
J. M. Lafuente
D. Gries

Language Facilities for Programming User-Computer
Dialogues

Abstract: Extensions to PASCAL that provide for programming man-computer dialogues are proposed. An interactive application pro-
gram is viewed as a sequence offrarnes, representing stages of dialogue activity, and separate computational steps. First, extensions are
presented to allow the description of the items of information contained in each frame. Second, PASCAL is extended to allow the inclusion
of behavior rules for a frame to specify the interactive dialogue. The behavior rules are specified nonprocedurally. Previously, program-
ming such dialogues has required the specification of all possible interactions and their effects in a procedural fashion.

1. Introduction
Typical applications of interactive user-computer dia-
logue systems include the collection of business data (key
data entry), question-answering sessions typified by com-
puter-aided instruction (CAI) systems, and interactive
data base systems, such as may be used in banks or air-
line reservation systems. These systems can be charac-
terized as follows:

1. The system is in a state (often called a frame in CAI
systems [e.g., 1, 21) in which text is displayed to the
user, and the user answers questions, pushes buttons,
or types in values. The system monitors the user input
for validity and consistency and asks the user to sup-
ply additional values if necessary. This process may
cause changes in the format and content of the text
being displayed, but, basically, the system is in one
state or frame.

2 . After values have been satisfactorily keyed in, the sys-
tem performs some computations based on these val-
ues. It then selects another (or the same) frame and
returns to step 1 to resume the dialogue in the new
frame.

Previously, such systems have been implemented in as-
sembly language or in FORTRAN or other high level lan-
guages. Some work has been done to make languages
more amenable to programming dialogue systems. For
example, some have considered attention-handling [3, 41
constructs such as

ON LIGHTPEN DETECT THEN GO TO LABEL]; and
IF KEY 5 THEN CALL KPROGS;

while others [5, 61 have suggested state diagrams for de-
scribing and restricting interactions. Most of the tech-
niques used in the design and implementation of such dia-
logues have been adequately summarized by Martin [7].

However, the design and implementation of such dia-
logues is still a long, arduous task, partly because the pro-
grammer must describe everything-how text is to be dis-
played, how user inputs are to be monitored, etc.-in a
procedural fashion. For example, if there are restrictions
on the combinations of two input values required from the
user, then the test for these restrictions must be pro-
grammed as a sequence of procedural statements.

In this paper, we propose extensions to the program-
ming language PASCAL [8,9] that are designed to ease the
description of interactive dialogues. First, we provide for
the description of the layout of information to be dis-
played for a frame, in a device-independent manner. This
means providing for a description of the logical units of
information-the items-that may appear on the display
screen. Essentially, an item is a PASCAL variable with
some additional characteristics, such as the position on
the screen, the text, the format of values that the item can
have, whether or not the value can be modified by the
user, and so forth. Our notation also provides for group-
ing items into logical units called subframes, which can be
used in more than one frame.

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) theJournaf reference and IBM copyright notice are included on the first page. The title and
abstract may be used without further permission in computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor. 145

I. M. LAFUENTE AND D. GRIES IBM J. RES. 1 3EVELOP. 0 VOL. 22 NO. 2 MAR 1978

BANK OF NEW YORK

NEW ACCOUNT

Enter information. Hit ENTER when done.
NAME :
SEL. SERVICE NO.: SEX: “MALE

NO. CHILDREN:
SALARY:
SPOUSE‘S SALARY:

*FEMALE

STATUS: *SINGLE
*MARRIED

Figure 1 A typical frame.

Second, we extend PASCAL to allow the inclusion of be-
havior rules for a frame, which are, essentially, the speci-
fications of the interactive dialogue. A behavior rule is
either a Boolean expression that describes a constraint on
items and their values (e.g., whether or not the user is to
select one or more options from the item), or it is a state-
ment that expresses the conditions under which an error
should be reported, a value should be changed by the sys-
tem, the text being displayed should be changed, the dia-
logue is to terminate, etc. The important point is that
these behavior rules are specified nonprocedurally. Thus,
the programmer need not be concerned with the order in
which the rules are executed. Moreover, the compiler can
ensure that the rules are consistent and can disregard
rules that are superfluous.

We restrict our attention to facilities for implementing
alphanumeric user-computer dialogues (as distinguished
from dialogues involving the manipulation of graphical
entities, such as lines, points, etc.). Our intent is not to
give a complete, rigorous, formal definition but to outline
briefly ideas which we believe are interesting and useful
for programming such dialogues. More work needs to be
done if a full language is to be designed and implemented
[101. We do give some hints on implementation where ap-
propriate, and more information can be found in [111.

PASCAL has been chosen as a base notation for ex-
pressing our ideas because of its simplicity and clarity of
definition, its block structure, and its flexible data type
constructs. As will be seen, our extensions blend quite
well with the PASCAL concepts and syntax. We assume
the reader is familiar with PASCAL.

We do assume several simple and hopefully obvious
extensions to PASCAL, such as the use of the break char-
acter “-” in identifiers. Its scope and block structure
rules are also assumed to hold for frames and subframes
(which are defined later).

We make use of the operators cor and cand (conditional
or and conditional and), which can be used in place of or
and and to “short-circuit” evaluation of a (condition) or

146 Boolean expression:

a cor b = if a then true else b
a cand b = if a then b else false

The reader must realize that we have left much to his
imagination, and we rely heavily on his knowledge of cur-
rent systems. For example, we assume a device-inde-
pendent, two-dimensional description of a display screen,
with rows numbered 0 through 40 (say) and columns num-
bered 0 through 100 (say), each element of which can con-
tain a character. The interface between this grid and a real
display must be specified in some “job control language”
that we do not describe. The fact that a light pen is trig-
gered when pointing at a certain place on the screen is
described in the language as “selecting” the option being
displayed at that point. Similarly, pushing a button is re-
ferred to as selecting an option; how the interface is real-
ized is beyond the scope of this paper.

2. Short example
Before proceeding with a description of the language ex-
tensions, we present and discuss a small example to illus-
trate some of the language features and their use.

Figure 1 shows a frame as the user might see it on a
display screen. He is to key in the obvious information
requested-name, selective service number if the user is
male, number of children, salary, and spouse’s salary.
The user must also select either *MALE or *FEMALE and
either *SINGLE or *MARRIED. When finished, he is to
depress the ENTER button on the keyboard.

Shown on this screen are display items, each consisting
only of text, key-in items, each consisting of text and a
field for a value to be entered by the user, and menu
items, each consisting of text together with a set of op-
tions from which the user makes a selection. The two dis-
play items are declared as follows:

var title: display text ‘BANK OF N E W YORK’;
heading: display text ‘NEW ACCOUNT’ at (0,16),

‘Enter information. Hit ENTER when done.’ at (2 ,O)

The tuple following at indicates the row and column num-
bers where the text is to be placed relative to the origin of
the item [(O,O) is the default]. The position of the item
itself on the screen is not established by this declaration.

