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Abstract: Control curves used in industry are usually planar cubic splines, continuous and  single-valued for a specific independent 
variable. If large slopes are specified at certain points, the spline coefficients, which are computed in order to preserve second derivative 
continuity of the spline, invariably lead to wildly oscillatory curves. Normally the large slopes occur at the ends of the curve, and this 
paper deals with such cases, developing methods which have been used successfully to combat the problems encountered. The end point 
where the difficulty occurs is  ignored for the moment  and a curve (spline or not) is  designed for the remaining points. Then, with the point 
and slope adjacent to the difficult  point known, the design  is completed with one or more spline segments so that the resulting curve, 
which connects the difficult  point to the next point, is convex (or concave), and has at least first derivative continuity. For the large  finite 
slope case, two methods are described. The first method constructs the desired curve as a sequence of spline segments with  finite slope 
everywhere, whereas the second expands the interval so that a single spline segment  with  infinite  end slope passes through the difficult 
point  with the required slope. The case of infinite end slope is also treated. In this and  the preceding cases, second derivative continuity 
can be preserved at the juncture under certain conditions. 

Introduction 
In the  aerospace,  automotive,  and  shipbuilding  industries 
(among  others) plane curves  are used as control  curves by 
designers.  These  curves  are  continuous  and  single-valued 
for  some  specified  independent  variable  convenient  for 
the  purpose of design.  Since  the  data  on  which  the  design 
is based  usually  include a set of points  through  which  the 
curve  must  pass,  splines  are  most  convenient.  Cubic 
splines  (parametric  or  otherwise)  are  normally  used  for a 
number of reasons. 

Not  infrequently  other  design  requirements  lead  to 
specification of slopes  at  certain of the  assigned  points. If 
these  slopes  are of moderate  size,  there is generally no 
great  problem.  However, if they  are  very  large  or  infinite, 
the  process of fitting a spline  to  the  data  may  result in wild 
oscillations of the  curve, a highly undesirable  feature. 

This  phenomenon is particularly  prevalent  when  first 
and  second  derivative  continuity of the  spline  is  required. 
On  the  other  hand,  this  continuity  requirement  satisfies 
some  part of the  designers’  desire  for a “smooth”  curve. 
It is not  generally  possible to maintain  such  continuity 
and  simultaneously  eliminate  the  undesirable  oscillations, 
though  there  are  circumstances in which  this  can be done. 
Other  considerations  involved in designing  smooth 
curves  may  involve  moving  points,  changing  slopes,  and 
other  matters;  however,  none of these  falls  within  the 
scope of this  paper.  Let it  suffice to  say  that  control  curve 

design is an  iterative  process  involving  negotiations 
among  designers,  engineers  and  others  engaged in the 
process. 

In practice,  large  and infinite slopes  generally  occur  at 
the  ends of the  spline  as,  for  example, in the  design of 
aircraft  fuselages.  This  suggests a practical  and,  as it 
turns  out,  very  useful  solution to the  problem. If this  is 
the  case,  the  point (or points if large  slopes  occur  at  both 
ends)  are  ignored  and a spline  over  the  remaining  points  is 
devised  to  the  satisfaction of the  designer.  This  provides 
the  point(s)  and slope(s) adjacent  to  the  point(s)  at  which 
the difficulty exists.  Next,  the  design is completed  with 
one  or  more  spline  segments in such a way  that  the  result 
is an  inflection-free  (convex  or  concave)  curve  connecting 
the  point(s)  with  large  slope  to  the  adjacent  point(s).  This 
paper is concerned  only  with  construction of a convex  or 
concave  curve  consisting of one  or  more  cubic  spline  seg- 
ments  and  connecting a point  at  which a large  or  infinite 
slope is required  to  another  point of given  slope.  Since  the 
only  data  required  at  the  second  point  are  its  coordinates, 
slope,  and  perhaps  second  derivative,  the  problem  dealt 
with in this  paper  is  completely  independent of any  other 
features  of  the  remaining  curve. 

It will be  observed  that  the  four  possible cases-large 
(infinite) positive  slope  at  the  initial  point,  large (infinite) 
positive  slope  at  the  terminal  point,  large (infinite) nega- 
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tive  slope  at the initial point,  and large (infinite) negative 
slope at  the terminal point-can all be  reduced to  the first 
case by simple transformations. In this first case,  to 
which the  development  addresses itself, the  curve is con- 
vex. 

