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angular  speed of rotation, and  the radial position  on  the  disks. 

Introduction 
A potentially useful configuration for high-density data 
storage is the  stacked flexible disk file configuration,  con- 
sisting of a large number of concentrically mounted disks 
on a hollow spindle next to a  flat, rigid base  plate. The 
spacing  between the  disks, which rotate with constant an- 
gular velocity w ,  can be controlled by permeable spacers 
through which a  controlled  quantity of air is delivered  be- 
tween  each of the  disks. A cross-sectional  sketch of such 
a configuration is shown in Fig. 1 [I]. 

During operation the disk pack must be entered at a 
preselected  disk by a  read-write  element  suspended on a 
suitably  controlled inserter. Such  a device will open  the 
pack, thereby  disturbing  the  steady  rotating configura- 
tion.  Since  the steady spacing of the  disks determines the 
location of the  particular disk to be addressed, it is neces- 
sary for  the  operation of the disk file to know  accurately 
the position of each disk as  a  function of flow rate and 
rotational speed. 

In this paper,  attention is confined to the study of the 
steady configuration of the undisturbed pack.  Fortunate- 
ly ,  the fundamental problem of a single disk  rotating next 
to a fixed base  plate has been studied both theoretically 
and experimentally by Pelech and Shapiro [2]. They 
treated  the air  between  the  base  plate and disk as a vis- 
cous, incompressible fluid and employed the  appropriate 
form of the Navier-Stokes  equations of motion. These 
equations  were linearized for certain limits on  the phys- 
ical variables by use of arguments  based on dimensional 
analysis. The disk  was modeled as an elastic  membrane 
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(i.e., having no bending  stiffness),  and the fluid and  disk 
equations of motion were coupled  through the fluid pres- 
sure. A single nonlinear differential equation  was  derived 
which governs  the spacing  between  the  membrane and 
the  base plate, and  this  equation  was  solved numerically 
for several chosen values of the  parameters in the prob- 
lem. 

The methods of analysis employed by Pelech and Sha- 
piro are applied here to several different configurations 
occurring in connection with the stacked flexible disk file. 
After reviewing the analysis in [2] for a single membrane 
with a fixed base,  the problem of a single membrane with 
a rotating base plate is considered.  Thereafter, two  rotat- 

Figure 1 Cross-sectional h e w  of stacked flexible disk file 
! 
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Figure 2 Single  membrane  adjacent to rigid  wall,  rotating  on a 
thin air film. 

ing membranes with no base plate are  studied,  and, final- 
ly, the  multimembrane configuration of the  stacked flex- 
ible disk pack is analyzed for both fixed and  rotating base 
plates. 

Single  membrane,  fixed  base  plate 
Here we review the solution  obtained in 121 for a single 
membrane  rotating on a thin air film next to a fixed base 
plate, as shown in Fig. 2 .  Let r ,  8 ,  z be cylindrical polar 
coordinates  and let u ,  u ,  M’ be the  components of the fluid 
velocity vector in these directions. The solution to be ob- 
tained is axisymmetric and therefore  has no dependence 
on 0.  Let w denote  the angular  speed  and s(r)  the  spacing 
between the membrane and the base plate  at radial posi- 
tion r .  Let R j  and R,  denqte  the radius  at which the mem- 
brane is fixed to  the spindle  and  the outer membrane  ra- 
dius. 

The  Navier-Stokes equations of motion of the fluid un- 
der conditions of axisymmetry  and  incompressibility  ap- 
pear then as 

( I C )  

and the  corresponding incompressibility constraint is 

all u a w  
ar r az 

- + - + -  = o ,  

180 where p ,  p and P denote  the fluid density, viscosity and 

fluid pressure,  respectively. In [2 ]  it  is shown for this  con- 
figuration that if s ( r ) ,  R, ,  W ,  p ,  p and the  net volume rate 
of outflow Q satisfy the inequalities 

then the  pressure P can be  considered to be  independent 
of z, the velocity component w is negligible compared to 
u ,  v and (la),  (lb) can be replaced by 

V 2  dP a 2U 
- p r  = -dr + p-. 

az2 ’ 

a 2v 
a z 2  

~ = 0. 