There are five key-in items, which are declared below.
For each, we give the type of value to be keyed in, the
position of the field for the value (relative to the item ori-
gin), the text, and a format under which the value is to be
read in. In all of these cases, the relative position of the
text is assumed to be (0,O).

var name: key-in char at (0,6) text ‘NAME:’ format ~ 2 0 ;
sel-ser: key-in integer at (0,18)

nchild: key-in integer at (0,14)
text ‘SEL. SERVICE NO.:’ format 19;

text ‘NO. CHILDREN:’ format 110;

J. M. LAFUENTE AND D. GRlES IBM J. RES. DEVELOP. VOL. 22 NO. 2 MAR 1978

sulury: key-in reul at (0,8) text ‘SALARY :’
format F 15;

scrlrrry2: key-in renl at (0,17)
text SPOUSE"^ S A L A R Y : ’ format F15

Finally, we define the menu items sex and status:

type optio/lsI = set of (M A L E , F E M A L E) ;

var sex: menu options1 at (0,6) text ‘stx:’:
type options2 = set of (S I N G L E . M A R R I E D) ;

var status: menu options2 at (0,8) text ‘STAI us:’

Note that in a menu item we specify a set of options,
which are essentially string constants. The first option is
displayed at the indicated position with respect to the
item origin, with an asterisk preceding i t : the remaining
options in successive rows immediately below.

Suppose that these variables have been declared, either
locally within a frame or globally. We now add to the defi-
nition of the frame the contains clause, which describes
where each of these items is to appear on the screen. (The
top leftmost position is row 0, column 0.)

contains t i t le at (0,17); h e d i n g at (2,3):
nume at (5 ,3) ; sel-ser at (6 ,3);
sex at (6,31); rlchiltl at (8,3);
sultrry at (9,3); .strk1ry2 at (1O,3);
.strrtr / .s at (9,3 1)

We now wish to specify the following constraints and
relations among the items defined above:

1 . (Requirement) At least one option must be selected
from sex; a value must be entered for str lnry.

2. (Limit) Only one option can be selected from s t t r to s
and sex.

3. (Requirement) rlchiltl must have a nonnegative value
(which is disregarded unless the user is married).

4. (Requirement) If the user is male, then a value must be
entered for sel- ser.

5. (Exclusion) If the user is female, then a value should
not be entered for sel-ser .

6. (Requirement) .sulu1~y2 is required if the user is married

7. (Binding) The item srr l tr /y2 is to appear on the screen

8. (Terminate) Process the given information when the

and sulury is less than $10 000.

only if the .user is married.

E N I E R key is depressed.

To express these constraints and relations, we write be-
havior rules for the frame as follows:

require sex, salary;
with sex: allow only 1 option:
with s t u t r r s : allow only 1 option;
require /?child 2 0 if M A R R I E D in s ~ N I I ~ . ~ ;

require sel-ser if M A L E in sex;
exclude sel-ser if FEMAL.E in sex;

require salary2 if M A R R I E D in sttrttrs cand
.sulary < 10000;

k t SU/UrY2.t/ be MARR1F.D in . S f (/ f / / . S ;

terminate if ENT- K E Y

The .d part of the notation salrrr-y2.d refers to the tlis-
pluylno-rlisplav property of item strltrry2, i.e., whether or
not i t is to be displayed to the user. The last rule indicates
that the dialogue is to terminate when the user depresses
the E N T E R key, provided that there are no errors; if a rule
is violated, however, an error message is given to the user
and the dialogue is not terminated.

This small example is intended to give an idea of what
we are proposing. We now go into more detail: Sections
3, 4, 5, and 6 discuss items, subframes, frames, and be-
havior rules, respectively.

3. Items
Like a variable of a program, an item may contain a value
of a specific type, and this value may be changed during
the execution of a program. However, unlike a variable,
an item has attributes that determine where and how it is
to appear on a two-dimensional display. An item tlecluru-
riot/ describes the type of value that the item can have, an
initial value (if desired), and the position of that value rel-
ative to the origin of the item. I t may also describe addi-
tional text to be displayed along with the value. Finally,
a n item may be associated with an input or output file; in
this case the item can be considered as a “window”
through which the file can be viewed by the user.

We describe four kinds of items in this section: tiispltry,
k e y - i / ~ , menu, and uttent im. A fifth, the list item, is simi-
lar to the menu item: it specifies a list of values, instead of
21 set of values, and is useful when the order of selection
of options is important. The list item is not needed in our
examples: hence it has been left out. A sixth, the table
item, although quite useful, is fairly complicated and is
not needed for a general view of our ideas; its description
has been relegated to Appendix A.

The overall syntactic structure of an (i tem t ype) and an
(i tem decIu/utio/I) is given below. As usual, the brackets
“[1” denote an optional syntactic entity. The reader
should realize that not a l l parts of an (i tem type) may be
present for a particular item kind. To keep our description
simple, we give a grammar that “covers” a more exact
grammar for the language (which is given in Appendix B).
When discussing each item kind. it will become clear
which parts are allowed and which are not.

(i tem type) :: = (iteul X i / d) (t ype) [(position)]
[text (string) (position)

[initial (expression)]
[file (id)]

1, (stri,lg) (position)}]

(ifeltz k i m l) :: = display I key-in 1 menu 1 attention 147

J . M . I A F U E N T E A N D D. CRIES {OL. 22 . I VO. 2 MAR 197X

(pos i t i o~) ::= at ((row number), (column number))
(tvpe) ::= a PASCAL data type
(item tleclcrration) ::= (id): (item type)

We consider the file (id) part separately, after the various
item kinds have been discussed.

Before proceeding with a discussion of the specific item
kinds, let us make some general observations. First, a
(position) gives the relative row and column numbers
where the value or text string is to be placed. An item
declaration does not indicate where the item is to actually
appear on the display; this is specified for each frame by
means of a contains clause to be defined later. If (position)
is omitted, (0,O) is assumed.

Secondly, the initial (expression) gives an initial value
for the item. The type of the (expression) is assumed to
match the (type) of the value of the item.

Thirdly, any item has three properties that affect its ap-
pearance and behavior, and these properties may change
as the dialogue progresses:

1. The selectedlunselected property indicates whether or
not the item contains a value. We say that the status of
an item is selected or unselected. An item is unse-
lected until it receives a value by an assignment in the
program, by means of the initial clause in its declara-
tion, or by user’s input. Provision should also be made
for an item to be deselected (set to unselected status)
by the user (perhaps by pointing again to it with a light

2 . The enabledldisabled property indicates whether or
not the user is permitted to act on the item-enter a
value, etc.

3. The di.spla.Vlno-display property indicates whether or
not the item is to appear on the display device. Thus
an item may appear or disappear from view, depend-
ing on actions by the user or the program.

pen).

