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Introduction 
The finite element method has been widely and  success- 
fully used  for  quite  some time for  the  analysis of heat 
transfer, mechanical  deformation and similar phenomena; 
but to date, little has been published on its  application in 
the modeling of semiconductor  device behavior, although 
it would seem predestined for this purpose. References 
[I-31 are  characteristic of the work in this area that has 
been published to date. This state of affairs may  be due, in 
part, to the  natural  inertia which the  introduction of new 
techniques  into  any field  must overcome. A closer  look, 
however,  reveals some more basic obstacles. 

The  extensive  theories of semiconductor technology 
are almost  exclusively cast in differential formulations, 
which lend themselves most readily to numerical calcu- 
lations by means of finite difference schemes. By con- 
trast, the finite element method is preferably based on 
variational  descriptions of the  phenomena to be modeled. 
or on mathematical  approximation  methods involving the 
minimization of errors, such as Rayleigh-Ritz or Galerkin 
schemes. In most  applications, it is a numerical technique 
for extremizing a functional. To this end the region over 
which the functional is defined, e.g.,  a large rectangle, is 
subdivided  into  subregions of simple geometric shape, 
e.g., small rectangles. These  are called finite elements. 
Within each finite element the argument  function of the 
functional is approximated by a simple function,  e.g..  a 
low order polynomial. The coefficients of this inter- 
polation function are chosen  such that the  approximation, 
and  perhaps some of its derivatives,  are continuous 
across  the boundaries of the finite elements. In the  case of 
the rectangle, one may use a product of linear  inter- 
polation functions such that the approximation along each 

edge is a linear  interpolation  between the values at  the 
adjacent vertices. This  leads to continuity across the 
boundaries of the elements  for  the  approximation, but not 
for its derivatives.  Next, the  contribution of each  element 
to the  functional is determined formally by integrating 
over the finite element, using the  approximation.  For a 
linear or linearized problem,  the result is quadratic in the 
values of the  argument  function at particular  points of the 
finite element,  e.g.,  the vertices of the  rectangular ele- 
ments.  Let these points be named nodes. As the  contribu- 
tions of  all elements  are summed, the value of the func- 
tional is obtained  formally, as  a function of all node val- 
ues of the  approximated  argument  function. The 
functional can now be extremized formally by setting  its 
partial derivatives with respect to each  node value equal 
to zero. This leads to a system of coupled  equations. In 
essence,  the finite element method is a collection of struc- 
tured, algorithmic techniques  for  performing  the steps 
just described. 

Variational formulations are rare in semiconductor de- 
vice theory. Short of developing the  formulations from 
principles of physics, investigators are forced  either to 
develop Rayleigh-Ritz or Galerkin schemes  or to adapt 
formulations from related fields. The  latter  approach, al- 
though sometimes favored or recommended in the  litera- 
ture [4], is often treacherous. 

This  contribution  reviews  some of the variational prin- 
ciples  applicable to semiconductor device modeling, to- 
gether with others that seem to be useful, but are not. A 
variational formulation of transient diffusion processes 
that does not produce valid results  and a similar, not very 
widely known formulation  that can solve such probtems 
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Figure 1 Space-time  lattice for finite  element  solution of one- 
dimensional  diffusion  problem. 

are outlined in the second section, which also  demon- 
strates  the subtlety of the differences in the two finite ele- 
ment discretizations.  The third section is devoted to the 
development of a variational principle describing  the state 
of thermostatic equilibrium in a region of arbitrarily 
doped semiconductor material.  This  example highlights 
the  fact  that a seemingly straightforward  argument can 
easily lead to an erroneous formulation. The last section 
presents  a variational  description of current flow condi- 
tions in a  semiconductor region and points out the  strin- 
gent limitations of that  formulation. 

Transient diffusion problems 
With few exceptions,  the impurity profiles forming planar 
semiconductor  devices are fabricated by diffusion proc- 
esses. Predeposition diffusions are typically controlled by 
boundary  conditions of a  constant impurity concentration 
over parts of the  boundary  surface and a vanishing impu- 
rity flux over  the remainder of the  boundary surface. 
Drive-in diffusions typically evolve from an initial profile 
and  boundary  conditions of vanishing flux. Neither proc- 
ess involves  explicit sources. 

