
H. J. Nussbaumer 
P. Quandalle 

Computation of Convolutions and Discrete Fourier 
Transforms by Polynomial Transforms 

Abstract: Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have 
the convolution property and  can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly 
well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for comput- 
ing one-dimensional convolutions and Discrete Fourier Transforms are then derived from  polynomial transforms. 

Introduction 
The  calculation of two-dimensional  digital  convolutions  technique.  applicable to one-dimensional  and  multi- 
has  many  applications,  particularly in  image  processing. 
The main problem  associated  with  these  convolutions  re- 
lates to the  huge  processing  load  required  for  their  com- 
putation. 

Direct  calculation of a two-dimensional  convolution of 
dimension N x N corresponds  to N4 multiplications  and 
N 2 ( N 2  - 1) additions.  A  substantial  reduction in the 
number of operations  can  be  achieved if direct  computa- 
tion is replaced by a Fast  Fourier  Transform  (FFT) [ I ]  or 
a Number  Theoretic  Transform  (NTT) [2-61 approach. 
These  two  techniques,  however,  do  not  provide  an  opti- 
mum  solution  for  evaluating  two-dimensional  con- 
volutions.  Computation by means of FFTs  introduces a 
significant amount of roundoff  errors,  requires  some 
means of processing  trigonometric  functions,  and  corre- 
sponds to still a large  amount of multiplying.  NTTs  can  be 
calculated  without  multiplications,  and  allow  the  compu- 
tation of convolutions  without  quantization  errors.  How- 
ever,  such  transforms  suffer  severe  word  length  and 
transform  length  limitations.  Moreover,  implementation 
of modular  arithmetic in general  purpose  computers is 
sometimes  inefficient. 

Recently,  Agarwal  and  Cooley [7, 81 introduced  new 
algorithms  for  digital  convolutions.  Their  method is based 

dimensional  convolutions, is attractive  because i t  appears 
to be  computationally  more efficient than  the  FFT  for 
lengths up  to 400 and  because it does  not  place  any  re- 
strictions  on  the  arithmetic  nor  require  any  manipulation 
of trigonometric  functions. 

In this  paper,  we  extend  earlier  work by Nussbaumer 
[9] on  polynomial  transforms  to  cover  the  various  poly- 
nomial transforms  that  can  be  calculated  without  multipli- 
cations.  We  show  that  these  transforms  hdve  the  con- 
volution  property  and yield efficient algorithms  for  com- 
puting  two-dimensional  convolutions in ordinary 
arithmetic.  These  algorithms  correspond to a number of 
multiplications  equal to M,N2N3 . . . rather  than M1M2M3 
. . . with  the  Agarwal-Cooley  method  and  are  therefore 
particularly  efficient  for  large  convolutions.  These al- 
gorithms  are  then  extended to one-dimensional  con- 
volutions. 

‘ I ;  

In this case, since  two-dimensional  convolutions  com- 
puted  by  polynomial  transforms  are  usually  such  that 
both  dimensions  have  a  common  factor,  the efficient two- 
dimensional to one-dimensional  mapping  introduced  by 
Agarwal  and  Cooley [7, 81 is not  applicable,  and  the  com- 
putation of one-dimensional  convolutions is done at the 
expense of some  reduction in computing efficiency by us- 

upon a nesting of several  short  convolutions  having ing the  approach  proposed by Agarwal  and  Burrus in [lo]. 
lengths N , ,  N,, N,, . . ., which  are  relatively  prime,  and We  show also that  polynomial  transforms can be  used 
yields a total number of multiplications  equal to M1M2M3,  for  computing  Discrete  Fourier  Transforms  (DFTs)  and 
. . ., where M , ,  M,, M,,  . . . are  the  number of multiplica- allow, in some  cases, a sigdificant reduction in number of 
tions  required to calculate  the  short  convolutions of operations  when  compared  to  the  Winograd  Fourier 
lengths N , ,  N,,  N 3 ,  . . ., and  are  such  that Mi = 2Ni. This Transform  Algorithm  (WFTA) [ll-131. 
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Polynomial transforms 
Let yU,/ be a two-dimensional  circular  convolution of di- 
mension q X q with 

In  polynomial notations, yU,/ can be obtained from a set of 
q polynomials Y,(Z), by taking the coefficient of Z" in the 
polynomial YJZ) with 

Y- 1 

Y,(Z) = 1 yu,/zu 1 = 0, I ,  . . . , q  -1. ( 2 )  
u =O 

Under  these  conditions, the two-dimensional convolution 
( I )  can be viewed as a one-dimensional polynomial con- 
volution with 

Y,(Z) = 1 Hm(Z)Xl-m(Z) mod (Z" - I ) ;  (3) 
ri- 1 

m =O 

4- 1 

H,(z) = 1 h, , ,~"  m = 0, I ,  . . ., q - I ;  (4) 
n =O 

X,CZ) = 1 x s , r ~ s  r = o I . . . 
3 1 , q -  !. ( 5 )  

'1- 1 

S=ll  

We assume first that q is an odd prime. I n  this case, 
Z" - 1 factors into a product of two  irreducible  cy- 
clotomic  polynomials [ 141: 

zq - 1 = (Z  - 1) ( Z o - 1  + z y - 2  + . . . + 1)  

= (Z  - I )M(Z) ,  (6) 

with M(Z) = 2'" + . . . + I .  YJZ) can be recovered from 
Y1,l(Z) = Y,(Z) modulo M(Z) and Y2,/ = Y,(Z) modulo 
(Z - 1) by using the Chinese  remainder  theorem  extended 
to the ring of polynomials, with 

Y,(Z) = Yl,l(Z)Sl(Z) + Y2,1Sp(Z) mod (Z" - I )  (7) 

S] (Z)  = 1 S,(Z) = 0 mod M(Z) (8) 

S] (Z)  = 0 S,(Z) = 1 mod (Z - 1) (9) 

and 

S,(Z) = (q  - W Z ) ) / q ;  (10) 

Since Y2,/ is defined modulo (Z - I ) ,  its calculation re- 
duces  to that of a single one-dimensional scalar  con- 
volution, with 

u- 1 ,I- I 
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Under these  conditions, the bulk of the computation of 
YJZ) corresponds to the calculation of Y1,/(Z).  