The programmer must have the means for testing and
changing these properties. To d o this, we use the PASCAL

notation for referencing fields of a record. Thus, for an
item x,

x.s is a Boolean value that describes the selectedlun-
selected property of x, i.e., x.s = true if x is se-
lected,,false otherwise.

x.d is true if x is to be displayed,false otherwise.
x.e is true if the user is allowed to act on item x , false

otherwise.

Thus, the assignment x.d := y . s can be interpreted as “if
y is selected, then display x; otherwise, do not display x.”

We are now ready to discuss the individual kinds of
items.

Display item
A display item is used to present information consisting of

148 text and a value to the user. The program may change the

J . M. LAFUENTE AND D. GRlES

value, but the user may not. Thus, the enabled/disabled
property x.e of a display item x is always false. The ex-
ample of Section 2 contained two display items whose
declarations contained no (type). Thus the items were
used only to present information to the user, and no val-
ues were associated with them. Another declaration of a
display item with both text and a value is

var x: display integer at (0,16)
text ‘current-number:’ at (0,O).
‘maximum: 9’ at (1,O) initial 0

Whenever and wherever item x is displayed, it will look
as follows (except that its value, initially 0, may have
been changed by the program):

current number: 0
maximum: 9

e Key-in item
A key-in item x (say) is similar to a display item except
that the user is allowed (usually expected) to enter a value
for it, as long as its enabled/disabled property is true. H e
can do this by positioning the cursor on the display screen
at the place where the value for x belongs (or, alterna-
tively, by aiming the light pen there) and then typing in a
value. Upon typing in such a value, x automatically as-
sumes status selected, i.e., x.s is set to true. Presumably,
the user would also have means for deselecting the item-
for erasing its value completely-thus setting x.s tofalse.
In this case, the value of the key-in item is undefined. The
programmer can also do this simply by writing x.s :=
,fulse.

Consider the item declaration

var y : key-in integer at (0,16)
text ‘current number:’ at (0,O)

When first displayed, it will look like “current number:”.
After the user keys in the value 6 (say), the item value
becomes 6, y.s is set to true, and the screen is changed to
“current number: 6”.

Menu item
The menu item is used to describe a set of options from
which the user may make zero or more selections. In the
(item type) specification (see the beginning of Section 3),
the (type) must be a PASCAL set type. The value of a menu
item is always a subset of the set of values defined by the
(type). Consider, for example, the following declaration:

type color = set of (red, white, blue);
var z : menu color at (1,2)

text ‘Which color do you like?’ at (0,O)

In PASCAL, color is a set type which denotes the powerset
of the set of values {red, white, blue}. The value of z can

IBM J . RES. DEVELOP. V O L . 22 NO. 2 MAR 1978

be any subset of the base type {red, white, blue}. Facili-
ties exist in PASCAL for adding a member of {red, white,
blue} to z and for testing whether z contains a value from
{red, white, blue} (for example, red in z yields true orJalse
depending on whether red is in z or not). These facilities
are available to the programmer in designing and coding
the dialogue.

For a menu item z , z.s corresponds to whether the val-
ue of z is nonempty (z.s = true) or is the empty set (z.s =

f’lse). When the above item z is displayed, it will look like

Which color do you like?
*red
*white
*blue

Thus, the options are displayed beginning in the same col-
umn, in successive rows, with the first option beginning at
(1,2) (with an asterisk preceding it). If the user now se-
lects “*red” and “*blue,” the display will be changed to
reflect this fact (perhaps by brightening the selected op-
tions). Then z.s = true and the value of z is the set (, e t / ,

blue}. Similarly, by aiming the light pen at an already se-
lected color, he could delete i t from z .

We summarize. The value of a menu item z is a subset
of the set of options defined by the (type) in the declara-
tion of z , and z.s = ctrrtl(z) > 0 (the cardinality of z is
greater than 0). All options of the specified (type) are dis-
played in a standard format, with the ones currently in z
indicated in some manner. The user may select an unse-
lected option (add it to z) or deselect a selected option
(delete it from z). The programmer may reference the
value of z (change z , test whether an option is in z , etc.) as
he would normally use a variable of type set .

Attention item
An uttetrtio/l item is declared in the same fashion as a
menu item (except that the item kind is attention). The
(type) must be a scalar or subrange type. The difference
between the two kinds of items lies in how their corre-
sponding values are treated. The value of an attention
item is always a scalar from the set of values defined by
(type) (or undefined, if no option has been selected). The
item is always restored to unselected status whenever the
system becomes ready to accept the next user action.

The reason for attention items is to allow the use of
special buttons or keys or to make it simple for the pro-
grammer to specify an immediate system response when
a phrase on the display screen is pointed at with a light
pen. Any number of such keys, buttons, or phrases may
be specified as options of an attention item. After the user
pushes a button or selects a phrase, the system may re-
cord the input and then deselect the option (that is, set the
status of the item to unselected). The user may then
choose another option.

Consider, for example, an attention item declared as
follows:

type choices = (PROCEED, RESET, TERMINATE);
var x: attention choices at (1,2)

text ‘What would you like to do next?’

When the above item is displayed to the user, it will ap-
pear as follows:

What would you like to do next?
*PROCEED
*RESET
*TERMINATE

The programmer may wish to specify a system response
for each option as follows. When the user selects *PRO-
CEED, the current frame dialogue is to terminate, informa-
tion entered by the user is to be recorded, and the next
frame is to be presented. If *RESET is selected, a l l key-in
items in the current frame are to be “reset” (i.e., their
status set to unselected) and the user is to type in new
values. Finally, if *TERMINATE is chosen, the dialogue is
to terminate. In any case, x.s is set to trrre after the user
action, until the system is ready to accept the next user
action, at which time x.s = fulse and the value of x is
again undefined.

0 Associatitlg rr3le with un i tem
In many data-directed interactive applications it is neces-
sary to read information from a file, present the informa-
tion to the user (usually in tabular form), accept changes
from the user, and then rewrite the file with the updated
information. A table item, described in Appendix A, is
part of the mechanism for doing this, and a more detailed
discussion appears there. However, the association of a
file with an item is interesting enough to be explained
here.

If a file attribute file f appears in the declaration of a
key-in item x, thenfmust be an identifier denoting a PAS-
C A L input or output sequential file. We say that item x is
boutld to the filef. The value of x is always the value of
the buffer variable f t whose value can be used and
changed by file operators. Thus, item x becomes a “win-
dow” through which filefcan be viewed. In the case of an
input file, the programmer can read the components of the
file using the PASCAL operators reset and ge t , whereas an
output file can be written using the operators rewrite and
p u t .

A simple example will illustrate these ideas. Suppose
okif is a file of real numbers to be inspected. The user
looks at each value, changes it if necessary, and then
pushes a key, which causes the value to be appended to
an output file newj . We declare two items kl and a1 and a
procedure read-$le as follows: 149

IBM J . RES. DEVELOP. VOL. 22 NO. 2 M A R 1Y7X J. M. LAFUENTE A N D D. CRIES

BANK OF NEW YORK JULY 4, 1 9 7 6
1:30 P.M.

