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Data Flow Analysis in the Presence of Procedure  Calls 

Abstract: The aliasing that results in a  variable being known by more than one name  has  greatly  complicated efforts to  derive  data flow 
information. The  approach we take involves the use of a series of claims that,  after we compute  the  data flow for some of the aliasing 
possibilities,  allows us to  produce good  approximations  for the remaining cases.  The method can  thus limit the potential  combinatorial 
explosion of aliasing computations while providing  results  that are frequently exact and  almost always  very good. The method is il- 
lustrated in the  context of data flow analysis involving multiple procedures and  their calling interactions. It is applicable also in the 
treatment of recursive procedures. 

Introduction 
Data flow analysis of one form or another  has been  per- 
formed in many compilers for nearly  a decade,  the first 
widely known instance being the work of Lowry and 
Medlock on FORTRAN H [ 11. Considerable new work 
has been done resulting in new or improved algorithms 
[ 2 - 61 and new applications of the information [ 7 - lo]. 
An area  that has  been  generally overlooked,  however, is 
the  determination of data flow information in the  pres- 
ence of procedure calls.  Historically,  most  practical real- 
izations of data flow algorithms  have simply assumed 
that nothing is known after  another  procedure  has been 
called.  Recently, both Allen [ 1 I ]  and Rosen [ 121 have 
attacked this  facet of the problem. 

There  are, in fact, two aspects of the  data flow prob- 
lem: 

1. What is the effect of a procedure call on the  data flow 
of the calling program? We call this the summary data 
flow problem as  the idea is to summarize  the effect of 
the  procedure call,  given  the  particular  argument-pa- 
rameter matching at the point of call. 

2. What is the effect on  the  data flow within the called 
procedure when it is called with a  particular combina- 
tion of arguments?  Further, what data flow informa- 
tion is safe to  assume  for multiple calls of a procedure 
involving several different arguments for  any given 
parameter? We call this  the  local data flow problem. 
An  approximate solution to  the summary data flow 
problem can  be derived in the process. 

For algorithms to perform data flow analysis in the 
presence of procedure calls, they must cope with the so- 
called aliasing relationships, cases in which several 
names all identify the  same  variable. The aliasing prob- 
lem and  its  implications when procedures  are involved, 
and in other  cases  such  as pointer (reference) variables, 

is treated directly by Spillman [ 71 ; however, the  method 
he uses does not  involve  knowledge of the local control 
flow  of procedures and  hence  provides  only  a  very ap- 
proximate  bound on what the  procedure might do. 

We introduce in this paper a set of inequalities that 
can be used to approximate the effects of argument-pa- 
rameter aliasing without  requiring  a separate analysis for 
each  such aliasing situation. We explore the implications 
of these approximations  for both summary data flow 
analysis  and local data flow analysis. Used in conjunc- 
tion with Rosen’s  summary data flow methodology, the 
effect is to limit the potential  combinatorial  explosion 
while producing only slightly less  precise results. In the 
case of Allen’s local data flow methodology, the effect is 
to  produce considerably more precise  information. This 
latter  approach  has much to commend  it. Not only are 
the  results in a form that is directly useful for optimizing 
transformations  but  they lead to very good results  for 
the summary data flow problem as well. It  should  be 
emphasized  that this paper is not concerned with the 
detection of aliasing but rather with the problem of coping 
with it. The  detection of aliasing conditions has been 
treated by both Spillman [ 71 and  Rosen [ 121. 

Blocks and control flow graphs 
To characterize  the  data flow analysis  more  precisely, 
we make use of the notion of a  control flow graph  and 
the program it represents. We assume that we are  deal- 
ing with a  typical  procedural language, e.g., FORTRAN, 

ALGOL, PL/I .  We do not treat, however,  programs that 
use  procedure  parameters  or variables, ON units, label 
variables, or  tasks.  The use of these constructs implies 
that the  control flow graph of a procedure  can change 
dynamically. We hasten to  add,  however,  that  tech- 
niques exist  that make it possible to  produce a “worst- 559 
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Figure 1 Schematic of a block as seen  from  the  outside. 

Figure 2 A possible  control flow graph  for  the  block  of  Fig. 1. 

case” control flow graph [7].  Further, no attempt is 
made  to distinguish between different generations of 
variables, as  can  occur, for example, in the heap storage 

PL/I.  The control flow graph merely links,  via arcs,  the 
nodes  that  correspond to the  executable  elements of the 
procedure.  These  executable  elements may be  primitive 
operations,  procedure calls,  blocks, or  even  constructs 
introduced solely to facilitate  analysis, i.e., intervals [ 21 . 
In treating procedures,  one must  acquire  knowledge 
concerning all possible  abnormal  exits (see [ 71 ) . Once 
this is done, the  method  can readily be applied to  such 
procedures. In particular, executable  elements may have 
multiple  exits.  Because of this, the local data flow infor- 
mation is most  conveniently associated with arcs of the 
control flow graph. 

We call the  executable  elements  blocks, though these 
should not  be  confused with BEGIN blocks. Rather, a 
“block” is a  generic name derived  from  the term basic 
block (extended basic block) and is simply the unit of 
code  that is of interest. Schematically,  any block may be 
represented as in Fig. 1. I t  may have only  a single entry 
point but may have multiple exit points. 

There  are  two kinds of blocks, primitive and nonprim- 
itive.  Nonprimitive  blocks have  an  inner  structure  that 
consists of a  control flow graph.  Thus, if the block C of 
Fig. 1 were  nonprimitive, peeling away  its  “shell” might 

Of ALGOL 68 or  the BASED and CONTROLLED storage Of  

560 reveal the  control flow graph of Fig. 2.  

The primitive  blocks do not possess a control flow 
graph,  and  they are not subject  to  the form of analysis 
we  present.  These primitives are  such  executable ele- 
ments  as add or move  operators.  The  data flow charac- 
teristics of primitives  must  be assumed a  priori. We dis- 
cuss  the  nature of these  assertions in the  next  section. A 
call to a procedure  does not constitute a  primitive  block. 
Rather,  one should conceive of a copy of the control 
flow graph of the  procedure residing within each block 
(node)  that  represents a procedure call. Analysis must be 
performed on this control flow graph in order  to  produce 
the summary data flow information that  characterizes 
these call blocks. 

Summary  data flow 
For  the summary data flow computation, we are inter- 
ested in determining whether a variable may be defined 
(updated),  whether  the value of a  variable may be used,  
and whether  there is a  path  through the unit of interest 
on which the variable is not updated, Le., the value of a 
variable may be preserved.  (Preserved information is 
essential in determining which definitions can reach a 
use and whether a definition has subsequent uses.) Data 
flow information  must  be asserted in some way for prim- 
itive  blocks. This information for a  nonprimitive  block 
must  be  derived  from  the  information  acquired  during an 
analysis of the control flow graph of the block. 

In particular,  the data flow information  derived for 
each  exit of a block becomes the basis  for the  data flow 
information  associated with the  corresponding exit arc in 
any other control flow graph  containing an  instance of 
the block. Thus,  the  results of data flow analysis for  the 
exits of the  control flow graph of C in Fig. 2 become  the 
basis for  the information associated with arcs x and y of 
all nonprimitive  blocks C as in Fig. 1 .  The definitions  for 
this data flow information  given  below  make  this  interac- 
tion precise. 