For  the  case in which the design constraint involves  a 
large but finite end slope, two methods are  developed. 
One of these involves the use of a  set of spline segments 
all of which have finite slopes, while the other uses a 
single spline segment with infinite slope,  such that the 
segment passes  through the point of large slope  and  has 
the required slope  at that point. The first method  results 
in slope  continuity  but  requires  insertion of additional 
points, at which second derivative  continuity is violated. 
It  has  the advantage that  the problem can always be 
solved provided that the  slope at the point of connection 
is moderate.  The term  moderate is defined under the 
problem statement  for  the first method. The second meth- 
od has the  advantage that no new points need be in- 
troduced in the  domain over which the final curve is to be 
designed.  It  also has slope and second  derivative  continu- 
ity in the interior of its interval of definition, which in- 
cludes the original end  point. Under certain  circum- 
stances second derivative continuity can be maintained at 
the  connecting point.  Its disadvantages are that i t  com- 
plicates subsequent calculations required for numerical 
control of machine tools, and certain engineering calcula- 
tions. In addition, no solution exists  for certain cases  cov- 
ered by the first method. In practice, no practical ex- 
amples  have  arisen to  date for which the second method 
provides no solution. 

If the design constraint specifies an infinite end slope, it 
is a simple matter to specify an inflection-free parametric 
cubic  segment. In this case a solution always exists, pro- 
vided the next slope is finite. 

In all cases a free  parameter is available to the  designer 
for adjusting  the shape of the curve being devised. 

Necessary and  sufficient conditions for an inflection- 
free cubic segment 
Consider  a  cubic defined by P , ( x , ,  yl),  m, and P,(x, ,  y,), 
m 2 ,  where m, and m, are  the associated finite slopes (Fig. 
1). (Since the  cubics dealt with are completely defined by 
two  points  and their associated slopes, a  set of data P I ,  
m,, P,,  m2 may also be called a  cubic or a  cubic segment.) 
The  equations of the cubic segment are 

x = x, + (x, - X J U ,  

and 

y = au3 + bu2 + cu + d, 

where 0 5 u 5 1 .  The cubic coefficients are defined as 
follows: 

P 2 ( , r 2 . y 2 ) ,  In2 P ,  (A,.  y ,  1, 1 1 1 ,  

Figure 1 A cubic  can  be defined by the  points P , ( x , ,  y , )  
and P,(x, ,  v,) where  the  associated  slopes  are rn, and r n 2 ,  

respectively. 

u = a , ( x ,  - XJ’ 

b = h , ( x ,  - X,), 

C = m2(x1 - X J ,  

and 

d = y,. 

Further, 

u ,  = -2R + rn, + m,, 

h, = 3R - tn, - 2m2,  

and 

R = (Y, - y,)/(x, - .x , ) .  

The values of u for the inflection point are 

L I ~  = - b , / 3 ~ ,  

= (3R - m, - 2m2) / (6R - 3m, - 3n1,). 

If m ,  = 0 (m,  + m , ,  = 2R) and h, # 0 ( m ,  + 2m, # 3R), then 
11, will have an infinite value ( ? x ) .  However,  for finite 
values of u I  (5  0 or 2 I ) ,  the following conditions must be 
met: 

2m, + m, 5 3R 5 t n ,  + 2 m 2  for m2 In,, 

or 

m, + 2m, 5 3R 5 21n, + rn, form, < m i .  (1) 

In the special cases where u ,  equals either  zero (3R = m ,  
+ In,) or  one (3R = 2m, + rn2) ,  a flat spot will exist at  one 
end of the  segment, which is generally considered  unde- 
sirable in such curves.  For this  reason  the  inequalities (1) 
are strengthened to 

( 1  - y ) m ,  + ynz, 5 R 5 y m ,  + ( 1  - y ) m ,  

for m2 > m,, 

and 

ym,  + ( I  - y)m,  5 R 5 ( I  - y)m,  + ym, 

for m, < m,, ( 2 )  169 
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Figure 2 In the primary  algorithm,  the set of points  gener- 
ated  describes a convex polygon and the_ point P, must be 
contained within the  triangle defined by P,P,Pl.  

where 1/3 I y 5 1/2. These conditions are now sufficient 
for the  absence of an inflection point but are no! neces- 
sary unless y = 1/3. 

Problem statement  for the first method 
In a plane with rectangular coordinates x, y ,  suppose that 
there  are given two  points PI, (0, 0) and P ,  (xl ,  y , ) ,  with 
slopes m, and m,.  In case P, is hot at  the  origin, simply 
translate  the origin to P,; this does not alter slopes. Let 

m, = yI/x1, 

and assume that 

0 < m,, 

m, < m2 < m,, 

and 

x, > 0. (3) 

These  are  the large and  moderate  conditions  referred to in 
the  introduction,  for the  particular case of large positive 
initiul slope. With these conditions the objective is then to 
define a sequence of points P,, P,, . . . (  P,, Po and asso- 
ciated slopes such  that 1 )  successive  pairs of points and 
slopes define cubics having no inflection point interior to 
the  interval of definition, and 2 )  the  collection of cubics 
has C, continuity  and is convex  (or  concave). 

