168

B. DIMSDALE

B. Dimsdale

Convex Cubic Splines

Abstract: Control curves used in industry are usually planar cubic splines, continuous and single-valued for a specific independent
variable. If large slopes are specified at certain points, the spline coefficients, which are computed in order to preserve second derivative
continuity of the spline, invariably lead to wildly oscillatory curves. Normally the large slopes occur at the ends of the curve, and this
paper deals with such cases, developing methods which have been used successfully to combat the problems encountered. The end point
where the difficulty occurs is ignored for the moment and a curve (spline or not) is designed for the remaining points. Then, with the point
and slope adjacent to the difficult point known, the design is completed with one or more spline segments so that the resulting curve,
which connects the difficult point to the next point, is convex (or concave), and has at least first derivative continuity. For the large finite
slope case, two methods are described. The first method constructs the desired curve as a sequence of spline segments with finite slope
everywhere, whereas the second expands the interval so that a single spline segment with infinite end slope passes through the difficult
point with the required slope. The case of infinite end slope is also treated. In this and the preceding cases, second derivative continuity

can be preserved at the juncture under certain conditions.

Introduction

In the aerospace, automotive, and shipbuilding industries
(among others) plane curves are used as control curves by
designers. These curves are continuous and single-valued
for some specified independent variable convenient for
the purpose of design. Since the data on which the design
is based usually include a set of points through which the
curve must pass, splines are most convenient. Cubic
splines (parametric or otherwise) are normally used for a
number of reasons.

Not infrequently other design requirements lead to
specification of slopes at certain of the assigned points. If
these slopes are of moderate size, there is generally no
great problem. However, if they are very large or infinite,
the process of fitting a spline to the data may result in wild
oscillations of the curve, a highly undesirable feature.

This phenomenon is particularly prevalent when first
and second derivative continuity of the spline is required.
On the other hand, this continuity requirement satisfies
some part of the designers’ desire for a ‘‘smooth’ curve.
It is not generally possible to maintain such continuity
and simultaneously eliminate the undesirable oscillations,
though there are circumstances in which this can be done.
Other considerations involved in designing smooth
curves may involve moving points, changing slopes, and
other matters; however, none of these falls within the
scope of this paper. Let it suffice to say that control curve

design is an iterative process involving negotiations
among designers, engineers and others engaged in the
process.

In practice, large and infinite slopes generally occur at
the ends of the spline as, for example, in the design of
aircraft fuselages. This suggests a practical and, as it
turns out, very useful solution to the problem. If this is
the case, the point (or points if large slopes occur at both
ends) are ignored and a spline over the remaining points is
devised to the satisfaction of the designer. This provides
the point(s) and slope(s) adjacent to the point(s) at which
the difficulty exists. Next, the design is completed with
one or more spline segments in such a way that the result
is an inflection-free (convex or concave) curve connecting
the point(s) with large slope to the adjacent point(s). This
paper is concerned only with construction of a convex or
concave curve consisting of one or more cubic spline seg-
ments and connecting a point at which a large or infinite
slope is required to another point of given slope. Since the
only data required at the second point are its coordinates,
slope, and perhaps second derivative, the problem dealt
with in this paper is completely independent of any other
features of the remaining curve.

It will be observed that the four possible cases—large
(infinite) positive slope at the initial point, large (infinite)
positive slope at the terminal point, large (infinite) nega-
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tive slope at the initial point, and large (infinite) negative
slope at the terminal point—can all be reduced to the first
case by simple transformations. In this first case, to
which the development addresses itself, the curve is con-
vex.