Aliasing the  names of variables  can change  the results 
of data flow analysis. Consider  the  example 

A + C  * 2 ,  

C + - B + l .  

If there is no aliasing, A and C are defined, B and C are 
used. However, if A and B are aliased,  then ( A $ ) ,  the 
common  variable, is defined but it is not  used in the 
sense  that previous  assignments to B do  not affect the 
computation, which is now only affected by the assign- 
ment 

( A $ )  + C * 2, 

Further, in the unaliased case, B is preserved  (since it is 
not defined), while if A and B are aliased, ( A B )  is not 
preserved. 
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This simple example is merely  intended to indicate 
how aliasing can affect data flow information  and  clearly 
does not reveal all the implications of the aliasing possi- 
bilities. We attempt  to make these implications clear  as 
we  proceed. 

Because aliasing can  alter  the  results of data flow anal- 
ysis, it is necessary  to  discuss the  conditions under 
which  summary data flow analysis is performed. For this 
purpose we introduce  the equivalence  condition E :  

E ( J )  When data flow for a  variable is analyzed under 
the equivalence  condition E ( J )  , the  results  describe  the 
situation when the variable and all members of the  set J 
are aliased (name  the  same  variable). (SI) 

The conditions that  we deal with change  over  the  course 
of our exposition. One change that  we  have  to deal  with 
results from  the  relative  globalness of variables.  Only 
variables that  are in the lexical scope of a  block can 
have aliases within the block. It is important  to  drop 
from the conditions that we consider all those variables 
that  are  not global with respect  to  the entity we  are  deal- 
ing with. This is an  important  means of reducing  the  ex- 
plosion in the  number of conditions. However, it is se- 
mantically significant as well because  it  keeps us from 
confusing the multiple generations of local (AUTOMATIC) 
variables that  can  occur with recursive  procedures.  For 
example, we define a function G (  C,P) that eliminates 
all variables in condition P that  are  not global to block C. 
Thus, if P= E (  {a ,   b ,  c, d } )  and  variables b and c are not 
global to C,  G ( C , P )  = E ( { a ,  d } ) .  

Summary  data j o w  dejinitions 
Whereas  the notation for  expressing  the  data flow quan- 
tities of interest is the  same in both  cases, we need to 
treat separately  blocks with control graphs and  primitive 
blocks.  For blocks  with control flow graphs, the  data 
flow quantities of interest  are defined in terms of equa- 
tions  that  depend  on  the analysis of contained  blocks. 
For primitive  blocks, i.e., operators  such  as add,  multi- 
ply, move, etc., it is necessary  to make  some assertions 
concerning the  nature of their  internal flow. It should  be 
emphasized  again,  however,  that  calls to  procedures  are 
treated  as nonprimitive  blocks  since the  assumptions 
concerning  primitives do not  generally  apply to  pro- 
cedures. 

Blocks with controljow graphs 
In  the case of blocks  with  control flow graphs,  we  make 
use of the  results of the  data flow analysis  on the  blocks 
that  represent  the  nodes of the  control flow graph.  In 
particular, we must take  the  results of these  analyses of 
blocks and tailor  them so as  to  characterize  the  arcs of 
the  control flow graph. By using the information associa- 
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ted with arcs of a control flow graph, the  results  for  the 
entire  control flow graph (and hence the containing 
block)  can be computed. 

In the definitions that follow we designate program 
variables by lower  case  letters running i, j ,  . . ., sets of 
variables by  upper  case  letters running I ,  J ,  . . ., blocks 
by upper  case  letters running C,  D ,  . . ., exit points with 
lower case  letters running u, v; . ., conditions  with upper 
case  letters running P, Q ,  . . ., and arcs with lower  case 
letters running 1, m,  . . .. The  data flow quantities  pertain- 
ing to blocks are subscripted  with the  letter B, whereas 
those pertaining to arcs  are subscripted with an A. Thus 
we have  the following definitions, which represent a re- 
formulation of the definitions presented by  Rosen [ 121 : 

Def,(i, C ,  x, P )  = 1 iff for  some  arc I on a path in C from 
C’s entry  to  exit x, Def ,   ( i ,  I ,  P )  = 1 ; Def,   ( i ,  I ,  P )  = 1 iff 
Def,(i, D ,  y, G ( D ,  P A  E ( J ) )  = 1, where block D ,  exity, 
serves  to define arc 1 and  the  set of variables J are  the 
parameters in D to which  variable i is passed  (bound)  as 
an argument. (S2) 

Pre,(i, C ,  x, P )  = 1 iff there is some path through  block 
C from C’s entry  to exit x such that for all arcs 1 on  that 
path Pre,(i, I, P )  = I ;  Pre,(i, I, P )  = 1 iff Pre,(i, D ,  y, 
G (  D ,  P A E ( J ) ) )  = 1, where block D ,  exit y, serves  to 
define arc I and  the  set of variables J are  the  parameters 
in D to which variable i is passed  as  an argument. (S3)  

Use,( i ,  C ,  x, P )  = 1 iff there is some path  through  block 
C from C’s entry  to exit x on which there is an  arc I such 
that Use,(i, 1, P )  = 1 and  on  each  arc k on this path 
between C’s entry and I it is the  case  that Pre,(i, k, P )  = 
1 ;  Use,(i, I, P )  = 1 iff Use,(i, D ,  y, G ( D ,  P A  E ( J ) ) )  = 
1, where block D, exit y ,  serves  to define arc 1 and the 
set of variables J are  the  parameters in D to which vari- 
able i is passed  as  an argument. (S4) 
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The quantities Def,, Pre,, and Use,, and  the  corre- 
sponding  quantities for  arcs,  represent  “may  be” infor- 
mation. Thus, if Def,(i, C, x, P )  = 1 ,  then  variable i may 
be updated  (but  perhaps  not)  when control leaves block 
C at exit x under condition P. A similar situation exists 
for  the  other quantities.  So-called “must  be” informa- 
tion is available,  however. In particular, if DefB(i ,  C ,  x, P )  
= 0, then  variable i must be  preserved; if Pre,( i, C ,  x, P )  
= 0, then variable i must  be defined. “Must be used” 
information is not  available. There is one qualification to 
the  above. If both Def, and Pre, are  zero, then control 
does not pass through the block to  the given  exit. 

Primitives 
We have given  definitions for  the  data flow information 
in the  case  where a block has a control flow graph.  Prim- 
itive  blocks have  no  such  graphs,  and  the  question  aris- 
es as to what  we  assume concerning the primitives. 
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C: i: 

then this  assignment is a solution to  the  equations  de- 
spite  the  fact  that i is neither preserved nor used.  Since 
it is a  solution, attempts  to  iterate by  re-evaluating the 
equations so as  to  produce a “better” solution will fail. 
The solution is already a fixed point, so additional  itera- 
tion does not produce  further changes. The difficulty is 
that by assuming Pre,(i, C ,  y ,  0) = Use, (& C ,  y ,  0) = 1 
and using these  to  describe  the call to C results in a self- 
fulfilling prophecy in that  assumptions  for this call be- 
come  the  result  for C. This solution is, however, safe for 

Figure 3 Control flow graph for a recursive procedure C ,  used 
the  purposes of optimizing transforms, though exces- 

to illustrate  that Eqs. ( S 2 ) ,  (S3) ,  and (S4) have more  than one sively pessimistic. It will result in more  definitions  and 
solution. uses being considered  than actually are  necessary,  thus 

reducing the  scope  for optimization. However, invalid 
optimizations will not  be  performed. Allen’s strategy 
[ 111 of performing  analysis on called procedures prior 

The information  assumed  given for  each variable i that is to analyzing  their  callers requires  these kinds of pessi- 
referenced  by a primitive  block C is the following: mistic assumptions  but is safe  without further  iteration. 