In  order  to simplify the  computation of Y,,JZ) we in- 
troduce a transform H,(Z) defined modulo M(Z),  with 

fi,(Z) = 2 Hl,m(Z)Z"'k mod M(Z) 
Y- 1 

m=n 

H1, , (Z)  = H,(Z) mod M(Z);  

k 10, 1 , .  . . , q  - I .  (14) 

We define similarly an inverse transform by 

H J Z )  = - 1 f i , (Z)Z' ,  mod M(Z) 
1 , / -I  

q k=O 

1 = 0 ,  I ,  . ' ., q - 1. (15) 

The computation of these polynomial transforms  re- 
duces to multiplications by powers of Z and additions. 
Since Zq = 1 modulo M(Z). the multiplications of poly- 
nomials H1,,(Z) by powers of Z correspond to simple ro- 
tations of the  words h,,, within a q-word polynomial fol- 
lowed by a reduction  modulo M(Z).  Polynpmial additions 
are performed by adding  separately  the words  corre- 
sponding to each coefficient of Z. Thus, polynomial trans- 
forms can be computed'with simple additions, with the 
advantage over NTTs that operations can be imple- 
mented in ordinary arithmetic, without any  restrictions 
on  word lengths or  truncation. 

We show now that Y1,/(Z) can be evaluated efficiently 
by polynomial transforms.  To see this, we compute  the 
transforms fi,(Z) and x,(Z) of Hm(Z) and X r ( Z )  by (14), 
we multiply modulo M(Z) the  results  term by term and we 
calculate the inverse  transform P,(Z) of the polynomial 
sequence fi,(z)X,(~): 

< I - I  a-1 1 Y-1 

P,(Z) = 1 1 Hl,m(Z)Xl,r(z)  - & 
\- Z(m+r-/)k  

m=n r = ~  4 k=O 

mod M(Z). (16) 

Let t = m + r - 1 and S = XII iZ tk .  For t = 0 modulo q ,  S 
= q. Fort + 0 modulo q ,  the set of exponents tk modulo q 
is merely a permutation of the  integers 0, I ,  . . ., q - 1,  so 
that S = Z,"z:Zk = M(Z) = 0 modulo M(Z). Therefore, 

a- 1 

P,(Z) = Y1,l(Z) = x Hl,,n(Z)Xl,c-m(Z) mod M Z ) .  (17) 
m =n 

Thus, the computation of Y J Z )  reduces to the  calcu- 
lation of three polynomial transforms  and to q polynomial 
multiplications fi,(Z)X,(Z) defined modulo M(Z). In most 
filtering applications, one of the input sequences is con- 
stant and its transform can be precomputed and pre- 
multiplied by liq. I n  this  case. only two polynomial trans- 
forms are required  and the computation process reduces 
to that shown in Fig. I .  135 
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Ordering of 
polynomials 

M ( Z )  = ( 2 4 -  1 ) / ( Z -  1) 

Polynomial transform 
moduloM(2) 

m Reduction modulo (2  - 1 ) 

' 2 , r  

1 
multiplication 
Polynomial 

moduloM(2) 
convolution Hz, m 

Inverse polynomial 
transform modulo M ( 2 )  

Chinese remainder 
reconstruction 1 

Figure 1 Computation of two-dimensional convolutions by 
polynomial  transforms with q prime. 

In the case of computation by pseudo-polynomial 
transforms,  the  number of multiplications corresponds  to 
(q  + 1 )  convolutions of q terms. 

These short  convolutions  and polynomial multiplica- 
tions can be computed by FFTs  or  NTTs.  The problems 
associated with the use of these  transforms such  as 
round-off errors  for  FFT or excessive word length for 
NTT are then limited to only a part of the total computa- 
tion process. 

I t  is, however, often more advantageous to perform 
these computations by using short  convolution al- 
gorithms. If MI and M ,  are respectively  the  number of 
multiplications required to compute  a  convolution of di- 
mension q and a polynomial product  modulo M(Z), the 
total number of multiplications  corresponding to a con- 
volution of dimension q X q becomes (q  + I )M,  with 
pseudo-polynomial transforms  and qM, + M I  with poly- 
nomial transforms.  Thus, the algorithm derived from 
polynomial transforms yields about N , M ,  multiplications 
for  a  convolution of dimension N ,  X N ,  as against M , M l  
for the Agarwal-Cooley approach [ 7 ,  81. 

Winograd [ I  1, 121 has shown that  convolutions of di- 
mension q and polynomial products  modulo M(Z),  with q 
prime, can be computed in the field of rational numbers 
with a minimum number of multiplications equal to 2(q  - 
1) and 2q - 3 respectively. Thus, for small q ,  the poly- 
nomial transform  method can be expected to require 
about half as many multiplications as the Agarwal-Cooley 
approach. We shall see later that much larger  savings  can 
be achieved when composite  algorithms are used. 

