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Variational Principles for Semiconductor Device
Modeling with Finite Elements

Abstract:

Variational principles related to three areas of semiconductor device modeling by the finite element method are presented.

Some subtle points which are crucial to the successful application of the method are explored. It is suggested that the validity of the
selected variational formulations must be carefully ensured, and that the physics disciplines provide the best guidance for the right

selections.

Introduction

The finite element method has been widely and success-
fully used for quite some time for the analysis of heat
transfer, mechanical deformation and similar phenomena;
but to date, little has been published on its application in
the modeling of semiconductor device behavior, although
it would seem predestined for this purpose. References
[1-3] are characteristic of the work in this area that has
been published to date. This state of affairs may be due, in
part, to the natural inertia which the introduction of new
techniques into any field must overcome. A closer look,
however, reveals some more basic obstacles.

The extensive theories of semiconductor technology
are almost exclusively cast in differential formulations,
which lend themselves most readily to numerical calcu-
lations by means of finite difference schemes. By con-
trast, the finite element method is preferably based on
variational descriptions of the phenomena to be modeled,
or on mathematical approximation methods involving the
minimization of errors, such as Rayleigh-Ritz or Galerkin
schemes. In most applications, it is a numerical technique
for extremizing a functional. To this end the region over
which the functional is defined, e.g., a large rectangle, is
subdivided into subregions of simple geometric shape,
e.g., small rectangles. These are called finite elements.
Within each finite element the argument function of the
functional is approximated by a simple function, e.g.. a
low order polynomial. The coefficients of this inter-
polation function are chosen such that the approximation,
and perhaps some of its derivatives, are continuous
across the boundaries of the finite elements. In the case of
the rectangle, one may use a product of linear inter-
polation functions such that the approximation along each

edge is a linear interpolation between the values at the
adjacent vertices. This leads to continuity across the
boundaries of the elements for the approximation, but not
for its derivatives. Next, the contribution of each element
to the functional is determined formally by integrating
over the finite element, using the approximation. For a
linear or linearized problem, the result is quadratic in the
values of the argument function at particular points of the
finite element, e.g., the vertices of the rectangular ele-
ments. Let these points be named nodes. As the contribu-
tions of all elements are summed, the value of the func-
tional is obtained formally, as a function of all node val-
ues of the approximated argument function. The
functional can now be extremized formally by setting its
partial derivatives with respect to each node value equal
to zero. This leads to a system of coupled equations. In
essence, the finite element method is a collection of struc-
tured, algorithmic techniques for performing the steps
just described.

Variational formulations are rare in semiconductor de-
vice theory. Short of developing the formulations from
principles of physics, investigators are forced either to
develop Rayleigh-Ritz or Galerkin schemes or to adapt
formulations from related fields. The latter approach, al-
though sometimes favored or recommended in the litera-
ture [4], is often treacherous.

This contribution reviews some of the variational prin-
ciples applicable to semiconductor device modeling, to-
gether with others that seem to be useful, but are not. A
variational formulation of transient diffusion processes
that does not produce valid results and a similar, not very
widely known formulation that can solve such problems
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Figure 1 Space-time lattice for finite element solution of one-
dimensional diffusion problem.

are outlined in the second section, which also demon-
strates the subtlety of the differences in the two finite ele-
ment discretizations. The third section is devoted to the
development of a variational principle describing the state
of thermostatic equilibrium in a region of arbitrarily
doped semiconductor material. This example highlights
the fact that a seemingly straightforward argument can
easily lead to an erroneous formulation. The last section
presents a variational description of current flow condi-
tions in a semiconductor region and points out the strin-
gent limitations of that formulation.

Transient diffusion problems
With few exceptions, the impurity profiles forming planar
semiconductor devices are fabricated by diffusion proc-
esses. Predeposition diffusions are typically controlled by
boundary conditions of a constant impurity concentration
over parts of the boundary surface and a vanishing impu-
rity flux over the remainder of the boundary surface.
Drive-in diffusions typically evolve from an initial profile
and boundary conditions of vanishing flux. Neither proc-
ess involves explicit sources.

