J. M. Lafuente
D. Gries

Language Facilities for Programming User-Computer

Dialogues

Abstract: Extensions to PASCAL that provide for programming man-computer dialogues are proposed. An interactive application pro-
gram is viewed as a sequence of frames, representing stages of dialogue activity, and separate computational steps. First, extensions are
presented to allow the description of the items of information contained in each frame. Second, pascAL is extended to allow the inclusion
of behavior rules for a frame to specify the interactive dialogue. The behavior rules are specified nonprocedurally. Previously, program-
ming such dialogues has required the specification of all possible interactions and their effects in a procedural fashion.

1. Introduction

Typical applications of interactive user-computer dia-
logue systems include the collection of business data (key
data entry), question-answering sessions typified by com-
puter-aided instruction (CAI) systems, and interactive
data base systems, such as may be used in banks or air-
line reservation systems. These systems can be charac-
terized as follows:

1. The system is in a state (often called a frame in CAI
systems [e.g., 1, 2]) in which text is displayed to the
user, and the user answers questions, pushes buttons,
or types in values. The system monitors the user input
for validity and consistency and asks the user to sup-
ply additional values if necessary. This process may
cause changes in the format and content of the text
being displayed, but, basically, the system is in one
state or frame.

2. After values have been satisfactorily keyed in, the sys-
tem performs some computations based on these val-
ues. It then selects another (or the same) frame and
returns to step 1 to resume the dialogue in the new
frame.

Previously, such systems have been implemented in as-
sembly language or in FORTRAN or other high level lan-
guages. Some work has been done to make languages
more amenable to programming dialogue systems. For
example, some have considered attention-handling [3, 4]
constructs such as

ON LIGHTPEN DETECT THEN GO TO LABELI1; and
IF KEY 5 THEN CALL KPROGS;

while others [5, 6] have suggested state diagrams for de-
scribing and restricting interactions. Most of the tech-
niques used in the design and implementation of such dia-
logues have been adequately summarized by Martin [7].

However, the design and implementation of such dia-
logues is still a long, arduous task, partly because the pro-
grammer must describe everything—how text is to be dis-
played, how user inputs are to be monitored, etc.—in a
procedural fashion. For example, if there are restrictions
on the combinations of two input values required from the
user, then the test for these restrictions must be pro-
grammed as a sequence of procedural statements.

In this paper, we propose extensions to the program-
ming language PASCAL [8, 9] that are designed to ease the
description of interactive dialogues. First, we provide for
the description of the layout of information to be dis-
played for a frame, in a device-independent manner. This
means providing for a description of the logical units of
information—the items—that may appear on the display
screen. Essentially, an item is a PASCAL variable with
some additional characteristics, such as the position on
the screen, the text, the format of values that the item can
have, whether or not the value can be modified by the
user, and so forth. Our notation also provides for group-
ing items into logical units called subframes, which can be
used in more than one frame.

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and
abstract may be used without further permission in computer-based and other information-service systems. Permission to republish other

excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. s VOL. 22 @ NO. 2 ¢« MAR 1978

145

J. M. LAFUENTE AND D. GRIES

146

BANK OF NEW YORK
NEW ACCOUNT

Enter information. Hit ENTER when done.

NAME:

SEL. SERVICE NO.: SEX: *MALE
*FEMALE

NO. CHILDREN:

SALARY:

SPOUSE'S SALARY:

STATUS: *SINGLE
*MARRIED

Figure 1 A typical frame.

Second, we extend PASCAL to allow the inclusion of be-
havior rules for a frame, which are, essentially, the speci-
fications of the interactive dialogue. A behavior rule is
either a Boolean expression that describes a constraint on
items and their values (e.g., whether or not the user is to
select one or more options from the item), or it is a state-
ment that expresses the conditions under which an error
should be reported, a value should be changed by the sys-
tem, the text being displayed should be changed, the dia-
logue is to terminate, etc. The important point is that
these behavior rules are specified nonprocedurally. Thus,
the programmer need not be concerned with the order in
which the rules are executed. Moreover, the compiler can
ensure that the rules are consistent and can disregard
rules that are superfluous.

We restrict our attention to facilities for implementing
alphanumeric user-computer dialogues (as distinguished
from dialogues involving the manipulation of graphical
entities, such as lines, points, etc.). Our intent is not to
give a complete, rigorous, formal definition but to outline
briefly ideas which we believe are interesting and useful
for programming such dialogues. More work needs to be
done if a full language is to be designed and implemented
[10]. We do give some hints on implementation where ap-
propriate, and more information can be found in [11].

PASCAL has been chosen as a base notation for ex-
pressing our ideas because of its simplicity and clarity of
definition, its block structure, and its flexible data type
constructs. As will be seen, our extensions blend quite
well with the pascaL concepts and syntax. We assume
the reader is familiar with PASCAL.

We do assume several simple and hopefully obvious
extensions to PASCAL, such as the use of the break char-
acter ““_"" in identifiers. Its scope and block structure
rules are also assumed to hold for frames and subframes
(which are defined later).

We make use of the operators cor and cand (conditional
or and conditional and), which can be used in place of or
and and to “‘short-circuit’’ evaluation of a (condition) or
Boolean expression:

J. M. LAFUENTE AND D. GRIES

a cor b =if a then true else b
a cand b =if a then b else false

The reader must realize that we have left much to his
imagination, and we rely heavily on his knowledge of cur-
rent systems. For example, we assume a device-inde-
pendent, two-dimensional description of a display screen,
with rows numbered 0 through 40 (say) and columns num-
bered 0 through 100 (say), each element of which can con-
tain a character. The interface between this grid and a real
display must be specified in some ‘‘job control language”’
that we do not describe. The fact that a light pen is trig-
gered when pointing at a certain place on the screen is
described in the language as ‘‘selecting’’ the option being
displayed at that point. Similarly, pushing a button is re-
ferred to as selecting an option; how the interface is real-
ized is beyond the scope of this paper.

2. Short example

Before proceeding with a description of the language ex-
tensions, we present and discuss a small example to illus-
trate some of the language features and their use.

Figure 1 shows a frame as the user might see it on a
display screen. He is to key in the obvious information
requested—name, selective service number if the user is
male, number of children, salary, and spouse’s salary.
The user must also select either «sMALE or *+FEMALE and
either sxSINGLE or *MARRIED. When finished, he is to
depress the ENTER button on the keyboard.

Shown on this screen are display items, each consisting
only of text, key-in items, each consisting of text and a
field for a value to be entered by the user, and menu
items, each consisting of text together with a set of op-
tions from which the user makes a selection. The two dis-
play items are declared as follows:

var title: display text ‘BANK OF NEW YORK';
heading: display text ‘NEW ACCOUNT’ at (0,16),
‘Enter information. Hit ENTER when done.” at(2,0)

The tuple following at indicates the row and column num-
bers where the text is to be placed relative to the origin of
the item [(0,0) is the default]. The position of the item
itself on the screen is not established by this declaration.

