes equations of motion of the fluid un-
der conditions of axisymmetry and incompressibility ap-
pear then as v

ou v u aP
U— — — + y—— | = ————
p( ar r 0z ) or
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and the corresponding incompressibility constraint is

du u ow
— +— +— =0, 2
ar r 9z

where p, u and P denote the fluid density, viscosity and
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fluid pressure, respectively. In [2] it is shown for this con-
figuration that if s(r), R, », p, n and the net volume rate
of outflow Q satisfy the inequalities

4

R \?
L<1,(M)(_S) <1, Qz <1, (3)
0 wR

R, 7 oS

then the pressure P can be considered to be independent
of z, the velocity component w is negligible compared to
u, v and (la), (1b) can be replaced by

v? B dpP N 3 u )
P r dr H az*’
3%
A o

The volume rate of flow ( is given in terms of « by

s(r)
Q = 2mr J udz. (&)
0
If the membrane is considered to be elastic and its de-
viation from a flat configuration is assumed to be in-
finitesimal, then the equation of motion for the membrane
stress is the same as that for a rotating flat disk, i.e.,
L o) = oy + 0y = 0 ®)
ar ro, o, + wrpy, =0,
where o, and o, are the radial and tangential stresses,
respectively, while p, is the disk density. The solution
satisfying zero radial displacement at » = R, and zero ra-
dial stress at r = R is obtained from (6) with use of the
appropriate stress-strain relations and yields

¢ =(3+”)—1—[a+(1—a)#—f"];

2

r 8 7
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1+3V 4
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in which

L= [(1+»)/G + »)JRYRY

T+ 0/ - IRYR) + 1
. P
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where v represents the Poisson ratio of the membrane.
Equation (7) gives the nonuniform tensions in the mem-
brane, which is loaded transversely by gravity forces and
the pressures differential across it. The equation govern-
ing the transverse steady, axisymmetric deflection of the
membrane under these conditions is (see, for example,
Simmonds [3] or Eversman [4])
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where q is force/volume in the z direction applied to the

membrane. By use of (6) in (9) we obtain in dimensionless
form

, 4% + (7 Iy | 4 AP — ¢ (10)
-0, — - = - 2,
e ( ; ) dr &
in which
. AP £
$§=5s/R ;AP = 8= R 11
/R wzpDRot & R0w2 D

and AP denotes the pressure below minus the pressure
above the membrane and ¢ is the membrane thickness.
For the case under consideration it is pointed out in [2]
that the pressure above the rotating membrane is essen-
tially ambient so that AP in (11) is the same as P in (1),
i.e., the fluid pressure above ambient. [Note: (Egs. (28) of
[2] and (2) of [5] appear to be in error in that they do not
contain the ¢,/r coefficient of ds/dF in (11).]

The boundary conditions for the fluid between a fixed
base plate and rotating membrane are

u=20 atz = 0, s(r):
v=20 atz = 0,
v = wr at z = s(r). (12)

The integration of (4) subject to (12) yields

() [ (2
(2 - (5
p = (i) wr, (13)

s

By use of (4) the pressure gradient and flow rate Q of
this velocity field are related by

= o pw‘r* 3 (14)

The coupling of the fluid equations and membrane deflec-
tion equation is accomplished by substituting (14) into
d/dr of (10), which yields

34 ~ ~ 24
&rd§+(dgr - P+ U”)di
dr dr F dr
+K1) ds, &, } ds
7 df 7 df
6 3pF
- :‘Q53 N (15)
mpw R, 17§ 10p 1
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Equation (15) is a third order nonlinear ordinary dif-
ferential equation for determining s(r). The boundary con-
ditions are obtained from knowledge of s(R), P(R), and
the requirement that d”s/dr” must remain bounded. In [2]
it is shown that these conditions lead alternatively to an
initial value problem for (15). The initial conditions are
placed on s, ds/dr and d*s/dr” at r = R,. By use of (7),
(10), and (14) these conditions can be written in the form

§(1) = prescribed;

oy L PD -2
YO =50
P -2 _
1~ [3+ o)1 —2a) - (1 +3)]/8°
[1+ 6,1) = a,(DB' (1) — P(1)
Gy — 1+ 6,1

() =

8+ [B+w2=5) +(1+30)]) o = .
_ 8 — [B + (1 — 2a) — (I + 3v)] [P = 2]
=1 —[3+ )1+ da) + (1 + 30)]/8

610 3pf
7pp 5 (DR] 10p,f

—1=[B+ v +4a) + (1 +30)]/8°

(16)

Once s(r) is chosen and Q, w, and P(r,) are fixed, all the
initial data in (16) are determined. Then (15) can be in-
tegrated numerically for R, < r < R. The value of s(R))
obtained in this way can be compared with the known
value. Numerical solutions were presented in [2] based on
this technique for many different values of the parameters
Q. w, and R. These solutions generally showed excellent
agreement with their experimental results.

