
D. B. Lomet

Data Flow Analysis in the Presence of Procedure Calls

Abstract: The aliasing that results in a variable being known by more than one name has greatly complicated efforts to derive data flow
information. The approach we take involves the use of a series of claims that, after we compute the data flow for some of the aliasing
possibilities, allows us to produce good approximations for the remaining cases. The method can thus limit the potential combinatorial
explosion of aliasing computations while providing results that are frequently exact and almost always very good. The method is il-
lustrated in the context of data flow analysis involving multiple procedures and their calling interactions. It is applicable also in the
treatment of recursive procedures.

Introduction
Data flow analysis of one form or another has been per-
formed in many compilers for nearly a decade, the first
widely known instance being the work of Lowry and
Medlock on FORTRAN H [11. Considerable new work
has been done resulting in new or improved algorithms
[2 - 61 and new applications of the information [7 - lo].
An area that has been generally overlooked, however, is
the determination of data flow information in the pres-
ence of procedure calls. Historically, most practical real-
izations of data flow algorithms have simply assumed
that nothing is known after another procedure has been
called. Recently, both Allen [1 I] and Rosen [121 have
attacked this facet of the problem.

There are, in fact, two aspects of the data flow prob-
lem:

1. What is the effect of a procedure call on the data flow
of the calling program? We call this the summary data
flow problem as the idea is to summarize the effect of
the procedure call, given the particular argument-pa-
rameter matching at the point of call.

2. What is the effect on the data flow within the called
procedure when it is called with a particular combina-
tion of arguments? Further, what data flow informa-
tion is safe to assume for multiple calls of a procedure
involving several different arguments for any given
parameter? We call this the local data flow problem.
An approximate solution to the summary data flow
problem can be derived in the process.

For algorithms to perform data flow analysis in the
presence of procedure calls, they must cope with the so-
called aliasing relationships, cases in which several
names all identify the same variable. The aliasing prob-
lem and its implications when procedures are involved,
and in other cases such as pointer (reference) variables,

is treated directly by Spillman [71 ; however, the method
he uses does not involve knowledge of the local control
flow of procedures and hence provides only a very ap-
proximate bound on what the procedure might do.

We introduce in this paper a set of inequalities that
can be used to approximate the effects of argument-pa-
rameter aliasing without requiring a separate analysis for
each such aliasing situation. We explore the implications
of these approximations for both summary data flow
analysis and local data flow analysis. Used in conjunc-
tion with Rosen’s summary data flow methodology, the
effect is to limit the potential combinatorial explosion
while producing only slightly less precise results. In the
case of Allen’s local data flow methodology, the effect is
to produce considerably more precise information. This
latter approach has much to commend it. Not only are
the results in a form that is directly useful for optimizing
transformations but they lead to very good results for
the summary data flow problem as well. It should be
emphasized that this paper is not concerned with the
detection of aliasing but rather with the problem of coping
with it. The detection of aliasing conditions has been
treated by both Spillman [71 and Rosen [121.

Blocks and control flow graphs
To characterize the data flow analysis more precisely,
we make use of the notion of a control flow graph and
the program it represents. We assume that we are deal-
ing with a typical procedural language, e.g., FORTRAN,

ALGOL, PL/I . We do not treat, however, programs that
use procedure parameters or variables, ON units, label
variables, or tasks. The use of these constructs implies
that the control flow graph of a procedure can change
dynamically. We hasten to add, however, that tech-
niques exist that make it possible to produce a “worst- 559

DATA FLOW ANALYSIS NOVEMBER 1977

1

Figure 1 Schematic of a block as seen from the outside.

Figure 2 A possible control flow graph for the block of Fig. 1.

case” control flow graph [7]. Further, no attempt is
made to distinguish between different generations of
variables, as can occur, for example, in the heap storage

PL/I. The control flow graph merely links, via arcs, the
nodes that correspond to the executable elements of the
procedure. These executable elements may be primitive
operations, procedure calls, blocks, or even constructs
introduced solely to facilitate analysis, i.e., intervals [21 .
In treating procedures, one must acquire knowledge
concerning all possible abnormal exits (see [71) . Once
this is done, the method can readily be applied to such
procedures. In particular, executable elements may have
multiple exits. Because of this, the local data flow infor-
mation is most conveniently associated with arcs of the
control flow graph.

We call the executable elements blocks, though these
should not be confused with BEGIN blocks. Rather, a
“block” is a generic name derived from the term basic
block (extended basic block) and is simply the unit of
code that is of interest. Schematically, any block may be
represented as in Fig. 1. I t may have only a single entry
point but may have multiple exit points.

There are two kinds of blocks, primitive and nonprim-
itive. Nonprimitive blocks have an inner structure that
consists of a control flow graph. Thus, if the block C of
Fig. 1 were nonprimitive, peeling away its “shell” might

Of ALGOL 68 or the BASED and CONTROLLED storage Of

560 reveal the control flow graph of Fig. 2.

The primitive blocks do not possess a control flow
graph, and they are not subject to the form of analysis
we present. These primitives are such executable ele-
ments as add or move operators. The data flow charac-
teristics of primitives must be assumed a priori. We dis-
cuss the nature of these assertions in the next section. A
call to a procedure does not constitute a primitive block.
Rather, one should conceive of a copy of the control
flow graph of the procedure residing within each block
(node) that represents a procedure call. Analysis must be
performed on this control flow graph in order to produce
the summary data flow information that characterizes
these call blocks.

Summary data flow
For the summary data flow computation, we are inter-
ested in determining whether a variable may be defined
(updated), whether the value of a variable may be used,
and whether there is a path through the unit of interest
on which the variable is not updated, Le., the value of a
variable may be preserved. (Preserved information is
essential in determining which definitions can reach a
use and whether a definition has subsequent uses.) Data
flow information must be asserted in some way for prim-
itive blocks. This information for a nonprimitive block
must be derived from the information acquired during an
analysis of the control flow graph of the block.

In particular, the data flow information derived for
each exit of a block becomes the basis for the data flow
information associated with the corresponding exit arc in
any other control flow graph containing an instance of
the block. Thus, the results of data flow analysis for the
exits of the control flow graph of C in Fig. 2 become the
basis for the information associated with arcs x and y of
all nonprimitive blocks C as in Fig. 1 . The definitions for
this data flow information given below make this interac-
tion precise.

Aliasing the names of variables can change the results
of data flow analysis. Consider the example

A + C * 2 ,

C + - B + l .