Mathematically the impurity profiles are described by
solutions of the diffusion equation

DV*C(r, t) — 9C(r, H/3t = 0, ey
with initial and boundary conditions
C(r, 0) = C(r), (2)

Cr,, 1 =C, aC(r,, t)/on =0, 3)

where D and C respectively denote diffusivity and impu-
rity concentration; r, and r,, define mutually exclusive
regions on the boundary surface; and where 9C/an de-
notes the directed derivative normal to and evaluated at
the surface.

In order to apply the finite element method to the calcu-
lation of such impurity profiles, it is desired to describe

the diffusion process in terms of a variational principle. In
searching the literature, one is easily led toward a canoni-
cal Hamiltonian formulation [5] and a technique for finite
element discretization [6]. The canonical functional is in
the form

Q= J J J J‘ff [(DyC - yC + § (Cac/at — CaC/at)

ty
+ SC + SCldtdr, 4)

where V denotes the volume under consideration.

Extremizing Eq. (4) with respect to C reproduces Eq.
(1), with an added source term S(r, ¢), and extremizing
with respect to C leads to

DV'C + aC/at = Sir, 1), )]

which is called the adjoint equation to (1), with adjoint
variables € and §. A finite element algorithm can be de-
rived from Eq. (4), extremized with respect to C, by stan-
dard techniques.

Nothing is lost for the thoughts to be developed if at-
tention is focused on a one-dimensional and linear ex-
ample. To be specific, consider a plate of semiconductor
of thickness L, with the impurity concentrations fixed at
both surfaces, and with the diffusion process starting at
t = 0. Using four length elements and three time steps
leads to rectangular elements and to the space-time lattice
illustrated in Fig. 1.

The functional, Eq. (4), now reduces to a double in-
tegral with limits 0, L and 0, 7, respectively. Extremizing
its finite element approximation, with respect to those
node parameters which are not fixed by initial or bound-
ary conditions, generates a system of linear equations for
those parameters. The equations for the parameters at the
nodes 7, 8,9, 12, 13, 14, 17, 18, and 19 of Fig. 1 are de-
rived in Appendix A. All equations are coupled.

On the other hand, the physics of the diffusion process
under consideration suggests an iterative solution: The
parameters at the nodes 7, 8, and 9 must be independent
of the future conditions at the nodes 11 to 20. This con-
tradiction with the above system of equations arouses
suspicion.

The validity of the equations can be tested with a spa-
tially linear, time-invariant impurity profile. Since the lin-
ear interpolation functions used exactly represent such a
profile, the equations must analytically reproduce the
profile. Consequently, inserting such a solution into the
equations, e.g., using the values 1, 2, 3, 4, and 5, respec-
tively, at the nodes of the first, second, third, fourth, and
fifth columns in Fig. 1, must convert the equations into
identities. One finds, however, that the equations for the
nodes 17, 18, and 19 fail this test; hence, the finite element
formulation does not properly model the diffusion
process.
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The reason for this failure is buried in the canonical
formulation of the variational principle. The functional (4)
could, in principle, be used to calculate the sources which
would have to be applied to the surfaces of the plate in
order to evolve from a given initial impurity profile to a
specified final profile at the time #,. Indeed, the finite ele-
ment approximation will yield a system of equations
which solves such problems. But, since the physical dif-
fusion processes are causal, they strongly restrict the va-
riety of final profiles that can be reached from a given
initial profile under the influence of physical sources. The
canonical formulation, (4), removes these restrictions by
virtue of the inclusion of the adjoint variables, which sat-
isfy the noncausal, nonphysical equation, (5), thereby
rendering the formulation useless for solving real dif-
fusion problems.

It is possible to apply the finite element method to the
spatial domain only. This results in a system of ordinary
differential equations in time which, in turn, can be solved
by either a finite element or a finite difference scheme [7].
Such an approach, however, is more cumbersome than a
straightforward finite difference solution,

A variational formulation that is explicitly causal has
been published by Gurtin [8]. The functional for the dif-
fusion problems considered here is of the form

Q= J J J(C*C + D+ Cx7C — 2C «C)dr. (6)
Vv

It explicitly contains the initial condition, C,. The time
integration appears in the form of convolutions and inevi-
tably leads to an iterative solution, time-step by time-
step, because the convolution is a function of past values
only. The finite element discretization of the functional,
(6), is also presented in Appendix A. The resulting al-
gorithm analytically reproduces a linear, time-invariant
profile.