It was observed in [2] that there is a self-regulating ten-
dency for the spacing between the membrane and the
base plate for sufficiently large values of r and Q. Such an
asymptotic solution results from (15) under these condi-
tions when the terms on the right-hand side are of larger
order than those on the left-hand side. The solution ob-
tained is the same that results from setting dP/dr equal to
zero in (14), i.e.,

N DuQ JHe

2
TpW

, oY)

which, from (15), should be valid provided that, in addi-
tion to (3), the inequality

e o

0 0
is also satisfied. The similarity solution (17) predicts that

1 2 R
sxQ* atfixedrandsecr * atfixed Q. The experimen-
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Figure 3 Two rotating membranes adjacent to each other.

tal results in [2] showed good agreement also with these
relationships in the outer portions of the membrane. We
note that the solution (17) is independent of the gravity
force.

Single membrane, rotating base plate

This configuration is the same as in Fig. 2, but now the
membrane and the base plate are assumed to rotate with
the same angular speed w. Equations (1)-(8) apply here

also but the boundary conditions for the fluid become
u=0,v=wr atz = 0, s(r) (19)

in place of (12). The integration of (4) subject to (19)
yields

s, dP . z 2 z
u= (— - pw r)u—) - —1, v = wr, (20)
2u \ dr s s
which, with (5), gives
dP 6
LB - Q. @1
dr Trs

When (21) is compared to (14), we see that it differs only
in that 3p/10 has been replaced by p. Likewise, the equa-
tions that replace (15), (16) for this case can be obtained
from (15), (16) by substituting p for 3p/10. Furthermore,
the asymptotic solution that replaces (17) is

5= 610 )“ - @)

2
Tpw

Based on the similarity solutions (17), (22) we should ex-
pect

3

a1
_ 3
Srotating base ( 10 ) Stixed base’ 23)

provided (3), (18) are all satisfied. These asymptotic solu-
tions are restricted to the outer regions of the membrane
since near the hub the boundary conditions predominate
instead of the differential equation (15).

Two membranes, no base plate
A sketch of this configuration is shown in Fig. 3. The
spacing between the two membranes is s(r), and there is
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symmetry about the plane z = 0 if gravity forces are ne-
glected. Equations (4) again govern the fluid velocity pro-
vided inequalities (3) remain satisfied. The fluid boundary
conditions now become

atz = x /2, (24)

and (13) is replaced here by

s*  dP g 2z |
u=—~(— —pwr)(—)—~l,
8u \ dr K

We then obtain from (5) with limits —s/2 to s/2, using this
flow field,

v = wr. (25)

s (26)

which is exactly the same as (21). Thus, the treatment
from here on for obtaining the spacing between two rotat-
ing membranes is the same as that for the spacing be-
tween one membrane and a rotating base plate. In partic-
ular, the asymptotic solution here is also

s=(6'uQ )#rA%. 27

2
TPW

i.e., the same as (22). Based on this solution we expect

3

1
=[—3 s
rotating base 10 fixed base”

SZ membranes =S (28)

N membranes, fixed base plate
A cross-sectional sketch of this configuration appears in
Fig. 4.

We assume, in addition to small displacements, that the
inequalities

su — ‘stx——l
<1;
RO
(pr: )z( Sy ~ Sy )4 <1
[ R,
5 Q. <1, 29)
R (s, — $._))
are satisfied fora = 1, 2, - - -, N. Then (4) holds for each
fluid region, or
vl _ dP,_ 8°u,
P r dr H 8z’
62
“e_0, a=1,2-"N 30)
dz

The fluid boundary conditions are

IBM 1. RES. DEVELOP. e VOL. 22 ® NO. 2 « MAR 1978




u =0 at z=s,5,_,a=12---N;

o o

v, = wr at z=ys,5_,a=23,--- N,
v, = or at z =s. an

The integration of (30) subject to (31) gives

1, dP Sl
u, = —— & —po 2"~ (s, + s, )z + s, — s,
o 2;1,(dr P )[ (5, + 5,02 + 5, N
a=2,3,--N;
v, = wr;

v = — wr. (32)