If there is no aliasing, A and C are defined, B and C are
used. However, if A and B are aliased, then (A $) , the
common variable, is defined but it is not used in the
sense that previous assignments to B do not affect the
computation, which is now only affected by the assign-
ment

(A $) + C * 2,

Further, in the unaliased case, B is preserved (since it is
not defined), while if A and B are aliased, (A B) is not
preserved.

D. B. LOMET IBM J. RES. DEVELOP.

This simple example is merely intended to indicate
how aliasing can affect data flow information and clearly
does not reveal all the implications of the aliasing possi-
bilities. We attempt to make these implications clear as
we proceed.

Because aliasing can alter the results of data flow anal-
ysis, it is necessary to discuss the conditions under
which summary data flow analysis is performed. For this
purpose we introduce the equivalence condition E :

E (J) When data flow for a variable is analyzed under
the equivalence condition E (J) , the results describe the
situation when the variable and all members of the set J
are aliased (name the same variable). (SI)

The conditions that we deal with change over the course
of our exposition. One change that we have to deal with
results from the relative globalness of variables. Only
variables that are in the lexical scope of a block can
have aliases within the block. It is important to drop
from the conditions that we consider all those variables
that are not global with respect to the entity we are deal-
ing with. This is an important means of reducing the ex-
plosion in the number of conditions. However, it is se-
mantically significant as well because it keeps us from
confusing the multiple generations of local (AUTOMATIC)
variables that can occur with recursive procedures. For
example, we define a function G (C,P) that eliminates
all variables in condition P that are not global to block C.
Thus, if P= E ({a , b , c, d }) and variables b and c are not
global to C, G (C , P) = E ({ a , d }) .

Summary data j o w dejinitions
Whereas the notation for expressing the data flow quan-
tities of interest is the same in both cases, we need to
treat separately blocks with control graphs and primitive
blocks. For blocks with control flow graphs, the data
flow quantities of interest are defined in terms of equa-
tions that depend on the analysis of contained blocks.
For primitive blocks, i.e., operators such as add, multi-
ply, move, etc., it is necessary to make some assertions
concerning the nature of their internal flow. It should be
emphasized again, however, that calls to procedures are
treated as nonprimitive blocks since the assumptions
concerning primitives do not generally apply to pro-
cedures.

Blocks with controljow graphs
In the case of blocks with control flow graphs, we make
use of the results of the data flow analysis on the blocks
that represent the nodes of the control flow graph. In
particular, we must take the results of these analyses of
blocks and tailor them so as to characterize the arcs of
the control flow graph. By using the information associa-

NOVEMBER 1977

ted with arcs of a control flow graph, the results for the
entire control flow graph (and hence the containing
block) can be computed.

In the definitions that follow we designate program
variables by lower case letters running i, j , . . ., sets of
variables by upper case letters running I , J , . . ., blocks
by upper case letters running C, D , . . ., exit points with
lower case letters running u, v; . ., conditions with upper
case letters running P, Q , . . ., and arcs with lower case
letters running 1, m, The data flow quantities pertain-
ing to blocks are subscripted with the letter B, whereas
those pertaining to arcs are subscripted with an A. Thus
we have the following definitions, which represent a re-
formulation of the definitions presented by Rosen [121 :

Def,(i, C , x, P) = 1 iff for some arc I on a path in C from
C’s entry to exit x, Def , (i , I , P) = 1 ; Def, (i , I , P) = 1 iff
Def,(i, D , y, G (D , P A E (J)) = 1, where block D , exity,
serves to define arc 1 and the set of variables J are the
parameters in D to which variable i is passed (bound) as
an argument. (S2)

Pre,(i, C , x, P) = 1 iff there is some path through block
C from C’s entry to exit x such that for all arcs 1 on that
path Pre,(i, I, P) = I ; Pre,(i, I, P) = 1 iff Pre,(i, D , y,
G (D , P A E (J))) = 1, where block D , exit y, serves to
define arc I and the set of variables J are the parameters
in D to which variable i is passed as an argument. (S3)

Use,(i , C , x, P) = 1 iff there is some path through block
C from C’s entry to exit x on which there is an arc I such
that Use,(i, 1, P) = 1 and on each arc k on this path
between C’s entry and I it is the case that Pre,(i, k, P) =
1 ; Use,(i, I, P) = 1 iff Use,(i, D , y, G (D , P A E (J))) =
1, where block D, exit y , serves to define arc 1 and the
set of variables J are the parameters in D to which vari-
able i is passed as an argument. (S4)

561

DATA FLOW ANALYSIS

The quantities Def,, Pre,, and Use,, and the corre-
sponding quantities for arcs, represent “may be” infor-
mation. Thus, if Def,(i, C, x, P) = 1 , then variable i may
be updated (but perhaps not) when control leaves block
C at exit x under condition P. A similar situation exists
for the other quantities. So-called “must be” informa-
tion is available, however. In particular, if DefB(i , C , x, P)
= 0, then variable i must be preserved; if Pre,(i, C , x, P)
= 0, then variable i must be defined. “Must be used”
information is not available. There is one qualification to
the above. If both Def, and Pre, are zero, then control
does not pass through the block to the given exit.

Primitives
We have given definitions for the data flow information
in the case where a block has a control flow graph. Prim-
itive blocks have no such graphs, and the question aris-
es as to what we assume concerning the primitives.

1

C: i:

then this assignment is a solution to the equations de-
spite the fact that i is neither preserved nor used. Since
it is a solution, attempts to iterate by re-evaluating the
equations so as to produce a “better” solution will fail.
The solution is already a fixed point, so additional itera-
tion does not produce further changes. The difficulty is
that by assuming Pre,(i, C , y , 0) = Use, (& C , y , 0) = 1
and using these to describe the call to C results in a self-
fulfilling prophecy in that assumptions for this call be-
come the result for C. This solution is, however, safe for

Figure 3 Control flow graph for a recursive procedure C , used
the purposes of optimizing transforms, though exces-

to illustrate that Eqs. (S 2) , (S3) , and (S4) have more than one sively pessimistic. It will result in more definitions and
solution. uses being considered than actually are necessary, thus

reducing the scope for optimization. However, invalid
optimizations will not be performed. Allen’s strategy
[111 of performing analysis on called procedures prior

The information assumed given for each variable i that is to analyzing their callers requires these kinds of pessi-
referenced by a primitive block C is the following: mistic assumptions but is safe without further iteration.

Def,(i , C , x, 0) and Use,(i , C , x, 0) The most precise solution for C in Fig. 3 is

We further assume that all variables not given such in-
formation are, in fact, not referenced, and hence, i f j is Pre,(i, C , y , 0) = Use,(& C , y , 0) = 0.
such a variable, then

This solution can be achieved by initially assuming that
DefB(j , C , x, 0) = Use, (j , C , x, 0) = 0. Def,, Use,, and Pre, are all zero. This represents a best-

Def,(i, C , Y , 0) = 1,

Also, we assume that

f‘re,(j, C, x, 0) = l D e f , (j , C , x, 0).