Figure 2 A subframe.

type oldf = file of real;
newj= file of real;

var k l : key-in real at (2,15)
text ‘Change value if necessary.’ at (O , O) ,

‘Depress key 1 when done.’ at (l ,O) ,
‘Next value is:’ at (2,O)

input file oldf output file newf
format F10.2;

a/ : attention (KEY 12);

procedure read-jile;
begin if not e o f (f) then

begin put(newf); get(o1df)
end

end

In this example, kl is a key-in item bound to files oldjand
neyf, and a1 is an attention item containing only the op-
tion KEYl2, which denotes, say, hardware key number 12.
Procedure read-$le is invoked each time the user
depresses this key. (This is specified by the programmer
with a terminate behavior rule, described in Section 6.)
This procedure writes the current value of kl (which is
also the value of oldf? and n e y f t) into newf and reads
the next value from oldf, which is then displayed to the
user automatically by virtue of the attribute input file oldj.

In the (PASCAL declaration) the programmer can declare
items (and other subframes) which are local to the sub-
frame. The (i tem inclusion part) lists all items and sub-
frames (including local ones) which are considered to be
part of the subframe, together with their position with re-
spect to the subframe:

(item inclusion part) : : = contains (id) at (position)
{; (id) at (position)}

As an example, suppose we want a subframe to contain
the information in Fig. 2 , where the items date and time
have already been declared globally. The subframe y
would be given by

var y : subframe
banktext: display text ‘BANK OF N E W YORK’;

contains banktext at (0,2);
date at (0,20);
time at (1,20)

end

5. Frames
Afkame describes a set of dialogues between the system
and the user. I t is similar in concept and definition to a
PASCAL procedure without parameters, except that it also
describes how information is to be displayed to the user
and how the user is to interact with the program.

A frame definition may contain declarations of local
variables, items, subframes. functions, and procedures to
be used in the frame. In addition, it may contain
1 . A procedure initialize, which is automatically invoked

(if declared) upon entry to the frame in order to per-
form necessary initialization.

2. A contains clause, as described above in the discussion
of subframes: this specifies the items to be displayed
together with their position and other attributes (for-
mat, intensity, text of the error message if an illegal
value is supplied, etc.).

4. Subframes 3. A set of behavior rules (described in Section 6), which
The subframe notation is used to group together a set of describes the user interaction with the program (for
items (and/or other subframes) as a logical unit. In addi- this frame), restrictions on this interaction, and condi-
tion to items declared locally, the subframe may contain tions for termination of the frame dialogue.
items and other subframes declared globally. It must
specify where (on the display screen) each of the included
items and subframes is to be placed. This, of course, is
relative to the row and column where the subframe being
defined is to be placed. I t may also contain behavior rules
(see Section 6) which describe restrictions and inter-
relations on the items of the subframe.

A subframe type is thus similar to a PASCAL record type
in that it allows the programmer to view a collection of
objects as a single value. The syntax is:

-
4. A procedure terminate, which is automatically in-

voked (if declared) upon termination of the dialogue,
just before the frame itself is terminated.

The “execution” of a frame thus proceeds as follows.
First, procedure initialize is executed. Then the items are
displayed to the user and a dialogue takes place. Upon its
termination, procedure terminate is executed (if it exists)
and the frame itself terminates. (Control is returned to
just after the point of invocation.)

Let us illustrate this with a simple example in which a
(subframe type) :: = subframe (PASCAL declaration) global item is used in two frames in different ways. Sup-

[(item inclusion part)] pose, for example, that the following items were declared
150 [(behavior rules)] end globally:

J . M. LAFUENTE AND D. GRlES IBM J . RES. DEVELOP. VOL. 22 NO. 2 MAR 1978 I

var mccno: key-in chmr at (0,16)

balunce: key-in real at (0,9)
text ‘ACCOUNT NUMBER:’;

text ‘BALANCE:’ format ~ 1 0 . 2

In one frame, say F 1 , the item accno is displayed to the
user and he must specify a value, which the system then
uses to search a file for information concerning his bank
account:

frame Fl ;
contains uccno at (3,3)

intensity high format 16

format msg ‘Invalid value - respecify’;
procedure initialize ;
begin uccno. .~ := ,firl.se
end

endframe

When this frame is presented to the user, item uccno will
appear at position (3,3). The intensity attribute specifies
that the item is to be brightened (high intensity) in this
frame. The format msg attribute specifies an error mes-
sage to be given to the user if the value entered for uccno
is not a six-digit number.

I n another frame, F 2 , the same item is to be displayed
to the user but a t a different position and with different
attributes. The purpose of this frame is to allow the user
to request a bank “operation” (for example, to show his
account balance). Thus we declare the local item op-type
and include the global item ucc/w:

frame F2 ;
var op-type: attention (K E Y I , KEYZ, KEY3);

contains accno at (5 3 ; op-type;
rules let uccno.e he f a l se ;

terminate if op-type.s
end
procedure tern?inrrte ;
begin case op-type of

KEY 1: begin balance := get-ha/;
btr1unce.d : = true

end

end
endframe

The let rule prevents the user from changing the account
number (the item is disabled). When the user selects the
option K E Y I , the procedure t e r n l i ~ t e i s automatically in-
voked; the function get-bal obtains the account balance,
which can then be displayed to the user in another (or the
same) frame.

We see from this example that different attributes and
behavior rules that affect an item can be specified in each

frame where the item is to be used. Consequently, where-
as the basic characteristics (item kind, data type, initial
value, etc.) of an item d o not change, the behavior and
appearance of an item can vary from one frame to anoth-
er .

As a convenience for the programmer, we relax the
syntax rules and allow frame attributes to be specified di-
rectly in the declaration of local items or subframes (thus
eliminating the need for a contains clause for local items).
For example, instead of writing

frame F1;
var x: key-in char at (0,12) text ‘ENTER NAME:’;

contains x at (1,2) format A15;

endframe

one can, equivalently, write

frame Fl ;
var x: key-in chur at (1,14) text ‘ENTER NAME:’

at (1,2) format ‘A 15;

endframe

0 A PASCAL program
Finally, we need to extend the definition of a PASCAL pro-
gram to include a (,fi.ume definition purt) , which consists
of one or more frame definitions. We can now think of a
program as a description of a class of mpplicution diu-
1ogue.s and all the processing steps required to support
any such dialogue. The processing is specified by proce-
dure declarations and by the (statement purt) of the pro-
gram. The (statement ptrrt) contains statements to be ini-
tially executed and statements to invoke frames and to
determine the order of presentation of frames.