The volume rate of  flow Q is given in terms of u by 

Q = 27rr /, udz. 
s( r) 

If the membrane is considered to be elastic  and its de- 
viation from  a flat configuration is assumed to be in- 
finitesimal, then the equation of motion for  the membrane 
stress is the  same  as that for a rotating flat disk,  i.e., 

where ur and uH are  the radial and tangential stresses, 
respectively, while pD is the  disk density.  The solution 
satisfying zero radial displacement  at r = Ri and zero ra- 
dial stress at r = R ,  is obtained from (6) with use of the 
appropriate stress-strain  relations and yields 

in which 

where v represents  the Poisson ratio of the  membrane. 
Equation (7) gives the nonuniform tensions in the mem- 
brane, which is loaded  transversely by gravity forces and 
the  pressures differential across it. The equation  govern- 
ing the  transverse  steady, axisymmetric deflection of the 
membrane under  these conditions is (see,  for  example, 
Simmonds [ 3 ]  or  Eversman [4]) 
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where q is force/volume in the z direction applied to the 
membrane. By use of (6) in (9) we obtain in dimensionless 
form 

in which 

and AP denotes  the  pressure below minus the  pressure 
above  the  membrane and t is the  membrane thickness. 
For the case  under consideration it is pointed out in [2]  
that the pressure  above  the rotating  membrane is essen- 
tially ambient so that AP in (1 1 )  is the  same  as P in ( I ) ,  
i.e., the fluid pressure above  ambient. [Note:  (Eqs. (28)  of 
[2] and ( 2 )  of [ 5 ]  appear to be in error in that they do not 
contain the u o / r  coefficient of dS/di in (1 l).] 

The boundary  conditions for  the fluid between a fixed 
base plate and rotating  membrane are 

M = 0 at z = 0 ,  s ( r ) :  

u = o  at z = 0, 

v = wr at z = s ( r ) .  

The integration of (4) subject to (12) yields 

v = wr 

By use of (4) the  pressure gradient and flow rate Q of 
this velocity field are related by 

The coupling of the fluid equations  and  membrane deflec- 
tion equation is accomplished by substituting (14) into 
d l d r  of ( lo) ,  which yields 

du, 

Equation (15) is a third order nonlinear  ordinary dif- 
ferential  equation for determining s(Y). The boundary con- 
ditions are obtained from knowledge of s@), P(R,,), and 
the requirement that d 2 s / d r z  must remain bounded. In  [ 2 ]  
it is shown that these conditions lead alternatively to an 
initial value problem for (15). The initial conditions are 
placed on s, d s l d r  and d z s / d r z  at r = R,. By use of (7), 
( lo) ,  and (14) these conditions  can be written in the form 

S ( 1 )  = prescribed; 

? ( I )  = 
P ( 1 )  - 
1 - &&1) 

P ( l )  - jj - - 
1 - [ ( 3  + v)( l  - 2a) - ( I  + 3 ~ ) ] / 8  ’ 

? ( I )  = 
[ I  + uo(l) - u ; ( l ) ] 5 ’ ( 1 )  - P ( 1 )  

&;(I)  - 1 + ufl(l) 

i 8 + [ ( 3  + v)(2 - 5a) + ( I  + 3 v ) ]  
8 - [ ( 3  + v)( 1 - 2 c ~ )  - ( 1  + 3v) l  

- - 

- 1 - [ ( 3  + v)(l + 4a) + ( 1  + 3 ~ ) ] / 8  

3 p i  
.rrZp,fi3(I)R~ 

- ~ 

lop,; + 
- 1 - [ ( 3  + v)(l  + 4a) + (1  + 3 v ) ] / 8  

. (16) 

Once s(rJ is chosen and Q, w ,  and P(r,) are fixed, all the 
initial data in (16) are  determined. Then (15) can be in- 
tegrated numerically for Ri < r < R,,. The value of s(R,) 
obtained in this way can be compared with the known 
value.  Numerical  solutions  were  presented in [ 2 ]  based on 
this  technique for many different values of the  parameters 
Q ,  w ,  and R,. These solutions generally showed  excellent 
agreement with their experimental results. 