When computing two-dimensional convolutions by 
polynomial transforms, it would seem that the Chinese 
remainder  reconstruction (7)-(10) requires a large number 
of additions.  This  need not be the  case,  however, pro- 

The organization of the  calculations  can be simplified at vided the computation is properly organized:  Since S,(z) 
the  expense of a slightly larger number of operations by E 0 modulo (Z - I ) ,  one can define T(Z) so that S, (Z)  
calculating the polynomial transforms  and  the polynomial [q - M(Z)]/q E T(Z)(Z - l ) / q ,  and 
multiplications modulo ( Z q  - 1 )  instead of modulo M(Z) 
with a final and unique operation  modulo M(Z) prior y l ( z )  E [ T ( Z ) Y ~ , ~ ( Z ) ( Z  - I )  + M(Z)Yz,/l/q 
to Chinese  remainder  reconstruction. We call these mod (2" - 1 ) .  (18) 
transforms  pseudo-polynomial  transforms by analogy 
with the pseudo-Mersenne Transforms introduced by 
Nussbaumer in [ 5 ] .  

Computation of two-dimensional convolutigns by 
polynomial transforms 
We have seen above that a fixed taps q X q-point con- 
volution could be computed with two  reductions  modulo 
(2 - 1) and modulo M(Z),  two polynomial transforms, 
one Chinese  remainder operation,  one q-point con- 
volution,  and q polynomial multiplications modulo M(2) .  
In all  of these operations, the only multiplications are 
those required for computing  the  q-point  convolution  and 

136 the q polynomial multiplications  modulo M(Z). 

T(Z) Is given by T(Z)  = [-z'-' + . . . + (3 - q ) z 2  + 
(2 - q)Z + 1 - 41. When the filter has fixed taps, f i k (Z ) /q  
and Hz,, ,  are  computed only once.  Thus, Hk(Z)/q can  be 
premultiplied by T(Z) /q and Hz,, ,  can be premultiplied by 
l/q. Under  these  conditions, the Chinese  remainder  re- 
construction does not require any multiplication by q or 
l / q  and reduces to multiplying Y J q  by (Z*" + . . + 1) 
and YJZ)T(Z)/q by (Z  - I ) .  These two operations can  be 
done with only 2q(q - 1 )  additions. 

We give in Table 1 ,  line 1, the  total number of opera- 
tions for convolutions of dimension q X q computed by 
polynomial transforms.  The number of additions  and mul- 
tiplications is given in Table 2 ,  columns 2-5 .  In this table, 
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~~ ~ ~~ ~ 

Table 1 Polynomial  transforms  for  the  computation of convolutions. 

4 Transform  Transform  Dimension  of No.  of 
ring M ( 2 )  convolutions  additions 

Length Root 

Generalized 
multidications 

prime 

prime 

prime 

4: 

4: 

4: 

4142 

2' 

(Z" - 1)/(Z - I )  

(zq - I)/(Z - 1 )  

(Z2" - 1 ) / ( 2 2  - I )  

(z": - l)/(Z% - 1) 

(z": - I)/(Z.l - 1) 

( Z " 1 " I  - l)/(Z'Z - I )  

zz' + 1 

Z 

- Z  

- Z'+ 1 

Z'l 

Z 

- Z  

Z"2 

Z 

2qY + 2y2 - I O 4  + 8 -4 products M ( Z )  
- 1 convolution 4 

4y3 + 8q2 - 244 + 16 -24 products M ( Z )  
- f convolution 24 

8q3 + 16q2 - 484 + 32 -29 products M ( Z )  
- 1 convolution 2 x 24 

-4, products M ( Z )  

- I  convolution 4, 

4q; + z4; - lo4: + 24: -4,  products 
-4,(4, + I )  products M ( Z )  

(Z"1 - 1)/(Z - 1) 
+ 12 - 1 convolution 4, 

-2q,(q1 + 1) products M ( Z )  
164.: + 164: - 484; -24, products 

(Z"I - 1 ) / ( 2 2  - 1) 
-84: + 404, + 16 - 1 convolution 2 X 24, 

42(24; + 24: - 1041 + 8) - convo]ution 4,q, 
-4,  products M(Z) 

( t  + I),,''+,) ?'+I products M ( Z )  

we have used short convolution algorithms similar to 
those  proposed by Agarwal and Cooley [7,8] and  derived 
the  corresponding  algorithms  for polynomial multiplica- 
tion modulo (Z" - 1)/(Z - 1). These last algorithms are 
such that M, = MI - 1 and  are given in Appendix A  for 4 
= 3 ,  5, 7. We give also  for comparison in columns 6-7 the 
number of operations  for the Agarwal-Cooley approach. 
I t  can be seen that the number of multiplications is ap- 
proximately half that in the Agarwal-Cooley method 
while the  number of additions is somewhat  smaller. An 
example, illustrating  the  computation of a convolution of 
dimension 3 X 3 by polynomial transforms, is presented 
in Appendix B. 

Generalized polynomial transforms 
For the sake of concreteness we have. up to now,  re- 
stricted our discussion to polynomial transforms having 4 
terms with q prime and defined modulo (Z"  - I)/(Z - 1). 
I t  is apparent from Eqs. (14)-(17) that any polynomial 
transform of dimension N ,  having a root aZ" and defined 
modulo a polynomial M(Z), has  the  circular  convolution 
property provided (aZ")' = 1 modulo M(Z) and S = 0 
modulo M(Z) for t f 0 modulo N ,  S = N modulo M(Z) for 
t = 0 modulo N ,  with S = Z . ~ ~ ~ ( U Z " ) ' ~ .  When polynomial 
transforms are used for  computing two-dimensional con- 
volutions, M(Z) must be a  factor of Z" - I ,  relatively 

prime with the other  factors of Z" - I .  The transform root 
uZ" should also be as simple as possible in order  to mini- 
mize the  complexity of transform computation. In  spite of 
these  limitations. we show now that there is a very large 
class of polynomial transforms having the convolution 
property. 

We consider first a polynomial transform having N , q  
terms. with q an odd prime, M(Z)  = (Z" - l)/(Z - I ) ,  and 

k,(Z) = 1 Hllr(Z)(WZ)'l'k mod M(Z)  
.xlq-l 

m =o 

= e-'211/.xl 
, . j  = G; 

k = 0, I ,  . . ., N , q  - 1 .  (19) 

Eq. (16) then becomes. with t = 171 + r - 1. 