Def,( i ,  C ,  x, 0) and Use,( i ,  C ,  x, 0) The most  precise  solution for C in Fig. 3 is 

We further  assume  that all variables not given such in- 
formation are, in fact,  not  referenced,  and  hence, i f j  is Pre,(i, C ,  y ,  0) = Use,(& C ,  y ,  0) = 0. 
such a variable, then 

This solution can be  achieved by initially assuming that 
DefB( j ,  C ,  x, 0) = Use, ( j ,  C ,  x, 0) = 0. Def,, Use,, and Pre, are all zero.  This  represents a best- 

Def,(i,  C ,  Y ,  0) = 1, 

Also,  we  assume  that 

f‘re,(j, C,  x, 0) = l D e f , ( j ,  C ,  x, 0). 

Thus,  any definitions that  occur  on  some  “path” leaving 
C at x occur  on all such  paths. Finally, we  assume  that if 
U s e , ( j ,  C ,  x, 0) = 1, then  there is always  a use o f j  that 
occurs  before all definitions of any  variable in C. This 
prevents a definition of one variable from interfering 
with the  use of a second variable if the  two should be 
aliased. Since primitives  typically acquire  values (use 
variables), perform a computation,  and  then  store a re- 
sult (dejni t ion) ,  these  assumptions  are  reasonable.  (The 
alternative  to making assumptions  such  as  these is to 
insist on much  more  information for  each primitive. In 
particular, one must have precise  knowledge as  to  the 
effects of parameter aliasing.) 

Multiple  solutions 
The  equations of (S2) ,  (S3), and (S4) may have  more 
than  one solution when  recursive  procedures  are in- 
volved. The problem arises  because  some assumption 
must  be  made concerning the effect of a recursive  pro- 
cedure call prior to the analysis of this procedure. Dif- 
ferent  assumptions  can result  in  different  results. Con- 
sider  the  control flow graph for  procedure C in  Fig. 3. 

If, in C ,  we  make  the most  pessimistic initial assump- 
tions for the call of C ,  i.e., that 

562 DefB(i ,  C ,  y ,  0) =Pre,( i ,  C ,  y ,  0) = Use,( i ,  C , y ,  0) = 1, 

case initial assignment.  This assignment is not safe, 
however,  since it may  permit an optimizing  transforma- 
tion that should not  be performed. Thus, this best-case 
initial assignment  must  be  improved  by  iteration until a 
fixed point is achieved.  Rosen [ 121 uses this  strategy 
and  shows  that  such a fixed point is reachable  and is the 
minimal (most  precise) solution. 

Thus  we  have  two fundamentally  different  strategies. 
1 )  Make a  pessimistic  assignment for  recursive calls. 
Then  analyze  procedures in reverse invocation order 
(analyze called procedures prior to  their  callers).  Itera- 
tion to find a  solution is optional  since such assignments 
are safe. The minimal solution might not be achieved 
because of “self-fulfilling prophecies.” 2 )  Make  an opti- 
mistic  assignment  for recursive calls. Iteration is now 
required  since such  assignments  are  not safe. The fixed 
point solution  found will be  the minimal (most  precise) 
solution. 

Argument-parameter  aliasing 
Whichever of the foregoing strategies is chosen,  the 
effects of argument-parameter aliasing must be  comput- 
ed  and  such effects  must  be  propagated  systematically. 
One might compute a worst  case, which assumes  that 
parameters may be aliased to all of  the  arguments  that 
are  passed  to  them  from all of the calls. This is done in 
the  context of local data flow computation  and is further 
elaborated in a later  section.  On  the  other  hand,  one 
might carefully  distinguish the  separate argument-pa- 
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rameter aliasing cases  and  compute a separate  result  for 
each  such equivalence. Thus,  one is assured of comput- 
ing a precise result at  the  expense of a  potentially large 
number of computations. 

The  approach  we  pursue  here  for coping  with aliasing 
can  be used with either Allen’s reverse invocation order 
strategy or Rosen’s  iteration strategy.  What  we  present, 
via a set of claims  which are justified  below, is a method 
for approximating the  separate  argument-parameter ali- 
asing cases using computations  that  assume  there is no 
aliasing. We list the approximations as claims first and 
then  describe briefly how they can  be used. 

Claim  DE 

DefB(i7 c, x ,  f‘ A E ( J ) )  

= Def,(i, c, x ,  P )  v v Def,(j, c, x ,  PI. 
j €  J 

Justijication 
If i names  the  same variable as  does  each j in J ,  then  a 
definition for  one is a definition for all of them. That is 
exactly what  the claim D E  states. 

Claim  PE 

Pre,(i, C ,  x ,  P A E ( J )  ) 

5 Pre,(i, C ,  x ,  P )  A A Pre,(j, C ,  x ,  P I .  
j € J  

Justification 
1. If C is primitive,  then 

Pre,(i, C ,  x ,  P A   E ( J ) )   = i D e f , ( i ,   C ,  x ,  P A E ( J ) )  

=l (Def,(i, c, X, P )  v v Def,(j, c, X, P ) )  
j €  J 

= l D e f , ( i ,   C ,  x ,  P)  A f )TDe f , ( j ,  C ,  x ,  P )  

= Pre,(i, C ,  x ,  P )  A A Pre,(j, C ,  x ,  P I .  

JE 

j €  J 

2 .  If C is not  primitive,  then we  have  the following 
cases: 
a. Pre,(k, C ,  x, P )  = 0 for  some k E ( J  U { i } ) .  On 

every path from C’s entry to exit x ,  there  is  an  arc 
on which k is  not  preserved, i.e., all paths  are 
blocked  by some definition of the variable  named 
by k. Hence,  since k names the  same variable as 
the variables in J ,  it must be  the  case  that 

Pre,(i, C ,  x ,  P A E ( J ) )  = 0 

= Pre,(i, C ,  x ,  P )  A A Pre,(j, C ,  x ,  P )  . 
j €  J 

b. Pre,(j, C ,  x, P )  = 1 for all j E ( J  U { i } ) ;  then 

Pre,(i, C ,  x ,  P A E ( J ) )  5 1 

= Pre,(i, C ,  x ,  P )  A A Pre,(j,  C, x ,  P )  . 
i€ J 

Equality cannot be assured since, if p and p’ are 
distinct  paths,  we  have  the following possibility: 
variable i is preserved  on  p, variable j is  not  pre- 
served  on  p, while variable i is not  preserved  on p‘ 
but variable j is preserved  on p’. When i is aliased 
to j ,  the combined  variable  should not  be  preserved 
even though i and j are  separately  preserved. 