Thus, any definitions that occur on some “path” leaving
C at x occur on all such paths. Finally, we assume that if
U s e , (j , C , x, 0) = 1, then there is always a use o f j that
occurs before all definitions of any variable in C. This
prevents a definition of one variable from interfering
with the use of a second variable if the two should be
aliased. Since primitives typically acquire values (use
variables), perform a computation, and then store a re-
sult (dejni t ion) , these assumptions are reasonable. (The
alternative to making assumptions such as these is to
insist on much more information for each primitive. In
particular, one must have precise knowledge as to the
effects of parameter aliasing.)

Multiple solutions
The equations of (S2) , (S3), and (S4) may have more
than one solution when recursive procedures are in-
volved. The problem arises because some assumption
must be made concerning the effect of a recursive pro-
cedure call prior to the analysis of this procedure. Dif-
ferent assumptions can result in different results. Con-
sider the control flow graph for procedure C in Fig. 3.

If, in C , we make the most pessimistic initial assump-
tions for the call of C , i.e., that

562 DefB(i , C , y , 0) =Pre,(i , C , y , 0) = Use,(i , C , y , 0) = 1,

case initial assignment. This assignment is not safe,
however, since it may permit an optimizing transforma-
tion that should not be performed. Thus, this best-case
initial assignment must be improved by iteration until a
fixed point is achieved. Rosen [121 uses this strategy
and shows that such a fixed point is reachable and is the
minimal (most precise) solution.

Thus we have two fundamentally different strategies.
1) Make a pessimistic assignment for recursive calls.
Then analyze procedures in reverse invocation order
(analyze called procedures prior to their callers). Itera-
tion to find a solution is optional since such assignments
are safe. The minimal solution might not be achieved
because of “self-fulfilling prophecies.” 2) Make an opti-
mistic assignment for recursive calls. Iteration is now
required since such assignments are not safe. The fixed
point solution found will be the minimal (most precise)
solution.

Argument-parameter aliasing
Whichever of the foregoing strategies is chosen, the
effects of argument-parameter aliasing must be comput-
ed and such effects must be propagated systematically.
One might compute a worst case, which assumes that
parameters may be aliased to all of the arguments that
are passed to them from all of the calls. This is done in
the context of local data flow computation and is further
elaborated in a later section. On the other hand, one
might carefully distinguish the separate argument-pa-

D. B. LOMET IBM J . RES. DEVELOP.

rameter aliasing cases and compute a separate result for
each such equivalence. Thus, one is assured of comput-
ing a precise result at the expense of a potentially large
number of computations.

The approach we pursue here for coping with aliasing
can be used with either Allen’s reverse invocation order
strategy or Rosen’s iteration strategy. What we present,
via a set of claims which are justified below, is a method
for approximating the separate argument-parameter ali-
asing cases using computations that assume there is no
aliasing. We list the approximations as claims first and
then describe briefly how they can be used.

Claim DE

DefB(i7 c, x , f‘ A E (J))

= Def,(i, c, x , P) v v Def,(j, c, x , PI.
j € J

Justijication
If i names the same variable as does each j in J , then a
definition for one is a definition for all of them. That is
exactly what the claim D E states.

Claim PE

Pre,(i, C , x , P A E (J))

5 Pre,(i, C , x , P) A A Pre,(j, C , x , P I .
j € J

Justification
1. If C is primitive, then

Pre,(i, C , x , P A E (J)) = i D e f , (i , C , x , P A E (J))

=l (Def,(i, c, X, P) v v Def,(j, c, X, P))
j € J

= l D e f , (i , C , x , P) A f)TDe f , (j , C , x , P)

= Pre,(i, C , x , P) A A Pre,(j, C , x , P I .

JE

j € J

2 . If C is not primitive, then we have the following
cases:
a. Pre,(k, C , x, P) = 0 for some k E (J U { i }) . On

every path from C’s entry to exit x , there is an arc
on which k is not preserved, i.e., all paths are
blocked by some definition of the variable named
by k. Hence, since k names the same variable as
the variables in J , it must be the case that

Pre,(i, C , x , P A E (J)) = 0

= Pre,(i, C , x , P) A A Pre,(j, C , x , P) .
j € J

b. Pre,(j, C , x, P) = 1 for all j E (J U { i }) ; then

Pre,(i, C , x , P A E (J)) 5 1

= Pre,(i, C , x , P) A A Pre,(j, C, x , P) .
i€ J

Equality cannot be assured since, if p and p’ are
distinct paths, we have the following possibility:
variable i is preserved on p, variable j is not pre-
served on p, while variable i is not preserved on p‘
but variable j is preserved on p’. When i is aliased
to j , the combined variable should not be preserved
even though i and j are separately preserved.

Given only two variables and considering all their
combinations of values for Def and Pre, of which there
are 16, nine combinations represent valid possibilities
and in eight out of nine equality holds. For one case out
of nine, when both are preserved, the inequality repre-
sents the most precise information obtainable from the
separate summary information. Even in this case, how-
ever, equality may hold.

Claim U E

Use,(i, C , x , P A E (J))

5 Use,(i, C , x , P) v V Use,(j , C, x , P) .
j € J

Justijication
As in the Def, case, a reference to any j in J must be
considered as a reference to all. Hence, Use,(& C, x , P
A E (J)) can be no more than the above disjunction.
Equality cannot be established, however, because a
definition of one of the variables may block all paths to a
use of another variable where such a use was not
blocked by definitions of that variable itself. (This is the
same argument used for Pre,.)

Given only two variables, all combinations of Def,
and Use, are possible, and equality holds in eleven out
of the sixteen combinations. Thus, the disjunction is a
reasonable approximation.

The strategy suggested by the above claims is to com-
pute the “no aliasing” case, i.e., for any variable i in a
block C , exit x , one computes Def, (i , C, x , M), etc. These
“no aliasing” computations require the computation of
quantities involving aliasing, of course. Whenever one of
these cases arises, however, one of the preceding ap-
proximation schemes can be substituted. This strategy
produces a result which is almost as precise as that pro-
duced by multiple aliasing computations while not suf-
fering from the potential combinatorial explosion. The
result will be much better than a single worst-case com-
putation that is used for every call. It has the advantage
of being no worse computationally while permitting the
analysis to be tailored to each call point’s particular ali-
asing situation.