6. Behavior rules
As the user acts on items of a frame, the appearance of
the frame changes depending on the behavior rules that
have been specified for the frame. For example, entering
data for an item may cause a message to be displayed,
pressing a key may result in tutorial information being
given, and pointing to an item option with a light pen may
cause part of another item to be brightened or dimmed or
to disappear altogether. With complicated relationships, a
simple user action can cause the appearance of the frame
to change quite radically, so much so that the user no
longer sees it as the same frame. Nevertheless, the basic
notion is that it is the same frame, at least as far as the
programmer perceives it. The user, however, does not
need to think in terms of frames.

Three types of behavior rules can be used to guide the
interactions with the user during a frame dialogue. The 151

IBM J . RES. DEVELOP. VOL. 22 NO. 2 MAR 197X J . M. LAFUENTE A N D D . C R I E S

binding rule is used to specify the conditions under which
the value (and status properties) of a variable should be
changed by the system: the requirement rule is used to
specify the conditions that must be true before the frame
dialogue may terminate; and the tertninute mule is used to
specify when termination is to occur.

Binding rule
The binding rule has the general form

let (vuriahle) be (expression) [if (condition)]

The conventional rules about matching types of (expres-
sion) and (vuriahle) in an assignment apply here also. Af-
ter each response by the user, all let rules are processed
(in an undetermined order and perhaps several times
each) as follows: If a (contiition) of a let rule is true, then
the (expression) is evaluated and assigned to the (vuria-
Me) .

After processing all the let rules, for any rule with its
(contlition) true, the (t-uriuble) will have the value of the
(expression).

We realize that with these semantics, let rules may be
difficult to implement efficiently. Different ordering of
processing of the rules can produce different results, the
processing may not terminate, and there may be inconsis-
tencies that cannot be resolved. For example, consider

let x.s be not x . s if not x.s; let x.s be not x.s if x . s or
let a be b + 1; let b he a + 1

Proposals have been made for languages in which the
order of execution is not explicitly given [12-14]. In par-
ticular, Foster and Elcock [141 describe a compiler for a
generalized language consisting of such “assertions.” We
believe that the use of let behavior rules can be restricted
so as to allow efficient processing and safe checks for ter-
mination, without harming flexibility too much. One
simple restriction is that it be possible to order the rules
so that the (vuriuhle) of let rule i does not appear in rules 1
through i - 1. We adhere to this restriction in this paper.

Reqlrirement ru le
The rule

require (condition)

is used to indicate that (condition) must be true before the
frame dialogue may terminate. Should termination be sig-
naled when (condition) is,fulse, a message is displayed to
the user, who must then respecify entries so that (contii-
tion) is true.

e Tertninute rule
The rule

152 terminate if (condition)

J . M . LAFUENTE AND D. CRIES

indicates that when (condition) is true, the current frame
interactions are to terminate and control is to return to the
point in the program where the current frame was in-
voked. After performing computations, the program may
invoke another (or the same) frame or terminate execu-
tion.

As examples of these basic types of rules, we rewrite
some of the behavior rules of the example presented in
Section 2. Remember, for an item x, x.s refers to the se-
lectediunselected status, and x.d to its displayino-display
status.

require .sex..s : {a .sex option must be selected}
require su1ury.s: {a sulary must be given}
require crrrtl(sex) = 1 ; (exactly one of MALE and FE-

require cartl(statu.s) = 1 ;
require not (MARRIED in sttrtus) cor nchild 2 0;
require not M A L E in sex cor sel-ser.s;
require not FEMALE in sex cor not sel-ser.s;
let sulury2.d be (MARRIED in stutus);
terminate if ENT-KEY

Some syntuctic sugnr

Although the three types of rules above are powerful
enough, some syntactic sugar can increase the ease of
writing behavior rules. One abbreviation is simply to use
the item name x instead of X.S. For example, “require
sulury” makes perhaps more sense than “require sal-
ury.s,” which means that the item sulury must be se-
lected. To illustrate other syntactic extensions, we give
below a set of formats for new rules and show immedi-
ately below how each could be written in the skeleton
syntax given above.

1. require (conditionl) if (condition2)

2. (Exclusion rule) exclude vZ, v2 if (condition)
= require not (v1.s or v2.s) if (condition)

3. (Limit rule) limit is 1 of sex
= require curd(sex) 5 1

MALE must be chosen}

require not (contiition2) cor (conditionl)

4. require at least 1 of sex
-
= require card(se.r) 2 1

= let curti((id)) 5 1

red, blue
= let (id) be (id) + [red] if (condition):

let (id) be (id) + [blue] if (condition)

5. (Option limit rule) with (id): allow only 1 options

6. (Implication rule) with (id): (condition) implies

7 . (Option exclusion rule) with (id): (condition) excludes
hlue

let (id) be (id) - [hlue] if (condition)

Another convenient extension is the enter behavior rule,
which allows a procedure to be invoked directly without
terminating the frame dialogue:

IBM J . RES. DEVELOP. VOL. 22 NO. 2 e MAR 1978

enter (id) if (condition)
invoke procedure (id) if (condition) is true;
Upon return from the procedure, resume the frame
dialogue.

As can be seen, the language allows the programmer to
say the same thing in many ways. The language designer
must search for a minimum set of rules with maximum
flexibility (if such a thing is possible). I t is probably better
to have just a few ways of describing behavior rules
rather than too many.

7. A larger example
As an example of a dialogue program, suppose that a fi-
nancial institution wishes to computerize some of its op-
erations. We show below part of the application program.

The program is structured as a sequence of frames F 1 ,
F 2 , Frame F l , shown in Fig. 3, allows the user to
select one of the bank functions and, accordingly, to pro-
ceed to another frame to perform the desired function
(New Account, Deposit, or Withdrawal). Frames F2 and
F3 (Figs. 4 and 5) allow the user to enter the required
information in order to open a new account and are typi-
cal of applications requiring the collection of a large
amount of interrelated information, with very little proc-
essing.

Plogrtrm
program htrnk ;

var title: display text ‘BANK OF NEW YORK’:

R : subframe
return: attention (RETURN);

rules terminate if return..s end
end ;

u1: attention (OPEN ACCOUNT, DEPOSIT, WITHDRAWAL)

d l : display text ‘NEW ACCOUNT’;

heading: subframe

at (1,8) text ‘Select transaction desired:’;

inj’: display at (4,3)
text ‘Enter information. Hit ENTER

when done.’;
contains d l at (2,19);

end;
name: key-in char-at fw) text ‘NAME:’;

status: menu set of (MARRIED, SINGLE) at (0,9)

m o n o : display at (0,24)
text ‘STATUS:’;

text ‘The new account No. is:’;
frame F l ; . . . endframe;
frame F2; . . . endframe;

begin
start: F 1 ;

I BANK OF NEW YORK 1
Select transaction desired:

*OPEN ACCOUNT
* D E P O S I T
*WITHDRAWAL

Figure 3 Frame F I .