Four  cases involving large slope  can occur: positive or 
negative,  and initial or terminal. The large positive initial 
slope case is the only case that need be considered, since 
the  other  three  cases can be reduced to this one.  For ex- 

170 ample,  for large negative initiul slope m,, where 

0 > m,, 

m, m2 > m,, 

and 

x, < X , '  (4) 

simply let x' = x and y' = - y .  For large negutive  terminal 
slope m,, where 

0 > m, ,  

m, m2 > m, ,  

and 

X. < X , '  ( 5 )  

let X' = -x. y' = y and replace u with 1 - u .  Finally, for 
large positive  terminal slope m,, where 

and 

x0 < 1 1 '  

let x' = -x, y' = - y  and  replace u with 1 - 11. 

The algorithm developed  for  the finite slope case  con- 
sists of two parts,  the primary algorithm and the sequence 
termination. The  former is a repetitive  procedure  for 
generating a sequence of points, while the  latter takes ac- 
count of the  fact that  the sequence of points may not in- 
clude  the  end  point. For example,  some point may have 
too large a slope. 

Primary algorithm 
It is assumed  that the initial point is at  the  origin, an as- 
sumption  requiring, at most, a translation of the origin. It 
is clear that the set of points generated must describe a 
convex polygon. In Fig. 2, let the slopes of the lines P, ,P ,  
and P I P ,  be m,, and m,, respectively, so that 

f, = ( Y ,  - m,x,)/(m, - m,) ,  

and 

j ,  = m,, i , .  

Since P ,  must be in the triangle defined by P,P,P,, let 

and 

P2 = LYF, + (1 - LY)PT, 

where a ,  p E (0, I ) .  Next assign to P, the slope 
m2 = y,/x,. It is now necessary to determine values of LY 
and /3 (if they  exist) such that the cubic  segment P,, m2, 
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p , ,  m, is convex. If this is so, those same values can be 
used to  determine  another point P, in the triangle defined 
by P,)P,P,, etc. 

Two problems are  encountered. One is the question of 
finiteness of the  sequence. That is, is a point P, with slope 
mN ever attained such  that P,, m,, P,,r, mN defines a con- 
vex cubic  segment? The second problem is the possibility 
that  even if the sequence is finite, m,v-l may be  too small 
and mA, too large for  sequence completion.  This problem 
will be  resolved later. Assume for  the moment that p is 
fixed. Since 

(x,, y , )  = a(X,, Y,)  + (1  - a)( l  - P)(x, ,  Y J ?  

it follows that 

In order  for  the cubic to be convex in (x,, x,), it  is nec- 
essary and sufficient that m2 + 2m1 5 3 m  5 2m, + m,. 
Since the denominator of m is positive, it follows that 

(m, + 2m,)[p(1 - a)  + a M ]  5 3P(1 - a)m, + 3am,M 

5 (2m, + ml)[P(l - a)  + a M ] .  (8) 

The left inequality reduces to 

(m2 - m,)[2/3(1 - a)  - a M ]  2 0. 

That is, since m, > m,,  

2p(I - a )  - aM 2 0 

and 

a 5 P / ( p  + M / 2 ) .  

Similarly, from the right inequality (8) it follows that 

a 2 P/ (P  + 2 M ) .  
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Thus,  the necessary  and sufficient condition for  the cubic 
to be  convex in (x2, x,) is 

a = p / @  + s M ) ,  

where 112 5 s 5 2. Note that for s = 2,  there is an in- 
flection point at x = x,, while for s = 112, an inflection 
point exists  at x = x,. For 

y / ( l  - y )  5 s 5 ( I  - y ) / y ,  

the  conditions (2) for m2 > m, are  met. 
Since a = p/(P + s M ) ,  it  follows that 

m = (sm, + m , ) / ( s  + 1). 

Also, from Eqs. (6), 

[ 
s(1  - p)(m,) - m,) + P(m, - m,) 

xp = 
d m ,  - m2)  + P(m, - m,) 

.Y2 = 

and 

m, = y , / x , .  

