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Computation of Convolutions and Discrete Fourier
Transforms by Polynomial Transforms

Abstract: Discrete transforms are introduced and are defined in a ring of polynomials. These polynomial transforms are shown to have
the convolution property and can be computed in ordinary arithmetic, without multiplications. Polynomial transforms are particularly
well suited for computing discrete two-dimensional convolutions with a minimum number of operations. Efficient algorithms for comput-
ing one-dimensional convolutions and Discrete Fourier Transforms are then derived from polynomial transforms.

Introduction

The calculation of two-dimensional digital convolutions
has many app]jcations, particularly in image processing.
The main problem associated with these convolutions re-
lates to the huge processing load required for their com-
putation.

Direct calculation of a two-dimensional convolution of
dimension N X N corresponds to N* multiplications and
N*N? — 1) additions. A substantial reduction in the
number of operations can be achieved if direct computa-
tion is replaced by a Fast Fourier Transform (FFT) [1] or
a Number Theotetic Transform (NTT) [2-6] approach.
These two techniques, however, do not provide an opti-
mum solution for evaluating two-dimensional con-
volutions. Computation by means of FFTs introduces a
significant amount of roundoff errors, requires some
means of processing trigonometric functions, and corre-
sponds to still a large amount of multiplying. NTTs can be
calculated without multiplications, and allow the compu-
tation of convolutions without quantization errors. How-
ever, such transforms suffer severe word length and
transform length limitations. Moreover, implementation
of modular arithmetic in general purpose computers is
sometimes inefficient.

Recently, Agarwal and Cooley [7, 8] introduced new
algorithms for digital convolutions. Their method is based
upon a nesting of several short convolutions having
lengths N\, N,, N, - - -, which are relatively prime, and
yields a total numbei of multiplications equal to M M,M,,

- -, where M, M,, M, - - - are the number of multiplica-
tions required to calculate the short convolutions of
lengths N, N,, N,, - - -, and are such that M, = 2N . This

technique, applicable to one-dimensional and multi-
dimensional convolutions, is attractive because it appears
to be computationally more efficient than the FFT for
lengths up to 400 and because it does not place any re-
strictions on the arithmetic nor require any manipulation
of trigonometric functions. ’

In this paper, we extend earlier work by Nussbaumer
[9] on polynomial transforms to cover the various poly-
nomial transforms that can be calculated without multipli-
cations. We show that these transforms hive the con-
volution property and yield efficient algorithms for com-
puting two-dimensional convolutions in ordinary
arithmetic. These algorithms correspond to a number of
multiplications equal to M,N,N, - - - rather than M M,M,

- with the Agarwal-Cooley method and are therefore
particularly efficient for large convolutions. These al-
gorithms are then extended to one-dimensional con-
volutions.

In this case, since two-dimensional convolutions com-
puted by polynomial transforms are usually such that
both dimensions have a common factor, the efficient two-
dimenstonal to one-dimensional mapping introduced by
Agarwal and Cooley [7, 8] is not applicable, and the com-
putation of one-dimensional convolutions is done at the
expense of some reduction in computing efficiency by us-
ing the approach proposed by Agarwal and Burrus in [10].

We show also that polynomial transforms can be used
for computing Discrete Fourier Transforms (DFTs) and
allow, in some cases, a sigfiificant reduction in number of
operations when compared to the Winograd Fourier
Transform Algorithm (WFTA) [11-13].
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Polynomial transforms
Let y,, be a two-dimensional circular convolution of di-
mension g X g with

1 q—1
-

P
yu,l = Z Z hn,mxu—n.lém' (l)

m=0 n=0

In polynomial notations, y, , can be obtained from a set of

g polynomials ¥ ,(Z), by taking the coefficient of Z" in the

polynomial Y,(Z) with

q

Y(2)= >

U

yu,lZ" 1=0,1,---,¢g—1. 2)

Under these conditions, the two-dimensional convolution
(1) can be viewed as a one-dimensional polynomial con-
volution with

q—1

Y(2)= Y H (2X,_,(2 mod(Z"— 1) 3)

H (2) = m=0.1g-1 @

X2)=> x,Z° r=01,--,9- 1 (5)

8,7
8=0

We assume first that g is an odd prime. In this case,
Z° — 1 factors into a product of two irreducible cy-
clotomic polynomials [14]:

2= 1=Z-1)@Z7+Z+ -+ ]
={(Z - hM(2), (©)

with M(Z) = Z“' + - - - +1. Y(Z) can be recovered from
Y, (Z) = Y(Z) modulo M(Z) and Y,, = Y(Z) modulo
(Z — 1) by using the Chinese remainder theorem extended
to the ring of polynomials, with

Y(Z) = Y, (D)S(2) + Y,,5,2)

[

mod (Z° — 1) 7
5,2 =1 8,2 =0 mod M(Z) ®)
$@Z2)=0 S$,2) =1 mod (Z - 1) (9)
and

$,(2)=(q - MZ)/q; (10)
$,(Z)=M(Z)/q. 1n

Since Y, , is defined modulo (Z — 1), its calculation re-
duces to that of a single one-dimensional scalar con-
volution, with

Y,, = > e g — 1 (12)

P}
m=

(13)
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Under these conditions, the bulk of the computation of
Y(Z) corresponds to the calculation of Y, (Z).