There are five key-in items, which are declared below.
For each, we give the type of value to be keyed in, the
position of the field for the value (relative to the item ori-
gin), the text, and a format under which the value is to be
read in. In all of these cases, the relative position of the
text is assumed to be (0,0).

var name: key-in char at (0,6) text ‘NAME:’ format A20;
sel_ser: key-in integer at (0,18)
text ‘SEL. SERVICE NO.:’ format 19;
nchild: key-in integer at (0,14)
text ‘NO. CHILDREN:’ format 110;

IBM J. RES. DEVELOP. @ VOL. 22 ® NO. 2 ® MAR 1978

salary: key-in real at (0,8) text ‘SALARY:’
format F15;

salary2: key-in real at (0,17)
text ‘SPOUSE’’'S SALARY:’ format F15

Finally, we define the menu items sex and status:

type optionsl = set of (MALE, FEMALE);

var sex: menu optionsl at (0,6) text ‘SEX:’;

type options2 = set of (SINGLE, MARRIED);

var status: menu options2 at (0,8) text ‘STATUS:’

Note that in a menu item we specify a set of options,
which are essentially string constants. The first option is
displayed at the indicated position with respect to the
item origin, with an asterisk preceding it; the remaining
options in successive rows immediately below.

Suppose that these variables have been declared, either
locally within a frame or globally. We now add to the defi-
nition of the frame the contains clause, which describes
where each of these items is to appear on the screen. (The
top leftmost position is row 0, column 0.)

contains title at (0,17); heading at (2,3);
name at (5,3); sel_ser at (6,3);
sex at (6,31); nchild at (8,3);
salary at (9,3); salarv2 at (10,3);
status at (9,31)

We now wish to specify the following constraints and
relations among the items defined above:

1. (Requirement) At least one option must be selected
from sex; a value must be entered for salary.

2. (Limit) Only one option can be selected from status
and sex.

3. (Requirement) nchild must have a nonnegative value
(which is disregarded unless the user is married).

4. (Requifement) If the user is male, then a value must be
entered for sel_ser.

5. (Exclusion) If the user is female, then a value should
not be entered for sel_ ser.

6. (Requirement) salary2 is required if the user is married
and salary is less than $10 000.

7. (Binding) The item salary2 is to appear on the screen
only if the user is married.

8. (Terminate) Process the given information when the
ENTER key is depressed.

To express these constraints and relations, we write be-
havior rules for the frame as follows:

require sex, salary;

with sex: allow only 1 option;

with status: allow only 1 option;

require nchild = 0 if MARRIED in status;
require se/_ser if MALE in sex;

exclude sel_ser if FEMALE in sex;

IBM J. RES. DEVELOP. ¢ VOL. 22 @ NO. 2 « MAR 1978

require salarv2 if MARRIED in status cand
salary < 10000;

let salary2.d be MARRIED in status;

terminate if ENT_KEY

The .d part of the notation salary2.d refers to the dis-
play/no-display property of item salary2, i.e., whether or
not it is to be displayed to the user. The last rule indicates
that the dialogue is to terminate when the user depresses
the ENTER key, provided that there are no errors; if a rule
is violated, however, an error message is given to the user
and the dialogue is not terminated.

This small example is intended to give an idea of what
we are proposing. We now go into more detail: Sections
3.4, 5, and 6 discuss items, subframes, frames, and be-
havior rules, respectively.

3. items

Like a variable of a program, an item may contain a value
of a specific type, and this value may be changed during
the execution of a program. However, unlike a variable,
an item has attributes that determine where and how it is
to appear on a two-dimensional display. An item declara-
tion describes the type of value that the item can have, an
initial value (if desired), and the position of that value rel-
ative to the origin of the item. It may also describe addi-
tional text to be displayed along with the value. Finally,
an item may be associated with an input or output file; in
this case the item can be considered as a “‘window”’
through which the file can be viewed by the user.

We describe four kinds of items in this section: display,
kev-in, menu, and attention. A fifth, the list item, is simi-
lar to the menu item; it specifies a list of values, instead of
a set of values, and is useful when the order of selection
of options is important. The list item is not needed in our
examples; hence it has been left out. A sixth, the rable
item, although quite useful, is fairly complicated and is
not needed for a general view of our ideas; its description
has been relegated to Appendix A.

The overall syntactic structure of an (irem type) and an
(item declaration) is given below. As usual, the brackets
“[] denote an optional syntactic entity. The reader
should realize that not all parts of an {item type) may be
present for a particular item kind. To keep our description
simple, we give a grammar that ‘‘covers’” a more exact
grammar for the language (which is given in Appendix B).
When discussing each item kind, it will become clear
which parts are allowed and which are not.

(item type) ::= (item kind) (type) [(position)]
[text (string) (position)
{s (string) {position)}]
[initial (expression)]
[file (id)]
{item kind) ::= display | key-in | menu | attention

J. M. LAFUENTE AND D. GRIES

148

(position) 1= at (<r0w number), (column number))

(tvpe) .:= a PASCAL data type

(item declaration) ::= (id): (item type)

We consider the file (id) part separately, after the various
item kinds have been discussed.

Before proceeding with a discussion of the specific item
kinds, let us make some general observations. First, a
(position) gives the relative row and column numbers
where the value or text string is to be placed. An item
declaration does not indicate where the item is to actually
appear on the display; this is specified for each frame by
means of a contains clause to be defined later. If (position)
is omitted, (0,0) is assumed.

Secondly, the initial (expression) gives an initial value
for the item. The type of the (expression) is assumed to
match the (rype) of the value of the item.

Thirdly, any item has three properties that affect its ap-
pearance and behavior, and these properties may change
as the dialogue progresses:

1. The selected/unselected property indicates whether or
not the item contains a value. We say that the status of
an item is selected or unselected. An item is unse-
lected until it receives a value by an assignment in the
program, by means of the initial clause in its declara-
tion, or by user’s input. Provision should also be made
for an item to be deselected (set to unselected status)
by the user (perhaps by pointing again to it with a light
pen).

2. The enabledidisabled property indicates whether or
not the user is permitted to act on the item—enter a
value, etc.

3. The display/no-display property indicates whether or
not the item is to appear on the display device. Thus
an item may appear or disappear from view, depend-
ing on actions by the user or the program.

The programmer must have the means for testing and
changing these properties. To do this, we use the PASCAL
notation for referencing fields of a record. Thus, for an
item x,

X.8 is a Boolean value that describes the selected/un-
selected property of x, i.e., x.s = true if x is se-
lected, false otherwise.

x.d is true if x is to be displayed, false otherwise.
Xx.e is true if the user is allowed to act on item x, false
otherwise. ‘

Thus, the assignment x.d := y.s can be interpreted as **if
y is selected, then display x; otherwise, do not display x.”’