For the case in which the design constraint involves a
large but finite end slope, two methods are developed.
One of these involves the use of a set of spline segments
all of which have finite slopes, while the other uses a
single spline segment with infinite slope, such that the
segment passes through the point of large slope and has
the required slope at that point. The first method results
in slope continuity but requires insertion of additional
points, at which second derivative continuity is violated.
It has the advantage that the problem can always be
solved provided that the slope at the point of connection
is moderate. The term moderate is defined under the
problem statement for the first method. The second meth-
od has the advantage that no new points need be in-
troduced in the domain over which the final curve is to be
designed. It also has slope and second derivative continu-
ity in the interior of its interval of definition, which in-
cludes the original end point. Under certain circum-
stances second derivative continuity can be maintained at
the connecting point. Its disadvantages are that it com-
plicates subsequent calculations required for numerical
control of machine tools, and certain engineering calcula-
tions. In addition, no solution exists for certain cases cov-
ered by the first method. In practice, no practical ex-
amples have arisen to date for which the second method
provides no solution.

If the design constraint specifies an infinite end slope, it
is a simple matter to specify an inflection-free parametric
cubic segment. In this case a solution always exists, pro-
vided the next slope is finite.

In all cases a free parameter is available to the designer
for adjusting the shape of the curve being devised.

Necessary and sufficient conditions for an inflection-
free cubic segment

Consider a cubic defined by P (x, y,), m, and P,(x,, v,),
m,, where m, and m, are the associated finite slopes (Fig.
1). (Since the cubics dealt with are completely defined by
two points and their associated slopes, a set of data P,,
m,, P,, m, may also be called a cubic or a cubic segment.)
The equations of the cubic segment are

x=x, + (x, — x,)u,

and
y=au®+ bu’+ cu+d,

where 0 =< u < 1. The cubic coefficients are defined as
follows:
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Figure 1 A cubic can be defined by the points P (x,, y,)
and P,(x,, v,) where the associated slopes are m, and m,,
respectively.

a=a/lx, — x,),

b =b,(x, — x,),

¢ = mz(xl. - x,),

and

d=y,.

Further,

a, = —2R + m, + m,,

b, =3R —m — 2m,,

1

and
R=(y, = y,)/(x; — x,).
The values of « for the inflection point are
u = —b [3a,
= (3R - m, — 2m,)/(6R — 3m, — 3m,).

Ifa, =0(m, +m,=2R) and b #0(m + 2m,#3R), then
u, will have an infinite value (==). However, for finite
values of u, (< 0 or = 1), the following conditions must be

met:

2m + m, = 3R =m + 2m, for m, > m,,

or

m, + 2m, = 3R =2m, + m, form, < m. N

In the special cases where u, equals either zero 3R = m,
+ m,) or one 3R = 2m, + m,). a flat spot will exist at one
end of the segment, which is generally considered unde-
sirable in such curves. For this reason the inequalities (1)
are strengthened to

(1 — y)ml +ym,=R=ym, + (1l - v)m,
for m, > m,,
and
ym, + (L —y)m, = R=(l —y)m + ym,
for m, < my, ) 169
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Figure 2 In the primary algorithm, the set of points gener-
ated describes a convex polygon and the point P, must be
contained within the triangle defined by P, P, P,.

where 1/3 =y = 1/2. These conditions are now sufficient
for the absence of an inflection point bit are nof neces-
sary unless y = 1/3.

Problem statement for the first method

In a plane with rectangular coordinates x, y, suppose that
there are given two points P, (0, 0) and P (x , y,), with
slopes m, and m,. In case P is hot at the origin, simply
translate the origin to P; this does not alter slopes. Let

m, = y,/x,

and assume that

0<m,

m, < m, < mg,

and

X >0 (3)

These are the large and moderate conditions referred to in
the introduction, for the particular case of large positive
initial slope. With these conditions the objective is then to
define a sequence of points P, P,, - - -, P, P, and asso-
ciated slopes such that 1) successive pairs of points and
slopes define cubics having no inflection point interiot to
the interval of definition, and 2) the collection of cubics
has C, continuity and is convex (or concave).

Four cases involving large slope can occur: positive or
negative, and initial or terminal. The large positive initial
slope case is the only case that need be considered, since
the other three cases can be reduced to this one. For ex-
ample, for large negative initial slope m,, where

0>m0,

m, > m, > m,,

and
X, < X, (4)
simply let x' = x and y’ = —y. For large negative terminal

slope m , where
0>m,

m0>m2>m1,

and
X, < x,, )
let X’ = —x, ¥’ = y and replace u with 1 — u. Finally, for

large positive terminal slope m,, where

0 < m,

m, < m, < mp,

and

X, < X, (6)

let x’ = —x,y’" = —y and replace « with | — u.