Mathematically the impurity profiles are described by 
solutions of the diffusion equation 

DVZC(r ,   t )  - dC(r, t ) /at  = 0, (1) 

with initial and  boundary  conditions 

C(r ,  0) = C&), (2) 

where D and C respectively denote diffusivity and impu- 
rity concentration; rs, and rs2 define mutually exclusive 
regions on the boundary surface; and where d C / d n  de- 
notes the directed  derivative normal to and evaluated  at 
the surface. 

In order to apply the finite element  method to the  calcu- 
lation of such  impurity profiles, it is desired to describe 

the diffusion process in terms of a variational  principle. In  
searching  the literature, one is easily led toward a canoni- 
cal Hamiltonian formulation [5] and a technique for finite 
element  discretization [6]. The  canonical  functional is in 
the form 

where V denotes  the volume under consideration. 
Extremizing Eq. (4) with respect to c reproduces  Eq. 

( I ) ,  with an added  source term S(r, t ) ,  and extremizing 
with respect to C leads to 

Do'C + ac /d t  = S ( r ,   t ) ,  ( 5 )  

which is called the adjoint  equation to (1). with adjoint 
variables c and 3. A finite element algorithm can be de- 
rived from Eq. (4), extremized with respect to c, by stan- 
dard  techniques. 

Nothing is lost for the  thoughts to be  developed if at- 
tention is focused on a one-dimensional and linear ex- 
ample. To be specific,  consider a plate of semiconductor 
of thickness L ,  with the impurity concentrations fixed at 
both surfaces, and with the diffusion process starting at 
t = 0. Using four length elements  and  three time steps 
leads to rectangular  elements and to  the space-time  lattice 
illustrated in Fig. 1 .  

The  functional,  Eq. (4), now reduces  to  a double  in- 
tegral with limits 0, L and 0, t,, respectively.  Extremizing 
its finite element  approximation, with respect to those 
node parameters which are not fixed  by initial or bound- 
ary conditions,  generates  a system of linear equations  for 
those parameters.  The equations for  the parameters  at  the 
nodes  7. 8, 9, 12,  13, 14, 17, 18, and 19  of Fig. 1 are  de- 
rived in Appendix A. All equations are coupled. 

On the other  hand,  the physics of the diffusion process 
under  consideration  suggests an iterative  solution: The 
parameters  at  the  nodes 7 ,  8, and 9 must be independent 
of the future conditions  at the nodes 1 1  to 20. This con- 
tradiction with the  above system of equations  arouses 
suspicion. 

The validity of the  equations can be  tested with a spa- 
tially linear.  time-invariant impurity profile. Since  the lin- 
ear interpolation functions used exactly  represent  such a 
profile, the equations must analytically reproduce the 
profile. Consequently, inserting  such a solution into  the 
equations,  e.g., using the values 1,  2 ,  3 , 4 ,  and 5 ,  respec- 
tively, at the  nodes of the first, second,  third,  fourth, and 
fifth columns in Fig. 1 ,  must convert the  equations into 
identities.  One  finds,  however,  that  the equations  for  the 
nodes 17, 18, and 19 fail this test; hence,  the finite element 
formulation does not properly model the diffusion 
process. 
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The reason for this  failure is buried in the canonical 
formulation of the variational  principle. The functional (4) 
could, in principle,  be  used to calculate the  sources which 
would have  to be  applied to  the surfaces of the  plate in 
order  to evolve from a given initial impurity profile to a 
specified final profile at the  time t,. Indeed,  the finite ele- 
ment  approximation will yield a system of equations 
which solves  such problems. But, since the physical dif- 
fusion processes  are  causal, they strongly restrict the va- 
riety of final profiles that can be  reached  from a given 
initial profile under  the influence of physical sources.  The 
canonical formulation, (4), removes these restrictions by 
virtue of the inclusion of the adjoint variables, which sat- 
isfy the noncausal, nonphysical equation, ( 3 ,  thereby 
rendering  the  formulation  useless for solving real dif- 
fusion  problems. 