In conclusion, this example demonstrates that caution
is necessary when finite element techniques are in-
troduced into new fields. In particular, the existence of a
system of equations for the unknown node parameters
does not ensure the convergence of the approximation to
the true solution.

In passing, it might also be pointed out that, for the
same numbers of spatial elements and time steps, the fi-
nite element method is less accurate than the finite dif-
ference method for calculating impurity profiles over the
ranges of concentrations of interest for predepositions
[9].

Equilibrium carrier distributions in a
semiconductor

The equilibrium condition to be considered is thermostat-
ic equilibrium, defined as the absence of all carrier and
heat fluxes through the semiconductor region under in-

doped
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vestigation. Such conditions are important in understand-
ing the behavior of metal-insulator-semiconductor capaci-
tors and in the investigation of subthreshold character-
istics of insulated gate field effect transistors, to mention
two examples.

In the interest of simplicity, nondegenerate carrier con-
centrations will be considered, so that the Boltzmann ap-
proximation is applicable to the carrier statistics. Then
the electron density n(r), the hole density p(r), the net
concentration of positive impurity ions, N(r) = N;(r)
— N, (r), and the electrostatic potential, ¢(r), are related
by the familiar equations

n = n;exp [ed/(kT)], M
p = n exp [—ed/(kT)], ®)
p=p—n+tN, €
V- (eVg) = —p=en~p—N), (10)

where n, is the intrinsic carrier concentration, a temper-
ature dependent parameter of the material; e is the charge
of the proton; and where N is fixed by the impurity pro-
files in the material. Again, the mathematical description
is in differential form, while the application of the finite
element method requires a variational formulation.

Since the variational principle corresponding to Pois-
son’s equation, Eq. (10), is known as

W= J J j{p(rwr) ~ O[T dr (n
v

it is very tempting to insert Egs. (7) and (8) into (9) and
then (9) into (11). This maneuver results in a functional of
the form

W= J J J{P(d))(b(r) - %e(r)[V(b(r)]Z}dr. (12)

Extremizing with respect to ¢ in turn generates an Euler-
Lagrange equation of the form

Bop/dd + pld) + V- (eVd) = 0, (13)

which deviates from Poisson’s equation, (10), by the term
&(dp/ad), unless either ¢ vanishes or p is not a function
of ¢. Neither of these two conditions is applicable to the
case of an arbitrarily doped semiconductor.
Conceptually, Eq. (12) attempts to describe a system of
fixed charges (the impurity ions) and mobile charges (the
carriers) in a conducting region. However, it is clearly not
possible to maintain a nonzero charge distribution inside
a conductor by means of an electrostatic field and to main-
tain zero current densities at the same time. If a nonzero
charge distribution—with the automatically resultant
electrostatic potential distribution—is to be maintained,
forces other than electrostatic forces must also be pres-
ent. However, the potentials associated with those other
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Figure 2 Energy band picture of a p-n junction in equilibrium.

forces are missing in Egs. (12) and (13). These are the
chemical potentials u ., and u ,, and their introduction
highlights the fact that the problem under consideration is
thermodynamic.

The definitions of the electrostatic and chemical poten-
tial energies are illustrated in Fig. 2, which shows the fa-
miliar energy band picture of a p-n junction in equilibrium.
The formulation becomes simplest when the band center
of the intrinsic semiconductor is chosen as the zero point
of the energy scales.

If one considers that an electrically insulated semicon-
ductor region can exchange heat, but cannot exchange
carriers with its environment, one can conclude that its
state of thermostatic equilibrium is that of minimum
Helmholtz free energy. (The specimen and its environ-
ment will also be at a uniform temperature.) The integral
(12) represents the electrostatic contribution to the free
energy. The derivation of the chemical free energies by
methods of statistical mechanics [10] is shown in Appen-
dix B. The results are

fo, = nlp., — kT), and (14)
S = Plitg, — KT). (15)

Adding these contributions to the integrand of Eq. (12),
considering the definitions of Fig. 2 and Eqgs. (7) and (8),
leads to the free energy density

f=edln exp [, /(kT)] — n exp [ p, /(kT)] + N}
— te(V¢)® + nlp, = kT) exp [p,/(kT)]
+ (e, = KT) exp [,/ (KT)]. (16)

Extremizing the resulting functional with respect to u,
and p, yields the equations