We are now ready to discuss the individual kinds of
items.

o Display item
A display item is used to present information consisting of
text and a value to the user. The program may change the

J. M. LAFUENTE AND D. GRIES

value, but the user may not. Thus, the enabled/disabled
property x.e of a display item x is always false. The ex-
ample of Section 2 contained two display items whose
declarations contained no (type). Thus the items were
used only to present information to the user, and no val-
ues were associated with them. Another declaration of a
display item with both text and a value is

var x: display integer at (0,16)
text ‘current_number:’ at (0,0).
‘maximum: 9’ at (1,0) initial 0

Whenever and wherever item x is displayed, it will look
as follows (except that its value, initially 0, may have
been changed by the program):

current number: 0
maximum: 9

o Key-initem

A key-in item x (say) is similar to a display item except
that the user is allowed (usually expected) to enter a value
for it, as long as its enabled/disabled property is trie. He
can do this by positioning the cursor on the display screen
at the place where the value for x belongs (or, alterna-
tively, by aiming the light pen there) and then typing in a
value. Upon typing in such a value, x automatically as-
sumes status selected, i.e., x.s is set to true. Presumably,
the user would also have means for deselecting the item—
for erasing its value completely—thus setting x.s to false.
In this case, the value of the key-in item is undefined. The
programmer can also do this simply by writing x.s :=

false.

Consider the item declaration

var y: Key-in integer at (0,16)
text ‘current number:’ at (0,0)

When first displayed, it will look like *‘current number:’’.
After the user keys in the value 6 (say), the item value
becomes 6, y.s is set to true, and the screen is changed to
“‘current number: 6’7,

® Menu item

The menu item is used to describe a set of options from
which the user may make zero or more selections. In the
(irtem rype) specification (see the beginning of Section 3),
the (type) must be a PASCAL set type. The value of a menu
item is always a subset of the set of values defined by the
(type). Consider, for example, the following declaration:

type color = set of (red, white, blue);
var z: menu color at (1,2)
text ‘Which color do you like?’ at (0,0)

In PASCAL, color is a set type which denotes the powerset
of the set of values {red, white, blue}. The value of z can

IBM J. RES. DEVELOP. @ VOL. 22 @ NO. 2 ® MAR 1978

be any subset of the base type {red, white, blue}. Facili-
ties exist in pascaL for adding a member of {red, white,
blue} to z and for testing whether z contains a value from
{red, white, blue} (for example, red in z yields true or false
depending on whether red is in z or not). These facilities
are available to the programmer in designing and coding
the dialogue.

For a menu item z, z.s corresponds to whether the val-
ue of z is nonempty (z.s = true) or is the empty set (z.s =
false). When the above item z is displayed, it will look like

Which color do you like?
#red
=white
=blue

Thus, the options are displayed beginning in the same col-
umn, in successive rows, with the first option beginning at
(1,2) (with an asterisk preceding it). If the user now se-
lects “**red’” and ‘**blue,” the display will be changed to
reflect this fact (perhaps by brightening the selected op-
tions). Then z.s = true and the value of z is the set {red,
blue}. Similarly, by aiming the light pen at an already se-
lected color, he could delete it from z.

We summarize. The value of a menu item z is a subset
of the set of options defined by the (tvpe) in the declara-
tion of z, and z.s = card(z) > 0 (the cardinality of z is
greater than 0). All options of the specified (tvpe) are dis-
played in a standard format, with the ones currently in z
indicated in some manner. The user may select an unse-
lected option (add it to z) or deselect a selected option
(delete it from z). The programmer may reference the
value of z (change z, test whether an option is in z, etc.) as
he would normally use a variable of type set.

® Attention item
An atrtention item is declared in the same fashion as a
menu item (except that the item kind is attention). The
(tvpe) must be a scalar or subrange type. The difference
between the two kinds of items lies in how their corre-
sponding values are treated. The value of an attention
item is always a scalar from the set of values defined by
(tvpe) (or undefined, if no option has been selected). The
item is always restored to unselected status whenever the
system becomes ready to accept the next user action.
The reason for attention items is to allow the use of
special buttons or keys or to make it simple for the pro-
grammer to specify an immediate system response when
a phrase on the display screen is pointed at with a light
pen. Any number of such keys, buttons, or phrases may
be specified as options of an attention item. After the user
pushes a button or selects a phrase, the system may re-
cord the input and then deselect the option (that is, set the
status of the item to unselected). The user may then
choose another option.

iBM J. RES. DEVELOP. @ VOL. 22 ¢ NO. 2 ¢ MAR 1978

Consider, for example, an attention item declared as
follows:

type choices = (PROCEED, RESET, TERMINATE);
var x: attention choices at (1,2)
text ‘What would you like to do next?’

When the above item is displayed to the user, it will ap-
pear as follows:

What would you like to do next?
*PROCEED
*RESET
*TERMINATE

The programmer may wish to specify a system response
for each option as follows. When the user selects #PRO-
CEED, the current frame dialogue is to terminate, informa-
tion entered by the user is to be recorded, and the next
frame is to be presented. If *RESET is selected, all key-in
items in the current frame are to be ‘“‘reset’’ (i.e., their
status set to unselected) and the user is to type in new
values. Finally, if *TERMINATE is chosen, the dialogue is
to terminate. In any case, x.s is set to true after the user
action, until the system is ready to accept the next user
action, at which time x.s = false and the value of x is
again undefined.

® Associating ua file with an item

In many data-directed interactive applications it is neces-
sary to read information from a file, present the informa-
tion to the user (usually in tabular form), accept changes
from the user, and then rewrite the file with the updated
information. A table item, described in Appendix A, is
part of the mechanism for doing this, and a more detailed
discussion appears there. However, the association of a
file with an item is interesting enough to be explained
here.

If a file attribute file f appears in the declaration of a
key-in item x, then f must be an identifier denoting a PAS-
CAL input or output sequential file. We say that item x is
bound to the file f. The value of x is always the value of
the buffer variable f1 whose value can be used and
changed by file operators. Thus, item x becomes a ‘*win-
dow’’ through which file fcan be viewed. In the case of an
input file, the programmer can read the components of the
file using the PASCAL operators reset and get, whereas an
output file can be written using the operators rewrite and
put.

A simple example will illustrate these ideas. Suppose
oldf is a file of real numbers to be inspected. The user
looks at each value, changes it if necessary, and then
pushes a key, which causes the value to be appended to
an output file newf. We declare two items k/ and a/ and a
procedure read_file as follows:

149

J. M. LAFUENTE AND D. GRIES

150

BANK OF NEW YORK JULY 4, 1976
1:30 P.M.