In order to simplify the computation of Y, (Z) we in-
troduce a transform F]k(Z) defined modulo M(Z), with

q—1

(2) = H, (2)Z"" mod M(Z)

H, (2)=H(Z) mod M(Z);

1.m
k=0,1,--+-,qg—- L (14)
We define similarly an inverse transform by
q—1

H.(2)Z" mod M(Z)

Py}

b
q k=

I=0,1,---,qg— 1 (15)

The computation of these polynomial transforms re-
duces to multiplications by powers of Z and additions.
Since Z* = 1 modulo M(Z), the multiplications of poly-
nomials H , (Z) by powers of Z correspond to simple ro-
tations of the words Ry within a g-word polynomial fol-
lowed by a reduction modulo M(Z). Polynomial additions
are performed by adding separately the words corre-
sponding to each coefficient of Z. Thus, polynomial trans-
forms can be computed with simple additions, with the
advantage over NTTs that operations can be imple-
mented in ordinary arithmetic, without any restrictions
on word lengths or truncation.

We show now that Y, (Z) can be evaluated efficiently
by polynomial transforms. To see this, we compute the
transforms H,(Z) and X,(Z) of H,(Z) and X (Z) by (14),
we multiply modulo M(Z) the results term by term and we
calculate the inverse transform P/(Z) of the polynomial
sequence H (2)X, (Z):

k
g-1 qg—1 1
—

. 1= e
PZ)= Y Hl’m(Z)Xl'r(Z)—q— DAL

e
m=0 r=0 k=0

mod M(Z). (16)

Lett=m+r—land § =37 ' Z" Fort=0modulo g, §
= g. For 7 = 0 modulo ¢, the set of exponents tk modulo ¢
is merely a permutation of the integers 0,1,- - -, g — 1, so
that § = 59' 7" = M(Z) = 0 modulo M(Z). Therefore,

P(Z)=Y, (2)=

m=0

1,1n(Z)X1,l—m(Z) mod M(Z). (17)
Thus, the computation of Y, (2) reduces to the calcu-
lation of three polynomial transforms and to ¢ polynomial
multiplications H,(Z)X, (Z) defined modulo M(Z). In most
filtering applications, one of the input sequences is con-
stant and its transform can be precomputed and pre-
multiplied by 1/g. In this case, only two polynomial trans-
forms are required and the computation proéﬁss reduces
to that shown in Fig. 1.
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Figure 1 Computation of two-dimensional convolutions by
polynomial transforms with g prime.
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The organization of the calculations can be simplified at
the expense of a slightly larger number of operations by
calculating the polynomial transforms and the polynomial
multiplications modulo (Z? — 1) instead of modulo M(Z)
with a final and unique operation modulo M(Z) prior
to Chinese remainder reconstruction. We call these
transforms pseudo-polynomial transforms by analogy
with the pseudo-Mersenne Transforms introduced by
Nussbaumer in [5].

Computation of two-dimensional convolutions by
polynomial transforms

We have seen above that a fixed taps g X g-point con-
volution could be computed with two reductions modulo
(Z ~ 1) and modulo M(Z), two polynomial transforms,
one Chinese remainder operétion, one ¢-point con-
volution, and ¢ polynomial multiplications modulo M(Z).
In all of these operations, the only multiplications are
those required for computing the g-point convolution and
the g polynomial multiplications modulo M(Z).
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In the case of computation by pseudo-polynomial
transforms, the number of multiplications corresponds to
(g + 1) convolutions of g terms.

These short convolutions and polynomial multiplica-
tions can be computed by FFTs or NTTs. The problems
associated with the use of these transforms such as
round-off errors for FFT or excessive word length for
NTT are then limited to only a part of the total computa-
tion process.

It is, however, often more advantageous to perform
these computations by using short convolution al-
gorithms. If M, and M, are respectively the number of
multiplications required to compute a convolution of di-
mension g and a polynomial product modulo M(Z), the
total number of multiplications corresponding to a con-
volution of dimension g X g becomes (¢ + 1)M, with
pseudo-polynomial transforms and gM, + M, with poly-
nomial transforms. Thus, the algorithm derived from
polynomial transforms yields about N M, multiplications
for a convolution of dimension N, X N, as against M M,
for the Agarwal-Cooley approach [7, 8].

Winograd [11, 12] has shown that convolutions of di-
mension g and polynomial products modulo M(Z), with ¢
prime, can be computed in the field of rational numbers
with a minimum number of multiplications equal to 2(g —
1) and 2q — 3 respectively. Thus, for small g, the poly-
nomial transform method can be expected to require
about half as many multiplications as the Agarwal-Cooley
approach. We shall see later that much larger savings can
be achieved when composite algorithms are used.