Local data flow
Summary data flow analysis, while interesting for pro-
gram diagnosis and documentation, does not provide the

DATA FLOW A

563

NOVEMBER 1977 LNALYSIS

information required for many of the optimizing trans-
formations performed by compilers, such as constant
propagation, common expression elimination, dead vari-
able elimination. Local data flow analysis is needed here
as it may be necessary to identify precisely the set of
definitions (updates) that can reach a computation and
the set of uses that might still be affected by previous
computations. In the exposition that follows, only the
“reaching definitions” computation is treated. The com-
putation for “exposed uses” proceeds in an analogous
fashion (see [21) .

We wish to know precisely what set of definitions at
the various arcs of a control flow graph can, in fact, af-
fect a computation at some other arc. This set is called
the set of reaching definitions. Before defining it, how-
ever, we must describe where the elements of the set,
i.e., the definitions, originate. Each element is represent-
ed as d(i , I) , where

DEF,(i , 1, P) = {d(i, 1)) if Def,(i, I , P) = 1 ; otherwise
DEF,(i , I , P) = 0. (L1)

Then the set of reaching definitions for a variable i, at an
arc I , under condition P , i.e., those that reach the “end”
of arc 1 , is defined as

REACH,(i , 1, P) = U {DEF,(i , m, P) I there is a path
originating from arc m and terminating with arc I , all arcs
n ofwhich have Pre,(i, n, P) = 1.) (L2)

We hasten to add that the computation of REACH, does
not use the above definition. Rather, a definition mod-
eled on Allen’s [21 is used, i.e.,

REACH,(i , I , P)

=u {REACH,(i , rn, P) & Pre,(i , 1, P) 1 rnEpred (1))

U DEF, (i , 1, P) (L2’ 1

where SET & 0 = 0 and SET & 1 = SET; p r e d (l) = the
set of predecessors of arc 1, Le., the arcs of the node of
which 1 is an out arc.

The set REACH,, since it is drawn from “may be”
information, i.e., Def, (i, I , P) and Pre, (i, I , P) , repre-
sents the set of definitions that may reach an arc.

The problem faced in computing REACH, is as fol-
lows. We want the local data flow information, e.g.,
REACH,, to be the best that we can compute in the
light of multiple calls. Thus we must compute REACH,
information under conditions that are safe to assume for
all the calls of interest.

While a solution to the above problem is essential, it is
also highly desirable to be able to provide both local and
summary data flow information that is specialized to a
particular call point. This serves three purposes:

564 1. It is valuable as documentation.

2. It provides more precise results in the analysis of the
calling program.

3 . It permits the optimization of a tailored version of the
called procedure which is suitable for a particular call
or subset of calls.

Thus, what we develop is a variant of the Cocke-Allen
type of local data analysis flow [21 in which worst-case
data flow information is computed but which, simulta-
neously and with trivial additional computation, permits
this information to be tailored to any particular call point
aliasing situation.

In the absence of precise knowledge concerning argu-
ment-parameter aliasing, we must be able to compute
data flow information under the “may be aliased” condi-
tion M:

M (J) When data flow for a variable is analyzed under
the “may be aliased” condition M (J) , the results must
be safe both for the E (J) condition (i.e., the condition
under which the variable aliases any or all variables in
set J) and for the 0 condition (Le., the variable is not
aliased to any other variable). (L3)

When analyzing a procedure in isolation from its call-
ers, we must use worst-case assumptions, i.e., that any
parameter “may be aliased” to any other parameter and
to any global, assuming compatible types. Any global
may be aliased to any parameter, again assuming com-
patible types. Thus, we wish to compute, for each pa-
rameter i, on each arc l , and with the sets of all type-
compatible parameters ti and globals J , REACH,(i , 1,
M(ti U J)) . For each global variable i under the same
conditions we compute REACH,(i , I , M (t i)) . As with
the summary data flow we can choose to approximate
these quantities in terms of the corresponding quantities
under the null condition. Thus, it is the case that

REACH,(i , 1, P A M (J))

C_ REACH,(i , I , P) Uu R E A C H , (j , I , P) .
j € J

Unfortunately, this is not a good approximation as the
simple example of Fig. 4 shows. In Fig. 4(a) , the defini-
tion of i at arc m should make all previous definitions of
i (and j) unavailable after rn, but this is not captured by
the approximation.

The strategy we pursue is to precisely characterize the
REACH, definitions under each of the “may be aliased”
conditions and use the information developed as the ba-
sis for deriving good approximations for other condi-
tions.

To accomplish our goal, we need yet a third condition
under which data flow analysis is performed. This is the
“interferes” condition Z (J) defined as follows:

D. B. LOMET IBM .I. RES. DEVELOP.

I (J) When data flow for a variable is analyzed under
condition I (J) , the preserved information used in the
computation is the same as that produced under the
E (J) condition. Thus, all definitions of variables in J “in-
terfere with” the propagation of the definitions or uses of
the variable of interest. (L4)

For the R E A C H , computation, we then have

REACH,(i , m, P A M (J))

= REACH,(i , rn, P) Uu R E A C H (j , m, P A I ({ i }) .
j € J (L5)

This simply asserts that the R E A C H , set of definitions
of i for the “may be aliased” case consists of all the defi-
nitions for i in the unaliased case, together with those
definitions o f j in J that are not killed, i.e., are preserved,
by definitions of both i and j. In Fig. 4 (a) , REACH,(i ,
m, 0) = {d(i , r n) } and R E A C H , (j , m, I ({ i })) = 0 so
that REACH,(i , m, M ({ j })) = fd(i , m) } . However, in
Fig. 4 (b) , REACH,(; , m, 0) = { d (i , I) } and R E A C H ,
(j, m, I ({ i })) = { d (j , m) } so that REACH,(i , m,

M ({ j })) = {d(i , 0 , d (j , m) } .

Tailoring may be aliased information
While information which can be relied on to be safe for
all calls of a procedure is essential, we have argued that it
is frequently useful to have information which is specific
to a given call of the procedure so that a tailored form of
the procedure can be used. Information specific to a
call can make use of known aliasing conditions, i.e., one
can compute the R E A C H , information using the precise
E (J) conditions that relate arguments to parameters. A
separate analysis of a procedure in order to generate
R E A C H , information for each E (J) condition is not
necessary, however, as a good approximation to this in-
formation is computable from the “may be aliased”
M (J) computation by making separate use of the part of
this computation done using the I (J) condition. This
strategy relies on the following three claims.