It is possible to apply  the finite element method to the 
spatial  domain only. This  results in a  system of ordinary 
differential equations in time which, in turn, can  be solved 
by either a finite element or a finite difference scheme [7]. 
Such an approach,  however, is more cumbersome than  a 
straightforward finite difference solution. 

A  variational  formulation  that is explicitly causal has 
been published by Gurtin [SI. The functional for the dif- 
fusion problems  considered  here is of the form 

It explicitly contains the initial condition, C,,. The time 
integration appears in the form of convolutions and inevi- 
tably  leads to an iterative  solution,  time-step by time- 
step, because the convolution is a function of past values 
only. The finite element  discretization of the functional, 
(6), is also presented in Appendix A. The resulting al- 
gorithm analytically  reproduces  a linear, time-invariant 
profile. 

In conclusion, this  example demonstrates that caution 
is necessary when finite element  techniques are in- 
troduced into new fields. In particular,  the existence of a 
system of equations  for the unknown node parameters 
does not ensure  the convergence of the approximation to 
the  true solution. 

In passing, it might also be  pointed out that,  for the 
same numbers of spatial  elements  and  time steps, the fi- 
nite element  method is less accurate than  the finite dif- 
ference method for calculating impurity profiles over  the 
ranges of concentrations of interest for predepositions 
~91. 

Equilibrium carrier distributions in a doped 
semiconductor 
The equilibrium condition to be considered is thermostat- 
ic equilibrium, defined as the absence of all carrier and 
heat fluxes through the semiconductor region under in- 
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vestigation. Such conditions are important in understand- 
ing the behavior of metal-insulator-semiconductor  capaci- 
tors and in the investigation of subthreshold character- 
istics of insulated gate field effect transistors, to mention 
two  examples. 

In the  interest of simplicity,  nondegenerate  carrier  con- 
centrations will be considered, so that  the Boltzmann  ap- 
proximation is applicable to the  carrier statistics. Then 
the  electron  density n(r), the hole density p(r), the net 
concentration of positive impurity ions, N(r) = NL(r) 
- Ni(r ) ,  and the  electrostatic potential, +(r), are related 
by the  familiar equations 

n = ni  exp [e4/(kT)1, (7) 

P = ni exp [ - e + / ( k T ) I ,  (8) 

p = p - n + N ,  (9) 

v . (€04) = -p  = e(n - p - N ) ,  (10) 

where n i  is the  intrinsic carrier  concentration, a  temper- 
ature  dependent  parameter of the material; e is the charge 
of the proton;  and  where N is  fixed  by the impurity pro- 
files in the material. Again, the  mathematical  description 
is in differential form, while the  application of the finite 
element method requires a variational formulation. 

Since  the  variational principle corresponding to Pois- 
son’s equation,  Eq. ( IO) ,  is known as 

w = 

it  is very tempting to insert Eqs. (7) and (8) into (9) and 
then (9) into ( 1  1). This maneuver  results in a  functional of 
the form 

w = [ 1 I;p(+)+(r) - M - ) [ ~ + W I ~ W .  (12) 

Extremizing with respect to 4 in turn generates an Euler- 
Lagrange  equation of the form 

[ [/p(r)+(r) - M ) [ ~ + ( ~ ) I ~ M ~  

+ d P l d 4  + P ( 4 )  + v . ( E W )  = 0 ,  (13) 

which deviates from Poisson’s equation, ( I O ) ,  by the  term 
+(dp/d+). unless either 4 vanishes or p is not a  function 
of 4. Neither of these  two conditions is applicable to the 
case of an arbitrarily doped  semiconductor. 

Conceptually, Eq. (12) attempts  to  describe a system of 
fixed charges (the impurity ions)  and mobile charges (the 
carriers) in a  conducting region. However, it is clearly not 
possible to maintain a nonzero charge  distribution inside 
a  conductor by means of an electrostatic field and to main- 
tain zero  current densities  at the same time. If a  nonzero 
charge distribution-with the  automatically  resultant 
electrostatic potential distribution-is to be  maintained, 
forces  other than electrostatic  forces must also be pres- 
ent.  However,  the potentials  associated with those  other 16 



Figure 2 Energy band picture of a p-n junction in equilibrium. 

forces  are missing in Eqs. (12) and (13). These  are the 
chemical potentials pc,> and pen, and their introduction 
highlights the fact  that the problem under consideration is 
thermodynamic. 