Moreover, 

p(m2 - mJm, - m2)  
(Y,lx,) - m, = . (9) 

p(m, - ml)  + 4 1  - P)(m, - m2) 

With s and p fixed, a sequence xi ,  y i ,  mi can be  computed 
as follows: 

mi = ~ i - l / x l - 1 3  

x i  = 1 
d m ,  - mi )  + P(m, - mi- l )  1 

1 

s(l - P)(m, - m i )  + P h i  - mi-,) 
X i -  1 9  

and 

d l  - P)(m,, - m i )  + Pm,(m, - mi- , )  
- 1  
1'. = xi-,. (10) 

For each  interval Pi+,,   Pi,  a useful canonical  form for 
the  cubic is 

X ( M )  = xi+, + (x1  - X i + , ) " ,  

y ( u )  = y,+,ao(u) + y p , ( u )  + mi+l(xj - xj+l )~Au)  

and 

+ mi(xi - X i + , b 3 ( U ) '  

where 

a,(u) = 2~ - 3 u 2  + I ,  

a,(u) = -2u3 + 3 u 2 ,  

Cu,(u) = u:j - 2 u 2  + u ,  

and 

a&) = I1 - u . 3 2  



Equation (9) becomes Proof  Define 

m i  - mi-,) ( In , ,  - mi) 
mi+, - mi = . ( 1 1 )  

Hi = ( m i + ,  - mi) / (m,  - ml). 

@(mi - mi-,)  + s(1 - P)(m,, - MI) By hypothesis, H ,  < y ;  also H i  > 0. Ifp 5 s(l - p) ,  then 

It has, incidentally, been shown that mi for i > 0 is a 
monotone  increasing sequence and is bounded by m,l. In 

p(mi - ml+J + s(l - P)(m, - mi)  2 P(m, - 

the next section it  is shown  that a finite sequence suffices From Eq. ( 1  11, 
if and only if p > s/(l + s ) .  

It is convenient for  a designer to fix s permanently, say 
at s = 213, and to vary p ,  thus modifying the shape of the 
convex curve.  For uniformity of the  parameter domain 
from  the designer's point of view,  a new parameter 

6 = ( 1  + s ) p  - s 

leads to the  domain 

0 < 6 <  I ,  

whatever  value is assigned to s .  
I t  is interesting to note that the algorithm allows the 

value 6 = p = I .  In this case,  however,  the point P, is on 
the line P,,P, and C,  continuity is not preserved. 

It is also of interest to note  the position of the inflection 
point relative to  the interval of definition of the  cubic.  Let 
x, be the abscissa of the inflection point and 

[ I ,  = (x, - X1)/(Xi-, - X i ) .  

It turns out that 

U, = ( S  - 2)/(3.~ - 3),  

independent of p ,  

u I  > 1 if s < 1, 

u , < 0  i f I < s < 2 ,  

and 

u ,  = x ifs = 1 .  

In the last case,  the  curve is either  a  parabola  or a straight 
line. 

Finiteness of the sequence 
In order  for the  computed  sequence of points to termi- 
nate, i t  is necessary,  for some N, that 

ym,, + ( 1 - y)m,v 5 m,+, . (12) 

Otherwise, there exists no N such that Po and P,v can be But 
connected by a  convex cubic.  This problem is addressed 
by the following theorem. 

Theorem If p > s (  1 - p), m, = y,/x, < ym, + (1 - y ) m ,  
for any fixed y such that 0 < y < 1 ,  then for  somejinite N, Hi > Hi-, [1 + t / p  - (~/p)H,-,l 

(mo - m,)/(m, - m i _ J  = 1 - Hi-l ,  

hence 

- 
x.v+1 - y,Jx.v = ( 1  + 5/P)Hi_, - (s/P)fq- l .  
and Eq. (12) holds. If p 5 s(l - p) ,  then  always The hypothesis that Hi < y < 1 for all i yields 

172 m,,, < ym,, + ( I  - y)m,. Hi > + (5/P)1 Hi - (SY/P)Hj? 
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more simply written as 

H i  > cHi-,,  

where c = 1 + [(I - y ) /P  and c > I .  Thus, the  hypothe- 
sis Hi  < y for all i leads to  the contradiction  that Hi in- 
creases without limit. Therefore,  there  exists  an N such 
that 

H,v 2 Y ,  

and  since Hi is a  monotone increasing in this case, 

Hi > y for all i > N .  

In order  to  complete the algorithm it is necessary to 
investigate  certain  problems arising in terminating  the  se- 
quence. 

Sequence termination 
It is now assumed that /3 > s/( 1 + s ) .  The objective of the 
primary algorithm is to produce a  sequence of points P,, 
. . ., 9, such that Po and P,v can be connected by a convex 
cubic segment having  slope m,, at P,, mN at P,,. This  re- 
quires  that 

ym, + ( 1  - y)m,%,-, 5 m,, 5 ( 1  - y )m,  + ~ m , ~ - , ;  

that is. 

y 5 Hs-,  5 I - y .  