When computing two-dimensional convolutions by
polynomial transforms, it would seem that the Chinese
remainder reconstruction (7)-(10) requires a large number
of additions. This need not be the case, however, pro-
vided the computation is properly organized: Since §,(Z)
= 0 modulo (Z — 1), one can define T(Z) so that §,(Z) =
lg — M(2)]/q = T(ZNZ - 1)/q, and

14

Y(2)=[T2)Y, (Z)NZ - 1) + M(2)Y, ]/q
mod (Z - 1).  (I8)

T(Z) is given by T(Z) = [-Z2"* + - -+ + 3 — qZ° +
(2 = @)Z + 1 — q]. When the filter has fixed taps, H,(Z)/q
and H,  are computed only once. Thus, H,(Z)/q can be
premultiplied by 7(Z)/q and H, , can be premultiplied by
1/q. Under these conditions, the Chinese remainder re-
construction does not require any multiplication by g or
1/g and reduces to multiplying ¥, /g by (Z*" + -+ - + 1)
and Y, (Z)T(Z)/q by (Z — 1). These two operations can be
done with only 2g(g — 1) additions.

We give in Table I, line 1, the total number of opera-
tions for convolutions of dimension g X g computed by
polynomial transforms. The number of additions and mul-
tiplications is given in Table 2, columns 2-5. In this table,
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Table 1 Polynomial transforms for the computation of convolutions.

q Transform Transform Dimension of No. of Generalized
ring M(2) — convolutions additions multiplications
Length Root
prime (Z¢- 1)/(Z - 1) q z 2g% + 2g* — 10g + 8 —q products M(2)
—1 convolution ¢
prime (Z9—- 1)/(Z ~ 1) 2q -Z 2g X g 4g3 + 8q? — 24¢q + 16 ~2q products M(Z)
— f convolution 2¢
prime (Z% - 1)/(Z* - 1) 2q ~Z! 2 X 2q 8¢% + 16¢g% — 48¢ + 32 —~2q products M(Z)
—1convolution 2 X 2¢
. —g, products M(Z)
q; (Z4% - D/(Za - 1) q Al @ X q) 2q; + 4q} — 8¢4° = 29, + 8 —q, products
Zn-Nn/HZ -1
—1convolution ¢,
N —qy(q, + 1) products M(Z)
VAR VAR q; z a % q) 44} + 2q) — 10g; + 24, —q: product o
(Zn = 1)/(
+12 — 1 convolution g,
) ) ) —2q,(g, + 1) products M(Z)
q: (22— 1)/(Z2 - 1) 2q4° -Z 2¢° x 24° 164° + 164 — 484} —2q, products
1 1 1 1 1 1
‘ (Z* — H/(Z> - 1)
—8g% + 40q, + 16 — 1 convolution 2 X 2g,
; : —gq, products M(Z
@ig (2%~ D/(Z% ~ 1) 4 VA di X @14 (24} + 247 — 10g, + 8) B e ((]1312
21 72 41 20+t 7 21 X 0k (t + 1yzeey 2t+1 products M(Z)
we have used short convolution algorithms similar to prime with the other factors of Z? — 1. The transform root

those proposed by Agarwal and Cooley [7, 8] and derived
the corresponding algorithms for polynomial multiplica-
tion modulo (Z* — 1)/(Z — 1). These last algorithms are
such that M, = M, — 1 and are given in Appendix A for g
= 3,5, 7. We give also for comparison in columns 6-7 the
number of operations for the Agarwal-Cooley approach.
It can be seen that the number of multiplications is ap-
proximately half that in the Agarwal-Cooley method
while the number of additions is somewhat smaller. An
example, illustrating the computation of a convolution of
dimension 3 X 3 by polynomial transforms, is presented
in Appendix B.

Generalized polynomial transforms

For the sake of concreteness we have, up to now, re-
stricted our discussion to polynomial transforms having ¢
terms with ¢ prime and defined modulo (29 — 1)/{(Z - 1).
It is apparent from Egs. (14)-(17) that any polynomial
transform of dimension N, having a root aZ“ and defined
modulo a polynomial M(Z), has the circular convolution
property provided (aZ9)" = 1 modulo M(Z) and § = 0
modulo M(Z) for t # 0 modulo N, S = N modulo M(Z) for
t =0 modulo N. with § = 2V_(aZ")". When polynomial
transforms are used for computing two-dimensional con-
volutions, M(Z) must be a factor of Z* — 1, relatively
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aZ" should also be as simple as possible in order to mini-
mize the complexity of transform computation. In spite of
these limitations, we show now that there is a very large
class of polynomial transforms having the convolution
property.

We consider first a polynomial transform having N g
terms. with g an odd prime, M(Z) = (Z°— 1)/(Z — 1). and

Nie—1

H(2)= Y H(Z)(WZ)"" mod M(Z)

=V

m=0
W=e¢ ﬂzn/x,
k=0,1,-+- Ng—1. (19)

Eq. (16) then becomes, with t = m + r — L.

Ng—1 o Nje—1 Nyg—1

8 8 1 “ ‘
Pzy= N N H (DX, Z)~N—— N (wzy”
’ A k=0

m=0 r=0

mod M(Z). (20)

If N, and ¢ are relatively prime, k can be replaced by qv +

Nk withv=0,1,--- N —-1,k=0,1,---,¢4g— 1,and
the sum
N1

S= N (w)*

k=0
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Table 2 Number of operations for two-dimensional convolutions computed by polynomial transforms.