Given only two variables  and  considering all their 
combinations of values  for Def and Pre, of which there 
are 16, nine  combinations represent valid possibilities 
and in eight out of nine  equality  holds. For one  case  out 
of nine,  when both  are  preserved,  the inequality repre- 
sents  the most precise information obtainable from the 
separate summary  information.  Even in this case, how- 
ever, equality may hold. 

Claim U E  

Use,(i, C ,  x ,  P A E ( J ) )  

5 Use,(i, C ,  x ,  P )  v V Use,(j ,   C, x ,  P ) .  
j € J  

Justijication 
As in the Def, case, a reference  to any j in J must  be 
considered as a reference  to all. Hence, Use,(&  C, x ,  P 
A E ( J ) )  can  be  no  more  than  the  above disjunction. 
Equality cannot  be  established, however, because a 
definition of one of the variables may block all paths  to a 
use of another variable where  such a use  was  not 
blocked  by definitions of that variable  itself. (This is the 
same argument  used for Pre,.) 

Given only two  variables, all combinations of Def, 
and Use, are possible, and equality  holds in eleven  out 
of the sixteen  combinations. Thus,  the disjunction is a 
reasonable  approximation. 

The strategy  suggested by the  above claims is to  com- 
pute  the  “no aliasing” case, i.e., for  any variable i in  a 
block C ,  exit x ,  one  computes Def,   ( i ,   C, x ,  M), etc.  These 
“no aliasing” computations  require  the  computation of 
quantities involving aliasing, of course.  Whenever  one of 
these  cases  arises,  however,  one of the preceding ap- 
proximation schemes  can  be  substituted.  This strategy 
produces a result which is almost as precise as  that  pro- 
duced by  multiple aliasing computations while  not  suf- 
fering from  the potential  combinatorial  explosion. The 
result will be  much  better than  a single worst-case  com- 
putation that is used for  every call. It  has  the  advantage 
of being no  worse computationally while permitting the 
analysis  to be  tailored to  each call point’s particular ali- 
asing  situation. 

Local data flow 
Summary data flow analysis, while interesting  for pro- 
gram  diagnosis and  documentation,  does not provide  the 
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information  required for many of the optimizing trans- 
formations  performed by compilers,  such as  constant 
propagation,  common expression elimination,  dead  vari- 
able elimination. Local  data flow analysis is needed here 
as it may be  necessary  to identify precisely the  set of 
definitions (updates)  that can reach a computation  and 
the  set of uses  that might still be affected by previous 
computations.  In  the exposition that follows,  only the 
“reaching definitions” computation is treated.  The  com- 
putation for  “exposed uses” proceeds in an analogous 
fashion (see [ 21 ) . 

We wish to know precisely  what set of definitions at 
the various arcs of a control flow graph can, in fact, af- 
fect a computation at some  other  arc.  This  set is called 
the  set of reaching definitions. Before defining it, how- 
ever, we must describe  where  the  elements of the  set, 
i.e., the definitions,  originate. Each element is represent- 
ed as d( i ,  I ) ,  where 

DEF,(i ,  1, P )  = {d(i, 1 ) )  if Def,(i, I ,  P )  = 1 ;  otherwise 
DEF,(i ,  I ,  P )  = 0. (L1) 

Then  the  set of reaching definitions for a  variable i, at  an 
arc I ,  under condition P ,  i.e., those  that  reach  the  “end” 
of arc 1 ,  is defined as 

REACH,(i ,  1, P )  = U {DEF,( i ,  m, P )  I there is a path 
originating from arc m and terminating with arc I ,  all arcs 
n ofwhich  have Pre,(i, n, P )  = 1.) (L2) 

We hasten  to  add  that  the computation of REACH, does 
not  use  the  above definition. Rather, a definition mod- 
eled on Allen’s [ 21 is used, i.e., 

REACH,(i ,  I ,  P )  

=u {REACH,( i ,  rn, P )  & Pre,(i ,  1, P )  1 rnEpred ( 1 ) )  

U DEF,  ( i ,  1, P )  (L2’ 1 

where SET & 0 = 0 and SET & 1 = SET; p r e d ( l )  = the 
set of predecessors of arc 1, Le., the  arcs of the  node of 
which 1 is  an  out  arc. 

The  set REACH,,  since it is drawn from “may be” 
information, i.e., Def, (i, I ,  P )  and Pre, (i, I ,  P ) ,  repre- 
sents  the  set of definitions that may reach an arc. 

The problem  faced in computing REACH, is as fol- 
lows. We want  the local data flow information, e.g., 
REACH,, to be  the best  that  we  can  compute in the 
light of multiple calls. Thus we must compute REACH, 
information under conditions that  are safe to  assume  for 
all the calls of interest. 

While a solution to  the  above problem is essential, it is 
also highly desirable to  be  able  to provide both local  and 
summary data flow information that is specialized to a 
particular call point. This  serves  three  purposes: 

564 1. It is valuable as  documentation. 

2. It provides more precise results in the analysis of the 
calling program. 

3 .  It permits the optimization of a tailored version of the 
called procedure which is suitable for a  particular call 
or  subset of calls. 

Thus, what we develop is a variant of the  Cocke-Allen 
type of local data analysis flow [ 21 in which worst-case 
data flow information is computed  but which,  simulta- 
neously  and with trivial  additional computation, permits 
this  information to be tailored to  any particular call point 
aliasing situation. 

In  the  absence of precise  knowledge  concerning  argu- 
ment-parameter aliasing, we must  be able  to  compute 
data flow information under  the “may be aliased”  condi- 
tion M:  

M ( J )  When data flow for  a  variable is analyzed under 
the  “may  be aliased”  condition M ( J ) ,  the results must 
be safe both  for  the E ( J )  condition (i.e.,  the condition 
under which the variable  aliases  any or all variables in 
set J )  and for  the 0 condition (Le., the variable is not 
aliased to any other  variable). (L3) 

When analyzing a procedure in isolation  from  its call- 
ers,  we must  use  worst-case assumptions, i.e., that any 
parameter  “may be  aliased” to  any  other  parameter and 
to any global, assuming  compatible types.  Any global 
may be  aliased to  any  parameter, again assuming com- 
patible types.  Thus,  we wish to  compute,  for  each pa- 
rameter i, on each  arc l ,  and  with the  sets of  all type- 
compatible parameters ti and  globals J ,  REACH,(i ,  1, 
M( ti U J )  ) . For  each global variable i under  the  same 
conditions we  compute REACH,(i ,  I ,  M ( t i ) ) .  As with 
the summary data flow  we can  choose  to  approximate 
these quantities in terms of the corresponding  quantities 
under the null condition. Thus, it is the  case  that 

REACH,(i ,  1, P A M ( J ) )  

C_ REACH,(i ,  I ,  P )  Uu R E A C H , ( j ,  I ,  P ) .  
j € J  

Unfortunately, this is not  a good approximation as  the 
simple  example of Fig. 4 shows.  In Fig. 4( a) ,  the defini- 
tion of i at  arc m should  make all previous definitions of 
i (and j )  unavailable after rn, but this is not captured by 
the approximation. 

The strategy we  pursue is to precisely characterize  the 
REACH, definitions under  each of the  “may  be aliased” 
conditions  and use  the information  developed as  the ba- 
sis for deriving good approximations  for other condi- 
tions. 