Figure 2 A subframe.

type oldf = file of real;
newf = file of real;
var kl: key-in real at (2,15)
text ‘Change value if necessary.’ at (0,0),
‘Depress key 1 when done.” at (1,0),
‘Next value is:’ at (2,0)
input file oldf output file newf
format F10.2;
al: attention (KEY12);

procedure read_file;

begin if not eof(f) then
begin put(newf’); get(oldf')
end

end

In this example, kI is a key-in item bound to files oldf and
newf, and al is an attention item containing only the op-
tion KEY12, which denotes, say, hardware key number 12.
Procedure read_file is invoked each time the user
depresses this key. (This is specified by the programmer
with a rerminate behavior rule, described in Section 6.)
This procedure writes the current value of kI (which is
also the value of oldf1 and newf 1) into newf and reads
the next value from oldf, which is then displayed to the
user automatically by virtue of the attribute input file o/df.

4. Subframes
The subframe notation is used to group together a set of
items (and/or other subframes) as a logical unit. In addi-
tion to items declared locally, the subframe may contain
items and other subframes declared globally. It must
specify where (on the display screen) each of the included
items and subframes is to be placed. This, of course, is
relative to the row and column where the subframe being
defined is to be placed. It may also contain behavior rules
(see Section 6) which describe restrictions and inter-
relations on the items of the subframe.

A subframe type is thus similar to a PASCAL record type
in that it allows the programmer to view a collection of
objects as a single value. The syntax is:

(subframe type) :: = subframe (PASCAL declaration)
[(item inclusion part)]
[(behavior rules)] end

J. M. LAFUENTE AND D. GRIES

In the (PASCAL declaration) the programmer can declare
items (and other subframes) which are local to the sub-
frame. The (item inclusion part) lists all items and sub-
frames (including local ones) which are considered to be
part of the subframe, together with their position with re-
spect to the subframe:
(item inclusion part) ::= contains (id) at (position)
{; (id) at (position)}

As an example, suppose we want a subframe to contain
the information in Fig. 2, where the items date and time
have already been declared globally. The subframe y
would be given by

var y: subframe
banktext: display text ‘BANK OF NEW YORK’;
contains banktext at (0,2);
date at (0,20);
time at (1,20)
end

5. Frames
A frame describes a set of dialogues between the system
and the user. It is similar in concept and definition to a
PASCAL procedure without parameters, except that it also
describes how information is to be displayed to the user
and how the user is to interact with the program.

A frame definition may contain declarations of local
variables, items, subframes, functions, and procedures to
be used in the frame. In addition, it may contain

1. A procedure initialize, which is automatically invoked
(if declared) upon entry to the frame in order to per-
form necessary initialization.

2. A contains clause, as described above in the discussion
of subframes; this specifies the items to be displayed
together with their position and other attributes (for-
mat, intensity, text of the error message if an illegal
value is supplied, etc.).

3. A set of behavior rules (described in Section 6), which
describes the user interaction with the program (for
this frame), restrictions on this interaction, and condi-
tions for termination of the frame dialogue.

4. A procedure terminate, which is automatically in-
voked (if declared) upon termination of the dialogue,
just before the frame itself is terminated.

The ‘‘execution’” of a frame thus proceeds as follows.
First, procedure initialize is executed. Then the items are
displayed to the user and a dialogue takes place. Upon its
termination, procedure terminate is executed (if it exists)
and the frame itself terminates. (Control is returned to
just after the point of invocation.)

Let us illustrate this with a simple example in which a
global item is used in two frames in different ways. Sup-
pose, for example, that the following items were declared
globally:

1BM J. RES. DEVELOP. e VOL. 22 ¢ NO. 2 » MAR 1978

var accno: key-in char at (0,16)
text ‘ACCOUNT NUMBER:’;
balance: key-in real at (0,9)
text ‘BALANCE:’ format F10.2

In one frame, say FI, the item accno is displayed to the
user and he must specify a value, which the system then
uses to search a file for information concerning his bank
account:

frame F/;
contains accno at (3,3)
intensity high format 16
format msg ‘Invalid value - respecify’;
procedure initialize;
begin accno.s 1= false
end
endframe

When this frame is presented to the user, item accrno will
appear at position (3,3). The intensity attribute specifies
that the item is to be brightened (high intensity) in this
frame. The format msg attribute specifies an error mes-
sage to be given to the user if the value entered for accno
is not a six-digit number.

In another frame, £2, the same item is to be displayed
to the user but at a different position and with different
attributes. The purpose of this frame is to allow the user
to request a bank ‘‘operation’” (for example, to show his
account balance). Thus we declare the local item op _type
and include the global item accro:

frame F2;
var op_type: attention (KEY1, KEY2, KEY3);
contains accrno at (5,5); op_type;
rules let accno.e be false;
terminate if op_type.s
end
procedure terminate;
begin case op_type of
KEY1: begin balance := get_bal;
balance.d := true
end

end
endframe

The let rule prevents the user from changing the account
number (the item is disabled). When the user selects the
option KEYI, the procedure rerminate is automatically in-
voked; the function get_bal obtains the account balance,
which can then be displayed to the user in another (or the
same) frame.

We see from this example that different attributes and
behavior rules that affect an item can be specified in each

IBM J. RES. DEVELOP. e VOL. 22 @ NO. 2 ¢ MAR 1978

frame where the item is to be used. Consequently, where-
as the basic characteristics (item kind, data type, initial
value, etc.) of an item do not change, the behavior and
appearance of an item can vary from one frame to anoth-
er.

As a convenience for the programmer, we relax the
syntax rules and allow frame attributes to be specified di-
rectly in the declaration of local items or subframes (thus
eliminating the need for a contains clause for local items).
For example, instead of writing

frame F/;
var x: Key-in char at (0,12) text ‘ENTER NAME:’;
contains x at (1,2) format A15;

endframe
one can, equivalently, write

frame F/;
var x: Key-in char at (1,14) text ‘ENTER NAME:’
at (1,2) format‘ai1s;

endframe

e A PASCAL program

Finally, we need to extend the definition of a PASCAL pro-
gram to include a (frame definition part)y, which consists
of one or more frame definitions. We can now think of a
program as a description of a class of application dia-
logues and all the processing steps required to support
any such dialogue. The processing is specified by proce-
dure declarations and by the (statement part) of the pro-
gram. The (statement part) contains statements to be ini-
tially executed and statements to invoke frames and to
determine the order of presentation of frames.

6. Behavior rules
As the user acts on items of a frame, the appearance of
the frame changes depending on the behavior rules that
have been specified for the frame. For example, entering
data for an item may cause a message to be displayed,
pressing a key may result in tutorial information being
given, and pointing to an item option with a light pen may
cause part of another item to be brightened or dimmed or
to disappear altogether. With complicated relationships, a
simple user action can cause the appearance of the frame
to change quite radically, so much so that the user no
longer sees it as the same frame. Nevertheless, the basic
notion is that it is the same frame, at least as far as the
programmer perceives it. The user, however, does not
need to think in terms of frames.