The definitions of the  electrostatic and chemical poten- 
tial energies are illustrated in Fig. 2 ,  which shows the  fa- 
miliar energy band picture of a p-n junction in equilibrium. 
The formulation becomes simplest when the band center 
of the  intrinsic semiconductor is chosen as the zero point 
of the energy scales. 

If one considers that an electrically insulated  semicon- 
ductor region can  exchange heat, but cannot exchange 
carriers with its environment, one can conclude that i t s  
state of thermostatic equilibrium is that of minimum 
Helmholtz  free energy, (The  specimen and its  environ- 
ment will also  be  at  a uniform temperature.)  The integral 
(12) represents  the  electrostatic contribution to the free 
energy. The derivation of the chemical free energies by 
methods of statistical  mechanics [lo] is shown in Appen- 
dix B. The results are 

f' = n (  pCn - k T ) ,  and (14) . cn 

tiI, = P(Pcp - k T ) .  (15) 

Adding these  contributions to the  integrand of Eq. (12), 
considering  the definitions of Fig. 2 and Eqs. (7) and (X), 
leads to the free energy  density 

J' = M z i  exp C p c I , / ( k T ) l  - n, exp [ p C n / ( k T  1 1  + N 1 
- BE(V4i2 + ni( p e p  - k T )  exp [ P c J ( k T i l  

+ ni( pen - k T )  exp [ pJ(k7'11. (16) 

Extremizing the resulting  functional with respect to p,, 

and pc , ,  yields the equations 

ni exp [pcL , , / (kT) l  [c+l(kT) + pc , , / (kT i  + I - 11 
= 0, and (17) 

ni exp [ p c n / ( k T ) 1 [ - e 4 / ( k ~ )  + p c n / ( k T )  + 1 - 11 
162 = 0, (18) 

from which one confirms  at once  the equilibrium condi- 
tions 

4 = p c n  = - p e p .  (19) 

Extremizing with respect  to 4 results in 

4 n ,  exp [ pLCp/ (kT)1  - n, exp [ pCn/ (kT)1  + N } 

+ v ' (EV4) = 0, (20) 

and,  after insertion of the conditions, (19), 

e{ni exp [ - q b / ( k T ) ]  - ni exp [ e + / ( k T ) ]  + N }  

+ v ' (674) = 0, (21) 

which is,  indeed, Poisson's  equation for doped  semicon- 
ductor material. 

Finally, one can insert  the result, (19) ,  into the  ex- 
pression for the  energy density, (16), and realize a sim- 
plification of the latter equation to 

J'= &N - f E ( o + ) '  

- n,kT{ exp [ - e + / ( k T i ]  + exp [ ed ) / (kT) l l  

= e+N ~ iE(v4l2 - nkT - pkT.  (22) 

Equation (22) shows that all the free energy is related to 
the electrostatic potential  and to  the fixed ions. while the 
free  carriers  possess  no  free  energy;  their kinetic  energies 
subtract from the  total  energy. 

Carrier transport in semiconductors 
The  essence of modeling the  electrical  behavior of semi- 
conductor  devices from their physical structure lies in  the 
determihation of the  carrier fluxes due  to externally  ap- 
plied potentials. The following considerations will be  re- 
stricted to  stationary operating conditions. In addition, 
the temperature will be  assumed constant  throughout, an 
assumption usually made in semiconductor device mod- 
eling, although the  theory would allow the inclusion of 
thermal  effects. 