The algorithm developed for the finite slope case con-
sists of two parts, the primary algorithm and the sequence
termination. The former is a repetitive procedure for
generating a sequence of points, while the latter takes ac-
count of the fact that the sequence of points may not in-
clude the end point. For example, some point may have
too large a slope.

Primary algorithm

It is assumed that the initial point is at the origin, an as-
sumption requiring, at most, a translation of the origin. It
is clear that the set of points generated must describe a
convex polygon. In Fig. 2, let the slopes of the lines 1"“1"’1
and P P, be m, and m, respectively, so that

X =0, —mx)/(m, — m),

and

)71 = mi)xl'

Since P, must be in the triangle defined by POPIPI, let
P} = BP, + (1 = BP,,

and

P,=aP + (1 - &)P],

where «, B8 € (0, I). Next assign to P, the slope
m, =y /x . Itis now necessary to determine values of «
and B (if they exist) such that the cubic segment P,, m,,

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 2 ¢ MAR 1978




P, m, is convex. If this is so, those same values can be
used to determine another point P, in the triangle defined
by P,P,P,, etc.

Two problems are encountered. One is the question of
finiteness of the sequence. That is, is a point P, with slope
m, ever attained such that P, m,, P,, m, defines a con-
vex cubic segment? The second problem is the possibility
that even if the sequence is finite, m,_, may be too small
and m,, too large for sequence completion. This problem
will be resolved later. Assume for the moment that 3 is

fixed. Since
e, 7)) + (1 — a)(1 — BYx,, ¥),

it follows that

(X, ¥,) =

v, = »)/x,

=[BU — a)ymy(m, — m)) + am (my — m)]/(m, — m),
and
(x, — x,)/x, = [B(1 — a)(m, — m,)

+ a(m, — m))/(m, — m) > 0. (7)

Since & and 8 are in the interval (0, 1) and m; > m, > m,,
it is now not difficult to show that with

m=(y, = y)/(x, = x,),

m, < m<m,

Let

M = (my — my)/(m, — m,);

then

O<M<1,

and

m = [B(1 — aym, + am M]/[B(l — ) + aM].

In order for the cubic to be convex in (x,, x,), it is nec-
essary and sufficient that m, + 2m = 3m < 2m, + m,.
Since the denominator of m is positive, it follows that

(m, + 2m)[B(1 — a) + aM] = 3B(1 — a)ymy + 3am M
= (2m, + m)[B(l — a) + aM]. (8)

The left inequality reduces to

(m, = m)[2B(] — a) — aM] = 0.

That is, since m, > m,,

28(1 —a) —aM =0

and

a = B/(B+ M/2).

Similarly, from the right inequality (8) it follows that

a=B/(B + 2M).
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Thus, the necessary and sufficient condition for the cubic
to be convex in (x,, x,) is

a = B/B + sM),

where 1/2 = s = 2. Note that for s = 2, there is an in-
flection point at x = x,, while for s = 1/2, an inflection
point exists at x = x,. For

v/l =y =s=0-7v)/y,

the conditions (2) for m, > m, are met.
Since o = B/(B + sM), it follows that

m = (sm, + m)/(s + 1).
Also, from Eqs. (6),
X:{M—ﬁWm~mQ+M%—mJ]

s(imy, — my) + B(m, — m,)

X

[s(l -~ Bm,(m, — m,) + Bm(m, — ml)}
: = X

¥,
stm, = my) + Blm, — m,)
and
mZ = yl/xl'
Moreover,
B(m, — m)m, — m,)
0y/x,) = m, = A )
: Blm, — m} + s(1 = B)(m, — m,)
With s and g fixed, a sequence x;, y,, m, can be computed
as follows:
m; = yi—l/xi—l*

xz{m—mwwwm+mw—m4]x
i stm, = m,) + Blm, — m,_) v
and

v = [ s(l = B)m, — m,) + Bm(m, —
. S(mo - mi) + B(mo - mi—l)

o) } X, (10)