If H I  > I - y ,  the primary algorithm is inapplicable, 
and this case will be resolved by another  technique. If y 5 

H ,  5 1 - y ,  the points PI, ,   P,  and slopes m,, m,  already 
define a convex  cubic and there is no problem. Lastly, 
if H I  < y ,  the  previous  theorem guarantees  the exis- 
tence of a minimum N 2 2 such that H.,-, < y and H ,  
2 y .  If also H ,  5 ( I  - y ) ,  then P,, m0, P,v+,, m,,,, confine 
a  convex cubic as  required, and the sequence of points 
and slopes  derived by the primary algorithm is P,, M,, 
. . ., P,,,,, rnN+,. If however H,v > 1 - y ,  the primary 
algorithm is no longer  applicable. That  is, 

m,, > m,,,, > ( 1  - y h l ,  + ym,, 

and the  slope mN+, is too large to allow a convex  cubic 
segment connecting P,  and P,,,. 

For this case define 

m,;.+, = (1 - y)mll + ym,,, 4 + ,  

= (m,(.+, - m,)/(m, - m.J 

= I - y > y ,  

and 

mv < mL+, < m,v+1. 

The cubic  segment P,, mN, PN+,, m,,r+, has  continuous 
and  monotonic  increasing  slope on its interval. Hence 
there  exists  a unique  point P,;.+, with slope m :,+,. When 
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P,,,,, m,v+, is replaced by P:,+,, m,;,,, the problem is re- 
solved.  It  remains only to  develop  the necessary al- 
gorithm. In the notation of the  section on the problem 
statement of the first method, 

x = x~v+l + (x., - X N + , ) M >  

y = uu3 + hu' + cu + Y , ~ + , ,  

where 

0 = -2(Ys - Yh.+J - (m.v+, + m.,)(x,, - 

h = 3(Y ,  - Y.v+,) - (2m,+, + /n.,)(x., - x.\.+1)' 

and 

c = mS+,(xh - -Yv+,). 

It is required that 

dy ldx  = tn:.; 

that is, 

f ( u )  = 3rr11' + 2hu + c - m,;. (x,, - x~~+,) = 0. 

Compute the solution I( of the quadratic equation  where 
0 < II < 1. Note that 

f ( 0 )  = (m,v+l - m(.)(x, - x,,+,) < 0, 

and 

f(1) = (m,, - m , ; ) ( ~ ~ ~  - x.,+,) > 0, 

so that  there is indeed a unique value of u .  
For the case H i  > 1 - y ,  there is no cubic  available, as 

in the previous case.  There  are two  possible approaches 
to this  problem. The first,  apparently practical, approach 
assumes that m ,  is not small compared to m,, and simply 
ignores the  problem. The  other  approach is to use a pair 
of Bernstein-Bezier  cubics [ 1, 21 (see Fig. 3). Briefly, giv- 
en Pi,, m,, P , ,  m, ,  the point P I  is defined. Let P,,, P ,  tri- 
sect  the line P,,P, and p , , ,   p , ,  trisect the line P I P l .  
Choose a point Q,, somewhere  between P,,, P,, and a 
point Q, somewhere between PI , ,   P I , .  The frame Pi,, P,),, 
Q,, Q2 defines a  convex cubic segment over the interval 
(x , , ,  X,) .  The  curve is convex since  the frame is convex. I t  
is a true  cubic  since  the  abscissae are equally spaced.  Its 
end points and slopes  are the same  as  the end  points and 
slopes of the frame.  The frame Q,, Q:3, PI , ,   P I  achieves 
the  same results  for the  interval (X,, x,). Moreover, conti- 
nuity and C, continuity  at Q2 are  preserved. 

The same  technique could be used in the  previous case 
where m,,, is too large. 

Problem statement for the infinite slope case 
As has been described  elsewhere [3-51, a convenient 
choice of parametrization over an interval (x,), x,) has 

x = XI) + (x, - x,)g(u),  173 
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Figure 3 The  frames PI,, PI,,, Ql ,  Q, and Q2, Q3,  PI,, P ,  
define  two  convex  cubic  segments  over  the  intervals (x,,, X,) 
and (i,, x,) in the  Bernstein-Bezier  approach. 

where 

g ( u )  = 2u2 - u 3 ,  

or 

g(u) = 11, 

for infinite slope dyldx at x = .xI,. For the infinite slope at x 

= X I '  

g ( u )  = ( 1  - u),(I + I d ) ,  

or 

g ( u )  = ( 1  - u),, 

respectively. The variable y is, of course,  a cubic  function 
of u .  

Thus,  as  before, P,(x,, yo), m, and P , ( x , ,  y , ) ,  m, are 
given and  the constraints m, > 0, m, < m2 < m,, and x, < 
x, remain the  same. It is not useful in the present case  to 
translate PI) to  the origin. The goal here is to find a spline 
segment on (x*, x,) passing through P * ,   P o ,   P I ,  with 
slopes as indicated in Fig. 4. As for the  other three cases, 
the  same  transformations (3)-(5) as before are required 
to reduce  them to the  present case. 