To  accomplish our goal, we need yet a  third  condition 
under which data flow analysis is performed. This is the 
“interferes” condition Z ( J )  defined as follows: 
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I ( J )  When data flow for a  variable is analyzed under 
condition I ( J )  , the preserved information used in the 
computation is the  same  as  that produced under  the 
E ( J )  condition. Thus, all definitions of variables in J “in- 
terfere with” the propagation of the definitions or uses of 
the variable of interest. (L4) 

For  the R E A C H ,  computation, we then have 

REACH,(  i ,  m, P A M (  J )  ) 

= REACH,( i ,  rn, P )  Uu R E A C H ( j ,  m, P A  I ( { i } ) .  
j € J  (L5) 

This simply asserts  that  the R E A C H ,  set of definitions 
of i for the “may  be  aliased” case  consists of all the defi- 
nitions for i in the unaliased case, together with those 
definitions o f j  in J that  are not killed, i.e., are  preserved, 
by definitions of both i and j. In Fig. 4 (a ) ,  REACH,( i ,  
m, 0) = {d(i ,  r n ) }  and R E A C H , ( j ,  m, I ( { i } ) )  = 0 so 
that REACH,( i ,  m, M ( { j } ) )  = fd(i ,  m ) } .  However, in 
Fig. 4 (b) ,  REACH,( ; ,  m, 0) = { d ( i ,  I ) }  and R E A C H ,  
(j, m, I ( { i } ) )  = { d ( j ,  m ) }  so that REACH,( i ,  m, 

M ( { j } ) )  = {d(i ,  0 ,  d ( j ,  m ) } .  

Tailoring may be aliased  information 
While information  which can  be relied on  to be  safe for 
all calls of a procedure is essential, we have argued that it 
is frequently useful to  have information  which is specific 
to a  given call of the  procedure so that a  tailored  form of 
the  procedure can be used.  Information specific to a 
call can  make use of known aliasing conditions,  i.e., one 
can compute the R E A C H ,  information using the precise 
E ( J )  conditions that  relate  arguments  to  parameters. A 
separate analysis of a procedure in order  to  generate 
R E A C H ,  information for  each E ( J )  condition is not 
necessary, however, as a good approximation to this in- 
formation is computable from the  “may be  aliased” 
M ( J )  computation  by making separate  use of the part of 
this  computation done using the I ( J )  condition. This 
strategy  relies on  the following three claims. 

Claim  REI 

REACH,( ; ,  1, P A E ( J ) )  

= REACH,( i ,  I ,  P A  I ( J ) )  U 

u R E A C H , ( j ,  1, P A I ( { ; }  U ( J  - { j } ) ) .  
/E./ 

Justijication 
The definitions for all the aliased variables  must  be in- 
cluded,  subject  to  the preserved information of the ali- 
ased variables. Each REACH,(k ,  1, P A I ( L ) )  repre- 
sents  the  set of definitions contributed by a  variable k 
subject  to the Pre,(k,  m, P A E ( L ) )  condition. The 
union of these  sets then constitutes all the reaching defi- 
nitions of i under  the E ( J )  condition. 
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(a) (b) 

Figure 4 In (a),  R E A C H , ( i ,  rn, M ( { j } ) )  = { d ( i ,  m)} since 
the  definition of i “kills” all previous definitions. However, in 
(b ) ,  R E A C H , ( i ,  rn, M ( { j } ) )  = { d ( i , l ) , d ( j , r n ) }  sincejisonlya 
possible alias of i and cannot be used to kill previous definitions 
of i .  

Claim  RE2 
If d ( i ,  1 )  E REACH,( i ,  m, P A E ( J ) ) ,  then for all j €  J ,  
if d ( j ,  I )  E D E F , ( j ,  1, P ) ,  then d ( j ,  1)  E R E A C H ,  
( j ,  m, PI. 

Justijication 
Since 

Pre,(i, n, P A E ( J ) )  5 Pre,(i ,  n, P )  A 

A Pre , ( j ,  n, P )  
j €  J 

by Claim PE, if definitions survive Pre, ( i ,  n, P A E ( J )  ), 
they  must  surely survive  each of the  terms  on  the right 
above.  Hence a path which  permits definitions from 1 to 
reach node m under  the  preserved function Pre, ( i ,  n, P A 
E ( J )  ) will surely  permit definitions to  survive  under  any 
one of the Pre , ( j ,  n, P )  functions. 

Claim RI 
R E A C H , ( &  1, P A I ( J ) )  

n REACH,( i ,  I ,  P A  l ( { j } ) ) .  
j t J  

Justijication 
The preserved  function  used to  compute R E A C H ,  
( i ,  I ,  P A I ( J )  ) is Pre,(  i, 1, P A E (   J )  ) , which is less  than 
or equal to 

A Pre,(i, 1, P A E ( w ) )  
jE.1 

by Claim PE, each  term of which represents  the pre- 
served function in the  computation of the R E A C H ,  
( i ,  1, P A I ( j } ) )  terms. The DEF,  set  for R E A C H ,  
( i ,  I ,  P A Z { j } )  is DEF, ( i ,  1, P A  Z ( J ) ) ,  which is a subset 
of DEF, ( i ,  I ,  P A I ( { j } ) ) ,  the DEF,  set used for  the 
REACH,( i ,  I ,  P A I { j } )  terms. 

The REACH,( ; ,  1, P A M ( J ) )  computation involves  a 
separate REACH,(  i ,  I ,  P A I( { j } ) )  computation  for all 
j E J .  The RI approximation above must  be  used to  ap- 
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proximate  the f ( J )  computation  whenever J has  more 
than  one member. Thus,  precise REACH,(i, 1, P A   E ( J ) )  
information is  computable using RE1 above only if pair- 
wise aliasing occurs. If, for  instance,  repeated arguments 
result in three or more  variables being aliases of each 
other,  then RI must  be used to  produce  an approxima- 
tion  to  the REACH,(i, 1, P A Z(J)) computation before 
RE1 can  be applied.  Claim RE2 can  then  be  used  to 
improve the  result by eliminating some of the  extra defi- 
nitions.  Using RE1,  RE2, and RI thus permits the 
REACH, information for  the E(J)  condition to  be ap- 
proximated rather precisely  without  a complete recalcu- 
fation by  deriving the  result from the M ( J )  (and  hence 
f ( {  j } )  ) computations. 

Summary data flow information 
If certain provisions are  taken [ 1 1 ,  121, it becomes pos- 
sible to  compute  both Def, and Pre, information  using 
the  results of the REACH, computation.  The Use, in- 
formation can  also  be  computed from the local “exposed 
uses” information in an analogous  fashion. The special 
provisions have  to  be  made  for  the Pre, computation,  but 
we must be  aware of these provisions in order  that Def, 
be properly done. 

In  order  to  compute Pre, for each variable i in block 
C ,  we create a hypothetical definition for i on  the input 
arc of the  control flow graph  for C .  We denote this arc 
as  arc 0 and the definition as d ( i ,  0).  We then perform 
the REACH, computation as before. The  important 
property of d( i ,  0 )  is that all definitions of i from outside 
of C that  reach  the beginning of C will also reach  the 
arcs  reached by d(  i, 0) .  Thus, we have 

Claim  RP 
Pre,( i ,   C,  x, P )  = 1 iff d( i ,  0 )  E REACH,(& x, P ) .  