Claim REI

REACH,(; , 1, P A E (J))

= REACH,(i , I , P A I (J)) U

u R E A C H , (j , 1, P A I ({ ; } U (J - { j })) .
/E./

Justijication
The definitions for all the aliased variables must be in-
cluded, subject to the preserved information of the ali-
ased variables. Each REACH,(k , 1, P A I (L)) repre-
sents the set of definitions contributed by a variable k
subject to the Pre,(k, m, P A E (L)) condition. The
union of these sets then constitutes all the reaching defi-
nitions of i under the E (J) condition.

NOVEMBER 1977

(a) (b)

Figure 4 In (a), R E A C H , (i , rn, M ({ j })) = { d (i , m)} since
the definition of i “kills” all previous definitions. However, in
(b) , R E A C H , (i , rn, M ({ j })) = { d (i , l) , d (j , r n) } sincejisonlya
possible alias of i and cannot be used to kill previous definitions
of i .

Claim RE2
If d (i , 1) E REACH,(i , m, P A E (J)) , then for all j € J ,
if d (j , I) E D E F , (j , 1, P) , then d (j , 1) E R E A C H ,
(j , m, PI.

Justijication
Since

Pre,(i, n, P A E (J)) 5 Pre,(i , n, P) A

A Pre , (j , n, P)
j € J

by Claim PE, if definitions survive Pre, (i , n, P A E (J)),
they must surely survive each of the terms on the right
above. Hence a path which permits definitions from 1 to
reach node m under the preserved function Pre, (i , n, P A
E (J)) will surely permit definitions to survive under any
one of the Pre , (j , n, P) functions.

Claim RI
R E A C H , (& 1, P A I (J))

n REACH,(i , I , P A l ({ j })) .
j t J

Justijication
The preserved function used to compute R E A C H ,
(i , I , P A I (J)) is Pre,(i, 1, P A E (J)) , which is less than
or equal to

A Pre,(i, 1, P A E (w))
jE.1

by Claim PE, each term of which represents the pre-
served function in the computation of the R E A C H ,
(i , 1, P A I (j })) terms. The DEF, set for R E A C H ,
(i , I , P A Z { j }) is DEF, (i , 1, P A Z (J)) , which is a subset
of DEF, (i , I , P A I ({ j })) , the DEF, set used for the
REACH,(i , I , P A I { j }) terms.

The REACH,(; , 1, P A M (J)) computation involves a
separate REACH,(i , I , P A I({ j })) computation for all
j E J . The RI approximation above must be used to ap-

DATA F ’LOW P

565

LNALYSIS

566

D. B. LOMET

proximate the f (J) computation whenever J has more
than one member. Thus, precise REACH,(i, 1, P A E (J))
information is computable using RE1 above only if pair-
wise aliasing occurs. If, for instance, repeated arguments
result in three or more variables being aliases of each
other, then RI must be used to produce an approxima-
tion to the REACH,(i, 1, P A Z(J)) computation before
RE1 can be applied. Claim RE2 can then be used to
improve the result by eliminating some of the extra defi-
nitions. Using RE1, RE2, and RI thus permits the
REACH, information for the E(J) condition to be ap-
proximated rather precisely without a complete recalcu-
fation by deriving the result from the M (J) (and hence
f ({ j })) computations.

Summary data flow information
If certain provisions are taken [1 1 , 121, it becomes pos-
sible to compute both Def, and Pre, information using
the results of the REACH, computation. The Use, in-
formation can also be computed from the local “exposed
uses” information in an analogous fashion. The special
provisions have to be made for the Pre, computation, but
we must be aware of these provisions in order that Def,
be properly done.

In order to compute Pre, for each variable i in block
C , we create a hypothetical definition for i on the input
arc of the control flow graph for C . We denote this arc
as arc 0 and the definition as d (i , 0). We then perform
the REACH, computation as before. The important
property of d(i , 0) is that all definitions of i from outside
of C that reach the beginning of C will also reach the
arcs reached by d(i, 0) . Thus, we have

Claim RP
Pre,(i , C, x, P) = 1 iff d(i , 0) E REACH,(& x, P) .

Justification
A definition at the entry point of the block is available at
an exit point, if and only if there is a path from the entry
point to the exit, each arc of which preserves the defini-
tion.

Finally, we can determine Def, from the REACH,
results by using the following approach.

Claim R D
Def,(i , C, x, P) = 1 iff REACH,(i, x, P) - { d (j , 0) I for

all j } # 0.

Just$cation
If any definition is available on exit, other than the hypo-
thetical ones at arc 0, then it is a locally generated defi-
nition and Def,(i , C , x, P) = 1. If no such definition ex-
ists, then no path to exit x contains a definition of i and
Def, (i , C , x , P) = 0.

Aliases and the REACH computation
By using the preceding claims, we are now in a position
to cope with the aliasing conditions that arise during
the REACH, computation. First let us describe the
REACH, results that we desire. Ultimately, we wish to
compute the REACH, information for the “may be ali-
ased” conditions so that optimizing transformations can
be applied that will be valid no matter how a given pro-
cedure is called. We also wish, however, to use the
component parts of the preceding in order to be able to
tailor the REACH, results so that accurate summary
data flow information can be derived for each call point.

As indicated previously, the “may be aliased” compu-
tation can be decomposed into an “unaliased” computa-
tion and an “interferes” computation. We make use of
(LS) where P is taken as the null condition. Thus we
need to compute the following in a given block or pro-
cedure.

a. For each variable or parameter i , REACH,(& I, 0)
for every arc 1.

b. For each variable i that is global to the
biock/procedure and that might be used as an argu-
ment, REACH,(j, I , f ({ i })) for all parameters j to
which it might be passed.

c. For each parameter i that might be passed the same
argument as is passed to some other parameter j ,
REACH,(j, I , f ({ i })) .

d. For each parameter i , and for all global variables j
that might be passed as arguments to it, REACH,(j,
1, I ({ i }) 1.

We now concentrate on establishing the DEF, and
Pre, values required for the computations in (a) through
(d) above.

I . DEF,: Recall from (L l) that DEF,(i, 1, P) = { d (i ,
I)} iff Def,(i, 1, P) = 1 and is null otherwise. Fur-
ther Def,(i, l , P) = DefB(i , C , x , G (C , P A E (J)))
from (S 2) , where block C , exit arc x, serves to define
arc 1 of our procedure. The function G eliminates all
conditions involving variables not global to C , and J
is the set of parameters in C to which i is passed.