Polynomial transform approach Agarwal-Coaley method

Convolution Total no. Total no. Mults. Adds. Mults. Adds.
size of mults. of adds. per point per point per point per point

3x3 9) 13 70 1.44 7.78 1.78 8.56
4 x4 (16) 22 122 1.37 7.62 1.56 8.44
6x3 (18) 26 176 1.44 9.78 1.78 10.56
5x5 25 55 394 2.20 15.76 4.00 18.60
3 x9 Q27 58 373 2.15 13.81 2.81 15.67
6 X6 (36) 52 436 1.44 12.11 1.78 12.56
7 %7 49) 121 1177 2.47 24.02 5.22 32.86
Sx 10 (50 110 888 2.20 17.76 4.00 20.60
8 x 8 (64) 130 750 2.03 11.72 3.06 15.81
9%x9 81 193 1526 2.38 18.84 4.46 28.00
10 X 10 (100) 220 2036 2.20 20.36 4.00 22.60
14 x 14 (196) 484 5632 247 28.73 5.22 36.86
18 x 18  (324) 772 7596 2.38 23.44 4.46 32.00
30 x 15 (450) 1430 14644 3.18 32.54 7.11 43.62
30 X 30 (900) 2860 31088 3.18 34.54 7.11 45.62
35 x 35 (1225) 6655 77099 5.43 62.98 20.90 130.03
42 x 42 (1764) 6292 81980 3.57 46.47 9.29 70.97
70 x 35 (2450) 13310 159098 5.43 64,98 20.90 132.03
60 X 60 (3600) 15730 178634 4.37 49.62 11.11 73.47
becomes can in turn be computed by polynomial transforms with

24, polynomial products modulo (Z*7 — 1)/(Z* — 1)
plus an auxiliary convolution of dimension 2g, X 2g,.
This last convolution can also be computed by a poly-

N=1 a1
s= N oy N g

r=0 k=0
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Thus, § # 0 only for t = 0 modulo N ,q and (20) reduces to
a polynomial convolution of dimension N g. Two-dimen-
sional convolutions of dimension N g X g can thus be
computed by using the polynomial transform (19) and
computing an auxiliary one-dimensional convolution of
dimension N 4. The main cases of interest are, of course,
N, =2, N, = 4, which correspond to convolutions of di-
mensions 2¢ X ¢, 4q X g and to transforms with roots —Z
and jZ. which can be calculated without multiplications.

If we restrict ourselves to pelynomial transforms that
can be computed without multiplications, it can be shown
by similar considerations that polynomial transforms hav-
ing the convolution property can be defined modulo
(Z* ~ D/(Z* — 1. modulo (Z%% — 1)/(Z% — 1) with
¢, odd prime and g, relatively prime with ¢, and
(Z = D/(Z% — 1) with g, prime.

The case of convolutions of dimension 24} X qu
computed by polynomial transforms defined modulo
(Z*1 — 1)/(Z* - 1) is particularly interesting because
the transforms can be computed with a reduced number
of additions by means of a three-stage FFT-type al-
gorithm. In this case, the generalized multiplications
correspond to qu polynomial products modulo
(Z*% = 1)/(Z* — 1) plus the auxiliary computation of a
convolution of dimension 24° X 2g,. This last convolution
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nomial transform with 2g, polynomial products modulo
(Z* — 1)/(Z* — 1) plus one auxiliary convolution of di-
mension 2 X 2g,.

Generalized convolutions defined modulo Z7 + 1 in one
or both dimensions can also be computed by polynomial
transforms. The main cases of interest here are the gener-
alized convolutions of dimension 2g X g*, with ¢ prime,
computed by transforms defined modulo (Z°+ 1)/(Z + 1)
with root Z and the generalized convolutions of dimen-
sions 27" x 2" * and 2’ * x 2' * computed by transforms
defined modulo (sz + 1). [We use here the symbol * to
indicate a generalized convolution modulo (Z¢ + 1) as
opposed to conventional circular convolutions modulo
(Z* — D). 1t should be noted that for ¢ = 2. the corre-
sponding transforms have the generalized convolution
property modulo (ZZ' + 1) and no auxiliary computation
is required. These transforms are also optimum from the
computational complexity standpoint since they can be
computed with ¢ + 1-stage radix-2 FFT-type algorithms.
Moreover, when q is even. Z° = —1. and Z"* £ j, with
j = \/—1. It is then possible to take advantage of this
property to compute complex multiplications with only
two real multiplications by using an approach similar to
that proposed by Nussbaumer for Fermat number trans-
forms [15].
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We summarize in Table 1 the main existence conditions
for polynomial transforms that can be computed without
multiplications. It can be seen that these cases corre-
spond to two-dimensional convolutions such that both di-
mensions have a common factor. We give, in Table 2, the
number of operations for two-dimensional convolutions
computed by polynomial transforms. It can be seen that
the computational savings can be very significant for large
convolution sizes. Except for ¢ = 7 and g = 9, all al-
gorithms for short convolutions and polynomial products
are derived from those given by Agarwal and Cooley
[7, 8]. For ¢ = 7 and ¢ = 9, we have used more efficient
algorithms in which the polynomial products modulo
(Z° - 1)/(Z® — 1) and modulo (Z7 — 1)/(Z — 1) are com-
puted in a way similar to that of the polynomial product
modulo (Z* — 1)/(Z — 1). This algorithm corresponds to
15 muitiplications and 51 additions for the polynomial
product modulo (Z° — 1)/(Z*> — 1) and to 19 multiplica-
tions and 81 additions for the nine-term convolution.