The relationships  between  the forces acting on the car- 
riers and the  resulting  electric current densities are given 
by the transport  equations 

jp = -e(D,Vp + pmpV4), and ( 2 3 )  

.in = e(DnVn - n m n V 4 ) ,  (24) 

DL, and D, representing the  carrier diffusivities, and mp  
and m, denoting the  carrier mobilities. Under  the  assump- 
tion of nondegenerate  carrier  concentrations,  these  quan- 
tities are related by the Einstein relations 

D,,/rnp = Dn/mn = k T / r .  (25) 

Using these relations to  express  the diffusivities in terms 
of the mobilities and  then  factoring  out the mobilities and 
carrier  densities changes  the form of Eqs. ( 2 3 )  and (24) to 
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j,, = -pm, ,v[ (kT)  In (pin,) + 4 1 ,  and (26) 

jn = n m n v [ ( k T )  In ( n l n , )  - e4] .  (27) 

The  terms in the  brackets  are recognized as  the chemical 
and electrostatic potential  energies, which combine to the 
electrochemical  potentials 

p,, - ( k T )  I n  (pin,) + e4  = p,,, + e+ = EfP, and (28) 

p, = ( k T )  In ( n l n , )  - e4  = pLcn - e4 = E,. (29) 

In semiconductor device engineering these  quantities are 
better known as Imrefs or quasi Fermi  levels. 

Equations (26) and (27) are in the form of Ohm's  Law. 
Associating, for  instance, the  electron  charge with the 
first two factors on the right of Eq. (26) leads to the  con- 
ductivity u = pm,/e, which is a transport coefficient and 
is a function of the chemical potential  through the hole 
density p .  The remaining quantity is the  electromotive 
force, - ( I / (> )  . v [ ( k T )  In (pin,) + e $ ] ,  which  is the nega- 
tive of the  gradient of the electrochemical  potential. 

The  carrier fluxes satisfy the  conservation equations 

v . jp = 4gl ,  - ap/at), and (30) 

v . j, = -e(g, - dn /d t ) ,  (31) 

g,, and g,, denoting hole and electron  generation rates. 
Stationary  conditions are defined by the time invariance 
of the  distributions of the potentials, carrier densities  and 
ionization levels of the  impurities;  hence 

ap/a t  = an/at = 0. (32) 

The stationary ionization levels prevent  transitions into 
and out of impurity levels from contributing to  the carrier 
generation rates, which are  thus governed by pair genera- 
tion or annihilation only. This  leads to 

g,, = s,. (33) 

The theory of irreversible  thermodynamics  postulates 
the minimization of the entropy  generation  rate as the 
variational principle that governs carrier  transport. This 
theory,  however, is linearized and  only  applies  as long as 
the conductivities  and  carrier  generation rates can be ap- 
proximated by the first term in a Taylor expansion  about 
their  values  at thermostatic equilibrium. For the carrier 
concentrations (contained in the conductivities)  this  leads 

g, ,  = g, = ak(ni2 - np) /n i2  

= akIi - exp [ (PC"  + Pcn)/(kT)l) '  (36) 

where the  factor a is a material constant;  and where  the 
identity n,p,, = q2has  been used.  The first-order  approxi- 
mation amounts  to 

gP = g, = - ( a / T ) ( p c n  + PC"). (37) 

The entropy  generation rate per unit volume is com- 
posed of products of generalized flux densities  and  associ- 
ated driving forces, all divided by the  absolute temper- 
ature [ 1 11. The flux densities, in turn,  are products of the 
transport coefficiehts with the corresponding driving 
forces, so that the density of the  entropy generation rate 
becomes  a quadratic function of the driving forces.  The 
transport coefficient in  Eq. (37)  is a / T ,  and the driving 
force is - (  pCP + p,,). 

In view of Eqs. (26), (271,  (341,  (351, and (371, the en- 
tropy  generation  rate assumes  the  form 

R, = ( 1 / ~ )  1 j' lv{ (pnml , /c~[~(  PC,, + ('413' + (nom,/') 

x [v( pen - @)I2 + @/TI(  PCP + PJMr .  (38) 

Minimizing with respect to 4 ,  pCp and pCn results in 
the equations 

0 = v ' [ 2 4  p,m,,/e)v( + 4 )  

- 24n,mn/e)v(pen - e$)] 

= 2 v  . (j,, + jn) = 2v . j, (39) 

0 = 2 ( a / T ) (  PCP + Elcn) ~ v . [ a  P,mll /4v(  E",,, + 4 ) l  
= 2(egl, ~ v . .&I, (40) 

0 = 2(a/T)( pel, + pen) - v . [2(nnq,/e)v( P,. - &)I 
= 2(eg, - v . j,). (41) 

These  are the  continuity  equations for  the total current, 
for the hole current and  for the electron current. I t  is 
worth noting that  the conservation  laws are more basic 
than the transport  equations, (23) and (24). 