BANK OF NEW YORK

NEW ACCOUNT

Enter information. Hit E N T E R when done.
NAME :

M A I L I N G A D D R E S S - Same as above? * Y E S
PERMANENT ADDRESS:

ENTER ADDRESS: *NO

S T A T U S : * M A R R I E D
* S I N G L E

Figure 4 Frame F2.

case (11 of
NEW ACCOUNT: F2; F3; F4:

WITHDRAWAL: F6;
DEPOSIT: F.5;

end;
go io start

end.

First, we declare global variables, which can be refer-
enced in any of the frames. Subframe R will be used in
frame F4 (Fig. 6) to return control to frame F l ; selecting
the RETURN option would terminate the dialogue in frame
F4, whereby the program would then cause frame F l to
be presented.

Subframe heading is used to display text at the top of
the screen in frames F2 and F3. I t consists of d l , which is
also used in frame F 4 , and display item inf.

Definition o f ~ r a m e s
Frame FI is shown in Fig. 3. I t is defined as follows:

frame FI ;
contains title at (0,17) intensity high;

rules terminate if a1 .s
end

endframe

a1 at (2,2);

This frame contains two global items: display item title
and attention item a l , which is used to select the desired
function to be performed. The case statement in the pro-
gram is used to present the next frame, depending on the
option selected.

Frame F2 is shown in Fig. 4. 153

J . M. LAFUENTE AND D. CRIES IBM J . RES. DEVELOP. VOL. 22 NO. 2 MAR 1978

BANK OF NEW YORK

NEW ACCOUNT

E n t e r i n f o r m a t i o n . H i t ENTER when done.
NAME :
S E L . S E R V I C E N O . : S E X : *MALE

NO. CHILDREN:
SALARY:
S P O U S E ’ S S A L A R Y :

*FEMALE

Figure 5 Frame F3.

BANK O F NEW YORK

NEW ACCOUNT

NAME :

T h e new a c c o u n t N o . i s :

*RETURN

Figure 6 Frame F4

frame F2 ;
var addrl : key-in char at (0,19)

text ‘PERMANENT ADDRESS:’;

d3: display text ‘ M A I L I N G ADDRESS -’:
m l : menu set of (YES, NO) at (0,16)

text ‘Same as above?’:
addr2 : key-in chmr at (0,15) text

‘ENTER ADDRESS:’;

contains title at (0,17); heading; name at (5,3):
addrl at (6,3); d3 at (7,3); ml at (7,21):
uddr2 at (8,6); status at (10,3);

require at least I of addrl, addr2;
require addrl if YES in ml ;
require addr2 if NO in ml :
with m l : allow only 1 options:
exclude addr2 if YES in ml ;
with status: allow only 1 options;
terminate if ENT-KEY

rules require name ;

end:
procedure initialize ;
begin reset- f rame; ml := [YES]

end
endframe

The global items title, name, and status and the sub-
frame heading are included in this frame. One of the two
addresses must be supplied, depending on whether YES or
NO is selected. If neither option is in m l , then i t is valid to 154

J . M. LAFUENTE P iND D. CRIES

enter either address or both. Actually, the rule require
addrl is superfluous because it can be inferred from the
other rules.

Upon entering the frame and before the frame is pre-
sented to the user, the procedure reset- frame causes the
status of all items in F2 to be set to unselected. Then, the
item m l is initialized to [YES]. We have not defined the
procedure reset- frame here; this could be a “built-in”
procedure provided by the implementation.

Frame F3 is shown in Fig. 5.

frame F-3 :
var srl-ser: key-in integer at (0,18)

text ‘SEL. SERVICE N O . : ’ format 19;

sex: menu set of (MALE, FEMALE) at (0,6) text ‘SEX:’;

nchild: key-in integer at (0,14)
text ‘NO. CHILDREN:’ format 110;

format ~ 2 0 ;

salary: key-in real at (0,8) text ‘SALARY:’

salary2: key-in real at (0,17)
text ‘SPOUSE”S SALARY:’ format F15;

sel-ser at (6,3); sex at (6,31); nchild at (8,3);
salary at (9,3); salary2 at (10,3);

contains title at (0,17); heading: name at (5,3);

rules with sex: allow only 1 options;
require sex, salary ;
require nchild 2 0 if MARRIED in status;
let name.e befulse;
require sel-ser if MALE in sex;

let sulury2.d be MARRIED in status;
require salary2 if MARRIED in status cand

exclude sei- ser if FEMALE in sex:

salrrry < 10000;
terminate if ENT-KEY

end ;
procedure initialize;
begin reset- item(se1- ser, sex , nchild, salary, salary2)
end;
procedure terminure;
begin accno := new-acc;file-acc
end

endframe

This frame is very similar to the example shown earlier
in Fig. 1 . As in frame F2, the items title and heading are
included here. The items status and accno are referenced
here but will not be displayed to the user. The item name
contains the information supplied by the user in the pre-
vious frame, but it cannot be changed here. Initially, the
procedure reset- item (not defined here) sets the status of
all key-in and menu items (except nume) to unselected.

The relations among the items are expressed by the be-
havior rules. For example, selective service number is
only required from male applicants. To determine loan
eligibility, the bank wants to know the spouse’s salary if

IBM J RES. DEVELOP. VO1.. 22 NO. 2 MAR 1978

the applicant’s salary is less than $10 000. And .sulary2
makes no sense if the applicant is not married; therefore,
salary2 only appears on the screen if MARRIED was se-
lected in frame F2. When all these relations are satisfied,
the user can depress the ENTER key, which causes a new
account to be produced and filed by the local procedures
new-acc and$le-acc (not defined here).

Frame F4 is shown in Fig. 6.

frame F4;
contains title at (0,17); d l at (2,19); name at (7.3);

accno at (9,3); R at (12,41);
rules let nc1rne.e be jhlse
end

endframe

This frame is used to display the new account number
to the user after all specified information has been col-
lected in frames F2 and F3. The item ntrme, which ap-
pears in frames F2 and F3, also appears here but at a dif-
ferent location. Selecting the RETURN option causes a re-
turn to the program, according to the terminate rule
specified in subframe R ; frame F1 will then be displayed
again.

8. Implementation problems
The efficient implementation of behavior rules may be a
point of contention about the applicability of this work. In
this section, therefore, we briefly discuss implementation
problems and give hints at solutions. A more detailed ex-
planation of these problems, and a discussion of tech-
niques and algorithms to solve them, appear in the first
author’s thesis [1 I] .

To begin with, a set of behavior rules may be inconsis-
tent, and to check for this possibility the compiler should
contain a compile-time analysis procedure. For example,
suppose that the following rules are given to describe the
frame behavior:

I . require sel-ser if MALE in sex ; .
2. with sex: allow only 1 of MALE, FEMALE;

3 . kt sex be sex + [FEMALE] if . W / - . w ’ . . S

The problem is that selecting the MALE option leads to an
inconsistency. Another situation that must be detected is
when a termination condition can never occur or would
lead to an inconsistency.