Three types of behavior rules can be used to guide the
interactions with the user during a frame dialogue. The

151

J. M. LAFUENTE AND D. GRIES

152

binding rule is used to specify the conditions under which
the value (and status properties) of a variable should be
changed by the system; the requirement rule is used to
specify the conditions that must be rrue before the frame
dialogue may terminate; and the terminate rule is used to
specify when termination is to occur.

® Binding rule
The binding rule has the general form

let (variable) be (expression) (if <condi1ion>]

The conventional rules about matching types of (expres-
sion) and (variable) in an assignment apply bere also. Af-
ter each response by the user, all let rules are processed
(in an undetermined order and perhaps several times
each) as follows: If a (condition) of a let rule is true, then
the (expression) is evaluated and assigned to the (varia-
bley.

After processing all the let rules, for any rule with its
(condition) true, the {variable) will have the value of the
(expression).

We realize that with these semantics, let rules may be
difficult to implement efficiently. Different ordering of
processing of the rules can produce different results, the
processing may not terminate, and there may be inconsis-
tencies that cannot be resolved. For example, consider

let x.s be not x.s if not x.s; let x.s be not x.s if x.s or
letabeb + 1;let b be a + 1

Proposals have been made for languages in which the
order of execution is not explicitly given [12-14]. In par-
ticular, Foster and Elcock [14] describe a compiler for a
generalized language consisting of such “‘assertions.”” We
believe that the use of let behavior rules can be restricted
so as to allow efficient processing and safe checks for ter-
mination, without harming flexibility too much. One
simple restriction is that it be possible to order the rules
so that the (variable) of let rule i does not appear in rules 1
throughi — 1. We adhere to this restriction in this paper.

® Requirement rule
The rule

require (condition)

is used to indicate that (condition) must be true before the
frame dialogue may terminate. Should termination be sig-
naled when (condition) is false, a message is displayed to
the user, who must then respecify entries so that (condi-
tion) is true.

e Terminate rule
The rule

terminate if (condition)

1. M. LAFUENTE AND D. GRIES

indicates that when (condition) is true, the current frame
interactions are to terminate and control is to return to the
point in the program where the current frame was in-
voked. After performing computations, the program may
invoke another (or the same) frame or terminate execu-
tion,

As examples of these basic types of rules, we rewrite
some of the behavior rules of the example presented in
Section 2. Remember, for an item x, x.s refers to the se-
lected/unselected status, and x.d to its display/no-display
status.

{a sex option must be selected}

{a salary must be given}

require card(sex) = 1; {exactly one of MALE and FE-
MALE must be chosen}

require card(status) = 1;

require not (MARRIED in status) cor nchild = 0

require not MALE in sex cor sel_ser.s;

require not FEMALE in sex cor not sel_ser.s;

let salaryv2.d be (MARRIED in status);

terminate if ENT_KEY

require sex.s;
require salary.s:

® Some syntactic sugar

Although the three types of rules above are powerful
enough, some syntactic sugar can increase the ease of
writing behavior rules. One abbreviation is simply to use
the item name x instead of x.s. For example, ‘‘require
salary’” makes perhaps more sense than ‘‘require sal-
arv.s,”” which means that the item salarv must be se-
lected. To illustrate other syntactic extensions, we give
below a set of formats for new rules and show immedi-
ately below how each could be written in the skeleton
syntax given above.

1. require (conditionl) if (condition2)
= require not (condition2) cor (conditionl)
2. (Exclusion rule) exclude v/, v2 if (condition)
= require not (v/.s or v2.s) if (condition)
3. (Limit rule) limit is 1 of sex
= require card(sex) = 1
4. require at least 1 of sex
= require card(sex) = 1
5. (Option limit rule) with (id): allow only 1 options
= let card{(id)) = 1
6. (Implication rule} with (id): (condition) implies
red, blue
= let (id) be (id) + [red] if (condition);
let (id) be (id) + [blue] if (condition)
7. (Option exclusion rule) with (idy: (condition) excludes
blue
= let (id) be (id) — [blue] if (condition)

Another convenient extension is the enter behavior rule,
which allows a procedure to be invoked directly without
terminating the frame dialogue:

IBM J. RES. DEVELOP. » VOL. 22 @ NO. 2 ¢ MAR 1978

enter (id) if {condition)

= invoke procedure (id) if (condition) is true;
Upon return from the procedure, resume the frame
dialogue.

As can be seen, the language allows the programmer to
say the same thing in many ways. The language designer
must search for a minimum set of rules with maximum
flexibility (if such a thing is possible). It is probably better
to have just a few ways of describing behavior rules
rather than too many.

7. A larger example
As an example of a dialogue program, suppose that a fi-
nancial institution wishes to computerize some of its op-
erations. We show below part of the application program.
The program is structured as a sequence of frames F/,
F2, .- -. Frame FI, shown in Fig. 3, allows the user to
select one of the bank functions and, accordingly, to pro-
ceed to another frame to perform the desired function
(New Account, Deposit, or Withdrawal). Frames F2 and
F3 (Figs. 4 and 5) allow the user to enter the required
information in order to open a new account and are typi-
cal of applications requiring the collection of a large
amount of interrelated information, with very little proc-
essing.

® Program
program bank;
var title: display text 'BANK OF NEW YORK’;
R: subframe
return: attention (RETURN);
rules terminate if return.s end
end;
al: attention (OPEN ACCOUNT, DEPOSIT, WITHDRAWAL)
at (1,8) text ‘Select transaction desired:’;
dli: display text ‘NEW ACCOUNT';
heading: subframe
inf: display at (4,3)
text ‘Enter information. Hit ENTER
when done.’;
contains d/ at (2,19);
end;
name: Key-in char-at (0;6) text ‘“NAME:’;
status: menu set of (MARRIED, SINGLE) at (0,9)
text ‘STATUS: ;
accno: display at (0,24)
text ‘“The new account No. is:’;

frame F]; - - - endframe;
frame F2; - - - endframe;
begin

start: F1;

IBM J. RES. DEVELOP. @ VOL. 22 NO. 2 « MAR 1978

BANK OF NEW YORK

Select transaction desired:
*OPEN ACCOUNT
*DEPOSIT
*WITHDRAWAL

Figure 3 Frame Fl.

BANK OF NEW YORK
NEW ACCOUNT
Enter information. Hit ENTER when done.

NAME:
PERMANENT ADDRESS:

MAILING ADDRESS - Same as above? *YES
ENTER ADDRESS: *NO
STATUS: *MARRIED
*SINGLE

Figure 4 Frame F2.

case al of
NEW ACCOUNT: F2; F3; F4;
DEPOSIT: F5;
WITHDRAWAL: F6;
end;
go to start
end.