The  restrictions  introduced with Eqs. (34), (39 ,  and 
(37) decisively limit the range of validity of the variational 
principle. I t  only  applies to operating  conditions,  where 

to the approximations the chemical potentials  deviate by substantially  less than 
kT from thermostatic equilibrium conditions. This is tan- 

P = P ,  exp [(P.,.,, - pC1,J/(kT)I = po ,  and (34) tamount to operating voltages of the devices of less  than 
25 mV, which excludes almost all cases of practical  inter- 
est. 

the index 0 denoting  quantities at thermostatic equilibri- Irreversible  thermodynamics  lacks  the  basis  for the  for- 
um. mal extension of the variational principle to strong non- 

For weak nonequilibrium states,  the generation  rates equilibrium,  although the concept of minimizing the  en- 
are described well by the expression tropy generation rate itself would not be limited to weak 163 

n = n,, exp [ ( P C ,  - PC"")/(kT)I = n,, ( 3 5 )  
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Figure A1 Finite  element with local  variables  and parameters. 

nonequilibrium. Also,  diodes,  transistors and other semi- 
conductor  elements respond  stably  and  consistently over 
wide ranges of stationary operating conditions; this dem- 
onstrates restoring  mechanisms  governed by a variational 
principle. Its  formulation,  however, will at  least  require a 
formally self-consistent  derivation of the carrier mobili- 
ties  and diffusivities and the generation rate coefficients 
from,  e.g., a collision model. Until such  results  become 
available, the efficient application of the finite element 
method to carrier  transport problems in semiconductor 
devices will remain in doubt. 

In present  applications the finite element method is not 
used to directly solve  carrier  transport problems in the 
way suggested in this  section. Instead, Poisson's  equation 
and the carrier continuity  equations are solved in se- 
quence, in an iterative loop, until self-consistent carrier 
and flux distributions are achieved. In this scheme  the fi- 
nite element  method is used to solve the individual partial 
differential equations by using a method of residuals, e.g., 
Galerkin's method. 

Summary 
Three variational  principles related to  semiconductor de- 
vice modeling by the finite element  method  have been dis- 
cussed in some detail in order to highlight some subtle 
points which are crucial to the  successful  application of 
the method. The derivation and evaluation of finite ele- 
ment algorithms for  the simulation of transient diffusion 
processes demonstrate  that the  mere existence of a set of 
equations for calculating unknown node parameters  does 
not ensure  the  correctness of the algorithm. Rather, a 
proof of the convergence of the approximation to the true 
solution must be verified, unless the  variational principle 
is known to be the  correct  one beyond  any doubt.  The 
development of a  variational  formulation of the  thermo- 
static equilibrium condition in a semiconductor region 
points to  the  danger in extending  a  known  variational 
principle by the mere  substitution of some of the vari- 

ables. The last example shows the limitations  inherent in 
today's  variational  description of transport  processes in 
semiconductors. 

The  success of finite element  calculations in semicon- 
ductor device modeling depends strongly on the  care with 
which the validity of underlying variational  principles is 
ensured.  The best  guidance for this  task is provided by 
the theories of physics, although contemporary formula- 
tions do not appear  favorable to the rapid and  broadbased 
introduction of finite element  calculations  into  semicon- 
ductor device modeling schemes.  Growing  interest in the 
finite element method will surely stimulate further prog- 
ress in semiconductor theories. 
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Appendix  A: Finite  element  discretization for diffusion 
problem 
Using local variables  and  node numbers of a  rectangular 
element,  as shown in Fig. AI, and defining the  linear in- 
terpolation functions  as 

p = (Ax - [)/Ax, q = [/Ax, and  (AI) 

one  obtains  the local approximation of the concentration 

and similarly C((, 7). The integrand,  (4), of the second 
section for  the element is composed of products of the 
node parameters and interpolation functions.  The in- 
tegrals operate only on the interpolation functions, lead- 
ing to 