Justification 
A definition at  the  entry point of the block is available at 
an exit  point, if and only if there is a path  from  the  entry 
point  to  the exit, each  arc of which preserves  the defini- 
tion. 

Finally, we can  determine Def, from  the REACH, 
results by using the following approach. 

Claim R D  
Def,( i ,   C,  x, P )  = 1 iff REACH,(i, x, P )  - { d ( j ,  0) I for 

all j }  # 0. 

Just$cation 
If any definition is available on exit, other than the  hypo- 
thetical ones  at  arc 0, then it is a locally generated defi- 
nition and Def,( i ,  C ,  x, P )  = 1.  If no  such definition ex- 
ists, then  no  path  to exit x contains a definition of i and 
Def, ( i ,  C ,  x ,  P )  = 0. 

Aliases and the REACH  computation 
By using the preceding  claims, we  are now in a  position 
to  cope with the aliasing  conditions that  arise during 
the REACH, computation. First  let us describe  the 
REACH, results  that  we  desire. Ultimately, we wish to 
compute  the REACH, information for  the “may be ali- 
ased” conditions so that optimizing transformations  can 
be applied that will be valid no  matter how a given pro- 
cedure is called.  We also wish, however,  to  use  the 
component  parts of the preceding in order  to  be  able  to 
tailor the REACH, results so that  accurate summary 
data flow information  can  be derived  for  each call point. 

As indicated  previously, the  “may  be aliased” compu- 
tation  can  be  decomposed into an “unaliased” computa- 
tion and  an  “interferes”  computation.  We  make  use of 
(LS)  where P is  taken  as  the null condition. Thus  we 
need to  compute  the following in a  given  block or pro- 
cedure. 

a. For each variable or parameter i ,  REACH,(& I, 0) 
for  every  arc 1. 

b. For each variable i that is global to  the 
biock/procedure and that might be used as  an argu- 
ment, REACH,(j, I ,  f ( {  i } )  ) for all parameters j to 
which it might be passed. 

c. For each  parameter i that might be passed  the  same 
argument as is passed  to  some  other  parameter j ,  
REACH,(j, I ,  f ( { i } ) ) .  

d.  For  each  parameter i ,  and for all global variables j 
that might be passed  as arguments to it, REACH,(j, 
1, I ( { i } )  1. 

We now concentrate  on establishing the DEF, and 
Pre, values  required for  the  computations in (a) through 
(d)  above. 

I .  DEF,: Recall  from ( L l )  that DEF,(i, 1, P )  = { d ( i ,  
I)} iff Def,(i,  1, P )  = 1 and is null otherwise. Fur- 
ther Def,(i, l ,  P )  = DefB( i ,   C ,  x ,  G ( C ,  P A E ( J ) ) )  
from ( S 2 ) ,  where block C ,  exit arc x, serves  to define 
arc 1 of our procedure.  The function G eliminates all 
conditions involving variables  not global to C ,  and J 
is the  set of parameters in C to which i is  passed. 

In  the  worst  case, P A E(J)  will survive  as  the 
condition of interest, i.e., G (  C ,  P A E ( J ) )  = P A  E ( J ) ,  
other  cases being  simpler.  But 

Def,( i ,   C,  x, P A E ( J ) )  

= Def,( i ,   C,  x, P )  U u Def , ( j ,   C ,  x, PI. 
j €  J 

Since P is either null (0) or f ( {  k } )  for  some vari- 
able k, DefB( i ,   C ,  x, P )  is  either Def , ( i ,   C ,  x, 0) or 
Def,( i ,  C ,  x ,  f ( {  k } )  ) and similarly for  each of thej’s. 
For those  arcs realized  by  blocks that  themselves  have 
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control flow graphs,  we  use Claim RD, which  yields 
D e f B ( i ,   C ,  x, P )  = 1 iff REACH,(i ,  x, P )  - { d ( j ,  0) I 
for all j }  # 0. 

The result of this  chain of formulas  is to relate  the 
required DEF,  information for  an  arc  to  the REACH, 
information concerning  the block and  exit  that  serves 
to define this arc. But  this reach information is of 
exactly  the  form  computed in (a) through (d) . Fur- 
ther, none of the formulas  used was  an inequality  and 
hence  the computation above is precise. 

In  the  case  where  the block C realizing a given arc 
is primitive, we need some  other way to  compute 
Def,( i ,  C ,  x, 0) and DefB( i ,  C ,  x, I (  { k } )  ) . But 
D e f B ( i ,   C ,  x, 0) is given for primitives. Further 
Def , ( i ,   C ,  x, Z ( { k J ) )  5 Def , ( i ,   C ,  x, 01, equality 
holding when  either DefB( i ,  C ,  x, 0) = 0 or when 
D e f B ( k ,   C ,  x, 0) = 0, i.e., when there  are  either  no 
definitions of i or  no definitions of k to  interfere with 
those of i .  The  strict inequality may apply if both of 
the preceding  quantities equal  one. Normally, how- 
ever, primitives  only update a single variable and, 
under  these  circumstances, equality always holds. 
Thus  we  can  use De&(& C ,  x, 0) to  approximate 
DefB(i ,  c, x, I ( { k I ) ) .  

2. Pre,: Using (S3),  we  have Pre,(i ,  1, P )  = Pre, 
( i ,  C ,  x, G( C ,  P A E ( J )  ) ) again where block C ,  exit 
x, serves  to define arc 1. Again, in the  worst  case, 
P A E ( J )  will survive  as  the condition of interest,  other 
cases being simpler. But from Claim RP, PreB( i ,   C ,  
x, P A E ( J ) )  = 1 iff d ( i ,  0) E REACH,(& x, P A 
E (  J )  ) , while from RE 1 ,  

REACH,(i ,  x, P A E ( J ) )  = REACH,(i ,  x, P A  Z(J)) 

uu REACH,( j ,  x, P A Z ( J -  { j } )  U { i l l .  
j €  J 

Claim RE2 then requires  that d ( k ,  0) for all k in ( J  U 

{ i } )  be in REACH,(k,  x, P )  in order  for d ( i ,  0) to be 
truly in REACH,(i ,  x, P A   E ( J ) ) .  

The condition P is either I (  { k } )  for some variable 
k or it is null. Thus,  the problem reduces  to  one of 
computing REACH,(i ,  x, Z ( J ‘ ) ) .  When J’ is the unit 
set  or null, it is computed precisely. With interference 
conditions involving more  than  one variable,  Claim 
RI must  be used, i.e., REACH,(& 1, I ( J ’ ) )  is approx- 
imated by 

n REACH,(i ,  1, I ( { j } ) .  
/ € . I ‘  

The preceding  formulation for producing DEF,  and 
Pre, can be  used in a  number of ways  to  compute 
REACH, information. One can  use Allen’s inverse invo- 
cation  order  strategy  to  compute  results  for called blocks 
prior  to computing results  for  their callers, or  one  can 
use Rosen’s  strategy, which involves  solving the  set of 
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Figure 5 Control flow graph of block C indicating the defini- 
tions that  appear on the various arcs. 

equations for calling and  called procedures simulta- 
neously by iteration to find a fixed point  solution. Fur- 
ther,  the local computation of REACH,, if one  employs 
the  inverse invocation order  strategy,  can be  performed 
in several  ways  (see [ 2 - 41 ) . 