Calculation of P* 
Bernstein-Bezier cubics  are used to solve the problem by 
constructing the frame P I ,  P,, P,, P*  (see Fig. 4). Here 
P * P  is a vertical line, and PPI has  slope m,; 

P, = ( 1  - SjP, + S P ,  

P, = ( I  - r ) ~ *  + rP ,  

where r .  s E (0 ,  1 ) .  Let X = x, - x *  and Y = y, - y * .  
Then 

P = ( X * ,  y ,  - m,X),  

P, = (x, - s X ,  y, - sm,X), 

and 

P, = ( X * ,  y *  + r Y  - rm,X). 

P(u)  = ( P I  - 3P, + 3P, - P * ) 2  

The Bernstein-Bezier  cubic is 

+ 3(P, - 2P3 + P*)U2 + 3(P, - P*)U + P*, 

where M E (0, I ) .  The x component of P ( u )  is 

X ( U )  = (3s  - 2)Xu3 + 3(1 - S) XU' + X * ,  

and this is precisely x *  + X g ( u ) ,  where g(u) = 211' - u 3  
when s = 113, and g ( u )  = u 2  when s = 213. 

Now define 

F,, = (3s - 2 ) ~ : '  + 3(1 - S)U' - 1 

= ( U  - 1)[(3s - 2 ) u 2  + u + I], 

F ,  = ( 3 v  - 2)u" + 3(1 - 2v)u2 + 3ru - 1 

= ( U  - 1)'[[(3r - 2 ) ~  - I ] ,  

F,  = (x  ~ r)u3 + (2r  - s )u2  - v u  

= u(u - l ) [ ( s  - rju + r ] ,  

F:, = (3r - 2 ) ~ '  + 2(1 - 2 r ) ~  + r 

= ( u  - 1)[(3r - 2 ) u  - r ] ,  

and 

F, = m , [ 3 ( ~  - T)U'  + 2(2r - S ) U  - r ]  

-m1,[(3s - 2)u2 + 2(1 - s)u] .  

The y component of u is given by 

y(u)  = Y[(3r - 2)u3 + 3(1 - 2r )u2  + 3ru] 

+ 3 m , X [ ( s  - Y)U3 + (2r - S)U2  - vu] + y * ,  

or 

Y ( M )  = Y *a"(4 + Y1",(") 

+ 3 4 ( Y ,  - Y*) - ml(xl - x*)la,(u) 

+ 3sm,(x ,  - x*)a,(u). 

Now suppose  that u has a value such  that P(u)  = Po. That 
is, 

x(u) = X(), 

Y(U) = Y,, 174 and 
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and  also 

Y ( U ) l X ( U )  = m,, 

where  the  dot  notation signifies differentiation  with  re- 
spect  to U .  

From  these  last  three  equations, it follows  that 

X F ,  = x. - X]' 

YF, + 3m,XF, = yo - y , ,  

and 

YF, + X F ,  = 0. 

Hence, 

x = (xo - - q / F , , >  

y = (Yo - Y , ) / F ,  - 3m,(x, - X,)F,/F"F,, 

and +> 

F I F 4  - 3m1F2F3 + mFl)F3 = 0, (15) 

where 

P * ( X * , Y * ) ,  = 

\ 

Figure 4 Bernstein-Bezier cubics are used to solve the 

P,, P * ,  where P" F' is a vertical line. 
6 = (Y, - y,) / (x ,  - XI)). problem of  infinite slope by constructing the frame P,, P,, 

If u exists  satisfying  the  relationship  among  the F s ,  
then X and  Yare also known,  hence x*, y *. Note  that F, 
and F ,  d o  not  vanish  for  the  allowed  values of r and s; also 
0 < u < 1. Equation (15) reduces  to 

Br + C = 0 r = -C /B ,  

where 

B = 6 [ ( 3 s  - 2 ) ~ '  + u + 1](3u - 1) 

+ m, [ ( I  - u)' - 3su2] 

- 3umn[(3s - 2 ) u 2  + 2(1 - s ) u ] ,  

and 

C = -2mu[(3s - 2)u2 + u + I ]  + mlsu(u + 2 )  

+ m,,u(l + 2 ~ ) [ ( 3 ~  - 2 ) ~  + 2( I - s ) ] .  

Let 

H = ( m  - ml)/(ml, - m,),  

f,(u) = 6 H [ ( 3 ~  - 2 ) ~ '  + u + I ]  

- 3( 1 + 2 ~ ) [ ( 3 ~  - 2 ) ~  + 2(1 - s )] ,  

and 

f . ( ~ )  = 3H[(3s - 2 ) ~ '  + u + I ]  

-3u[(3s - 2)u + 2(1 - s)] .  