After straightforward  algebraic  manipulation, one 
eventually obtains  the partial derivatives with respect to 
the  node parameters of the elemental  contribution Re to 
the functional: 
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(A91 

Letting $A.r'/(DA?) = d and translating to  the global 
system of Fig. 1, one  obtains,  e.g., by extremizing with 
respect to  the node  parameters C, and C,,, 

0 = -C, + 2C, - C, - 4C,; + 8C, - 4C, - C,, 

+ 2c,, - c,, -d(C, + 4c, + c:, - c,, 
- 4C,, - C,,), and ('410) 

0 = -c,, + 2c1, - c,;, - 2c,,; + 4c,,  

- x, ,  - d(C,, + 4c,, + C,:J. (AI 1) 

The  equations for the unknown parameters C,, C,, C,, 
C,,, C,,, C,,, C,,, C,,, and C,, are now given by 

The validity test  outlined in the second  section should 
change these  equations into identities,  independent of 
the value of d ,  because the  choice of the factors Ax and A? 
should be free.  The node  parameter  values suggested in 
the  second  section  change the first six equations into 
identities, with d indeterminate, while the last  three  equa- 
tions lead to  the inconsistencies d = -6, d = 1 / 1 1  and d 
= -5/12. This demonstrates the  failure of the  system of 
equations, (A12), to model the diffusion process in ques- 
tion. 

The integrand (6) in the second  section decomposes in- 
to products of the  node  parameters  and  interpolation 
functions p and q ,  and  convolutions of the  interpolation 
functions r and s. By noting that 

v(At - T )  = s ( T ) ,  s(At - T )  = r(T). (A131 

the  convolutions are recognized as time integrations over 
appropriate products of these functions;  e.g., 

r*s = [r(At - T)S(T)~T r 
AI AI 

= 1,) s ' ( 7 ) d ~ ;  I*r = [, rdT. (A 14) 

The  convolutions  appearing in the  integrand  reduce to the 
integrals 

- 
8 

-4 
0 

(2 - 4d)  
( - 1  - d )  

0 
0 
0 
0 - 

-4 
8 

-4 
( - 1  - d )  
(2 - 4d)  

( - 1  - d )  
0 
0 
0 

0 
-4 
8 
0 

( - 1  - d )  
(2 - 4d)  

0 
0 
0 

(2 + 4d)  
(d - 1) 

0 
8 

-4 
0 

(2 - 4d) 
( - I  - d )  

0 

(d  - 1) 
( 2  + 4d)  

0 
-4 

x 
0 

( - 1  - d )  
(2 - 4d)  

( " I  - d )  

0 
(d  - 1) 

(2  + 4d)  
0 

-4 
8 
0 

( - 1  - d )  
(2 - 4d)  

0 
0 
0 

(2 + 4d)  
( d  - 1) 

0 
4 

-2  
0 

0 
0 
0 
0 

(d - 1) 
(2 + 4d)  

0 
-2 

4 

( I  + d )  (4d - 2) ( 1  + d )  0 0 4 0 ( I - d )  0 0 0 

0 0 ( I  + d )  (4d - 2) ( 1  + d )  0 4 0 ( 1  - d )  0 0 
0 0 0 0 0 ( I  + d )  0 4 0 ( I  - d )  0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 ( I  + d )  0 4 0 ( 1  - d )  
0 0 0 0 0 0 0 ( l + d )  0 4 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 ( I + d )  0 4 

0 ( 1  + d )  (4d- 2 )  (1  + d )  0 0 0 0 0 0 0 
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jA, dr = 2 IA, rdr = 2 IA, sdr = 3 r2dr = 3 lA, s2dr A spatially linear  and  time-invariant  solution  changes 

factor d indeterminate. This demonstrates convergence of 
r3dr = 4 s3dr = 6 IA, rsdr the algorithm toward  the solutions of the diffusion equa- 

tion. 

lAt this system of equations into an exact  identity, with the 

= i,, 

= l 2  I,, lAt r2sd7 = 12 rs'dr = At ,  (AIS) 

while the integrals over Ax lead to  the  same quantities as 
before. 