1

Use of (32) in

Q. =2mr fa u dz (33)
Sa-1
yields
dpP 6
u:prr__—p“Qﬂ_.;’ a=2,3-.N;
dr wr(s, — S,_,)
dP, 3 . 6uQ,
= — r— . 34
dr 10 pe wrs’ 34

1
Now each membrane continues to obey (10) with o, given
by (7), (8) while AP represents the pressure below minus
the pressure above. Therefore, (10) becomes

Py =P0(‘—P(X+l—é’

. dzfu +(A (3’0) d&a
P— o
P

ST
a=1,2,---N, (39
where P, is ambient. Use of (34) in d/dr of (35) yields

P)oodp 7 P
6 r
'l; 5 |i A QIAV 3 }_L(_A‘),O(:N
mp w RFt L (8, — 8, ) pp M\t
( 6 ) Qa _ Qa+1
mppw R ) (5, - 5, ) Gy — 87
N a=2,3 - N-1
Tof | 6 { 0, 0, ]
10p,f  mppw’Rit L & G, - 82 7T
a=1 (36)
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Figure 4 Configuration of stacked flexible disk pack with fixed
base plate.

The initial conditions analogous to (16) could also be list-
ed. We would then have a coupled system of N third-
order nonlinear ordinary differential equations with prop-
er initial data for determining § , §,, - - -, §,. The numeri-
cal task of solving such a system for large N (N = 100,
say) would be formidable. We can, however, get an
asymptotic solution from (36) also. Assuming the terms

on the left-hand side are all of order
s (R) — s (R)
R, - R,

and that the terms on the right-hand side are of higher
order, we obtain from (36)

6# 1 1.
SN_sNﬂ:(—) ? QN3 ;

2.2
TPWF

1
3
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where s, s stand for s (R,), s,(R,). By use of (37a) with
(37b) successively, we obtain the simpler result

6 a1 2
Sa_suflz(‘%)a Qaa’ a=2’3’...’N;
TPW ¥
200 L 2.
Slz(-——-E—Z—)3 le . (39)
TPWr

By comparing (39) with (22), (17) we see that the similar-
ity solutions predict that the spacing between the first
membrane and the fixed base is the same for one mem-
brane as for a stack of N membranes and that the spacing
between adjacent membranes is the same as that between
one membrane and a rotating base plate.

N membranes, rotating base

The configuration is the same as that shown in Fig. 4,
except that we now assume that the base plate rotates
with the stack of membranes. Under assumptions (29) the
fluid equations again become (30) and the boundary con-
ditions are as in (31), except that v, = wratz = 0also. The
terms «, and v, are now given by (32),, for a =

1,2,--+, N and dP /dr is given by (35), for a =
1,2, -+, N. The membrane deflection equations are
given by (36), for = N and (36),fora=1,2, -+, N—
1. Finally, if inequalities (38),, (38), are valid for a =
1,2, - -+, N, then the similarity solution is
6 . L
Su_s(x—lz( M22)3 Qaz,
TPW'F
a=1,2,--+ N. (40)

Discussion and conclusions

The asymptotic solution (40) essentially results from set-
ting dP_/dr in (34) equal to zero. This is a statement that
the spacing s_ — s,_, regulates itself so that the centrifugal
pressure increase in r is balanced by the pressure drop in r
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associated with the volume through flow Q . Since the
pressure (from ambient) at r = R is zero, the asymptotic
solution is a statement that the pressure remains very
small in the outer regions of the pack. Thus, while the
pack thickness may be increasing with r close to the hub if
enough air is forced through, the asymptotic solution pre-
dicts that the pack thickness will be decreasing in r ac-
cording to r =% in the outer regions of the pack. Another
prediction of the solution (40) is that the pack thickness
should remain constant for changing Q,, w provided
Q,/w” remains constant.

1t should be emphasized that the validity of Eq. (15) [or
(36)] is restricted to the ranges of the physical parameters
as expressed by the inequalities (3) [or (29)]). Further-
more, the validity of the similarity solution (17) [or (40)]
rests on the satisfaction of the additional inequalities (18)
[or (38)]. The asymptotic solution (40) should be appli-
cable for the prediction of steady pack profiles in the
outer circumferential regions of the pack.
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