1t should now be apparent that NTTs and polynomial
transforms bear a strong relationship. In fact, NTTs are
particular cases of polynomial transforms in which
the ¢-bit words are to be viewed as polynomials: If we take
for instance the polynomial transforms defined modulo
zZ7+ 1, using 27" input polynomials corresponding to 2"
words of 2 bits, we obtain the Fermat Number Trans-
form. The existing body of knowledge on NTTs can thus
be used as a useful tool to define new polynomial trans-
forms. The main advantage of polynomial transforms
over NTTs stems from the fact that all operations are per-
formed modulo a polynomial instead of modulo an integer
so that there are no restrictions on arithmetic, word
length, or truncation.

Composite algorithms

Suppose now that we want to compute a two-dimensional
convolution of dimension ¢,g, X ¢,q,. where g, and g, are
relatively prime. Using the Chinese remainder theorem,
we can view this convolution as a convolution of dimen-
sion (g, X g,) X (g, X g,). Under these conditions, this
convolution can be computed by a nesting algorithm simi-
lar to that proposed in {7, 8]. If M|, A, and M,, A, are the
number of multiplications and additions required to com-
pute the convolutions of dimensions g, X ¢, and ¢, X g,.
respectively, the total number of multiplications M and of
additions A then becomes

M=MM,; @n
A=Ag:+ MA,. (22)

This computation mechanism can be used recursively to
cover the case of more than two factors and is particularly
useful when used in conjunction with polynomial trans-
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forms, since it allows us to derive efficient algorithms for
computing large convolutions from a limited set of small
values of g.

We give in the lower part of Table 2 the number of op-
erations for large convolutions computed by polynomial
transforms and nesting. It can be seen that for large trans-
forms, the number of additions and multiplications is
drastically reduced with respect to the Agarwal-Cooley
method. Actual processing load savings depend upon the
programming of the algorithm, and particular attention
must be paid to implementing efficiently ancillary opera-
tions. In this respect, it should be noted that several fac-
tors weigh in favor of polynomial transforms. When com-
pared with the FFT algorithm, the polynomial transform
approach can be implemented with real arithmetic for the
computation of real convolutions and requires no manipu-
lations of trigonometric functions. If the & sequence is
fixed, the polynomial transform of 4 can be precomputed
and stored in a read-only memory. In this case, the num-
ber of memory locations is reduced with respect to the
Agarwal-Cooley method by the same factor as the num-
ber of multiplications.

It should also be noted that when a two-dimensional
convolution of fixed size must be computed repeatedly,
the programming can be divided into two steps, a genera-
tion step and an execution step. The programs can then
be designed in such a way that most of the bookkeeping
operations concerning polynomial manipulations take
place within the generation step and therefore do not pe-
nalize significantly the execution time.

Computation of one-dimensional convolutions by
polynomial transforms

Polynomial transforms permit the computation of two-di-
mensional transforms such that the lengths in both dimen-
sions are not usually prime. Thus, the efficient two-di-
mensional to one-dimensional mapping introduced by
Agarwal-Cooley [7, 8] is not applicable. It is still possible,
however, at the expense of a reduction in computing effi-
ciency, to compute one-dimensional convolutions by a
method derived from the overlap-add, overlap-save ap-
proaches [10, 16]. We specify here the processing load for
one-dimensional convolutions computed by polynomial
transforms. To this effect, we consider an N-term con-
volution:

N1
Ye = :4 hix(e-i)modN e=0,1,---N~-1 (23)
i=0

If N = gN,. we can change the indices e and i with

€=N1u+1; i=Nn+m
un=0,1,---,qg—1;
Lm=0,1,--+ N — 1; (24)

1
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Table 3 Number of operations for one-dimensional convolutions computed by polynomial transforms.

Polynomial transform approach

Agarwal-Cooley [7, 8]

Convolution Mults. Adds. Convolution Mulss. Adds.
size per point per point size per point per point
240 5.96 61.00 210 7.24 36.03
288 5.87 49.41 360 8.56 44.21
450 6.36 69.08 420 9.05 46.29
800 8.94 83.08 840 12.67 64.47
900 7.94 87.30 840 12.67 64.47
1440 11.74 85.79 1260 16.59 81.86
1800 8.74 99.24 2520 23.22 115.10
2400 11.92 115.85 2520 23.22 115.10

N1 q—1
Yyust = S E [ VR 25) make precise here the case of two-dimensional trans-

n=0

3
1

This two-dimensional convolution is circular, of dimen-
sion ¢, for index »n and aperiodic, of dimension N, for
index m. Equation (25) can therefore be computed by cir-
cular convolutions of dimension g X ¢ calculated by poly-
nomial transforms provided 2N, = ¢ + 1. In this case,
g — N, of the input polynomials X (Z) = 3" Xy "
are null and only N, of the output polynomials need to be
computed.