These kinds of problems can be analyzed with a graph
model of interactions. A graph representation of the
above rules is illustrated in Fig. 7, where the nodes of the
graph represent items and options, and the edges repre-
sent constraints and dependencies. Associated with each
node x is a possible status property p s , as follows:

If node(x).ps = I , then x must be selected;
If node(x).ps = 0, then x cannot be selected;
I f node(x).ps = 2 , then x can be in either status.

[i]

MALE \ \,\PSCX k 4

FEMALE 3

Figure 7 Graph representation of behavior rules.

Shown in the graph are implication links (labeled i) and
exclusion links (labeled e) , which express relations be-
tween the possible status of nodes. The graph is con-
structed as the rules are parsed. For example, the first
rule above produces the link 2 -$ I . A rule such as re-
quire x does not produce a link; i t simply causes the pos-
sible status of node x to be set to 1 . The specification of

require x; exclude x

would result in the inconsistency node(x).ps = 1 and
node(,r).ps = 0.

I t is not always necessary to test conditions after every
user action. Here, the graph model also helps, since it is
possible to determine which user inputs have an efect on
each system response (such as the display ofa message or
the termination of the dialogue). Furthermore, certain
combinations of user’s inputs are irrelevant in the sense
that, although they may occur, they cause no change in
the observable state of the system. A run-time procedure
that takes advantage of these observations to implement
behavior rules efficiently is contained in [I I] .

9. Summary
We have presented extensions to PASCAL to provide a lan-
guage for programming alphanumeric user-computer dia-
logues. In this language, interactive behavior rules can be
defined nonprocedurally by an application programmer,
leaving the task of checking for inconsistencies and set-
ting up the control logic to the system. This type of lan-
guage, therefore, can reduce much complicated coding of
interactive applications.

The extensions were designed to be natural and to
blend well with the concepts and syntax of PASCAL. We
feel that, in general, block-structured languages with flex-
ible data-type definition facilities are good candidates for
the embedding of interactive behavior specifications.

We saw, for example, how items were defined with a
simple extension of PASCAL types, how subframes were
simple extensions of PASCAL records, and how frames
were defined in a way similar to PASCAL procedures. We 155

J . M. LAFUENTE A N D D. CRIES IBM J. RES. DEVELOP. VOL 22 NO. 2 MAR 1978

EMPLOYEE
NAME

F.W. S M I T H
J . M . ROBERTS
A . L . ANDERSON

WEEKLY PAYROLL

HOURS
WORKED PAY

2 0

4 0
3 6

Figure 8 A table item.

also saw how the scope rules for variables in blocks and
procedures extended very nicely to items in frames and
subframes.

I t is, of course, possible to extend other languages to
allow the specification of interactive dialoguks, but the
extensions may not be as elegant. A possible way to ex-
tend COBOL is discussed in [I I].

In the description of our language, we deliberately
omitted some language features for the sake of simplicity.
For example, in a real implementation, the language may
be extended to contain abbreviations, more item and
frame attributes, and more functions to manipulate table
items. Also, a graphics protocol could be designed to lay
out the information on the frames interactively.

Appendix A: Table item
High level programming languages normally contain data
constructs such as arrays, structures, and records, which
are built up from the basic data types (integer, real, char-
acter, etc.). Similarly, our language contains a structured
type of item called a table item, which is made up of the
basic items that we have considered so far. The table item
allows the programmer to define a two-dimensional struc-
ture of values, with text, position, and other character-
istics-the number of rows to be displayed, whether the
user is to select rows or enter values in a column, etc.

A table item may be viewed as a set of columns; each
column i s defined very much like a key-in or display item
(depending on whether or not the user is permitted to en-
ter values into the column), having attributes such as po-
sition, format, initial value, etc. The programmer can also
specify that the rows of the table are to behave as a menu
or as an attention item. Behavior rules can then be speci-
fied to describe selection constraints and relations among
the rows or columns of the table.

An example of a table item is shown in Fig. 8. Let us
assume that the values contained in the first column can
be obtained from a global table emp- tab, which was used

156 by an authorized person to specify the employees’ names.

We then include this column in our new table and add two
more columns. When this table is displayed, a clerk is to
enter the hours worked each week, and the program will
then compute the pay. The table can be defined as fol-
lows:

var pay- tab: table (20) text ‘WEEKLY PAYROLL’ at (0,9)
columns

hrs: key-in integer at (5,18)
text ‘HOURS’ at (- 3 , - 2) , ‘WORKED‘

initial 0 format 12;

text ‘PAY’ at (-2.1) initial 0 format F6.2;

pay : display real at (5,25)

contains emp- I N ~ . I I (I I I I P at (5 ,2)
end
rows (I O) attention

This defines a table item pay-tab having a maximum of
20 rows; of these, only 10 rows can be seen by the user.
The rows are to behave as an attention item (having 10
options). To specify the behavior of this table, we give
behavior rules for the containing frame:

let pay-tab.nc1me.e be false;
require hrs 5 40;
let pay be hrs * rate

The first rule prevents the user from changing the values
in the name column. The pay is computed automatically
by multiplying the hours worked (which cannot exceed
40) by the global variable rate.

Thus, a table item may be used for displaying or up-
dating information, depending on the (item kind) specified
for the columns (and their status properties). If used for
updating information, then, at any time during the presen-
tation of the containing frame, one of the rows may be
designated as the current row. Each value in the current
row behaves as a display or key-in item, according to the
(item kind) specified for the corresponding column. Only
the current row can be acted on by the user.

The programmer can manipulate the information in the
table item, change the status properties of the columns,
select rows of the table, or designate another row as the
current row. For this we need some notation.

Notation If T is a table item, the rows are denoted by
T[1], T [2] , . . ., and, in particular, T.current-row is the
current row. The variable T.current- index is the current-
row index, i.e., T.current-row is equivalent to
T[T.current_index]. To reference elements in each row,
we use PASCAL record notation; thus,

T[i].x = the value at row i, column named x.

Now, the table item T itself has a value, which is the
value that results from treating the rows as a menu or
attention item. For example, if menu is specified for the

J . M. LAFUENTE AND D. GRlES lBhl J . RES. DEVELOP. VOL. 22 NO. 2 MAR 1978

rows of T and rows 1 and 3 are the only selected rows,
then the value of Tis the set { I , 3}, T.s and 1 in Tare t rue.

To illustrate, suppose that the user can enter the
“hours worked” in any of the rows of the item pay-tab
defined above. But, prior to entering the information, he
must indicate which row he wishes to act on by pointing
to it with the light pen. This can be accomplished by add-
ing the behavior rule

let pay- tab.current- index be pay- tab

which specifies that the value of the table item (the se-
lected row) is to be assigned to the variable pay-tab.
current- index.