In the worst case, P A E(J) will survive as the
condition of interest, i.e., G (C , P A E (J)) = P A E (J) ,
other cases being simpler. But

Def,(i , C, x, P A E (J))

= Def,(i , C, x, P) U u Def , (j , C , x, PI.
j € J

Since P is either null (0) or f ({ k }) for some vari-
able k, DefB(i , C , x, P) is either Def , (i , C , x, 0) or
Def,(i , C , x , f ({ k })) and similarly for each of thej’s.
For those arcs realized by blocks that themselves have

IBM J. RES. DEVELOP.

control flow graphs, we use Claim RD, which yields
D e f B (i , C , x, P) = 1 iff REACH,(i , x, P) - { d (j , 0) I
for all j } # 0.

The result of this chain of formulas is to relate the
required DEF, information for an arc to the REACH,
information concerning the block and exit that serves
to define this arc. But this reach information is of
exactly the form computed in (a) through (d) . Fur-
ther, none of the formulas used was an inequality and
hence the computation above is precise.

In the case where the block C realizing a given arc
is primitive, we need some other way to compute
Def,(i , C , x, 0) and DefB(i , C , x, I ({ k })) . But
D e f B (i , C , x, 0) is given for primitives. Further
Def , (i , C , x, Z ({ k J)) 5 Def , (i , C , x, 01, equality
holding when either DefB(i , C , x, 0) = 0 or when
D e f B (k , C , x, 0) = 0, i.e., when there are either no
definitions of i or no definitions of k to interfere with
those of i . The strict inequality may apply if both of
the preceding quantities equal one. Normally, how-
ever, primitives only update a single variable and,
under these circumstances, equality always holds.
Thus we can use De&(& C , x, 0) to approximate
DefB(i , c, x, I ({ k I)) .

2. Pre,: Using (S3), we have Pre,(i , 1, P) = Pre,
(i , C , x, G(C , P A E (J))) again where block C , exit
x, serves to define arc 1. Again, in the worst case,
P A E (J) will survive as the condition of interest, other
cases being simpler. But from Claim RP, PreB(i , C ,
x, P A E (J)) = 1 iff d (i , 0) E REACH,(& x, P A
E (J)) , while from RE 1 ,

REACH,(i , x, P A E (J)) = REACH,(i , x, P A Z(J))

uu REACH,(j , x, P A Z (J - { j }) U { i l l .
j € J

Claim RE2 then requires that d (k , 0) for all k in (J U

{ i }) be in REACH,(k, x, P) in order for d (i , 0) to be
truly in REACH,(i , x, P A E (J)) .

The condition P is either I ({ k }) for some variable
k or it is null. Thus, the problem reduces to one of
computing REACH,(i , x, Z (J ‘)) . When J’ is the unit
set or null, it is computed precisely. With interference
conditions involving more than one variable, Claim
RI must be used, i.e., REACH,(& 1, I (J ’)) is approx-
imated by

n REACH,(i , 1, I ({ j }) .
/ € . I ‘

The preceding formulation for producing DEF, and
Pre, can be used in a number of ways to compute
REACH, information. One can use Allen’s inverse invo-
cation order strategy to compute results for called blocks
prior to computing results for their callers, or one can
use Rosen’s strategy, which involves solving the set of

NOVEMBER 1977

C:

n

u
71
f

Figure 5 Control flow graph of block C indicating the defini-
tions that appear on the various arcs.

equations for calling and called procedures simulta-
neously by iteration to find a fixed point solution. Fur-
ther, the local computation of REACH,, if one employs
the inverse invocation order strategy, can be performed
in several ways (see [2 - 41) .

Redundant computations
The computational demands of local data flow can be
reduced if all redundant computations are eliminated. In
this context, we wish to find definitions that will be pres-
ent in a REACH, set at any arc under a given condi-
tion if and only if another definition is present in some
other REACH, set. Then, the computation involving
only one of the definitions need be performed. The fol-
lowing claims identify such redundancies.

Claim RRI
If d (i , I) E DEF,(i , 1, P A Z ({ j })) and d (j , 1) E D E F , (j ,
I , P A Z ({ i })) , then, for all arcs x, d (i , 1) E REACH,(i ,
x, P A I ({ j })) iff d (j , I) E REACH,(j , x, P A Z ({ i })) .

Justijication
Both d (i , I) and d (j , I) originate at the same arc 1 and are
subjected to interference (are either preserved or not)
by all other definitions of both i and j .

Claim RR2
If there are no definitions of variable j , then d (i , 1) E
REACH,(i , 1, P A Z ({ j })) iff d (i , 1) E REACH,(i , 1, P) .

Justijication
Since there are no definitions for variable j , they cannot
affect the propagation of the REACH, information and
hence the I ({ j }) condition has no effect.

When bit vector methods are used to compute the
REACH, information, the preceding claims can be used
to permit a single bit to serve multiple purposes. This
will be illustrated using a concrete example in the next
section. 567

DATA FLOW ANALYSIS

Table 1 Correspondence table relating definitions of Variables to bit positions for the local data flow computation of Fig. 5 .

Variable Condition Dejinition on arc represented by bit?
0 1 2 3 4 5 6 7

Gl 0 1 2
I (P ,) 3 4
I (P J 5 6
I(PJ 7 8

I (P ,) 10
I (P ,) 1 1
I(PJ 12

0 1 o*+ 13 14
I (G ,) 3+ 15 16
I (G J l o t 13* 14*
I (P J 17 18 19
I (PJ 20 21 22

p2 0 l l * + 23 24
I (GJ 5+ 25 26
I (G J 11+ 23* 24*
I (P J 17+ 27 28
I (P J 29 30 31

p3 0 12*+ 32 33 34
I (G ,) 7+ 35 36 37
I (G J 12+ 32* 33* 34*
I (P ,) 2 M 38 39 22+
I (P J 29+ 30+ 40 41

0 9

+Claim RRI is used to eliminate redundancy.
*Claim RR2 is used to eliminate redundancy.

Example
In order to illustrate how the preceding treatment of ali-
asing might be used in practice, we provide an example
and use bit vectors to represent the sets that we require.
We do not present a real program in any particular lan-
guage but merely a control flow graph on whose arcs we
indicate the variables that are defined and those that are
preserved. The nodes themselves can be any of the
blocks we have previously discussed. We assume that
the processing has proceeded in inverse invocation order
and that the Def, and Pre, information is thus available.
Figure 5 is the annotated control flow graph for our
example called block C.

The variables Gi, i = 1, 2, denote global variables,
whereas Pj, j = 1, 2, 3, denote parameters. We assume
that all Gi and Pj are type-compatible and are potential
aliases of each other. For simplicity, the presence of a
definition for a variable on an arc implies that the vari-
able is not preserved on that arc. The R E A C H , sets that
will interest us at each arc involve each variable under
both the null (0) condition and the interferes condi-
tions, with its possible aliases taken singly. Claim R1 is
used to approximate the higher order interference condi-

568 tions.