For each interval P,

o Poa useful canonical form for
the cubic is

x() = x,,, +x;, — x

i i+l)u’

and
yu) =y o) + ye @) + om0 = x, Jayu)
+ mx; — x;, ey,
where
a,(u) = 2t - 3%+ 1,
aw) = —2u® + 3u’,
a,(u) = u® = 2u* + u,
and
a,(u) = u =t A
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Equation (9) becomes

m,, — m = Blm, ; my_) (m, — m) . Ay
Blm, — m,_) + s(1 = B)m, — m)

It has, incidentally, been shown that m, for i > 0 is a
monotone increasing sequence and is bounded by m,. In
the next section it is shown that a finite sequence suffices
if and only if 8 > s/(1 + ).

It is convenient for a designer to fix s permanently, say
ats = 2/3, and to vary 8, thus modifying the shape of the
convex curve. For uniformity of the parameter domain
from the designer’s point of view, a new parameter

d=(+s8 -y
leads to the domain
0<d<I,

whatever value is assigned to s.
It is interesting to note that the algorithm allows the
value 8 = 8 = 1. In this case, however, the point P, is on

the line PP, and C, continuity is not preserved.

It is also of interest to note the position of the inflection
point relative to the interval of definition of the cubic. Let
x, be the abscissa of the inflection point and

u, = (x,— x)/(x_, — x).
It turns out that
w, = (s — 2)/Q3s = 3),

independent of g3,

u > 1 if s <1,

u, <0 ifl<s<2,
and

u = if s = 1.

1

In the last case, the curve is either a parabola or a straight
line.

Finiteness of the sequence
In order for the computed sequence of points to termi-
nate, it is necessary, for some N, that

ymy+ (=), = (12)

Otherwise, there exists no N such that P and P, can be
connected by a convex cubic. This problem is addressed
by the following theorem.

Theorem If B> s(1 — B), m, = y,/x, <ym, + (1 — y)m,
for any fixed y such that 0 <y < 1, then for some finite N,

Xy = y/v/xN’
and Eq. (12) holds. If 8 = s(1 ~ ), then always

172 my,, <ymy+ (1 = ym,.

B. DIMSDALE

Proof Define

H = {m, — m)/(m, — m).

By hypothesis, H, < y;also H,>0.1f 8 = 5(1 — §), then
Bim, — m,) + sl — B)m, — m) = Blm, — m,_,).
From Eq. (11),

(m,, = m)/(my = m,) < (m — m_)/(m; — m_,),
or

H =H,_, foralli= 1.
Hence

H <y,

and

m_, <ym,+ (1 - ym,.

That is, an infinite sequence of cubics defined by the pri-
mary algorithm does not meet the specified requirements.
Now consider

B =sll-B)+¢,
where ¢ > 0, and the identity

(m, = m_)m, — m)

my = m_,
2
&im, — m)” (m, — mi—l)

(m, — m, MBm, — m,_) — &my — m)]

Now,
Blm, — m;_) — &my — m)

= Bm, — m_) + s(1 = B}m, — m) < Blm, —m,_),

and
my, — m m, — m,
m, — m my — m_,
f(mo - mi)(mi - m_,)
Blm, — m,_)(m, — m_,)
thus,

H > H_ [1+ &m, — m)/B(m, — m_)1>H,_,.
But

(m, — m)/im,—m_)=1-H

1
hence
H,>H_ [1+¢/B—(¢/BH,_,]

=+ &PBH,_, ~ (¢/PH-,.

The hypothesis that H, <y < 1 for all i yields

H > [1+ (¢/B)H, ~ (&y/BH,,
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more simply written as
H > cH,_,
i i-1

where ¢ = 1 + &1 — v)/B and ¢ > 1. Thus, the hypothe-
sis H, < y for all i leads to the contradiction that H, in-
creases without limit. Therefore, there exists an N such
that

Hy =y,
and since H, is a monotone increasing in this case,

H >y for all i > N.