.\ <I- 1 .\ I v- 1 1 .Y,q-l 

P/(Z)  = 1 2: ~l.m(z)~l,r(.a ___ x ( wz)'h 
n t = O  r=ll N , 4  k=O 

mod M(Z) .  (20) 

If N ,  and 4 are relatively prime, k can be replaced by 4 u  + 
N l k , w i t h v = O , l , . . ~ , N , -   I , k = 0 , 1 ; . . , 4 -   1 , a n d  
the sum 
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Table 2 Number of operations for two-dimensional  convolutions  computed by polynomial transforms. 

Polynomial  transform  approach  Agarwal-Cooley  method 
"__________ 

Convolution Total no. Total no. Mults. Adds. Mults. Adds, 
~. ~~ 

size ofmu1r.s. of adds.  per  point  per point per  point  per  point 

3 x 3 (9) 
4 x 4 (16) 
6 x 3 (18) 
5 x 5 (25) 
3 x 9 (27) 
6 X 6 (36) 
7 x 7 (49) 
5 x IO (50) 
8 x 8 (64) 
9 x 9 (81) 

10 x I O  (100) 
14 x 14 (196) 
18 X 18 (324) 

30 X 15 (450) 
30 x 30 (900) 
35 x 35 (1225) 
42 X 42 (1764) 
70 x 3.5 (2450) 
60 X 60 (3600) 

13 
22 
26 
55 
58 
52 

121 
110 
130 
193 
220 
484 
772 

1430 
2860 
6655 
6292 

13310 
15730 

70 
122 
176 
394 
373 
436 

1 I77 
888 
750 

1526 
2036 
5632 
7596 

14644 
3 IO88 
77099 
8 1980 

1.59098 
178634 

1.44 
1.37 
1.44 
2.20 
2.1.5 
1.44 
2.47 
2.20 
2.03 
2.38 
2.20 
2.47 
2.38 

3.18 
3.18 
5.43 
3.57 
5.43 
4.37 

7.78 
7.62 
9.78 

15.76 
13.81 
12.11 
24.02 
17.76 
11.72 
18.84 
20.36 
28.73 
23.44 

32.54 
34.54 
62.98 
46.47 
64.98 
49.62 

1.78 
1.56 
1.78 
4.00 
2.81 
1.78 
5.22 
4.00 
3.06 
4.46 
4.00 
5.22 
4.46 

7.11 
7.11 

20.90 
9.29 

20.90 
11.11 

8.56 
8.44 

10.56 
18.60 
15.67 
12.56 
32.86 
20.60 
15.81 
28.00 
22.60 
36.86 
32.00 

43.62 
45.62 

130.03 
70.97 

132.03 
73.47 

becomes 
, \ l - l  'I- I s ~ y \> z'/' 
1' =n 
I I 

k=O 

Thus, S f 0 only for t E 0 modulo N , q  and (20) reduces to 
a polynomial convolution of dimension N , q .  Two-dimen- 
sional convolutions of dimension N , q  X q can thus be 
computed by using the polynomial transform (19) and 
computing an auxiliary one-dimensional convolution of 
dimension N,q .  The main cases of interest are, of course, 
N ,  = 2, N ,  = 4,  which correspond to convolutions of di- 
mensions 2 q  X q ,  4q X q and to transforms with roots -Z 
and j Z ,  which can be  calculated without multiplications. 

I f  we restrict ourselves to polynomial transforms that 
can be computed without multiplications, i t  can be shown 
by similar considerations that polynomial transforms hav- 
ing the  convolution  property can be defined modulo 
(Z2" - 1 ) / ( Z 2  - I ) .  modulo (Z"Iy2 - I)/(Z** - 1 )  with 
4, odd prime and q, relatively prime with ql ,  and 
(Z": - l)/(Z"l - 1)  with q, prime. 

The case of convolutions of dimension 2$ X 24 
computed by polynomial transforms defined modulo 

the transforms can be computed with a reduced  number 
of additions by means of a  three-stage  FFT-type al- 
gorithm. I n  this case, the generalized multiplications 
correspond to 24 polynomial products modulo 
(Z"f - Ij/(Z2'l1 - I )  plus the auxiliary computation of a 

138 convolution of dimension 2q: x 2q l .  This last convolution 

(z2": - l)/(Z"'l - I )  is particularly interesting  because 

can in turn be computed by polynomial.transforms with 
2 q ,  polynomial products modulo (Z2":  - l)/(Z"l - 1) 
plus an auxiliary convolution of dimension 2q ,  X 24,. 
This last convolution can also  be  computed by a poly- 
nomial transform with 2q,  polynomial products modulo 
(Z2"I - l)/(Z2 - 1) plus one auxiliary convolution of di- 
mension 2 X 24,. 