Alternatively, we could define key number I as the “next
key,” so that pressing key 1 would compute the pay for
the current row and place the cursor at the next row. This
can be programmed as follows:

var next- key: attention (K E Y 1);

enter p l if next -key .s ;

procedure p l ;
begin pay- tab.current - ro~~.pay :=

pay-tab.current-roM,.izrs * ra te ;
pay-tab.current_index :=
p a y - tab.current-index + 1

end

More flexibility may be needed to manipulate rows o fa
table item. For example, the following built-in procedures
would be helpful:

nrows(T) gives the number of rows defined so far,
delete(T, i) deletes row i from the table,
insert(T, i) inserts a row (of undefined values) after

row i.

Moreover, in order to increase the usefulness of table
items, the language should provide a mechanism for asso-
ciating external files with a table item, and i t should pro-
vide operators for transferring data. We explore these
ideas briefly in the next section.

Associating a$le with a tcrble item
We are particularly interested in sequential files of type
record. We call these struct~~red sequentid files and de-
fine them as follows:

(structured sequentialfile) : : = file of (record type)

Exactly how the components are allocated in external
storage is implementation-dependent.

By specifying the attribute file (input or output) in the
declaration of a table item, the programmer establishes an

association between the table item T and records of the
specified file. In this case, we say that the table item is
bound to the file.

What we wish to accomplish is, in fact, a generalization
of the binding of files to key-in or display items, which
was discussed earlier. In this case, a table item Tbound to
a file f would be regarded as a work area into which one
could read records from f (i f f is an input file) or write
records to f (if .f is an output file). Superimposed on this
work area is a window through which the user can view
the area. The size of this window, say IV, is specified in
the row specification part of the declaration of T , and rep-
resents the number of rows that the user sees. Let p be
the current number of rows and s the size of the table
(maximum number of rows). The programmer can manip-
ulate values in rows T[I], T [2] , . . ., T [p] , while the user
only has access to IV or p rows, whichever is smaller.

The implementation may provide facilities for scrolling,
for reading (writing) records from (to) a file, and for asso-
ciating the file information with the table item. The oper-
ators for reading and writing would be generalizations of
the PASCAL operators g e t (f) and p u t (f) . We omit the de-
tails and refer the reader to [l l] for more information.

Appendix B: Syntax
We present here a summary of our syntactic extensions to
PASCAL.

(j i a m e dejinition p a r t) :: = (f iamr definition)

(J k m e definition) : : = frame (id 1: (frame body) endframe
(frame body) 1 : = (label declarcrtion part)

{; (f iame definition)};

(constant definition par t)
(type definition p a r t)
(vcrriable declaration prrrt)
(item inclusion part)
(behavior rules)
(procedure declaration part)

(item t ype) :: = (item kind) [(type) [at ((r o w) , {col))]]
((Ittr ibute specification) I (table item t y p e)

or

157

J . M. LAFUENTE AND D. CRIES IBM J . RES. DEVELOP. VOL. 2 !2 NO. 2 MAR 1 978

(column spec8cation part) :: = columns {(id): (item type);}
[(item inclusion part)] end

(row specijication part) : : = rows ((size)) [(row kind)]
(row kind) :: = menu 1 attention
(subframe type) :: = subframe {(id): (typel);}

[(item inclusion part)]
[(behavior rules)] end

(typel) : : = (subframe type) I (item type)
(item inclusion part) : : = contains (item spec$cation)

(item specgcation) :: = (id) {, (id) } {(frmne attribute)}
(frame attribute) :: = at ((row), (col))

1 intensity high
1 format (format specijication)
I format msg (string)

{; (item specljkation)}

(behavior rules) : : = rules (rule) 1; (rule)} end
(rule) :: = (requirement rule) 1 (binding rule)

(requirement rule) : : = require (condition]) [if (condition)]
(conditionl) :: = (condition) 1 (name part)
(name part) :: = (item name) {, (item name)}
(binding rule) :: = let (vuviable) be (expression)

(terminate rule) : : = terminate if (condition)
(enter rule) :: = enter (id) if (condition)
(condition) : : = (basic condition)

(basic condition) :: = (logical expr) 1 (basic condition)

(logical expr) :: = a logical expression

1 (terminate rule) I (enter rule)

[if (condition)]

1 (condition) cor (basic condition)

cand (logical exprj

1 ((condition)) 1 E N T - K E Y

References and note
1. S. L. Feingold, “PLANIT-A Flexible Language Designed

for Computer-Human Interaction,” AFIPS Conj. Proc. 31,
545 (1967).

158

J. M . LAFUENTE AND D. CRIES

2. “COURSEWRITER 111 Student Text,” Form no. GC20-
1706, IBM Corporation, White Plains, NY, 1969.

3. C. I . Johnson, “Principles of Interactive Systems,” IBM
Syst. J . 7, 147 (1968).

4. I . W. Cotton, “Languages for Graphic Attention-Handling,”
Advanced Computer Graphics, R. D. Parslo and R. E.
Green, eds., Plenum Press, New York, 1971, p. 1049.

5 . W. M. Newman, “A System for Interactive Graphical Pro-
gramming,” AFIPS Conf. Proc. 32, 47 (1968).

6. T. R. Stack and S. T. Walker, “AIDS-Advanced Inter-
active Display System,”AFIPS Con$ Proc. 38, 113 (1971).

7. J. M . Martin, “Design of Man-Computer Dialogues,” Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1973.

8. K. Jensen and N. Wirth, “PASCAL User Manual and Re-
port,” Lecture Notes in Computer Science 18 (second edi-

9. N. Wirth, “The Programming Language PASCAL,” Actu
tlon), Springer-Verlag, New York, 1975.

Injormatica 1, 35 (1971).
10. The language facilities and techniques described in this pa-

per are experimental; an implementation is not planned by
the IBM Corporation.

1 1 . J . M. Lafuente, “The Specification of Data-Directed Inter-
active User-Computer Dialogues,” Ph.D. Thesis, Cornell
University, Ithaca, NY, 1977.

12. E. D. Homer, “An Algorithm for Selecting and Sequencing
Statements as a Basis for a Problem-Oriented Programming
System,’’ Proceedings o j the 21s1 ACM Nutional Conjer-
ence, New York, N Y , 1966, p. 305.

13. L. G. Tesler and H. J . Enea. “A Language Design for Con-
current Processes,” AFIPS Con$ Proc. 32, 403 (1968).

14. J . M. Foster and E. W. Elcock, “ABSYSI: An Incremental
Compiler for Assertions: An Introduction,” Machine In-
telligence 4, 423 (1969).

Received May 25, 1977; revised September 15, 1977

J . M. Lajuente is located ut the IBM System Products
Division laboratory, P.O. Box 390, Poughkeepsie, NeM,
York 12602; ProJ Cries is located at the Department of’
Computer Science, Cornell University, Ithuca, New York
14850.

IBM J. RES. DEVELOP. VOI.. 22 NO. 2 MAR 1978