The partial derivatives of the elemental  contributions to 
the functional . R e ,  with respect to  the node parameters, 
become 

ane At& 

dC1 
"~ - 

18 
[ - IOC, - 5c, - c, - 2C,] 

Appendix B: Derivation of the free energy of carriers 
in  a semiconductor 
In  deriving thermodynamic  potentials of ensembles of 
particles,  one must be careful to use  the correct  statistics 
and the correct boundary  conditions. Equations (7)  and 
(81, 

P = ni exp [P,,/(kT)I and  (B1) 

n = n, exp [p, , , /(kT)I,  (B21 

DAt imply the Boltzmann  approximation to the carrier distri- 
I ~ A X  ["I - "2 - 3C3 + 3c411 butions, which means that  the carriers  are considered as a 

quasi-classical gas, maintaining indistinguishability but 

+-  

ai2 AtAx e- - [ -5c, - IOC, - 2c, - C,] disregarding  the Pauli exclusion principle. The boundary 
ac, 18 conditions of a  volume  element of the  semiconductor al- 

DAt 
12Ax 

low for the free exchange of energy and of carriers, which 
[5c, - 5c2 - 3C, + 3c,], (A171 means  that statistics of the  grand  canonical  ensemble 

must be  applied. 

" 

2c, + 2c, + C,] 
The Helmholtz free energy of such an ensemble of elec- 

trons is given by [ 121 

DAt -- ti,, = ( i k T )  In ( z )  - kT In [Q&, u ,  T I ] ,  033) 
I2Ax where Q, is the  grand partition function, u is the volume 

and of the  element, and the  bar  denotes the expected value of 

an, AtAx the randomly fluctuating  density n. The quantity z is the 

(A  18) [3C, - 3C, - c, + C,], 

"- - 

ac4 

[-2c, - C, + c, + 2C,] 
18 fugacity, given by 

DAt 
12Ax (*I9) Since f i  can be  derived from Q, by 

z = exp [ w , , / ( k T ) ]  = f i / n , .  
+- [3C, - 3c, - c, + C,]. 

Since the convolution integral is a  function of past val- 
ues of the variables only,  the node parameters C, to C, 
only depend on the conditions at the  nodes 1 to 6 and IO, knowledge of e, solves  the Problem. 
and the  equations  are derived only from the bottom row The grand partition  function Q,, the canonical partition 
of elements in Fig. 1. Letting 3DAt/(2Ax2) = d and trans- function Qc,  and the single particle  partition  function Q 
lating to the global system (Fig. I ) ,  one  obtains,  e.g., by are related by 
extremizing with respect to the  node parameter C,, 

f i  = z a I h  [ e & ,  u ,  T ) l } l d z ,  (B5) 

c, + 4c, + c, - c, - 4c, - c, 
- d (-3C, + 6C, - 3C, - C, + 2C, - C,) = 0. (A20) 

This  leads to  the  equations  for the  unknown parameters 
C,, C,, and C,, 

( 4 + 2 4  ( 1  -4 0 ( 1 + 3 4  ( 4 + 6 4  ( I + 3 d )  0 0 ( d - I )  0 f] [ (1-4 ( 4 + 2 4  ( l - 4 ] [  :!I=[ 0 ( I  + 3 4  ( 4 + 6 4  (1+34 0 0 0 (A2 1) 
I (1 -4  ( 4 + 2 4  0 0 ( 1  + 3 4  (4 + 6 4  ( 1  + 3 4  0 (d  - 1) c, 

cti 
C," 
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A,, being the  de Broglie wavelength of a particle with 
thermal  velocity. 

The grand  partition  function is obtained as 

r 

Q&, v ,  T )  = 2 z “ Q ” l ( n 9  = exp (zQ), 039) 

which, in view of Eq. (BS), leads to 

0 

and by implication 

Recognizing that  carrier densities are specified as ex- 
pected values, we can omit the  bar to obtain Eqs. (14) and 
(15). 
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