Then 

r = u f , ( u ) / [ u f , ( u )  - (1 - U,f,(.)l, 

and  for 0 < r < I ,  it follows  that f,(u)ji(u) < 0. 

For s = 213, 

&(u) = (6H - 4 ) ~  + (6H - 2 ) ,  

and 

&(u)  = (3H - 2 ) ~  + 3H. 

Here, &(u)  = 2 [ f , ( u )  - I ] ,  whence 0 < f ,(u) < 1. If 3H - 2 
< 0, then 

(3H - 1)/(2 - 3H) < u < 3H/(2  - 3H) ,  

(16) 
and  for 0 < H 5 113, 

0 < u < 3H/(2 - 3H).  (17) 

For 113 < H < 112, 

(3H - 1)/(2 - 3H)  < u < 1. ( 1 8 )  

If H 2 1/2, then 2 1 ,  which is not  allowed.  Similarly, 
3H - 2 2 0 leads  to  an  invalid  solution.  In  this  case  the 
problem  can  only  be  dealt  with if 0 < H < 112. If a solu- 
tion is necessary,  the  previous  method  must  be  used. 

The  parameter  provided  to  the  designer  here is 

6 = ~ ( 2  - 3H)/3H for H 5 113, 

and 

6 = [ (2  - 3H)u - (3H - 1)]/(3 - 6H)  
for 113 < H < 112. 175 
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1/2 

I U  It is easily shown that both K ,  and K ,  are  convex func- 
Figure 5 Convex  functions K,(u) and K,(u). Note  the  five tions, that K,(O) = 2/3 and K,(1) = 1/2, that 
different  ranges  for H as defined in Eqs. (19). 

max K,(u)  = (25 - 2&)/30 at u = & - 2, 

that K,(O) = 0, K,(I) = 113, and that 

max ~ , ( u )  = (10  - 2&)/15 at u = 3 - &. 

Thus 

K,(u) < H < K , ( u ) ,  

as in Fig. 5 .  
There  are five different ranges for H .  

I .  H 5 113 0 < u < uZ1;  

2.  1/3 < H 5 (10 - 2 4 ) / 1 5  
< u < uep or up% < u < 1; 

3. (10 - 2V'3)/15 < H < 1/2 0 < u < 1; 

4. 1/2 5 H < 2/3 0 < u < u, , ;  

5 .  2 /3  5 H < (25 - 2&)/30 u l l  < u < u , ~ ,  (19) 

where uZ1 and u2, are the  smaller and larger roots,  respec- 
tively, of K,(u) = H forf,(u) = 0. Likewise, u,,, uIz are 
the  smaller and larger  roots forf,(u) = 0. That  is, 

I x  

u,, = (5  - 6H - V 1 8 0 H 2  - 300H + 121)/12(1 - H ) ,  

uI2  = ( 5  - 6H + 4180H'  - 300H + 121)/12(1 - H ) ,  

Figure 6 For  the slope m,,, lines  such as m ,  are  acceptable u2, = (4 - 3H - V 4 5 H '  - 60H + 16)/6(1 - H ) ,  
as  terminal  slopes. 

and 

uz2 = (4 - 3H + 4 4 5 H 2  - 60H + 16)/6(1 - H ) .  (20) 

This case, although more complex, allows a considerably 
wider range of H .  Again, a design parameter 6 between 0 
and I can be introduced  for the convenience of the de- 
signer. The second range of u for  the second  range of H 

H = (e - m,)/(m,, - m l )  is a monotonically decreasing 
function of m,, and H = 1 for m, = --3o. Hence,  there is a 

176 ,f,(u) = 3(1 - H ) u 2  + (3H - 4 ) ~  + 3H. largest m,, here called m*, such that  this method does not 

Thus  he can choose any 6 such that 0 < 6 < 1 .  Then u ,  
, f l(u),  f , (u) ,  r ,  the F functions  and finally x*, y*  are com- 
puted in order. 