Since these sets will be represented by bit vectors, the
first task is to lay out the format of these bit vectors and
indicate what each bit is to represent. Table 1 relates
each REACH, set computation to a position in the bit
vectors. Note that definitions on arc 0 are included for
all variables in order to perform the “preserved” compu-
tation. Table 2 provides the results of the REACH,
computation. Bit vector P (l) represents the set of defini-
tions preserved at arc 1. And D(1) represents the set of
definitions originating at arc 1, i.e., those in DEF,(i, I , P)
for some variable i and condition P . The set of defini-
tions that reach arc / (survive and are available after arc
1 has been traversed) is represented by R(1) . We pro-
vide D (I) and P(/) to permit the reader to easily verify
the correctness of the R(I) results by using (L2’) in the
obvious fashion.

Using the REACH, results of Table 2, we are in a
position to apply our claims in order to compute quanti-
ties that may be of interest to us. We illustrate a few of
these below.

1. R E A C H , (G , , m, M ({ P , , P,, P ,)))
= REACH,(G, , m, 0)
U REACH,(f‘,, m, I ({ G , }))

D. B. LOMET 1BM J. RES. DEVELOP.

Table 2 Results of local data flow computation for the example of Fig. 5 . The meaning of each bit is given in Table 1

Se t

1-5

"."

10101
10101

00000
01010
01010

11001
00000
1000 1

11110
00000
01010

11110
00000
10000

11111
00000
1000 1

11001
00000
1000 1

11111
00000
1101 1

6-10

""_
01011
0101 1

0001 1
10100
10111

11110
00000
01010

0001 1
00000
000 1 1

01111
00000
01010

1001 1
00000
000 I O

10010
00000
0001 0

11111
00000
01011

11-16 16-20

""_
1 1000
1 1000

11110
00000
1 1000

11000
00101
1 1 101

001 11
00000
00000

01111
00000
01 101

10111
00000
10101

10000
000 10
10010

11111
00000
1 1 1 1 1

""_
01001
01001

01111
00000
01001

00000
00 1 00
00 100

10000
00000
00000

1000 1
00000
00000

11110
00000
001 00

00000
10010
10010

1 1 1 1 1
00000
10010

Bit Positions
~

2 1-25

""_
00000
00000

I1110
00000
00000

001 I 1
10000
10000

00000
00101
00101

1 1000
00010
10010

001 1 1
00000
00000

001 1 1
01000
01000

11111
00000
1 1 1 1 1

26-30
~" -

""_
0001 0
000 I O

01111
00000
0001 0

1001 1
00000
00010

00000
01001
01001

00000
10100
10100

I I100
00000
00000

10000
00000
00000

1 1 1 1 1
00000
1 1 101

~

31-35
~

"".

00000
00000

11110
00000
00000

1 1 1 1 1
00000
00000

00000
01001
01001

01111
I0000
10000

00000
00100
00 100

00000
00010
000 10

11111
00000
1101 1

36-40 41

""_
00000
00000

0011 1
00000
00000

11001
00000
00000

00000
00100
00 100

11110
00000
00000

00000
I001 1
1001 1

00000
0 1000
0 1000

1 1 1 1 1
00000
01100

0
0

1
0
0

1
0
0

0
0
0

0
0
0

0
0
0

0
1
1

1
0
1

U REACff , (P , , m, / ({ G , }))
U REACH,(P , , m, l ({ G , }))
by (L5).

We can create a mask which, when "anded" to a
reach computation, selects the definitions of interest.
This mask has "one" bits as follows.

a. In positions 1 and 2 for(G,, 0)
b. In positions 3, 15, and 16 for(P,, / (G I))
c. In positions 5, 25, and 26 for(P,, / (G ,))
d. In positions 7, 35, 36, and 37 for (P 3 , / (GI)) .

Zeros occur everywhere else.
Examining these positions, we ascertain that, for
example,

R E A C H , (G , , 7 M ({ P , , P,, P , })) = { d (G , , 01, d(G, ,
11, d(P,, 21, d(P,, 6) , d(P,, 0) , d(P,, 3) , d(P,, 4),
d(P,, O) , d(P,, 31, d(P,, 6)) .

The arc 0 definitions are only present for the pre-
served computation. From them we conclude that

Pre , (G, , C , 7, M ({ P , , P,, P , })) = 1,

and that

a. In positions 3 and 4 for(G,, / (E ' ,)) ,
b. In positions 3, 15, and 16 for(P,, I (G ,))

Then

Pw,(G,, C, 7, E ({ P , }) j = 0 by Claim RP,

and that

Dqfk(G, , C , 7, E ({ / ' , })) = 1 by Claim RD. 569

DATA FLOW ANALYSIS NOVEMBER 1977

3 . REACH,(G, , m, E ({ P , , P , }))
= REACH,(G, , m, I ({ P , , P , }))
U REACH,(P, , m, I ({ G , , P ,)))
U REACH,(P, , m, I ({Gl , P , }))

by Claim RE1. Using Claim RI, this is included in

(R E A C H , (G , , m, I ({ P , })) n R E A C H , (G , , m, I

(REACH,(P, , m, I ({ G ,))) r l REACH,(P, , m, I

(REACH,(P, , m, I ({ G , })) n REACH,(P, , m, I

Unfortunately, when an intersection is required, a
mask cannot be constructed that will identify the
definitions desired. Rather, the members of each of
the REACH,(i , m, I ({ j })) sets must be determined
and the intersections performed by examining the in-
dividual definitions. When this is done, we obtain, for
arc 7,

a. R E A C H , (G , , 7, I ({ P , })) = {d(G, , O) } and
REACH,(G, , 7, I({ / ‘ ,))) ={d(G, , O) } so that
R E A C H , (C , , 7, I ({P , , P ,))) L { d (G , , 011.

b. REACH,(P, , 7, I ({ G , })) = {d(P,, 01, d(P,, 31,
d(P,, 4) } and
REACH,(P, , 7, I ({ P , l)) = {d(P,, 31, d(P,, 411,
so that
REACH,(P, , 7, / ({ G l , P ,))) C {d(P,, 31, d(P,,
4) 1.

c. REACH,(P, , 7, I ({ G , })) = {d(P,, 01, d(P,, 31,
d(P,, 6) l and
REACH,(P, , 7, I ({ P , })) = {d(P,, 31 , d(P,, 611,
so that
REACH,(P, , 7, I({Gl, P ,))) C {d(P,, 31, d(P,,
6) 1.

d. From the union of a, b, and c, we conclude that
REACH,(G, , 7, E ({ P , , P , })) !Z {d(G,, 01,
d(P,, 31, d(P,, 41, d(P,, 31, d(P,, 6)).

e. Finally, we can use Claim RE2 to eliminate some
excess definitions in d. Note that d(P,, 0) and
d(P,, 0) have not survived so that R E A C H A (G , ,
7, E({ P,, P,}) cannot contain any definitions from
arc 0. Thus we have

({ P , }))) u

({ P , }))) u

({ P , })) 1 .