Generalized  convolutions defined modulo Z" + 1 in one 
or both dimensions  can  also  be  computed by polynomial 
transforms. The main cases of interest  here are the  gener- 
alized convolutions of dimension 2q X q*, with 4 prime, 
computed by transforms defined modulo (Z" + I)/(Z + 1) 
with root Z and the generalized convolutions of dimen- 
sions 2''' X 2 ' *  and 2 '  * X 2 '  * computed by transforms 
defined modulo (Z2' + I ) .  [We  use here  the symbol * to 
indicate a generalized  convolution  modulo (Z" + I )  as 
opposed to conventional  circular  convolutions  modulo 
(Z" - I)]. I t  should be noted that for q = 2'. the corre- 
sponding  transforms have the  generalized  convolution 
property modulo (Z" + 1) and no auxiliary computation 
is required. These transforms are also  optimum from the 
computational  complexity  standpoint  since they can be 
computed with t + I-stage radix-:! FFT-type algorithms. 
Moreover. when q is even. Z" = - 1 .  and 2"" e J ,  ' with 
j = 6 1 .  I t  is then possible to take  advantage of this 
property to compute complex multiplications with only 
two real multiplications by using an approach similar to 
that proposed by Nussbaumer for  Fermat  number  trans- 
forms [ IS]. 
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We summarize in Table 1 the main existence conditions 
for polynomial transforms that can be computed without 
multiplications. I t  can be seen that these  cases  corre- 
spond to two-dimensional  convolutions  such  that both di- 
mensions have a common  factor. We give, in Table 2 ,  the 
number of operations  for two-dimensional convolutions 
computed by polynomial transforms. I t  can be seen that 
the computational  savings can be very significant for large 
convolution sizes. Except  for 4 = 7 and 4 = 9, all al- 
gorithms for  short convolutions and polynomial products 
are  derived from those given by Agarwal and Cooley 
[7, 81. For 4 = 7 and 4 = 9, we have used more efficient 
algorithms in  which the polynomial products modulo 
(Z9 - I)/(Z" - 1) and modulo (Z' - 1)/(Z - 1) are com- 
puted in a way similar to that of the polynomial product 
modulo (Z" - 1)/(Z - I ) .  This algorithm corresponds to 
15 multiplications and 51 additions for the polynomial 
product modulo (Z9 - I)/(Z3 - I )  and to 19 multiplica- 
tions and 81 additions for the nine-term convolution. 

I t  should now be apparent that NTTs  and polynomial 
transforms bear  a  strong relationship. I n  fact, NTTs are 
particular cases of polynomial transforms in which 
the q-bit words are  to be viewed as polynomials: If we take 
for  instance  the polynomial transforms defined modulo 
Z2' + 1 ,  using 2'+' input polynomials corresponding to 2'" 
words of 2' bits, we obtain the  Fermat  Number Trans- 
form. The existing body of knowledge on NTTs can thus 
be used as  a useful tool to define new polynomial trans- 
forms. The main advantage of polynomial transforms 
over NTTs stems from the fact that all operations  are per- 
formed modulo a polynomial instead of modulo an integer 
so that there are no restrictions on arithmetic, word 
length, or  truncation. 

Composite algorithms 
Suppose now that we want to compute a two-dimensional 
convolution of dimension q,4, X 4,q,, where q,  and q, are 
relatively prime. Using the  Chinese  remainder theorem, 
we can view this convolution as  a convolution of dimen- 
sion (4,  X q , )  X (4,  X 4 .  Under  these conditions, this 
convolution can be computed by a nesting algorithm simi- 
lar to that proposed in [7, 81. I f  M I ,  A ,  and M 2 ,  A ,  are the 
number of multiplications and additions required to com- 
pute the convolutions of dimensions 4, X 4 ,  and q2 X 4,. 
respectively,  the  total  number of multiplications M and of 
additions A then becomes 

forms, since it allows us to  derive efficient algorithms for 
computing large convolutions from a limited set of small 
values of 4. 

We give in the  lower part of Table 2 the  number of op- 
erations for large convolutions  computed by polynomial 
transforms  and  nesting. I t  can be seen that for large trans- 
forms, the number of additions and multiplications is 
drastically  reduced with respect to the Agarwal-Cooley 
method. Actual processing load savings depend upon the 
programming of the  algorithm, and particular  attention 
must be paid to implementing efficiently ancillary opera- 
tions. In  this respect, it should be noted that  several  fac- 
tors weigh in favor of polynomial transforms. When com- 
pared with the FFT algorithm, the polynomial transform 
approach can be implemented with real arithmetic for the 
computation of real convolutions and requires no manipu- 
lations of trigonometric  functions. I f  the h sequence is 
fixed, the polynomial transform of h can be precomputed 
and stored in a read-only memory. In  this case, the num- 
ber of memory locations is reduced with respect to the 
Agarwal-Cooley method by the same factor  as the  num- 
ber of multiplications. 

I t  should also be noted that when a two-dimensional 
convolution of fixed size must be computed  repeatedly, 
the programming can be divided into two steps,  a genera- 
tion step and an execution step.  The programs can then 
be designed in such  a way that most of the bookkeeping 
operations  concerning polynomial manipulations  take 
place within the  generation step and therefore do not pe- 
nalize significantly the  execution  time. 

Computation  of one-dimensional convolutions by 
polynomial transforms 

Polynomial transforms permit the  computation of two-di- 
mensional transforms such  that  the  lengths in both dimen- 
sions  are not usually prime. Thus, the efficient two-di- 
mensional to one-dimensional mapping introduced by 
Agarwal-Cooley [7, 81 is not applicable. I t  is still possible, 
however, at the  expense of a reduction in computing effi- 
ciency, to compute one-dimensional convolutions by a 
method derived from the  overlap-add,  overlap-save  ap- 
proaches [ 10, 161. We specify here the processing load for 
one-dimensional convolutions  computed by polynomial 
transforms. To this  effect, we consider an N-term con- 
volution: 

A = A , d  + MIA,.  (22) If N = qN,, we can change  the  indices e and i with 

This  computation mechanism can be used recursively to = N,u + 1 ;  i = N ~ n  + 

cover the case of more  than  two factors and is particularly u ,  n = 0, I ,  . . ., 4 - I ;  
useful when used in conjunction with polynomial trans- /, rn = 0, 1, . . ., N, - I ;  (24) 139 
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Table 3 Number of operations for one-dimensional  convolutions  computed by polynomial  transforms. 