When the multidimensional convolution is calculated
by polynomial transforms used in conjunction with com-
posite algorithms, accounting for the zero-valued samples
in the evaluation of processing load may become difficult.
It is sometimes preferable to compute the multi-
dimensional convolution by a single polynomial trans-
form of dimension ¢ = ¢,g,, " - -, ¢, defined modulo
VARV VAL 1)(202*1 o+ ) (Z(l,rl + -
with q,, g,. - - -, g, relatively prime. This yields about the
same processing load as when computation is performed
by a composite algorithm and polynomial transforms of
dimensions q,, g,. * * *, g,. but the overall organization is
much simpler to visualize. We give in Table 3 the number
of operations for one-dimensional convolutions computed
by polynomial transforms. In this table, we did not ac-
count for the zero-valued samples, so that the number of
additions given here is an upper bound. It can be seen that
for convolution sizes above 200, the number of multipli-
cations is significantly lower than with the Agarwal-
Cooley method.

Multidimensional polynomial transforms

Multidimensional polynomial transforms can be defined
in a way similar to one-dimensional polynomial trans-
forms. Since we will need these transforms for the com-
putation of Discrete Fourier Transforms (DFTs), we

H. J. NUSSBAUMER AND P. QUANDALLE

forms (three-dimensional convolutions) in order to eval-
uate the corresponding processing load.

Assuming we want to compute a convolution of dimen-
sion ¢ X ¢ X ¢, with g prime, we redefine Egs. (1) to (5)
with

q—1

H (Z)= YN h z"
my.my — n.my.mg
n=0

m,m,=0,1,--+,qg—1, (26)
11*‘1
Xr r(Z)z-\—‘ R rz-"
172 = 8,7
rab=0,1,---,qg—-1; (27)
q—1 qg—1
1,.12(2) = L ,\_, m,,mg(z) Xll—m,.lzvrm(z)

my=0  Mmy=0

mod (Z° - 1); (28)

q—1

_\" u
YI,.lz(Z) B yu,l,.lzz
u=0
Lol =0,1,--g-1 (9
q—1 q—1 g—1
RN N N
')711,1‘.12 — — — n,ml.mz“\/uAn,llfm,,lem2

my=0 me=0 n=0
u=90,1,---,qg— 1. 30)

We define a two-dimensional transform modulo M(2) =
(Z'-=1)/(Z - 1) by

q—1 q—1

a,,.2Z= > YN H

kyiky

Z)Zmllfl+mzk2 mod M(Z)
Limy,my
m=0 my=0

kivky,=0,1,---g— 1
H, . (Z)=H, (Z)mod MZ), (31

with the corresponding inverse transform. Multiplying
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term by term Hkhkz(Z) by the transform X/k,,kz(z) of
X (Z) and taking the inverse transform yields

Ty

q—1 (111 q-1 g-1
P 2= X X2 H, 0,
my=0 mey=0 7r;=0 7ry=0
X (Z) ] ql;‘l Z(m Tk, E Z(m2+rz_lz)kz
2 L

qd k=0 ky=0
mod M(Z). (32)
Since Z* = 1 modulo M(Z), P, , (Z) reduces to

g—1 q—1
ll zz(z) =1r l,,ll(Z )= E }_, Hl.m‘rng(z )X1.l,-m,,lrm1(z)

my=0  my=0

mod M(Z). (33)

We compute an auxiliary convolution Yz,z‘,zz modulo
(Z — 1) with
21l Lo Z Z 2, y,my 2l1~m1 12~m2 (34)
my=0 my=0
q—1
2,my,mg = z hnl,ml,mz; (35)
n=0
q—1
Ko = D x,, (36)
$=0

The final convolution product is reconstructed from
Y1,zl,zz(z) and Yz,z,,zz by using the Chinese remainder theo-
rem

Y, @)=

Iy

(2)8, (Z) + Y Sz(Z)
mod (Z7 — 1), (37)

with § (Z) and $,(Z) defined by Egs. (8) to (11).

Under these conditions, the two-dimensional poly-
nomial transform can be computed with 2¢(¢* — ¢* — 3q
+ 4) additions and the total number of operations for a
three-dimensional convolution of dimension ¢ X g X ¢
reduces to 4¢' + 24° — 144" + 69 + 8 additions,
q(g + 1) polynomial products modulo (Z° — 1)/{(Z — 1),
and one convolution of dimension q.

Using the same approach gives, for a four-dimensional
convolution of dimension g X ¢ X g X ¢, a total proc-
essing load of 6¢° + 2¢* — 204° + 104" + 6 + 8
additions, ¢* + ¢ + g polynomial multiplications modulo
(Z* ~ 1)/(Z — 1) and one convolution of dimension g. We
give in Table 4 the corresponding number of operations
for several multidimensional convolutions used for com-
puting DFTs.

\ll

Computation of DFTs by polynomial transforms

Since the polynomial transforms provide an efficient way
of computing convolutions, they can be used for the cal-
culations of DFTs. In order to make the corresponding
algorithms precise, we consider a DFT of dimension N:
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Table 4 Number of operations for short multidimensional con-
volutions computed by polynomial transforms.