First, we declare global variables, which can be refer-
enced in any of the frames. Subframe R will be used in
frame F4 (Fig. 6) to return control to frame F/; selecting
the RETURN option would terminate the dialogue in frame
F4, whereby the program would then cause frame FI to
be presented.

Subframe heading is used to display text at the top of
the screen in frames F2 and F3. It consists of dI, which is
also used in frame F4, and display item inf.

® Definition of frames
Frame FI is shown in Fig. 3. It is defined as follows:

frame F1;
contains title at (0,17) intensity high;
al at (2,2);
rules terminate if a/.s
end
endframe

This frame contains two global items: display item ritle
and attention item «a/, which is used to select the desired
function to be performed. The case statement in the pro-
gram is used to present the next frame, depending on the
option selected.

Frame F2 is shown in Fig. 4.

153

J. M. LAFUENTE AND D. GRIES

BANK OF NEW YORK
NEW ACCOUNT

Enter information. Hit ENTER when done.

NAME:
SEL. SERVICE NO.: SEX: *MALE
*FEMALE
NO. CHILDREN:
SALARY:
SPOUSE'S SALARY:
Figure 5 Frame F3.
BANK OF NEW YORK
NEW ACCOUNT
NAME:
The new account No. is:
*RETURN

Figure 6 Frame F4.

frame [2;
var addrl: key-in char at (0,19)
text ‘PERMANENT ADDRESS:’;
d3: display text ‘MAILING ADDRESS —;
ml: menu set of (YES, NO) at (0,16)
text ‘Same as above?’;
addr2: key-in char at (0,15) text
'ENTER ADDRESS:’;
contains title at (0,17); heading ; name at (5,3);
addrl at (6,3); d3 at (7,3); mI at (7,21);
addr2 at (8,6); status at (10,3);
rules require name;
require at least | of addri, addr2;
require addr! if YES in ml;
require addr2 if No in ml;
with 71/ allow only 1 options;
exclude addr2 if YES in ml;
with status: allow only 1 options;
terminate if ENT_KEY
end;
procedure initialize,
begin reset_ frame; ml := [YES]
end
endframe

The global items title, name, and status and the sub-
frame heading are included in this frame. One of the two
addresses must be supplied, depending on whether YES or

154 No is selected. If neither option is in m!, then it is valid to

J. M. LAFUENTE AND D. GRIES

enter either address or both. Actually, the rule require
addrl is superfluous because it can be inferred from the
other rules.

Upon entering the frame and before the frame is pre-
sented to the user, the procedure reset_ frame causes the
status of all items in F2 to be set to unselected. Then, the
item m/ is initialized to [YEs]. We have not defined the
procedure reset_ frame here; this could be a “‘*built-in”’
procedure provided by the implementation.

Frame F3 is shown in Fig. 5.

frame F3:
var sel_ser: Key-in integer at (0,18)
text ‘SEL. SERVICE NO.:” format 19;
sex: menu set of (MALE, FEMALE) at (0,6) text ‘SEX:’;
nchild: key-in integer at (0,14)
text ‘NO. CHILDREN: format 110;
salary: key-in real at (0,8) text ‘SALARY:’
format £20;
salary2: key-in real at (0,17)
text ‘SPOUSE’’S SALARY: format F15;
contains title at (0,17); heading; name at (5,3);
sel_ser at (6,3); sex at (6,31); nchild at (8,3);
salary at (9,3); salary2 at (10,3);
rules with sex: allow only 1 options;
require sex, salary;
require nchild = 0 if MARRIED in status;
let name.e be false;
require se/_ ser if MALE in sex;
exclude sel - ser if FEMALE in sex;
let salary2.d be MARRIED in status;
require salary2 if MARRIED in status cand
salary < 10000;
terminate if ENT_KEY
end;
procedure initialize
begin reset_item(sel_ser, sex, nchild, salary, salary2)
end;
procedure ferminate;
begin accno := new_acc; file_acc
end
endframe

This frame is very similar to the example shown earlier
in Fig. 1. As in frame F2, the items title and heading are
included here. The items status and accno are referenced
here but will not be displayed to the user. The item name
contains the information supplied by the user in the pre-
vious frame, but it cannot be changed here. Initially, the
procedure reser_ item (not defined here) sets the status of
all key-in and menu items (except name) to unselected.

The relations among the items are expressed by the be-
havior rules. For example, selective service number is
only required from male applicants. To determine loan
eligibility, the bank wants to know the spouse’s salary if

IBM J. RES. DEVELOP. & VOL. 22 « NO. 2 & MAR 1978

the applicant’s salary is less than $10 000. And salary2
makes no sense if the applicant is not married; therefore,
salary2 oﬁly appears on the screen if MARRIED was se-
lected in frame F2. When all these relations are satisfied,
the user can depress the ENTER key, which causes a new
account to be produced and filed by the local procedures
new_acc and file_acc (not defined here).
Frame F4 is shown in Fig. 6.

frame F4;
contains title at (0,17); diI at (2,19); name at (7.3);
accno at (9,3); R at (12,41);
tules let name.e be fulse
end
endframe

This frame is used to display the new account number
to the user after all specified information has been col-
lected in frames F2 and F3. The item name. which ap-
pears in frames F2 and F3, also appears here but at a dif-
ferent location. Selecting the RETURN option causes a re-
turn to the program, according to the terminate rule
specified in subframe R; frame FI will then be displayed
again.

8. Implementation problems

The efficient implementation of behavior rules may be a
point of contention about the applicability of this work. In
this section, therefore, we briefly discuss implementation
problems and give hints at solutions. A more detailed ex-
planation of these problems, and a discussion of tech-
nigues and algorithms to solve them, appear in the first
author’s thesis [11].

To begin with, a set of behavior rules may be inconsis-
tent, and to check for this possibility the compiter should
contain a compile-time analysis procedure. For example,
suppose that the following rules are given to describe the
frame behavior:

1. require sel_ser if MALE in sex; -
2. with sex: allow only 1 of MALE, FEMALE;
3. let sex be sex + [FEMALE] if sel_ser.s

The problem is that selecting the MALE option leads to an
inconsistency. Another situation that must be detected is
when a termination condition can never occur or would
lead to an inconsistency.

These kirids of problems can be analyzed with a graph
model of interactions. A graph representation of the
above rules is illustrated in Fig. 7, where the nodes of the
graph represent items and options, and the edges repre-
sent constraints and dependencies. Associated with each
node x is a possible status property ps, as follows:

If node(x).ps = 1, then x must be selected;
If node(x).ps = 0, then x cannot be selected;
If node(x).ps = 2, then x can be in either status.