Redundant  computations 
The computational demands of local data flow can  be 
reduced if all redundant  computations  are eliminated. In 
this context,  we wish to find definitions that will be  pres- 
ent in a REACH, set  at  any  arc  under a given  condi- 
tion if and only if another definition is present in some 
other REACH, set.  Then,  the  computation involving 
only one of the definitions need be performed. The fol- 
lowing claims identify such redundancies. 

Claim  RRI 
If d ( i ,  I) E DEF,(i ,  1, P A Z ( { j } ) )  and d ( j ,  1) E D E F , ( j ,  
I ,  P A Z ( { i } ) )  , then,  for all arcs x, d ( i ,  1) E REACH,( i ,  
x, P A I ( { j } ) )  iff d ( j ,  I )  E REACH,( j ,  x, P A  Z ( { i } ) ) .  

Justijication 
Both d ( i ,  I )  and d ( j ,  I )  originate at  the  same  arc 1 and  are 
subjected to  interference  (are either preserved  or  not) 
by all other definitions of both i and j .  

Claim  RR2 
If there  are  no definitions of variable j ,  then d ( i ,  1) E 
REACH,(i ,  1, P A  Z ( { j } ) )  iff d ( i ,  1) E REACH,(i ,  1, P ) .  

Justijication 
Since  there  are  no definitions for variable j ,  they  cannot 
affect the propagation of the REACH, information  and 
hence  the I (  { j } )  condition has  no effect. 

When  bit vector methods are used to  compute  the 
REACH, information, the preceding  claims can  be used 
to permit a single bit to  serve multiple purposes.  This 
will be illustrated using a concrete  example in the  next 
section. 567 

DATA FLOW ANALYSIS 



Table 1 Correspondence table  relating  definitions of Variables to bit positions for  the local data flow computation of Fig. 5 .  

Variable  Condition  Dejinition  on  arc  represented by bit? 
0 1 2  3  4 5 6  7 

Gl 0 1 2 
I ( P , )  3  4 
I ( P J  5 6 
I(PJ 7 8 

I ( P , )  10 
I ( P , )  1 1  
I(PJ 12 

0 1 o*+ 13 14 
I ( G , )  3+ 15 16 
I ( G J  l o t  13* 14* 
I ( P J  17 18 19 
I ( PJ 20 21  22 

p2 0 l l * +  23  24 
I (GJ  5+ 25 26 
I ( G J  11+ 23* 24* 
I ( P J  17+ 27 28 
I ( P J  29 30 31 

p3 0 12*+ 32 33 34 
I ( G , )  7+ 35 36 37 
I ( G J  12+ 32* 33* 34* 
I ( P , )  2 M  38 39 22+ 
I ( P J  29+ 30+ 40 41 

0 9 

+Claim RRI is used to eliminate redundancy. 
*Claim RR2 is used to eliminate redundancy. 

Example 
In  order  to illustrate  how the preceding treatment of ali- 
asing might be  used in practice,  we  provide  an  example 
and  use bit vectors  to  represent  the  sets  that we require. 
We do not present a real program in any  particular  lan- 
guage but merely  a  control flow graph on whose arcs  we 
indicate the variables that  are defined and  those  that  are 
preserved.  The nodes themselves  can be any of the 
blocks we  have previously discussed. We assume  that 
the processing has  proceeded in inverse  invocation order 
and that the Def, and Pre, information is thus available. 
Figure 5 is the  annotated control flow graph  for our 
example called  block C. 

The variables Gi, i = 1, 2, denote global  variables, 
whereas Pj, j = 1, 2, 3, denote  parameters. We assume 
that all Gi and Pj  are type-compatible and  are potential 
aliases of each  other.  For simplicity, the  presence of a 
definition for a  variable on  an  arc implies that  the vari- 
able is not  preserved  on  that  arc.  The R E A C H ,  sets  that 
will interest us at  each  arc involve each variable under 
both  the null (0) condition and the  interferes  condi- 
tions, with  its  possible  aliases taken singly. Claim R1 is 
used to  approximate  the higher order interference condi- 

568 tions. 

Since these  sets will be represented by bit vectors,  the 
first task is to lay out  the  format of these bit vectors and 
indicate  what each bit is to  represent.  Table 1 relates 
each REACH, set  computation  to a position in the bit 
vectors.  Note  that definitions on  arc 0 are included for 
all variables in order  to perform the  “preserved” compu- 
tation.  Table 2 provides the  results of the REACH, 
computation. Bit vector P ( l )  represents  the  set of defini- 
tions  preserved  at  arc 1. And D(1) represents  the  set of 
definitions originating at  arc 1, i.e., those in DEF,(i, I ,  P )  
for some  variable i and condition P .  The  set of defini- 
tions that  reach  arc / (survive and are available after  arc 
1 has been traversed) is represented by R( 1) .  We pro- 
vide D (  I )  and P( /) to permit the  reader  to easily verify 
the  correctness of the R( I )  results by using (L2’) in the 
obvious fashion. 

Using the REACH, results of Table 2, we  are in a 
position to apply our claims in order  to  compute quanti- 
ties  that may be of interest  to us. We  illustrate  a  few of 
these below. 

1. R E A C H , ( G , ,  m, M ( { P , ,  P,, P , ) ) )  
= REACH,(G, ,  m, 0) 
U REACH,(f‘,,  m, I ( { G , } ) )  
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Table 2 Results of local  data flow computation for the  example of Fig. 5 .  The meaning of each bit is given in Table 1 

Se t  

1-5 

"." 

10101 
10101 

00000 
01010 
01010 

11001 
00000 
1000 1 

11110 
00000 
01010 

11110 
00000 
10000 

11111 
00000 
1000 1 

11001 
00000 
1000 1 

11111 
00000 
1101 1 

6-10 

""_ 
01011 
0101 1 

0001 1 
10100 
10111 

11110 
00000 
01010 

0001 1 
00000 
000 1 1 

01111 
00000 
01010 

1001 1 
00000 
000 I O  

10010 
00000 
0001 0 

11111 
00000 
01011 

11-16 16-20 

""_ 
1 1000 
1 1000 

11110 
00000 
1 1000 

11000 
00101 
1 1  101 

001 11 
00000 
00000 

01111 
00000 
01 101 

10111 
00000 
10101 

10000 
000 10 
10010 

11111 
00000 
1 1 1 1 1  

""_ 
01001 
01001 

01111 
00000 
01001 

00000 
00 1 00 
00 100 

10000 
00000 
00000 

1000 1 
00000 
00000 

11110 
00000 
001 00 

00000 
10010 
10010 

1 1 1 1 1  
00000 
10010 

Bit  Positions 
~ 

2 1-25 

""_ 
00000 
00000 

I1110 
00000 
00000 

001 I 1  
10000 
10000 

00000 
00101 
00101 

1 1000 
00010 
10010 

001 1 1  
00000 
00000 

001 1 1  
01000 
01000 

11111 
00000 
1 1 1 1 1  

26-30 
~" - 

""_ 
0001 0 
000 I O  

01111 
00000 
0001 0 

1001 1 
00000 
00010 

00000 
01001 
01001 

00000 
10100 
10100 

I I100 
00000 
00000 

10000 
00000 
00000 

1 1 1 1 1  
00000 
1 1  101 

~ 

31-35 
~ 

"". 