In order to complete the algorithm it is necessary to
investigate certain problems arising in terminating the se-
quence.

Sequence termination

It is now assumed that 8 > s/(1 + s). The objective of the
primary algorithm is to produce a sequence of points P,,
+++, P such that P, and P can be connected by a convex
cubic segment having slope m, at P, m, at P,. This re-
quires that

ym, + (1 = yimy_, = mg= (1= ym,+ymy_;
that is,
y=H, =1-y.

If H > 1 — v, the primary algorithm is inapplicable,
and this case will be resolved by another technique. If y =
H =1 - v, the points P, P, and slopes m,, m, already
define a convex cubic and there is no problem. Lastly,
if H < vy, the previous theorem guarantees the exis-
tence of a minimum N = 2 such that H,_, <y and H,
=vy. Ifalso H, =< (1 — y), then P, m, P, ., m,,, confine
a convex cubic as required, and the sequence of points
and slopes derived by the primary algorithm is P,, m,,
Py, my . If however H, > 1 — v, the primary
algorithm is no longer applicable. That is,

my > my > (- 'y)m” + ymy,

and the slope m,_, is too large to allow a convex cubic
segment connecting £, and P, .
For this case define

mi = (0= ymy + ymy, Hy, |
= (my,, = my/(m, — my)
=l-vy>vy,

and

My < Mg < My

The cubic segment P, m,, ., has continuous
and monotonic increasing slope on its interval. Hence

there exists a unique point P, with slope m',,. When

PN+]’ m
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P, m,, isreplaced by P, m,,  the problem is re-
solved. It remains only to develop the necessary al-
gorithm. In the notation of the section on the problem

statement of the first method,
X=X Ty oxgJu
y=au’+ bu’+ cu+ Vs
where

a= =200y = Yy — (my,, + myx, — Xyiy)s

Qmy,, + m)x, = xy,)

b =30y = Yy —
and

¢ = mN-H(XN - XN+1)’

It is required that
dy/dx = m;
that is,

= 0.

fluy = 3au® + 2bu + ¢ — my (x, — xg.)

Compute the solution « of the quadratic equation where
0 < u < 1. Note that

fO) = (my , — milxy = Xyep) <0,

f) =(m, — m)x, — x,,) >0,

so that there is indeed a unique value of u.

For the case H, > 1 — v, there is no cubic available, as
in the previous case. There are two possible approaches
to this problem. The first, apparently practical, approach
assumes that m_ is not small compared to m,, and simply
ignores the problem. The other approach is to use a pair
of Bernstein-Bezier cubics [1, 2] (see Fig. 3). Briefly, giv-
en P, m,, P,, m,. the point P is defined. Let P, P, tri-
sect the line PP and P . P, trisect the line PP,
Choose a point O, somewhere between P, P, and a
point Q, somewhere between P, P,,. The frame P, P,
Q.. 0, defines a convex cubic segment over the interval
(x,. %,). The curve is convex since the frame is convex. It
is a true cubic since the abscissae are equally spaced. Its
end points and slopes are the same as the end points and
slopes of the frame. The frame Q,. Q.. P,,, P, achieves
the same results for the interval (¥, x,). Moreover, conti-
nuity and C, continuity at Q, are preserved.

The same technique could be used in the previous case

where m,,, | is too large.

Problem statement for the infinite slope case
As has been described elsewhere [3-5], a convenient
choice of parametrization over an interval (x,, x,) has

x = x,+ (x; — x)glu),
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Figure 3 The frames P,, Py, Q,, O, and Q,, Q,, P, P,

define two convex cubic segments over the intervals (x,, £,)
and (¥, x,) in the Bernstein-Bezier approach.

where
glu) = 2u® — u®,
or

gw) = u’

for infinite slope dy/dx at.x = x,. For the infinite slope at x

:X]’

gy = (1 — w)* (1 + u),
or
glu) = (1 — w)?,

respectively. The variable y is, of course, a cubic function
of u.