1, €xp [/ (KT] [e/(KT) + o/ (KT) + 1 = 1]
=0, and (17

1, exp [ pton/ KTV — e /T ) + pr/(KT) + 1 = 1]
=0, (18)

from which one confirms at once the equilibrium condi-
tions

e = oy = T Hep: (19)
Extremizing with respect to ¢ results in
efn, exp [ p,,/(kT)] = n; exp [ p,/(KT)] + N}
+ 7 (e7¢) =0, (20)
and, after insertion of the conditions, (19),
eln, exp [ed /(kT)] — n, exp [ed/(kT)] + N}
+V-(eve) =0, Q2D

which is, indeed, Poisson’s equation for doped semicon-
ductor material.

Finally, one can insert the result, (19), into the ex-
pression for the energy density, (16), and realize a sim-
plification of the latter equation to

f= edN — $e(Vd)*
~ nkT{exp [—e¢p/(kT)] + exp [ed/(kT)]}
= epN — be(Jd)® — nkT — pkT. 22)

Equation (22) shows that all the free energy is related to
the electrostatic potential and to the fixed ions, while the
free carriers possess no free energy; their kinetic energies
subtract from the total energy.

Carrier transport in semiconductors
The essence of modeling the electrical behavior of semi-
conductor devices from their physical structure lies in the
determination of the carrier fluxes due to externally ap-
plied potentials. The following considerations will be re-
stricted to stationary operating conditions. In addition,
the temperature will be assumed constant throughout, an
assumption usually made in semiconductor device mod-
eling, although the theory would allow the inclusion of
thermal effects.

The relationships between the forces acting on the car-
riers and the resulting electric current deunsities are given
by the transport equations

§, = —e(D,p + pm,7). and @)
j, = D7 — nm, 7). @4)

D, and D, representing the carrier diffusivities, and m,
and m_ denoting the carrier mobilities. Under the assump-
tion of nondegenerate carrier concentrations, these quan-
tities are related by the Einstein relations

D,/m, =D [m = kT/e. (25)

Using these relations to express the diffusivities in terms
of the mobilities and then factoring out the mobilities and
carrier densities changes the form of Egs. (23) and (24) to
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i, = —pmpv[(kT) In (p/n;) + ed], and 26)
Jy = am J[(kT) In (n/n,) — ed]. 27

The terms in the brackets are recognized as the chemical
and electrostatic potential energies, which combine to the
electrochemical potentials

p, — (KT) In (p/n) + edp = p,, + edp = E_, and (28)
py = KkT)In (n/n) — edp = p,, — ed = E,. (29)

In semiconductor device engineering these quantities are
better known as Imrefs or quasi Fermi levels.

Equations (26) and (27) are in the form of Ohm’s Law.
Associating, for instance, the electron charge with the
first two factors on the right of Eq. (26) leads to the con-
ductivity ¢ = pm /e, which is a transport coefficient and
is a function of the chemical potential through the hole
density p. The remaining quantity is the electromotive
force, —(1/e) - YI(kT) In (p/n) + ed], which is the nega-
tive of the gradient of the electrochemical potential.

The carrier fluxes satisfy the conservation equations

v : jp = e(gl, - 8p/at), and (30)

Vo, = —elg, — an/at), 31

g, and g denoting hole and electron generation rates.
Stationary conditions are defined by the time invariance
of the distributions of the potentials, carrier densities and
ionization levels of the impurities; hence

ap/at = anjot = 0. 32)

The stationary ionization levels prevent transitions into
and out of impurity levels from contributing to the carrier
generation rates, which are thus governed by pair genera-
tion or annihilation only. This leads to

8 = &y (33)

The theory of irreversible thermodynamics postulates
the minimization of the entropy generation rate as the
variational principle that governs carrier transport. This
theory, however, is linearized and only applies as long as
the conductivities and carrier generation rates can be ap-
proximated by the first term in a Taylor expansion about
their values at thermostatic equilibrium. For the carrier
concentrations (contained in the conductivities) this leads
to the approximations

!

P =pyexp [(u,, — M.,/ kT)] = p,, and (34)
1= 1y exp [y, = B/ KT ] = ny, 35)

the index 0 denoting quantities at thermostatic equilibri-
um.