Polynomial  transjorm approuch Agarwal-Cooley [7, 81 

Convolution 
. ~ . .~ " .. . . . "~ 

Mults. Adds. Convolution Mults. Adds. 
~ 

size  perpoint  perpoint  size  per  point  perpoint 

240 5.96 210 7.24  36.03 61 .OO 
288 5.87 49.41 360 8.56 
450 

44.21 
6.36  69.08 420 9.05 

800 
46.29 

8.94  83.08 840 12.67 
900 

64.47 
7.94 

1440 
87.30 840 12.67 64.47 

11.74 85.79 16.59 81.86 
1800 

1260 
8.74 99.24 2520 23.22 115.10 

2400 11.92 115.85 2520 23.22 115.10 

~ ~~ " . 

This two-dimensional convolution is circular, of dimen- 
sion 4 ,  for index n and aperiodic, of dimension N , ,  for 
index m. Equation (25) can therefore be computed by cir- 
cular  convolutions of dimension q X q calculated by poly- 
nomial transforms provided 2N,  s q + I .  In  this case. 
q - N ,  of the input polynomials X m ( Z )  = x::', Z "  
are nu l l  and only N ,  of the  output polynomials need to be 
computed. 

When the multidimensional convolution is calculated 
by polynomial transforms used in conjunction with com- 
posite algorithms.  accounting for the  zero-valued  samples 
in the  evaluation of processing load  may become difficult. 
I t  is sometimes  preferable to compute the multi- 
dimensional convolution by a single polynomial trans- 
form of dimension q = q,q,, . . ., q, defined modulo 

with q l ,  q,, . . ., q,/ relatively prime.  This yields about the 
same  processing load as when computation is performed 
by a composite algorithm and polynomial transforms of 
dimensions q l ,  q,, . . ., q,, but the overall organization is 
much simpler to visualize. We give in Table 3 the  number 
of operations  for  one-dimensional  convolutions  computed 
by polynomial transforms. In  this table, we did not ac- 
count for  the zero-valued samples, so that the number of 
additions given here is an upper  bound. I t  can be seen that 
for convolution sizes  above 200. the number of multipli- 
cations is significantly lower than with the Agarwal- 
Cooley method. 

(Z"  - l ) / ( Z " l  - I)(z*2-1 + . . . + 1) . . . ( p , l - 1  + . . . 1) .  

Multidimensional polynomial transforms 
Multidimensional polynomial transforms can be defined 
in a way similar to one-dimensional polynomial trans- 
forms.  Since we  will need these  transforms for the  com- 

140 putation of Discrete  Fourier Transforms  (DFTs), we 
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make precise here  the  case of two-dimensional trans- 
forms  (three-dimensional  convolutions) in order to eval- 
uate the corresponding processing  load. 

Assuming we want to compute a convolution of dimen- 
sion q x 4 X q ,  with 4 prime. we redefine Eqs. ( 1 )  to (5) 
with 

Y- 1 

r , ,  rz = 0, I ,  . . ., q - 1; 
( I -  I 0- I 

I,, I, = 0, I ,  . . ., 4 - I ;  
<,-1 0 - 1  0 - 1  

We define a two-dimensional transform modulo M ( Z )  = 

(Z"  - l ) / ( Z  - 1) by 
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term by term H k , J Z )  by the  transform xkk,,k,(Z) of 
Xr,,,,(Z) and taking the inverse  transform yields 

'1-1 u-1 9-1 Y"l 

pl1,l2(z) E 2: 2: 1 2 Hl,m,,mz(Z)Xl,r1.r2 
ml=o m2=o r,=o rz=0 

1 ' 1 1 - 1  Y- 1 
C Z t m , + r , - l , ) k ,  2: Ztm,+r,-l ,)k,  

4 kl=O k,=O 
x ( Z )  2 L 

mod M ( Z ) .  (32) 

Since ZY 1 modulo M ( Z ) ,   P l 1 J Z )  reduces  to 

q-1 9-1 

mod M ( Z ) .  (33) 

We compute an auxiliary convolution Y2,1,,l, modulo 
(Z  - 1) with 

(34) 

9- 1 

0- 1 

s=o 

The final convolution  product is reconstructed from 
Yl, l l ,12(Z)  and Y,,ll,12 by using the Chinese  remainder  theo- 
rem 

Yl,,L,(Z) = ~ , , 1 1 , 1 2 ~ ~ ~ ~ 1 ~ ~ ~  + Y*,lI,L,S2(Z 1 
mod (ZY - l ) ,  (37) 

with S , ( Z )  and S , ( Z )  defined by Eqs. (8) to ( 1 1 ) .  
Under  these  conditions, the  two-dimensional poly- 

nomial transform can be  computed with 2q(q3 - 4' - 3q 
+ 4) additions and  the total number of operations  for a 
three-dimensional  convolution of dimension 4 X 4 X 4 
reduces to 4q4 + 2q3 - 144' + 64 + 8 additions, 
4(4 + 1) polynomial products  modulo ( Z q  - 1) / (Z  - I ) ,  
and one  convolution of dimension 4 .  

Using the  same  approach gives,  for  a  four-dimensional 
convolution of dimension 4 X 4 X 4 X 4 ,  a total proc- 
essing load of 6q5 + 2q4 - 20q3 + IO$ + 64 + 8 
additions, q3 + q2 + 4 polynomial multiplications  modulo 
( Z q  - 1) / (Z  - 1) and  one convolution of dimension q. We 
give in Table  4 the corresponding  number of operations 
for  several multidimensional convolutions  used for  com- 
puting DFTs. 

Computation of DFTs by polynomial transforms 
Since the polynomial transforms  provide an efficient way 
of computing convolutions, they can be used for the cal- 
culations of DFTs. In order  to make the  corresponding 
algorithms precise, we consider  a DFT of dimension N :  

Table 4 Number of operations for short multidimensional con- 
volutions computed by polynomial transforms. 

Convolution size Total no. Total no. 
of mults. of adds. 