Thus, as before, P (x,. y,), m, and P (x, y), m, are
given and the constraints my, >0, m <m,<m, and x, <
x, remain the same. It is not useful in the present case to
translate P, to the origin. The goal here is to find a spline
segment on (x*, x ) passing through P*, P,, P, with
slopes as indicated in Fig. 4. As for the other three cases,
the same transformations (3)-(5) as before are required
to reduce them to the present case.

Calculation of P*

Bernstein-Bezier cubics are used to solve the problem by
constructing the frame P, P,, P,, P* (see Fig. 4). Here
P*Pis a vertical line, and PP has slope m,;

P,= (1~ )P, + sP,

2

and

P, = (1~ rP*+rP,

where r, s € (0, ). Let X = x, — x" and Y = y, — y".
Then

P=@x*y -mX,
P,=(x, — sX,y, — smX),
and
P, = (x* y¥+rY - rm X).

The Bernstein-Bezier cubic is
P(u) = (P, — 3P, + 3P, — P’

+3(P, — 2P, + P\ + 3(P, — PY)u + P¥,

where « € (0, 1). The x component of P(u) is
xu) = Bs — DXu® + 301 = 5) Xu® + 1%,

and this is precisely x* + Xg(u), where gu) = 2u® — u*
when s = 1/3, and g(u) = u” when s = 2/3.
Now define

F,=(3s — Du’ 4+ 31 — s)u® — 1
=(u— D[3s - u’ +u+ 1],
GBr— 2u® + 3(1 = 2ru® + 3ru — 1

ry
Il

(u — [GBr — 2u — 1],

If

F o= —nNu’+Q2r—su’ - ru

u(u = Dl(s = ru + rl,

e
I

Gr—2u® +2(1 = 20u + r
=(u— D[Br—u~—r],

and
F,=m[3(s — nu® + 22r — shu — r}

—m[(3s — 2u* + 2(1 — s)u). (13)
The y component of u is given by
yu) = Y[B3r — 2u® + 3(1 — 2r° + 3ru)

+3m X[(s — i’ + 2r — sy — ru] + y¥,

or
y(u) = y*agu) + ya, )
+ 30, = ¥ = m ey = x)eyw)
+ 3sm (x, — xFa,(u). (14)

Now suppose that « has a value such that P(u) = P,. That
is,
x(u) = x,,

yu) = y,.
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and also

yw)/x(uy = my,

where the dot notation signifies differentiation with re-
spect to u.
From these last three equations, it follows that

XF = x,— x,

YF, + 3mXF, =y, — vy,
and

YF, + XF, = 0.
Hence,

X = (x, — x))/F,,
Y=\{(y,— y)/F, = 3mx, — x)F,/F.F,

and

F.F, = 3mF,F, + mF,F, = 0, (15)
where

m=(y, = y)/(x; = x).

If u exists satisfying the relationship among the Fs,
then X and Y are also known, hence x*, y*. Note that F,
and F', do not vanish for the allowed values of r and s; also
0 < u < 1. Equation (15) reduces to

Br+C=0 r = —C/B,
where
B=m[(3s — u’ + u+1]3u— 1)
+m [(1 - w)? - 3su?
= 3um[(3s — 2u’ + 21 — s)ul,
and
C = —2rmu[(3s — 2u’ + u + 1]+ msuu + 2)
+ myu(l + 20)[(3s — u + 2(1 — 5)]. (16)
Let
H=(m-m)/(m,—m),
filw) = 6H[(3s — 2u* + u + 1]
= 3(1 + 2u)[(3s — 2)u + 2(1 — s)],
and
f(u) = 3H[(3s — 2)u” + u + 1]
=3u[(3s — u + 2(1 — 5)].
Then
r=ufw/ufw - (1 = 0 fw),
and for 0 < r < 1, it follows that f,(u) f,(u) < 0.
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Figure 4 Bernstein-Bezier cubics are used to solve the
problem of infinite slope by constructing the frame P,, P,,
P,, P*, where P* P is a vertical line.