For weak nonequilibrium states, the generation rates
are described well by the expression
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g, = g, = ak(n® — np)/n?
= ak{i — exp [ (@, + )/ (kT)]}, (36)

where the factor ¢ is a material constant; and where the
identity n, p, = n,”has been used. The first-order approxi-
mation amounts to

8, = ga=~ —(a/T)(p, + Men)- 37)

The entropy generation rate per unit volume is com-
posed of products of generalized flux densities and associ-
ated driving forces, all divided by the absolute temper-
ature [11]. The flux densities, in turn, are products of the
transport coefficients with the corresponding driving
forces, so that the density of the entropy generation rate
becomes a quadratic function of the driving forces. The
transport coefficient in Eq. (37) is a/7, and the driving
force is (M T Py

In view of Egs. (26), (27), (34), (35), and (37), the en-
tropy generation rate assumes the form

o= Q) [ [ [ Anm ol + e + nm,/e

X [T pon = ed) + (@/TH e, + o)} (38)

Minimizing with respect to ¢, w,, and u, results in
the equations
0=+ - Relpm, /e, + ed)
= 2e(nym, /) (R, — €d)]

=27 -G, t,) =2V, (39)
0=2a/T)p, + ra) — V- 20pm,/eV (g, + ed)]

= 2eg, — V" Jy) (40)
0=2a/T) pe, + ten) — V - RAagm /)T (1, — ed)]

= 2(eg, = V " dy)- @n

These are the continuity equations for the total current,
for the hole current and for the electron current. It is
worth noting that the conservation laws are more basic
than the transport equations, (23) and (24).

The restrictions introduced with Egs. (34), (35), and
(37) decisively limit the range of validity of the variational
principle. It only applies to operating conditions, where
the chemical potentials deviate by substantially less than
kT from thermostatic equilibrium conditions. This is tan-
tamount to operating voltages of the devices of less than
25 mV, which excludes almost all cases of practical inter-
est.

Irreversible thermodynamics lacks the basis for the for-
mal extension of the variational principle to strong non-
equilibrium, although the concept of minimizing the en-
tropy generation rate itself would not be limited to weak
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Figure Al Finite element with local variables and parameters.

nonequilibrium. Also, diodes, transistors and other semi-
conductor elements respond stably and consistently over
wide ranges of stationary operating conditions; this dem-
onstrates restoring mechanisms governed by a variational
principle. Its formulation, however, will at least require a
formally self-consistent derivation of the carrier mobili-
ties and diffusivities and the generation rate coefficients
from, e.g., a collision model. Until such results become
available, the efficient application of the finite element
method to carrier transport problems in semiconductor
devices will remain in doubt.

In present applications the finite element method is not
used to directly solve carrier transport problems in the
way suggested in this section. Instead, Poisson’s equation
and the carrier continuity equations are solved in se-
quence, in an iterative loop, until self-consistent carrier
and flux distributions are achieved. In this scheme the fi-
nite element method is used to solve the individual partial
differential equations by using a method of residuals, e.g.,
Galerkin’s method.

Summary

Three variational principles related to semiconductor de-
vice modeling by the finite element method have been dis-
cussed in some detail in order to highlight some subtle
points which are crucial to the successful application of
the method. The derivation and evaluation of finite ele-
ment algorithms for the simulation of transient diffusion
processes demonstrate that the mere existence of a set of
equations for calculating unknown node parameters does
not ensure the correctness of the algorithm. Rather, a
proof of the convergence of the approximation to the true
solution must be verified, unless the variational principle
is known to be the correct one beyond any doubt. The
development of a variational formulation of the thermo-
static equilibrium condition in a semiconductor region
points to the danger in extending a known variational
principle by the mere substitution of some of the vari-

ables. The last example shows the limitations inherent in
today’s variational description of transport processes in
semiconductors.