3 X 3 X 3  40 325 
3 X 3 X 3 X 3  121 1324 

6 X 6 x 6  320 3896 
6 x 6 ~ 6 ~ 6  1936 31552 

When N = N,, with N, prime,  this  transform  can be com- 
puted as a  correlation by using Rader's algorithm [17] 
with 

k 5 g "  mod N , ;  
.I' - 2  

(39) 

g being a primitive  root  modulo N , .  Thus, this DFT can 
be calculated with one multiplication by W o  and  one cor- 
relation of dimension N ,  - 1. When N = N , N 2 .  with N , ,  
N ,  relatively prime, the DFT of dimension N can be 
viewed as  a DFT of dimension N ,  in which each multipli- 
cation is replaced by computing  the DFT of N ,  terms [lo- 
12, 181: 

' N " 1  N,-  1 

Thus, if N ,  and N ,  are primes,  the DFT of dimension 
N 1 N 2  can be calculated with one transform of dimension 
N, ,  one correlation of dimension N ,  - 1 and one two- 
dimensional  correlation of dimension ( N ,  - 1) X (N, - 1). 
We propose here  to  compute the  transform of dimension 
N ,  and  the  correlation of dimension N ,  - 1 by Wino- 
grad's algorithms  and to calculate  the  correlation of di- 
mension ( N ,  - 1 )  X ( N ,  - 1) by polynomial transforms. 
This  method can of course be extended recursively to 
DFTs of length N = N 1 N 2 ,  . . ., N i  provided the various 
factors Ni are  primes. In this case  the computation is per- 
formed with multidimensional polynomial transforms. 
Similar results are obtained for  factors  NPthat  are powers 
of primes. In this case,  the  correlations  have a length 
(Ni  - l)N1d-'. 

- -1 modulo N i ,  the coefficients corre- 
sponding to  the W n k  in the polynomial multiplications are 141 

since g(h' , - l ) /2  = 
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Table 5 Number of real  operations for DFTs computed by polynomial  transforms 

DFT 
size ” 

Polynomial  transform  approach Winograd’s  method 

No.  of 
mults. 

No. of 
adds. 

No. of 
mults. 

No. of 
adds. 

63  174 (168) 1408 234 1440 
504 1392 (1356) 14540 1872  14796 

1008 3132 (3084) 34668 4212 35244 
2520 8352 (8316) 96364 11232 102348 
9 x 9  242 (224) 1742 338 1936 
7 x 7  138 (136) 1156 162  1152 

7 x 7 ~ 7  1002 (998) 11820 1458  13896 

either real or pure imaginary so that all complex multipli- NTTs but they  have the advantage over the latter that 
cations are implemented with two real multiplications, as calculations can be done in ordinary arithmetic, with or 
with Winograd’s algorithms. Moreover, when the factors without truncation after each  arithmetic operation. 
are powers of primes, additional simplifications are pos- When computed by polynomial transforms, two-dimen- 
sible. For  instance. in the case of a factor N’?, Ni  prime, sional convolutions reduce  to additions  and  one-dimen- 
the property 2 v ~ ~ v ~ - 1 ) - 1 W g ”  u=o = 0 forces one of the  transform sional convolutions. These last convolutions are usually 
terms to be null. relatively short and  can be calculated efficiently by con- 

The individual factors N,, N,, . . ., N i  must be chosen volution algorithms. In this case, the polynomial trans- 
in such  a way that the multidimensional correlations can form approach is better than the Agarwal-Cooley ap- 
be implemented easily with polynomial transforms. A 63- 
term DFT  can,  for  instance, be computed with five DFTs 
of seven terms.  one correlation of dimension 6 and one 
correlation of dimension 6 X 6. 

We give in Table 5 the number of operations  for various 
DFTs computed by polynomial transforms. I t  can be seen 
that polynomial transforms allow a significant reduction 
in number of operations when compared to the original 
Winograd algorithms. The savings are much smaller, 
however, when the figures are compared to  the Winograd 
method applied to larger fields. In  the case of a DFT of 
7 X 7 X 7 points,  for  example, this newer Winograd 
method [12] requires 1029 real multiplications against 
1002 multiplications for the polynomial transform  ap- 
proach. I t  should  be noted,  however, that  this last Wino- 
grad technique requires operation on two  sets of data si- 
multaneously and  thus may require  more  storage  than the 

proach. I t  is also better than FFT for  convolution  sizes up 
to around 100 X 100. Moreover, calculations do not re- 
quire  complex arithmetic with sines  and cosines and can 
be carried out, if desired, entirely in integer arithmetic, 
without roundoff errors. 

These results have been extended to caver  the  case of 
one-dimensional  convolutions  computed by the two-di- 
mensional to one-dimensional mapping introduced by 
Agarwal and Burrus. We have shown that, in spite of the 
loss of efficiency incurred in this  mapping, the polynomial 
transform method yields a significant reduction in number 
of multiplications over the Agarwal-Cooley algorithm for 
convolution  sizes above 200. 

Polynomial transforms can also be used for  the compu- 
tation of DFTs, and are in some cases  better than FFT  or 
WFTA methods  for this  application. 

Polynomial transforms  are well adapted  for implement- 
polynomial transform method. ing digital filtering processes in general  purpose  comput- 

Small additional  savings on the number of multiplica- ers. I t  is expected that  these  techniques will be particu- 
tions can be achieved if “simple”  multiplications by r 1 larly useful for signal processing  applications having large 
or ? j  are not counted.  The  corresponding figures are computation requirements such as image processing. 
given in parentheses in Table 5. 