For s = 1/3, the equations  are 

f , (U)  = 6(1 - H ) u 2  + (6H - 5 ) ~  + (6H - 4 ) ,  above can be ignored. 

and 
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( a )  ( b )  

Figure 7 Finite  slope results  for the cubic segment P,(x,,, y,,), m,,; P , ( x , ,  yl), m, for 
and 1 (bottom to  top  curves),  where s = 2/3. In all cases P, is defined as  the origin (I 
and m ,  are  as follows: ( I )  IO3, (4,  4) and 0; (b) IO', (4, 1) and - I ;  and  (c) lo5, (4, 4) and 10- 

( C )  

the S values of 0.1,  0.3,  0.5,  0.7,  0.9 
3, 0). The  chosen variables m,, Pl(xl, y,) 
-2 

( a )  (b) 

Figure 8 Infinite slope  results  for  the  same  cubics given in Fig. 7, where  the  values 
s = 113 

( C )  

of 6 are 0.1,  0.3,  0.5,  0.7 and 0.9 for 

lead to a solution (see Fig. 6). If H* is the  smallest value 
of H (1/2 or (25 - 2&)/30), which is not acceptable, 
then 

m* = ( m  - H*m,,)/(l - H * ) .  

A solution exists  for any rn, > m* and rn, < rnO. 
Second derivative continuity can be attained at the con- 

necting point for  a  certain interval of values of a specified 
second  derivative.  This is developed in Reference [6]. 

Infinite  initial  slope 
If the slope  at Po is taken now to be infinite, with rand s as 
before, then the Bernstein-Bezier polynomial is obtained 
when P* is replaced by Po. Then 

and 

Y b 4 )  = Y,)@"(U) + Y,a , (u)  

+ 3 r [ ( ~ ,  - Y,) - M,(x ,  - x , ~ 1 a ~ ( 4  

+ 3sm,(x, - x,)a,(u). (2 1) 

At u = I ,  

d 'y /dx2  = 2(m, - m,)(r - 1)/3(x, - x&'. 

Let p be the initial second  derivative for  the next  inter- 
val. If 

2(m, - rn,)/3(x, - xo)s2  5 p 5 0, 

then, if 

r = I + 3p(x1 - x0)s2 /2 (m2 - m,). 

and 

O < r < l ,  

C, continuity is maintained for x = xl. 

Summary 
The purpose of this  section is to summarize the results of 
the  previous development in an algorithmic form. 177 
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Again, these  methods deal only with large or infinite 
end  slopes  and the  four possible cases  have been  reduced 
to  one, large or infinite positive initial slope,  as described 
previously. Once  the transformed  problem is solved and 
the canonical  form obtained, the  reverse  transformations 
solve the original problem. Note that a,)( 1 - u )  = a,(u),  

and, for the infinite slope case, if g ( u )  = 2u2 - u 3 ,  then 
g (  I - M) = (1 - u ) * ( 1  + u)  and conversely; if g(u )  = u 2 ,  
then a( 1 - u )  = (1  - u)’ and conversely. 

For  the first method, values of y and s must be chosen 
with 1/3 < < 1/2, y / ( l  - y) 5 s 5 (1 - y ) / y  ifflat  spots 
are  to be avoided.  For  the examples of the next section, y 
= 0.4 and s = 2/3. One  must next verify the shape condi- 
tions (3). If these conditions are  met,  iterate using Eqs. 
(lo), with any fixed p such that 1 > p > s / ( l  - s), or the 
equivalent 6 = (1  - s ) p  - s such that I > 6 > 0. Simulta- 
neously compute H i  = (rn,,, - mj)/(rnll - mi) ,  and termi- 
nate the iteration according to the  specifications given in 
the  section on sequence termination. 

For  the  second method again verify the slope  condi- 
tions ( 3 ) .  Compute m = ( y ,  - y I , ) / ( x T  - X,,), H = 

(+I - m,)/(ml, - m,).  Now, depending upon which infinite 
slope form is used [g(u) = 2m2 - u 3  or g(u) = u 2 ] ,  check 
the ranges (17) and (18) or (19) and (20). If a valid H range 
exists, select an arbitrary M from the associated u range. If 
not, revert to the first method. For example, in the first 
case, if H = 0.25,  then any u such that 0 < u < 0.6 is 
usable. Compute r = - C / B  from Eqs. (16), then Fo,  F , ,  
F, f rom(13) ,XandYfrom(15) ;x*=x , -X;y*=y l -  Y 
and the canonical  form from Eq. (14). 

For infinite end slope  the canonical form is given in Eq. 
(21), where r i s  arbitrarily  chosen with 0 < r < I .  If a 

a,(l - u)  = all(u), a2(1 - u)  = -Ly3(u), a,(l - u)  = -a&!) 

second derivative p is specified at  the  connecting point 
and if (22) is satisfied,  then  this  choice of r produces the 
required  continuity. 

Photographs of curves produced  from  typical finite and 
infinite slope  results for the  cubic P,,(x,, yo) ,  ml,; P , ( x , ,  y , ) ,  
m, are given in Figs. 7 and 8. These  curves were  gener- 
ated on an oscilloscope  connected to a computer, which 
had been programmed to implement the mathematics de- 
scribed in this paper and to display the  appropriate cubic 
segments. 
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