I

IBM J. RES. DEVELOP. & VOL. 22 & NO. 2 ¢ MAR 1978

\ e OR O sex
) M
FEMALE X 3

Figure 7 Graph representation of behavior rules.

Shown in the graph are implication links (labeled {) and
exclusion links (labeled ¢), which express relations be-
tween the possible status of nodes. The graph is con-
structed as the rules are parsed. For example, the first
rule above produces the link 2 %> 1. A rule such as re-
quire x does not produce a link; it simply causes the pos-
sible status of node x to be set to 1. The specification of

require x; exclude x

would result in the inconsistency node(x).ps = | and
node(x).ps = 0.

It is not always necessary to test conditions after every
user action. Here, the graph model also helps, since it is
possible to determine which user inputs have an effect on
each system response (such as the display of a message or
the termination of the dialogue). Furthermore, certain
combinations of user’s inputs are irrelevant in the sense
that, although they may occur, they cause no change in
the observable state of the system. A run-time procedure
that takes advantage of these observations to implement
behavior rules efficiently is contained in [11].

9. Summary

We have presented extensions to PASCAL to provide a lan-
guage for programming alphanumeric user-computer dia-
logues. In this language, interactive behavior rules can be
defined nonprocedurally by an application programmer,
leaving the task of checking for inconsistencies and set-
ting up the control logic to the system. This type of lan-
guage, therefore, can reduce much complicated coding of
interactive applications.

The extensions were designed to be natural and to
blend well with the concepts and syntax of pascaL. We
feel that, in general, block-structured languages with flex-
ible data-type definition facilities are good candidates for
the embedding of interactive behavior specifications.

We saw, for example, how items were defined with a
simple extension of PASCAL types, how subframes were
simple extensions of pPAscAL records, and how frames
were defined in a way similar to PASCAL procedures. We

155

J. M. LAFUENTE AND D. GRIES

156

WEEKLY PAYROLL

EMPLOYEE HOURS
NAME WORKED PAY
F.W. SMITH 20
J.M. ROBERTS 36
A.L. ANDERSON 40

Figure 8 A table item.

also saw how the scope rules for variables in blocks and
procedures extended very nicely to items in frames and
subframes.

1t is, of course, possible to extend other languages to
allow the specification of interactive dialogués, but the
extensions may not be as elegant. A possible way to ex-
tend coBoL is discussed in [11].

In the description of our language, we deliberately
omitted some language features for the sake of simplicity.
For example, in a real implementation, the language may
be extended to contain abbreviations, more item and
frame attributes, and more functions to manipulate table
items. Also, a graphics protocol could be designed to lay
out the information on the frames interactively.

Appendix A: Table item

High level programiming languages normally contain data
constructs such as arrays, structures, and records, which
are built up from the basic data types (integer, real, char-
acter, etc.). Similarly, our language contains a structured
type of item called a table item, which is made up of the
basic items that we have considered so far. The table item
allows the programmer to define a two-dimensional struc-
ture of values, with text, position, and other character-
istics—the number of rows to be displayed, whether the
user is to select rows or enter values in a column, etc.

A table item may be viewed as a set of columns; each
column is defined very much like a key-in or display item
(depending on whether or not the user is permitted to en-
ter values into the column), having attributes such as po-
sition, format, initial value, etc. The programmer can also
specify that the rows of the table are to behave as a menu
or as an attention item. Behavior rules can then be speci-
fied to describe selection constraints and relations among
the rows or columns of the table.

An example of a table item is shown in Fig. 8. Let us
assume that the values contained in the first column can
be obtained from a global table emp _tab, which was used
by an authorized person to specify the employees’ names.

J. M. LAFUENTE AND D, GRIES

We then include this column in our new table and add two
more columns. When this table is displayed, a clerk is to
enter the hours worked each week, and the program will
then compute the pay. The table can be defined as fol-
lows:

var pay_tab: table (20) text “WEEKLY PAYROLL’ at (0.,9)
columns
hrs: key-in integer at (5,18)
text ‘HOURS at (—3,—2), ‘WORKED’
initial 0 format 12;
pay: display real at (5,25)
text ‘PAY’ at (—2,1) initial 0 format Fe6.2;
contains emp _ tab.name at (5,2)
end
rows (10) attention

This defines a table item pay_tab having a maximum of
20 rows; of these, only 10 rows can be seen by the user.
The rows are to behave as an attention item (having 10
options). To specify the behavior of this table, we give
behavior rules for the containing frame:

let pay_tab.name.e befalse;
require srs < 40;
let pay be hrs * rate

The first rule prevents the user from changing the values
in the name column. The pay is computed automatically
by multiplying the hours worked (which cannot exceed
40) by the global variable rate.

Thus, a table item may be used for displaying or up-
dating information, depending on the (item kind) specified
for the columns (and their status properties). If used for
updating information, then, at any time during the presen-
tation of the containing frame, one of the rows may be
designated as the current row. Each value in the current
row behaves as a display or key-in item, according to the
{item kind) specified for the corresponding column. Only
the current row can be acted on by the user.

The programmer can manipulate the information in the
table item, change the status properties of the columins,
select rows of the table, or designate another row as the
current row. For this we need some notation.

Notation If T is a table item, the rows are denoted by

T[1], T2}, - - -. and, in particular, T.current_row is the
current row. The variable T.current _index is the current-
row index, i.e., T.current_row is equivalent to

T[T.current_index]. To reference elements in each row,
we use PASCAL record notation; thus,

T{il.x = the value at row i, column named x.

Now, the table item T itself has a value, which is the
value that results from treating the rows as a menu or
attention item. For example, if menu is specified for the

IBM J. RES. DEVELOP. @ VOL. 22 » NO. 2 ® MAR 1978

rows of T and rows 1 and 3 are the only selected rows,
then the value of T'is the set {1, 3}, T.s and 1 in T are true.

To illustrate, suppose that the user can enter the
“hours worked’” in any of the rows of the item pay_tab
defined above. But, prior to entering the information, he
must indicate which row he wishes to act on by pointing
to it with the light pen. This can be accomplished by add-
ing the behavior rule

let pay_tab.current_index be pay_tab

which specifies that the value of the table item (the se-
lected row) is to be assigned to the variable pay_tab.
current _index.

Alternatively, we could define key number 1 as the “‘next
key,”” so that pressing key 1 would compute the pay for
the current row and place the cursor at the next row. This
can be programmed as follows:

var next_key: attention (KEY1);
enter pl if next_key.s;

procedure p/;

begin pay_tab.current _row.pay =
pay_tab.current _row.hrs * rate;
pay_tab.current _index :=
pay_tab.current _index + 1

end

More flexibility may be needed to manipulate rows of a
table item. For example, the following built-in procedures
would be helpful:

nrows(T)
delete(T, i)
insert(T, i)

gives the number of rows defined so far,
deletes row 7 from the table,

inserts a row (of undefined values) after
row i.