Convolution size Total no. Total no.
of mults. of adds.
3x3x3 40 325
3 x3Xx3x3 121 1324
6X6X6 320 3896
6X6X6X6 1936 31552

A= 2 a W™ W=

k=0,1,--- N—1 (38)

When N = N, with N, prime, this transform can be com-
puted as a correlation by using Rader’s algorithm [17]
with

N1

> a, n=g"mod N;

n=0

k=g"mod N; 39)
N -2

v=20,1,---,N -2 (40)

g being a primitive root modulo N,. Thus, this DFT can
be calculated with one multiplication by W*° and one cor-
relation of dimension N, — 1. When N = NN, with N,
N, relatively prime, the DFT of dimension N can be
viewed as a DFT of dimension N, in which each multipli-
cation is replaced by computing the DFT of N, terms [10-
12, 18]:

No—1

L E Wt nZO Ay on VA2 (@41
o

Thus, if N, and N, are primes, the DFT of dimension
NN, can be calculated with one transform of dimension
N,, one correlation of dimension N, — | and one two-
dimensional correlation of dimension (N, — 1) X (N, — 1).
We propose here to compute the transform of dimension
N, and the correlation of dimension N, — 1 by Wino-
grad’s algorithms and to calculate the correlation of di-
mension (N, — 1) X (N, — 1) by polynomial transforms.
This method can of course be extended recursively to
DFTs of length N = N N,, - - -, N, provided the various
factors N, are primes. In this case the computation is per-
formed with multidimensional polynomial transforms.
Similar results are obtained for factors thhat are powers
of primes. In this case, the correlations have a length
(N, = DN

Since g™ = —1 modulo N,, the coefficients corre-
sponding to the W™ in the polynomial multiplications are
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Table 5 Number of real operations for DFTs computed by polynomial transforms.

DFT Polynomial transform approach Winograd’s method
size _

No. of No. of No. of No. of
mults. adds. mults. adds.
63 174 (168) 1408 234 1440
504 1392 (1356) 14540 1872 14796
1008 3132 (3084) 34668 4212 35244
2520 8352 (8316) 96364 11232 102348
9%x9 242 (224) 1742 338 1936
7x7 138 (136) 1156 162 1152
7x7x%x7 1002 (998) 11820 1458 13896

either real or pure imaginary so that all complex multipli-
cations are implemented with two real multiplications, as
with Winograd’s algorithms. Moreover, when the factors
are powers of primes, additional simplifications are pos-
sible. For instance, in the case of a factor Ni, N, prime,

NTTs but they have the advantage over the latter that
calculations can be done in ordinary arithmetic, with or
without truncation after each arithmetic operation.
When computed by polynomial transforms, two-dimen-
sional convolutions reduce to additions and one-dimen-

the property 3V ""'W* = 0 forces one of the transform sional convolutions. These last convolutions are usually
terms to be null. relatively short and can be calculated efficiently by con-
The individual factors N,, N,, - - -, N, must be chosen volution algorithms. In this case, the polynomial trans-

in such a way that the multidimensional correlations can
be implemented easily with polynomial transforms. A 63-
term DFT can, for instance, be computed with five DFTs
of seven terms, one correlation of dimension 6 and one
correlation of dimension 6 X 6.

We give in Table 5 the number of operations for various
DFTs computed by polynomial transforms. It can be seen
that polynomial transforms allow a significant reduction
in number of operations when compared to the original
Winograd algorithms. The savings are much smaller,
however, when the figures are compared to the Winograd
method applied to larger fields. In the case of a DFT of
7 x 7 x 7 points, for example, this newer Winograd
method [12] requires 1029 real multiplications against
1002 multiplications for the polynomial transform ap-
proach. It should be noted, however, that this last Wino-
grad technique requires operation on two sets of data si-
multaneously and thus may require more storage than the
polynomial transform method.

Small additional savings on the number of multiplica-
tions can be achieved if ‘‘simple’” multiplications by +1
or *j are not counted. The corresponding figures are
given in parentheses in Table 5.

Concluding remarks

In this paper we have introduced various polynomial
transforms. We have shown that these transforms are
computed without multiplications and provide an efficient

form approach is better than the Agarwal-Cooley ap-
proach. It is also better than FFT for convolution sizes up
to around 100 X 100. Moreover, calculations do not re-
quire complex arithmetic with sines and cosines and can
be carried out, if desired, entirely in integer arithmetic,
without roundoff errors.

These results have been extended to caver the case of
one-dimensional convolutions computed by the two-di-
mensional to one-dimensional mapping introduced by
Agarwal and Burrus. We have shown that, in spite of the
loss of efficiency incurred in this mapping, the polynomial
transform method yields a significant reduction in number
of multiplications over the Agarwal-Cooley algorithm for
convolution sizes above 200.

Polynomial transforms can also be used for the compu-
tation of DFTs, and are in some cases better than FFT or
WFTA methods for this application.

Polynomial transforms are well adapted for implement-
ing digital filtering processes in general purpose comput-
ers. It is expected that these techniques will be particu-
larly useful for signal processing applications having large
computation requirements such as image processing.