I t  was observed in [2] that  there is a self-regulating ten- 
dency  for the spacing  between  the  membrane  and the 
base plate for sufficiently large values of r and Q. Such an 
asymptotic  solution  results from (15) under these  condi- 
tions when the  terms on the right-hand side are of larger 
order than those on the left-hand side.  The solution ob- 
tained is the same  that results from setting d P / d r  equal to 
zero in (14), i.e., 

which, from (15), should be valid provided that, in addi- 
tion to ( 3 ) ,  the inequality 

is also satisfied. The similarity solution (17) predicts  that 

s E Q a at fixed r and s E y -  at fixed Q. The experimen- 181 
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Figure 3 Two rotating  membranes  adjacent to each other. 

tal results in [2] showed good agreement also with these 
relationships in the  outer portions of the membrane. We 
note that the solution (17) is independent of the gravity 
force. 

Single  membrane,  rotating  base  plate 
This configuration is the same as in Fig. 2, but now the 
membrane and  the base plate are assumed to rotate with 
the same angular  speed W .  Equations ( I ) - @ )  apply here 
also but the boundary  conditions for  the fluid become 

u = O , v = o r  at z = 0 ,  s ( r )  (19) 

in place of (12). The integration of (4) subject to (19) 
yields 

which, with ( 3 ,  gives 

dP 6PQ 
" 

dr 
- po'r - ~ 

T r s 3  ' 

When (21) is compared to (14), we see  that it differs only 
in that 3p/IO has been replaced by p .  Likewise,  the equa- 
tions that replace (15), (16) for this case can be obtained 
from (IS), (16) by substituting p for 3p/IO. Furthermore, 
the asymptotic solution  that  replaces (17) is 

s = j + j 3  r (22) 

Based on the similarity solutions (17), (22) we should ex- 
pect 

6pQ 1 -1 

TPW 

'rotating base = (y j 'fixed hase' 
3 %  

(23) 

provided (3), (18) are all satisfied. These  asymptotic solu- 
tions are restricted to the  outer regions of the membrane 
since  near the hub  the  boundary  conditions  predominate 
instead of the differential equation (15). 

Two membranes,  no  base  plate 
A sketch of this configuration is shown in Fig. 3. The 

182 spacing  between the  two membranes is ' ( I - ) ,  and there is 
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symmetry about  the plane .z = 0 if gravity forces  are ne- 
glected. Equations (4) again govern the fluid velocity pro- 
vided inequalities (3) remain satisfied. The fluid boundary 
conditions now become 

u = O , v = w r  at z = & s/2, (24) 

and (13) is replaced  here by 

s2 dP 22 
u = ~ 8p (- dr - p w ' r ) [ [ \ T )  - I ] ,  u = o r .  (25) 

We then  obtain from (5) with limits -s/2 to s/2, using this 
flow field, 

dP z 6 p Q  

dr 
- = p w r - -  

Trs3 ' 

which is exactly the  same as (21). Thus,  the treatment 
from here on for obtaining  the  spacing  between  two  rotat- 
ing membranes is the  same as that for the  spacing be- 
tween one  membrane and a  rotating  base plate. In  partic- 
ular, the  asymptotic solution here is also 

i.e., the  same  as (22). Based on this  solution we expect 

3 .I 

'2 memhranes 'rotating hase ( l o )  'fixed base' 
- - (28) 

N membranes,  fixed  base  plate 
A cross-sectional  sketch of this configuration appears in 
Fig. 4. 

We assume, in addition to small displacements, that the 
inequalities 

are satisfied for (Y = I ,  2, . . ., N. Then (4) holds for each 
fluid region, or 

The fluid boundary  conditions are 
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u, = 0 at z = sa, sa"l, a = 1 ,  2 ,  . . ., N ;  

v, = wr at z = s , , s o i _ , , a = 2 , 3 ; . . , N ;  

u ,  = wr at z = s,. ( 3 1 )  

The integration of ( 3 0 )  subject to ( 3 1 )  gives 

v, = wr; 

L 
v ,  = - wr. 