Concluding remarks ucts modulo (Z“ - l)/(Z - 1) 
In  this paper we have  introduced  various polynomial 
transforms. We have  shown that these transforms are AI Polynomialproduct  modulo ( Z 3  - I)/(Z - 1) :  
computed  without multiplications and provide an efficient 3 multiplications 
means of calculating  two-dimensional  convolutions. 3 additions 

Appendix A: Algorithms for  short polynomial prod- 

Polynomial transforms can be viewed as generalized a, = h, - h, b, = x, 

142 integers.  They have the  same  computational efficiency as u2 = h,  b, = x,, 
NTTs defined in rings of polynomials instead of rings of a, = h, b, = x. - x, 
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m,= a,b, k = 0 , 1 , 2  

Y o  = m, + m,  
Y ,  = m, + m2 

Corresponding  convolution of dimension 3: 
4 multiplications 
11 additions 

A2 Polynomialproduct  modulo (Z5 - l ) / (Z - 1): 
9 multiplications 
21 additions 

a, = x, 6, = h, - h, + h, 
a ,  = x, b, = h,  - h, + h, 
a2 = x, + x, b, (-2h,,  - 2h, + 3h2 - 2h3)/5 
a, = x, b, = -h, + h,  - h, + h, 
a, = x, b, = -h, + h,  - h, 
a, = x, + x, b, = (3h, - 2h, + 3h, - 2h3)/5 
a6 = a, - a, b, = -h, + h, 
a ,  = a,  - a4 b, = h,  - h, 
a, = a, - a ,  b, = (-h,  - h,  + 4h, - h,)/5 

m, = a,b, k = 0 , 1 ; . . , 8  

u, = m3 + m, 
u1 = m4 + m, 
u, = rn, + m2 
u, = m6 - m, 
u4 = rn, - m, 
u, = m8 - m, 
us = u4 + u5 
u, = us + u, 
us = -11, + u, 
u, = 11, - us 
ul,= u,  + up 
ul,= u,, + up 

u12= -1110 - u11 

Y o  = us 
Y ,  = us + U12 

Y ,  = u7 + Ul0 

Y 3  = u, + U l l  

Corresponding  convolution of dimension 5: 
10 multiplications 
3 1 additions 

A3 Polynomialproduct  modulo (Z' - 1)/(Z - 1): 
15 multiplications 
55 additions 

f ,  = (-2h, + 3h, - h, - 2h, + h,  + 2h0)/2 
f, = (3h5 - l lh ,  + 10h, + 3h, - l l h ,  - 4h0)/14 
f, = (3h, - h, - 2h, + 3h, - h, ) /6  
f, = (h, - h, + h , ) / 6  
f, = -h5 - 2h, + 3h, - h, - 2h, + h, 
f, = (h, + 2h, - h, - 2h, + 3h, - h,)/2 
f, = (- l lh ,  - 4h, + 10h, + 3h, - l l h ,  + 10h0)/14 

f, = ( -h5  - 2h, + 3h, - h,  - 2h,)/6 
f, = (h,  - h, + h,  - h,) /6  
f, = -2h, + h, + 2h, - h, - 2h, + 3h, 
f,,= (2h, - h, - 2h, + h , ) / 2  
A,= (-2h, - 2h, + 12h, + 5h, - 9h, - 2h0)/14 
f,,= ( -2h,  + 3h, - h,)/6 
f,,= ( 4 ,  + h,)/6 
f14= 2h, - h, - 2h, + h, 

a, = x, a,  = x, a2 = x, 
a, = x, a4 = x4 a,  = x5 
a6 = a ,  + a,   a ,  = -a, + a,  as = a, + a, 
a, = -a4 + a5 

e,  = a,, 
e ,  = a, + a,  
e,  = a, + a, 
e,  = e ,  + a,  + a6 + a, 
e4 = a, 
e5 = a, 
e6 = a, + a,  
e,  = a, + a,  
e8 = e,  + a,  + a, + a, 
e,  = a 
e,,= e5 - e,  
ell= e6 - e ,  
e,,= e,  - e,  
e,,= e,  - e, 
e14= e ,  - e4 

143 
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Corresponding  convolution of dimension  7: 
16 multiplications 
70 additions 

Appendix B: Example of a  convolution of dimension 
3 x 3 computed  by  polynomial  transforms 
This  example  illustrates the computation of a convolution 
of dimension 3 X 3 evaluated by polynomial transforms as 
shown in the  second  and third sections. 

q = 3  ~ ( ~ ) = z ~ + z + l  z3%1 

h*,o = (4, 3 ,  0) xi,o = (2, 0 ,  2) 
hi,l = (4, 3,  1) xi,l = (0,  1 ,  3) 
hi,z = (2, 1 ,  0) xi,z = (3, 4, 4) 

f f J Z ) :  (4, 3) XJZ): (0, -2) 
(3, 2) (-3, -2) 
(2, 1) (- 1 ,  0) 

Input  sequences: 

Reduction  modulo M(Z): 

Polynomial  transforms: 
Rk(Z): (9, 6) X k ( Z ) :  (-4, -4) 

( 1 ,  2) (3, -2) 
(2, 1) (1 ,  0) 

1/(Z - 1) = -(Z + 2)/3 mod M(Z) 
Bk(Z)/(Z - 1) mod M(Z): 

“(4, 5 )  
“(0, 1) 
“ ( 1 ,  1) 

Polynomial  multiplications: (using algorithm given in Ap- 
pendix Al) 
Xk(Z)Rk(Z)/3(2 - 1) mod M(Z): (-4, 16)/3 

(-2,  -5)/3 
( - 1 ,  -1)/3 

Inverse  polynomial  transform: 
Y,,,/(Z - 1) mod M(Z): (-7, 10)/3 

(-6, 18)/3 
(1, 20)/3 

Reduction  modulo (Z - 1): 
Hz,,: (7, 8, 3) Q+ (4, 4, 11)  

Convolution of dimension 3: 
Yz,,/3: (128, 93, 121)/3 

Chinese  remainder  reconstruction: [Eq. (18)] 
y,,,: (45, 37,  46, 33, 23, 37, 40, 34, 47) 
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