Appendix A: Algorithms for short polynomial prod-
ucts modulo Z - 1)/(Z — 1)

e Al Polynomial product modulo (Z* — 1)/(Z — 1):
3 multiplications

means of calculating two-dimensional convolutions. 3 additions
Polynomial transforms can be viewed as generalized a,=h, — h, by = x,
NTTs defined in rings of polynomials instead of rings of a, = h; b, =x,— x,
142 integers. They have the same computational efficiency as a, = h, b, = x,
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m,= a.b, k =0,1,2 f,=(-h,— 2h, +3h, — h — 2h)/6
fi=th,—h,+h — h)/6
= + 8 5 3 1 0
Yo T Mo T, f,= —2h, + h, + 2k, — h, — 2h, + 3k
y =m +m 9 5 4 3 2 1 0
t 0 2 fro= @h, — hy — 2h, + h)/2
Corresponding convolution of dimension 3: fiy= (=2hy — 2k, + 12k, + 5h, — Sh, — 2h,)/14
4 multiplications fiu= (=2h, + 3h, — h)}/6
11 additions Sfia= (—hy + h,))/6
fru=2h, — hy — 2k + hy
® A2 Polynomial product modulo (Z° - 1/(Z - _ _ _
9 multiplications % _ o 4G TH % : =
21 additions 4y : s N i *s N 4 B s N
a, = x, by=hy,— h, + h, Zﬁ : ‘il fZa a; = a4, 7 4, g = a, T a;
a, = x, b, =h, — h,+ h, I
a, =x,+ x, b, = (—2h, ~ 2h, + 3h, — 2h)/5 e, = a,
a, = x, by,=—h,+ h —h,+h, e, =a,+ ag
a, = x, b,=—h,+ h, —h, e, =a,+ a,
a, = x, + x, b, = (3h, — 2h, + 3h, — 2h)/5 e,=e +a,+ a, + a
a; =a, — a, by = —h, + h, e, =a,
a,=a, — a, b,=h —h, e, = a,
ag = a, — a by = (=hy = h, + 4h, — h)/5 € = ay T a,
m, = ab, k=0,1,---,8 e
e8=e6+ag+aﬂ+a8
u,=m, + m; € = 4y
u, =m, +m, €= €5~ &
u, =mg,+m, €= €5~ €
g = mg — m, €= €, 7 &
uy=m; —m, €3= €5~ &
ug = mg —m, €4~ €~ €
g = u, + u, _ _
w, = u, + u m, = e,f, k=0,1, , 14
u8=—u3+u4 u0=m5+m0
Uy = U; = Uy u, =mg+ m
ulO_ ul + u2 u2 = m7 + mZ
U= u, +ou, Uy, =my + my
Up= —Uyy — Uy u, =my,+ m,
y() “5 u5 i mlO + mO
_ ug = m,, + m,
Y, = Ug + Uy, _
— u, = my, + m,
Yo = Uyt Uy, _
— Ug = my, + my
Yy = Uyt Uy = -
. . . . Uy =my, + m, Yo = Uy
Correspon(’hn'g C(?nvolutlon of dimension 5: U=, + uy Y, = Uy 1
10 multiplications u,=u,+u, Yy = Uyt Uy,
31 additions U=y + uy, Yy =y, + Uy,
7 ul3= ulO + u3 y4 = M12 + M23
& A3 Polynomial product modulo (Z' — 1)/(Z — 1): U= u, —u, Yy = Uy,
15 multiplications w,=u,+u, +u, +u +u,
55 additions U= —u, — U, — U,
fo =(=2h +3h, = hy — 2h, + h + 2h)/2 U=, — Uy
fy = Bh, — 11h, + 10k, + 3h, — 11k, — 4h)/14 U=, +u, +u,
fy=0h, — h, — 2h, + 3h, — h,)/6 U= U, — U — Uy
f,=(h,— hy+h)/6 Uyo= (u, + uy) + (u, + uy) + u,
fy=—h,— 2, +3h, — h,— 2h + h Upy= Uy + Uy,
fo=(h, +2h, — hy — 2h, + 3h, — hy)/2 Up= Uy, — Uy
fy = (=11h, — 4h, + 10h, + 3h, — 11k, + 10h))/14 Uy, = U,y — Uy 143
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Corresponding convolution of dimension 7:
16 multiplications
70 additions

Appendix B: Example of a convolution of dimension
3 x 3 computed by polynomial transforms

This example illustrates the computation of a convolution
of dimension 3 x 3 evaluated by polynomial transforms as
shown in the second and third sections.

=3 MZ)=zZ+z+1 Z’=1

Input sequences:

h,=4,3,0) x,=12,0,2)

h,=431 x,=10,1,3)

h,=@2,1,0) x,=3,4,9

Reduction modulo M(Z):

H,  (Z): 4,3) X2y 0, -2
3,2 (=3, -2
2,1 (=1, 0)

Polynomial transforms:

H(Z): 9,6) X (2): (-4, -4
1,2 G, -2
2,1 (1,0

1/(Z~-1)=—(Z + 2)/3 mod M(Z)
H,(Z)/(Z - 1) mod M(Z):
-4, 5)
-0, 1)
-1, 1

Polynomial multiplications: (using algorithm given in Ap-
pendix Al)

X’k(Z)fIk(Z)/3(Z — 1) mod M(Z): (—4,16)/3
(-2, —5)/3
(-1, -1)/3
Inverse polynomial transform:
Y NZ - 1) mod M(Z): (=7, 10)/3
(—6, 18)/3
(1, 20)/3

Reduction modulo (Z — 1):
H,,:(7,8,3) 0, 4,4,11)

Convolution of dimension 3:
Y, /3: (128, 93, 121)/3

Chinese remainder reconstruction: [Eq. (18)]
v+ (45,37, 46, 33, 23, 37, 40, 34, 47)
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