Moreover, in order to increase the usefulness of table
items, the language should provide a mechanism for asso-
ciating external files with a table item, and it should pro-
vide operators for transferring data. We explore these
ideas briefly in the next section.

& Associating a file with a table item

We are particularly interested in sequential files of type
record. We call these structured sequential files and de-
fine them as follows:

(structured sequential file) :: = file of (record type)

Exactly how the components are allocated in external
storage is implementation-dependent.

By specifying the attribute file (input or output) in the
declaration of a table item, the programmer establishes an

IBM J. RES. DEVELOP. 8 VOL. 22 ¢NO. 2 ¢ MAR 1978

association between the table item T and records of the
specified file. In this case, we say that the table item is
bound to the file.

What we wish to accomplish is, in fact, a generalization
of the binding of files to key-in or display items, which
was discussed earlier. In this case, a table item T bound to
a file f would be regarded as a work area into which one
could read records from f (if fis an input file) or write
records to f (if fis an output file). Superimposed on this
work area is a window through which the user can view
the area. The size of this window, say w, is specified in
the row specification part of the declaration of T, and rep-
resents the number of rows that the user sees. Let p be
the current number of rows and s the size of the table
(maximum number of rows). The programmer can manip-
ulate values inrows T[1], T[2], - - -, T[p], while the user
only has access to w or p rows, whichever is smaller.

The implementation may provide facilities for scrolling,
for reading (writing) records from (to) a file, and for asso-
ciating the file information with the table item. The oper-
ators for reading and writing would be generalizations of
the PASCAL operators get(f) and put(f). We omit the de-
tails and refer the reader to [11] for more information.

Appendix B: Syntax
We present here a summary of our syntactic extensions to

PASCAL.
(frame definition part) :: = (frame definition)

{; (frame definition};
(frame definition) :: = frame (id): { frame body) endframe

(frame body) :: = (label declaration part)
(constant definition part)
{type definition part)
(variable declaration part)
{item inclusion part)
{hehavior rules)
{procedure declaration part)

{item type) 1= (item kind) [(type) [at ((row). {col})]]
{attribute specification)| (table item type)
{item kind) :: = display | key-in | menu | attention
(attribute specification) 1= [(text specification)]
{item attribute)}
{text specification) = text (string) [at {{row), (col))]
{. string) [at ((row), (col))]}
{type) ' = (PASCAL fype) | (subrange set) | (value set)
(PASCAL type) :: = a PASCAL standard type, scalar type, or
set type
(subrange set) > = (constant) .. (constant)
{, (constant) .. (constant)}
(value set) 1= ((constant) {, (constant)})
{table item type), ' = table ({size))

(attribute specification)
{column specification part)
{row specification part) 157

J. M. LAFUENTE AND D. GRIES

158

(column specification part) :: = columns {(id): ({item type);}
[(item inclusion part)] end
(row specification part) :: = rows ((size}) [(row kind)]
(row kind) ::= menu | attention
(subframe type) :: = subframe {(id): (typel):}
[(item inclusion part)]
[(behavior rules)] end
{typel) .= (subframe type) | (item type)
(item inclusion part) ::= contains (item specification)
{; (item specification)}
(item specification) 1= (id) {, (id) } {{frame attribute)}
(frame attribute) :: = at ({row), {col))
[intensity high
| format (format specification)
| format msg (string)

(behavior rules) ::= rules {rule) {; (rule)} end
(rule) ::= (requirement rule) | (binding rule)
| (terminate rule) | (enter rule)
(requirement rule) :: = require (conditionl)[if (condition)]
(conditionl) ::= (condition) | (name part)
(name part) 1= (item name) {, (item name)}
(binding rule) ::= let (variable) be (expression)
(if (condition)]
{terminate rule) ::= terminate if (condition)
{enter rule) ::= enter (id) if (condition)
{condition) :: = (basic condition)
| (condition) cor (basic condition)
(basic condition) :: = (logical expr) | (basic condition)
cand (logical expr)
{logical expr) ::= a logical expression

| ({condition)) | ENT_KEY

References and note
1. S. L. Feingold, ‘*‘PLANIT—A Flexible Language Designed
for Computer-Human Interaction,”” AFIPS Conf. Proc. 31,
545 (1967).

I. M. LAFUENTE AND D. GRIES

2. “COURSEWRITER III Student Text,”” Form no. GC20-
1706, IBM Corporation, White Plains, NY, 1969.

3. C. L. Johnson, ‘‘Principles of Interactive Systems,”” IBM
Syst. J. 7, 147 (1968).

4. 1. W. Cotton, ‘‘Languages for Graphic Attention-Handling,”’
Advanced Computer Graphics, R. D. Parslo and R. E.
Green, eds., Plenum Press, New York, 1971, p. 1049.

5. W. M. Newman, ‘‘A System for Interactive Graphical Pro-
gramming,”” AFIPS Conf. Proc. 32, 47 (1968).

6. T. R. Stack and S. T. Walker, ‘‘AIDS—Advanced Inter-
active Display System,”” AFIPS Conf. Proc. 38, 113 (1971).

7. J. M. Martin, ‘‘Design of Man-Computer Dialogues,”” Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1973.

8. K. Jensen and N. Wirth, ““PASCAL User Manual and Re-
port,”” Lecture Notes in Computer Science 18 (second edi-
tion), Springer-Verlag, New York, 1975.

9. N. Wirth, ““The Programming Language PASCAL,” Actu
Informatica 1, 35 (1971).

10. The language facilities and techniques described in this pa-
per are experimental; an implementation is not planned by
the IBM Corporation.

11. J. M. Lafuente, ‘‘The Specification of Data-Directed Inter-
active User-Computer Dialogues,”” Ph.D. Thesis, Cornell
University, Ithaca, NY, 1977.

12. E. D. Homer, ‘“*An Algorithm for Selecting and Sequencing
Statements as a Basis for a Problem-Oriented Programming
System,’” Proceedings of the 21st ACM National Confer-
ence, New York, NY, 1966, p. 305.

13. L. G. Tesler and H. J. Enea, ‘A Language Design for Con-
current Processes,”” AFIPS Conf. Proc. 32, 403 (1968).

14. J. M. Foster and E. W. Elcock, ““ABSYS1: An Incremental
Compiler for Assertions: An Introduction,”” Machine In-
telligence 4, 423 (1969).

Received May 25, 1977, revised September 15, 1977

J. M. Lafuente is located at the IBM System Products
Division laboratory, P.O. Box 390, Poughkeepsie, New
York 12602; Prof. Gries is located at the Department of
Computer Science, Cornell University, Ithaca, New York
14850.

[BM J. RES. DEVELOP. ¢ VOIL.. 22 & NO. 2 « MAR 1978