SI 

Use of ( 3 2 )  in 

Q, = 2nr ,/' u,dz 

yields 

.Sa 

s,- 1 

( 3 3 )  

Now  each  membrane  continues to obey ( I O )  with ur given 
by (7 ) ,  (8) while AP represents the pressure below minus 
the  pressure  above.  Therefore, (IO) becomes 

a = 1 ,  2 ,  . ' ., N ,  ( 3 5 )  

where PN+, is ambient. Use of ( 3 4 )  in d l d r  of ( 3 5 )  yields 

I a = I .  ( 3 6 )  

! 
! 
+ld 

so = 0 

ase plate 

I 
I 

Figure 4 Configuration of stacked flexible disk  pack  with fixed 
base plate. 

The initial conditions  analogous to (16) could also be list- 
ed. We would then have a coupled system of N third- 
order nonlinear  ordinary differential equations with prop- 
er initial data  for determining s,, i2, . . ., SA,. The numeri- 
cal task of solving  such a system for large N ( N  = 100, 
say) would be  formidable. We can,  however, get an 
asymptotic  solution  from ( 3 6 )  also.  Assuming the  terms 
on the left-hand side are all of order 

and  that the  terms on the right-hand side are of higher 
order, we obtain  from ( 3 6 )  

provided 
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where s:, sistand  for s,(R,), s,(Ri). By use of (37a) with 
(37b) successively, we obtain the simpler result 

(39) 

By comparing (39) with (22) ,  (17) we see that the similar- 
i ty  solutions  predict  that the spacing between the first 
membrane and  the fixed base is the  same  for  one mem- 
brane as  for a  stack of N membranes  and that the  spacing 
between adjacent membranes is the same  as  that between 
one membrane and a  rotating base  plate. 

N membranes,  rotating  base 
The configuration is the same as that  shown in Fig. 4, 
except that we now assume that the  base plate rotates 
with the stack of membranes. Under assumptions (29) the 
fluid equations again become (30) and the boundary con- 
ditions are  as in (31), except that 0, = o r  at z = 0 also.  The 
terms ua and ua are now given by (32)1.2 for (Y = 

1,  2, . . ., N and dPJdr is given by (39, for a = 

I ,  2, . . ., N .  The membrane deflection equations are 
given by (36), for a = N and (36), for a = I ,  2 ,  . . ., N - 
1.  Finally, if inequalities  (38),, (38), are valid for (Y = 

1, 2, . . ., N ,  then the similarity solution is 

Discussion  and  conclusions 
The  asymptotic solution (40) essentially  results from set- 
ting dP,/dr in (34) equal  to  zero. This is a statement that 
the spacing s, - sa_, regulates itself so that the centrifugal 
pressure  increase in r is balanced by the pressure  drop in r 
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associated with the volume  through flow Q,. Since the 
pressure (from ambient) at r = R ,  is zero,  the  asymptotic 
solution is a statement  that the pressure remains  very 
small in the outer regions of the  pack.  Thus, while the 
pack thickness may be  increasing with r close to  the hub if 
enough air is forced through,  the  asymptotic solution pre- 
dicts that the pack  thickness will be  decreasing in r ac- 
cording to r -I in the  outer regions of the pack. Another 
prediction of the solution (40) is that  the pack  thickness 
should remain constant  for changing Q,, w provided 
Q,/oz remains constant. 

I t  should be  emphasized that the validity of Eq. (15) [or 
(36)] is restricted to  the ranges of the physical parameters 
as  expressed by the inequalities  (3) [or (29)]. Further- 
more,  the validity of the similarity solution (17) [or (40)] 
rests on the  satisfaction of the  additional  inequalities (18) 
[or (38)]. The  asymptotic solution (40) should be appli- 
cable for the  prediction of steady  pack profiles in the 
outer circumferential regions of the pack. 
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