The success of finite element calculations in semicon-
ductor device modeling depends strongly on the care with
which the validity of underlying variational principles is
ensured. The best guidance for this task is provided by
the theories of physics, although contemporary formula-
tions do not appear favorable to the rapid and broadbased
introduction of finite element calculations into semicon-
ductor device modeling schemes. Growing interest in the
finite element method will surely stimulate further prog-
ress in semiconductor theories.
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Appendix A: Finite element discretization for diffusion
problem

Using local variables and node numbers of a rectangular
element, as shown in Fig. Al, and defining the linear in-
terpolation functions as

!

p=(Ax — &)/Ax, ¢ = ¢/Ax, and (Al)

1

r= (At — 7)/At, s = 7/At, (A2)

one obtains the local approximation of the concentration
CE m) = (Cr+ Cys)p + (Cyr + C3)g, (A3)

and similarly C(¢, 7). The integrand, (4), of the second
section for the element is composed of products of the
node parameters and interpolation functions. The in-
tegrals operate only on the interpolation functions, lead-
g to

J plde = J q’dg =2 J pgd¢ = Ax/3, and (A4)
Ax Ax Ax

J d7=2J rd7-=2j sdesj rdr
At At At Af

=3 J sdr =6 J rsdr = At. (AS)
At At

After straightforward algebraic manipulation, one
eventually obtains the partial derivatives with respect to
the node parameters of the elemental contribution (2, to
the functional:
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a0, At The validity test outlined in the second section should

,:,_C1 ~ eAr [2C1 T GG DAt G+ ZC‘*)]’ change these equations into identities, independent of

the value of d, because the choice of the factors Ax and Ar

(A6) should be free. The node parameter values suggested in

20 At 2 the second section change the first six equations into

aC: = oAr {_ch TG Gt G C)]’ identities, with d indeterminate, while the last three equa-

tions lead to the inconsistencies d = —6,d = 1/11 and d

(A7) = —5/12. This demonstrates the failure of the system of

50 Ar p equations, (A12), to model the diffusion process in ques-

vy [Acl + G+ 26,720, — (€ + 2C2)], tion.

3 The integrand (6) in the second section decomposes in-

(A8) to products of the node parameters and interpolation

50 Ar ) funct%ons p and ¢, and cqnvolutions of the interpolation
aCj = eAx [Cl -C,-2C,+2C, —§ DA @2c, + CZ)}. functions r and s. By noting that

(A9) r(At — 1) = s(1), s(Ar ~ 1) = r(7), (A13)

the convolutions are recognized as time integrations over

ing {Ax” = i . .
Letting $Ax"/(DAf) d and translating to the global appropriate products of these functions; e.g.,

system of Fig. 1, one obtains, e.g., by extremizing with

At
respect to the node parameters C, and C, s = J [HA? — )s(r)dr
0=-C, +2C,— C,—4C, + 8C, — 4C, — C,, !
At At
+2C,— C, ~dC, +4C, + C, - C, = J s*(7)dr; lwr = J rdr. (Al14)
0 0
—4C, = €y, and - (A10) The convolutions appearing in the integrand reduce to the
0=-C,+2C, - C,—2C +4C, integrals
—2C,, — d(C, +4C,+ C,). (Al1)

The equations for the unknown parameters C,_, C,, C,,
c, C, C, C, C, and C, are now given by

127 13° 14° 17° 18°

8 -4 0 Q+4d) (d-1) 0 0 o [ ¢

4 8 4 d-1) @Q+4d) @d-1) 0 0 c,

0 —4 8 0 0 Q+4d) 0 0 c,
@-4d) (-1—d) 0 8 4 0 @+d4d) 0 c,
(~1=d) @-4d) (~1-d) -4 8 4 d-1 d-1 c,

0 (—1-d) @-4d) 0 0 8 0 @Q+4d) c,

0 0 0 (@-4d) (-1-d) 0 4 0 c,

0 0 0 (—1-d) @-4d) (-1—d) -2 2 c,

0 0 0 0 (-1-d) Q2-4d) 0 « |l |

— - -

[,

(I+d)@d—2 (1+d) 0 0 4 0 (-d) 0 0 0 c,

0 (+d)@d-2(1+d) 0 0 0 0 0 0 0 ,

0 0 (I+d)@d-2(1+d) 0 4 0 (1-d) 0 0 c,

0 0 0 0 0 (+d) 0 4 0 (1-d) 0 c,

B 0 0 0 0 0 0 0 0 0 0 c,

0 0 0 0 0 0 (1+d) 0 4 0 (1-d) c,

0 0 0 0 0 0 0 (I+d) 0 4 0 c,

0 0 0 0 0 0 0 0 0 0 0 c,

0 0 0 0 0 0 0 0 (1+d) 0 4 c,
(jzo -J

(A12) 165
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J d7=2J rd~r=2J sdfsz rzdfzsj s’
Aot At At At At