REACHA(G1, 7, E ({ P , , f‘,>)) L {d(P,, 3) , d(P2,
41, d(P,, 3) , d(P,, 6)).

Equality, in fact, holds in this case.

The computation of intersections discussed under 3
can be made comparatively simple if none of the redun-
dant computations are eliminated via Claims RRl and
RR2. Then contiguous segments of each bit vector rep-
resent the definitions reaching an arc under a given
condition. Bit vector “anding” of these segments can

570 then be used to compute the intersections of the corre-

sponding sets. Claim RE2 would still be needed to im-
prove the approximation produced by the union operation
used in REI .

Discussion
Once one understands the nature of the conditions im-
posed on thg data flow computation, the claims we have
made can be justified by means of straightforward rea-
soning about graphs and sets. Despite this simplicity the
“aliasing problem” has previously been a troublesome
one and the methodology we have suggested copes with
it quite well. Not only does the computation remain fea-
sible in a pragmatic sense, but the results provided are
very good.

Basically, another way of describing the methodology
is that we compute both unaliased information and the
pair-wise aliasing information precisely. Then we use
good approximations to compute higher order aliasing.
The interesting fact is that the general “may be aliased”
case requires only the two previous computations and
not the higher order aliasing computations.

The approach we have described can be used for more
than just the summary and R E A C H , computations. We
mention two.

1. If the purpose of the local information is only to
compute the summary information, none of the local
definitions need be distinguished, Le., they can all be
folded into a single bit, distinct from the bit used for
the arc 0 definition used for the “preserved” compu-
tation (which represents global definitions). The arc
0 bit will then continue to indicate, directly, whether
a variable is preserved, while the local bit will indi-
cate whether it is defined. Claim RR2 can continue to
be used to eliminate redundant computations. Claim
RRl can only be used if, for two variables, whenever
one has a definition on an arc, then so does the other.
This is possible but not likely.

2. Computing “exposed uses” (also called the “live
variable” computation) is treated in an analogous
fashion. a) If we are interested in retaining knowl-
edge concerning particular uses, then we must, as in
the case for definitions, provide a computation for
each such use under the unaliased and the single vari-
able interference conditions. Claims RRl and RR2
can be applied directly to this problem by substituting
“USES” for “REACH” and u(i , 1) (a use) for d(i , I)
(a definition) and then doing the ordinary “exposed
use” computation. The Claims RE and R1 can be
transformed into the analogous U E and UI claims.
The same considerations concerning parameters and
globals also apply. If the summary “preserved” infor-
mation is desired, hypothetical uses of variables must
be provided on each exit arc. If one of these uses

D. B. LOMET IBM J. RES. DEVELOP.

remains exposed at the block entry, then that variable
is preserved from entry to the exit arc of the use.
(This requires more “uses” to be introduced than
analogous “definitions” which must simply appear on
the single block entry arc.) b) If only live variable
information is desired, i.e., whether there is an ex-
posed use somewhere (we do not care which use it
is) , then all local uses of a variable can be folded into
a single “local use” bit, though again it must be dis-
tinguished from the hypothetical exit arc uses. The
previous claims have their analogs for this computa-
tion as well.

We have been discussing the aliasing problem intro-
duced by parameters and hence have been dealing only
with parameters and globals. The local variables cannot
be aliased by the parameters and hence need only be
computed under the 0 or no aliasing condition with re-
spect to parameters and globals. There are, however,
purely local aliasing problems that we alluded to in the
introduction. We have in mind address arithmetic as
occurs when one uses constructs such as A (I) and P +

X . These do not name variables but specify computa-
tions whose results name variables. Definitions or uses
involving these computations must always be preserved,
independently of the presence of definitions. Why? Be-
cause on each traversal of a path involving a definition
for such an address computation, the variable named by
the computation may be different. With this adjustment,
the techniques relevant to argument-parameter aliasing
can be applied also to this local aliasing.

Acknowledgments
We are indebted to B. Rosen and F. Allen for reading
and commenting on an earlier draft of this paper. F. Allen
also read this version and provided several sugges-
tions for improvements as well as correcting a number of
errors. Her encouragement of this work is also ac-

knowledged. Finally, the referees provided several useful
suggestions that improved the clarity of the presentation.

References
1. E. Lowry and D. Medlock, “Object Code Optimization,”

Commun. ACM 12, 13 (1969).
2. F. E. Allen and J. Cocke, “A Program Data Flow Analysis

Procedure,” Commun. ACM 19, 137 (1976).
3. S. L. Graham and M. Wegman, “A Fast and Usually Lin-

ear Algorithm for Global Flow Analysis,” J . ACM 23, 1
(1976).

4. M. S. Hecht and J. D. Ullman, “A Simple Algorithm for
Global Data Flow Analysis Problems,” SfAM J . Comput.
4, 519 (1975).

5. G. A. Kildall, “A Unified Approach to Global Program
Optimization,” Proceedings of the ACM Symposium on
Principles of Programming Languages, October 1973, p.
194.

6. J. M. Barth, “An Interprocedural Data Flow Analysis Al-
gorithm,” Proceedings of the Fourth ACM Symposium on
Principles of Programming Languages, January, 1977, p.
119.

7. T. C. Spillman, “Exposing Side Effects in a PL/ I Opti-
mizing Compiler,” Information Processing 71, North Hol-
land Publishing Co., Amsterdam, 1972, p. 376.

8. T. C. Spillman, “Analysis and Documentation System,”
Research Report RC 3706, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, 1972.

9. R. P. Tapscott, “ADS: the Source Listing Annotator,”
Research Report RC 5065, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY, 1974.

10. L. D. Fosdick and L. J . Osterweil, “Data Flow Analysis in
Software Reliability,” Computing Surveys 8, 305 (1976).

11. F. E. Allen, “Interprocedural Data Flow Analysis,” fnfor-
mation Processing 74, North Holland Publishing CO.,
Amsterdam, 1974, p. 398.

12. B. K. Rosen, “Data Flow Analysis for Recursive P L / I
Programs,” Research Report RC 5211, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1975.

The author is located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

Received March 9 , 1977

NOVEMBER 1977 DATA F ’LOW P

571

LNALYSIS