For s = 2/3,
L) = (6H — 4u + (6H — 2),
and
fu) = GH — 2)u + 3H.

Here, f,(u) = 2[ f,(u) — 1], whence 0 < f,(u) < 1. 1f3H -2
< 0, then

BH - 1)/2 - 3H) < u <3H/(2 - 3H),

and for 0 < H = 1/3,

0<u<3H/Q2 — 3H). amn
For 1/3 < H < 1/2,

(BH—-1)/2-3H)<u<l. (18)

If H=1/2,then u = 1, which is not allowed. Similarly,
3H — 2 = 0 leads to an invalid solution. In this case the
problem can only be dealt with if 0 < H < 1/2. If a solu-
tion is necessary, the previous method must be used.

The parameter provided to the designer here is

d=u2 - 3H)/3H for H = 1/3,
and
5 =1[(2-3Hu—- 3H - 1))/(3 — 6H)
for 1/3 < H < 1/2. 175
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2/3’\
K, ()

K, ()

172 1

U

Figure 5 Convex functions K,(u) and K,(u). Note the five
different ranges for H as defined in Eqgs. (19).

X

Figure 6 For the slope m,, lines such as m, are acceptable
as terminal slopes.

Thus he can choose any 8 such that 0 < 8 < 1. Then u,

fiu), f,(), r, the F functions and finally x*, y* are com-

puted in order.
For s = 1/3, the equations are

f(u) = 6(1 — Hu® + (6H — S)u + (6H ~ 4),

and

fw) =31 = Hu® + QH — 4)u + 3H.

Let

K () = (6u® — Su — 4)/6(u” — u — 1),
and

Kw) = Bu” — 4u)/3u® — u — 1).
Now

flu) > 0= H > K (u);

filw) <0 S H < K (u);

fw) >0 S H > K(u);

flu) <0 S H < K,(u).

It is easily shown that both K, and K, are convex func-
tions, that K,(0) = 2/3 and K (1) = 1/2, that

max K () = (25 — 24/5)/30 atu =5 -2,
that K,(0) = 0, K,(1) = 1/3, and that
max K, (u) = (10 — 2V/5)/15 atu =3 —\/5.

Thus
K(u) < H < K, (),

as in Fig. 5.
There are five different ranges for H.

I H=1/3

2. 1/3 < H = (10 — 27/3)/15
Uy < it < ity OF Uy, < u < 1

0<u<u21;

3.0 -2V5)/IS<H<1/2 0<u<l;
4. 12 =< H<2/3

5.2/3 =< H< (25 -2V5)/30

0<u<u,;

(19)

Wy < u<uy,

where u,, and u,, are the smaller and larger roots, respec-
tively, of K,(u) = H for f,(u) = 0. Likewise, u,,, u,, are
the smaller and larger roots for f,(«) = 0. That is,

u, = (5 — 6H — VI80H2 — 300H + 121)/12(1 — H),

u, = (5 — 6H + VI80H* — 300H + 121)/12(1 — H),
U, = (4 ~ 3H — V45H* — 60H + 16)/6(1 — H),

and

u, = (4 — 3H + V45H> — 60H + 16)/6(1 — H).  (20)

This case, although more complex, allows a considerably
wider range of H. Again, a design parameter 8 between 0
and 1 can be introduced for the convenience of the de-
signer. The second range of « for the second range of H
above can be ignored.

H = (m — m,)/(m, — m,)is a monotonically decreasing
function of m , and H = 1 for m = —. Hence, there isa
largest m,, here called m*, such that this method does not
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(a)

(b)

(c)

Figure 7 Finite slope results for the cubic segment Py (x,, y,), m,; P/(x,, ), m for the & values of 0.1, 0.3, 0.5, 0.7, 0.9

and 1 (bottom to top curves), where s =

2/3. In all cases P, is defined as the origin (0, 0). The chosen variables mq, P (x;, y;)

and m, are as follows: (1y 103, (4, 4) and 0; (b) 102, (4, 1) and —1; and (¢) 10%, (4, 4) and 1072,

(a)

Figure 8 Infinite slope results for the same cubics given in Fig.

s =1/3.

lead to a solution (see Fig. 6). If H* is the smallest value
of H (1/2 or (25 — 2\/5)/30), which is not acceptable,
then

m* = (m — H*m)/(1 — H*).