4[ ridr =4J s3d7-=6J rsdr
At At At

1

12 J risdr = 12 J rs*dr = At, (A15)
Ar At
while the integrals over Ax lead to the same quantities as
before.
The partial derivatives of the elemental contributions to
the functional ), with respect to the node parameters,
become

002, AtAx
—GF = W—[-—IOC1 -5C,— C,—2C)]
1
DAr?
¥ oar [5G, = 5C, = 3G, +3C) (Al6)
X
00,  ArAx
5C = 8 [—SC1 - 10C, — 2C, - C4]
2
DA¢?
- ay [5G, —5C, - 3G, 43¢ (AID)
30 AtAx
Pl B SRl S P O g o
3
DAf?
- Ty PG 36— G+ ), (A18)
and
a1}, ArAx
o = g 26 -Gt G (]
4
DAf?
*ar BC 73G, -G+ (A19)

Since the convolution integral is a function of past val-
ues of the variables only, the node parameters C, to C,
only depend on the conditions at the nodes 1 to 6 and 10,
and the equations are derived only from the bottom row
of elements in Fig. 1. Letting 3DA7/(2Ax*) = d and trans-
lating to the global system (Fig. 1), one obtains, e.g., by
extremizing with respect to the node parameter C,,

C,+4C, + C, - C, - 4C, - C,
- d (-3C, + 6C, — 3C, — C; + 2C, — C,) = 0. (A20)

This leads to the equations for the unknown parameters
C,, C,and C,,

A spatially linear and time-invariant solution changes
this system of equations into an exact identity, with the
factor d indeterminate. This demonstrates convergence of
the algorithm toward the solutions of the diffusion equa-
tion.

Appendix B: Derivation of the free energy of carriers
in a semiconductor

In deriving thermodynamic potentials of ensembles of
particles, one must be careful to use the correct statistics
and the correct boundary conditions. Equations (7) and

(8),
p=nexp[p,/(kT)] and (B
n=n exp [,/ k7)), (B2)

imply the Boltzmann approximation to the carrier distri-
butions, which means that the carriers are considered as a
quasi-classical gas, maintaining indistinguishability but
disregarding the Pauli exclusion principle. The boundary
conditions of a volume element of the semiconductor al-
low for the free exchange of energy and of carriers, which
means that statistics of the grand canonical ensemble
must be applied.

The Helmholtz free energy of such an ensemble of elec-
trons is given by [12]

£, = (T) In (z) = kT In [Qy(z, v, T)], (B3)

where Q, is the grand partition function, v is the volume
of the element, and the bar denotes the expected value of
the randomly fluctuating density n. The quantity z is the
fugacity, given by

z = exp[u,,/kT)] = i/n,. (B4)
Since 71 can be derived from Q, by
i =za{n [Q,(z, v, T)]}/az, (BS)

knowledge of Q, solves the problem.

The grand partition function Q,, the canonical partition
function Q_, and the single particle partition function Q
are related by

e
¢ |
4+2d) (1-4d 0 C; (1+3d) (4+6d) (1+3d) 0 0 d-1 0 C,
1-d) 4+24) (-4 Cs |= 0 (1+3d) d+6d) (1 +3d) 0 0 0 ¢, (A21)
1 (1-d 4+2d) C, 0 0 (1+3) @+6d) 1+3d) 0 (d-1 C,
CH
[ Coo_
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Qfz,v,T)= > z"Q,(v,T) and (B6)
Q.,(v. T) = Q"(v, T)/(n}), (B7)

and, for completeness, Q is given by
. 3
Q= v(\/ 27kaT/h) = v/\3 (BY)

Ap, being the de Broglie wavelength of a particle with
thermal velocity.
The grand partition function is obtained as

w0

Oz, v, Ty = > z"Q"/(n") = exp (z0), (BY)

0

which, in view of Eq. (BS), leads to

A= 2Q = [o/\3,] exp [ pe,/(KT)). (B10)
Comparison with Eq. (B4) further yields

Q= n, (B11)
Finally, inserting Egs. (B9) and (B4) into (B3) yields

Jon = ey — AKT, (B12)
and by implication

fow = Pt — PKT. (B13)

Recognizing that carrier densities are specified as ex-
pected values, we can omit the bar to obtain Eqgs. (14) and
(15).
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