A solution exists for any m, > m* and m < m,.
Second derivative continuity can be attained at the con-

necting point for a certain interval of values of a specified

second derivative. This is developed in Reference [6].

Infinite initial slope

If the slope at P is taken now to be infinite, with r and s as
before, then the Bernstein-Bezier polynomial is obtained
when P* is replaced by P,. Then

x(u) = x, + (x, — x)g(u),

gu) = 3s — 2u® + 31 — s)u’,

yu) =y, + [Br = 2)(y, — y) + Bs = 3m (x, = x)u’
+ [3(1 = 210, — y) + 6r = 35)m (x, — x)Ju*

+ [Brly, — y,) — 3rm (x, — x)]u,
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(b)

(c)
7, where the values of & are 0.1, 0.3, 0.5, 0.7 and 0.9 for

and
y(u) = yo () + y,a, )
+ 30, — ¥ —

+ 3sm,(x, —

m(x, = x)ay )
Xyloe, (1)

Atu =1,

d*y/dx® = 2(m, — m)(r — D/3(x, = x,)s°.

Let u be the initial second derivative for the next inter-
val. If

2(m, — m,)/3(x, — )co)s2 =pu =0,
then, if

r=1+3ulx, — x)s*/2(m, — m,),
and

0<r<i,

C, continuity is maintained for x = x,.
Summary

The purpose of this section is to summarize the results of
the previous development in an algorithmic form.
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Again, these methods deal only with large or infinite
end slopes and the four possible cases have been reduced
to one, large or infinite positive initial slope, as described
previously. Once the transformed problem is solved and
the canonical form obtained, the reverse transformations
solve the original problem. Note that e (1 — u) = a (1),
o (] —u) = afu), a,(1 —u) = —a ), a,(1 —u) = —at,(u)
and, for the infinite slope case, if g(u) = 2u’® — u®, then
g(1 —uwy = (1 — w*(l + u) and conversely; if g(u) = u?,
then g(1 — u) = (1 — u)® and conversely.

For the first method, values of y and s must be chosen
with 1/3 <y < 1/2,y/(1 —y) = s = (1 — y)/y if flat spots
are to be avoided. For the examples of the next section, y
= 0.4 and s = 2/3. One must next verify the shape condi-
tions (3). If these conditions are met, iterate using Eqs.
(10), with any fixed 8 such that I > 8 > s/(1 — s), or the
equivalent § = (1 — s)8 — s such that I > § > 0. Simulta-
neously compute H, = (m_, — m,)/(m, — m,), and termi-
nate the iteration according to the specifications given in
the section on sequence termination.

For the second method again verify the slope condi-
tions (3). Compute m = (v, — y)/(x, — x). H =
(m —m)/(m, — m, ). Now, depending upon which infinite
slope form is used [g(u) = 2u” — u® or g(u) = u*], check
the ranges (17) and (18) or (19) and (20). If a valid H range
exists, select an arbitrary u from the associated « range. If
not, revert to the first method. For example, in the first
case, if H = 0.25, then any « such that 0 < « < 0.6 is
usable. Compute r = —~C/B from Eqgs. (16), then F, F,,
F,from (13), X and Y from (15); x* = x, — X;y* =y - ¥
and the canonical form from Eq. (14).

For infinite end slope the canonical form is given in Eq.
(21), where r is arbitrarily chosen with 0 < r < 1. If a

second derivative u is specified at the connecting point
and if (22) is satisfied, then this choice of r produces the
required continuity.

Photographs of curves produced from typical finite and
infinite slope results for the cubic P, (x,, ¥}, m; P (x., y,),
m_ are given in Figs. 7 and 8. These curves were gener-
ated on an oscilloscope connected to a computer, which
had been programmed to implement the mathematics de-
scribed in this paper and to display the appropriate cubic
segments.
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