00000 
00000 

11110 
00000 
00000 

1 1 1 1 1  
00000 
00000 

00000 
01001 
01001 

01111 
I0000 
10000 

00000 
00100 
00 100 

00000 
00010 
000 10 

11111 
00000 
1101 1 

36-40 41 

""_ 
00000 
00000 

0011 1 
00000 
00000 

11001 
00000 
00000 

00000 
00100 
00 100 

11110 
00000 
00000 

00000 
I001 1 
1001 1 

00000 
0 1000 
0 1000 

1 1 1 1 1  
00000 
01100 

0 
0 

1 
0 
0 

1 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
1 
1 

1 
0 
1 

U REACff , (P , ,  m, / ( { G , } ) )  
U REACH,(P , ,  m, l ( { G , } ) )  
by (L5). 

We  can create a mask which, when "anded" to a 
reach computation, selects the definitions of interest. 
This  mask  has "one" bits as follows. 

a. In positions 1 and 2 for(G,, 0) 
b. In positions  3, 15, and  16 for(P,, / ( G I ) )  
c. In positions 5, 25, and 26 for(P,, / ( G , ) )  
d. In positions 7, 35, 36, and 37 for ( P 3 ,  / (GI ) ) .  

Zeros  occur  everywhere else. 
Examining these positions, we ascertain  that,  for 
example, 

R E A C H , ( G , ,  7 M ( { P , ,  P,, P , } ) )  = { d ( G , ,  01, d(G, ,  
11, d(P,, 21, d(P,, 6 ) ,  d(P,, 0 ) ,  d(P,, 3 ) ,  d(P,, 4), 
d(P,, O ) ,  d(P,, 31, d(P,, 6) ) .  

The  arc 0 definitions are only present for  the  pre- 
served  computation. From  them we conclude  that 

Pre , (G, ,  C ,  7, M ( { P , ,  P,, P , } ) )  = 1, 

and that 

a. In positions 3 and 4 for(G,, / (E ' , ) ) ,  
b. In positions 3, 15, and 16 for(P,, I ( G , ) )  

Then 

Pw,( G,, C,  7, E (  { P , } )  j = 0 by Claim RP, 

and  that 

Dqfk(G, ,  C ,  7, E ( { / ' , } ) )  = 1 by Claim RD. 569 
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3 .  REACH,(G, ,  m, E ( { P , ,  P , } ) )  
= REACH,(G, ,  m, I ( { P , ,  P , } ) )  
U REACH,(P, ,  m, I ( { G , ,  P , ) ) )  
U REACH,(P, ,  m, I ({Gl ,  P , } ) )  

by Claim RE1. Using  Claim RI, this is included in 

( R E A C H , ( G , ,  m, I ( { P , } ) )  n R E A C H , ( G , ,  m, I 

(REACH,(P, ,  m, I ( { G , ) ) )  r l  REACH,(P, ,  m, I 

(REACH,(P, ,  m, I ( { G , } ) )  n REACH,(P, ,  m, I 

Unfortunately,  when  an  intersection is required, a 
mask cannot be constructed  that will identify the 
definitions desired.  Rather,  the  members of each of 
the REACH,(i ,  m, I (  { j } )  ) sets must be  determined 
and the intersections performed  by  examining the in- 
dividual definitions. When  this is done, we obtain,  for 
arc 7, 

a. R E A C H , ( G , ,  7, I ( { P , } ) )  = {d(G, ,  O ) }  and 
REACH,(G, ,  7, I({ / ‘ ,))) ={d(G, ,  O ) }  so that 
R E A C H , ( C , ,  7, I ( {P , ,  P , ) ) )  L { d ( G , ,  011. 

b. REACH,(P, ,  7, I ( { G , } ) )  = {d(P,, 01, d(P,, 31, 
d(P,, 4) } and 
REACH,(P, ,  7, I ( { P , l ) )  = {d(P,, 31,  d(P,, 411, 
so that 
REACH,(P, ,  7, / ( { G l ,  P , ) ) )  C {d(P,, 31,  d(P,, 
4) 1. 

c. REACH,(P, ,  7, I ( { G , } ) )  = {d(P,, 01, d(P,, 31, 
d(P,, 6) l  and 
REACH,(P, ,  7, I ( { P , } ) )  = {d(P,, 31 ,  d(P,, 611, 
so that 
REACH,(P, ,  7, I({Gl,  P , ) ) )  C {d(P,, 31, d(P,, 
6) 1. 

d.  From  the union of a, b, and c, we conclude  that 
REACH,(G, ,  7, E ( { P , ,  P , } ) )  !Z {d(G,,  01, 
d(P,, 31, d(P,, 41, d(P,, 31, d(P,, 6)). 

e.  Finally, we  can  use Claim RE2  to eliminate some 
excess definitions in d.  Note  that d(P,, 0) and 
d(P,, 0) have not  survived so that R E A C H A ( G , ,  
7, E(  { P,, P,}) cannot contain  any definitions from 
arc 0. Thus  we  have 

( { P , } ) ) )  u 

( { P , } ) ) )  u 

( { P , } ) )  1 .  

REACHA(G1, 7, E ( { P , ,  f‘,>)) L {d(P,, 3 ) ,  d(P2, 
41, d(P,, 3 ) ,  d(P,, 6)). 

Equality, in fact,  holds in this case. 

The computation of intersections  discussed  under 3 
can  be  made  comparatively simple if none of the  redun- 
dant  computations  are eliminated  via  Claims RRl  and 
RR2.  Then contiguous  segments of each bit vector  rep- 
resent  the definitions reaching an  arc  under a given 
condition. Bit vector “anding” of these segments can 

570 then  be used to  compute the intersections of the corre- 

sponding sets. Claim RE2 would still be  needed to im- 
prove  the approximation  produced by the union operation 
used in REI .  

Discussion 
Once  one  understands  the  nature of the conditions im- 
posed  on thg data flow computation,  the claims we  have 
made can be justified  by means of straightforward  rea- 
soning about  graphs and sets.  Despite this simplicity the 
“aliasing problem” has previously  been a troublesome 
one and the methodology we have suggested copes with 
it quite well. Not only does  the  computation remain  fea- 
sible in a  pragmatic sense,  but  the  results provided are 
very good. 

Basically, another way of describing the methodology 
is that we compute  both unaliased  information  and the 
pair-wise aliasing information  precisely. Then we use 
good approximations  to  compute higher order aliasing. 
The interesting fact is that  the general “may  be aliased” 
case  requires only the  two previous computations and 
not the higher order aliasing computations. 

The  approach we have  described  can  be used for more 
than  just  the summary  and R E A C H ,  computations. We 
mention two. 

1. If the  purpose of the local information is only to 
compute  the summary  information,  none of the local 
definitions  need  be  distinguished, Le., they  can all be 
folded into  a single bit,  distinct from  the bit  used for 
the  arc 0 definition used for the  “preserved” compu- 
tation (which  represents global definitions).  The  arc 
0 bit will then continue  to indicate,  directly, whether 
a  variable is preserved, while the local bit will indi- 
cate  whether it is defined. Claim RR2  can  continue  to 
be used to eliminate redundant  computations. Claim 
RRl  can only be  used if, for  two variables, whenever 
one  has a definition on  an  arc, then so does  the  other. 
This is possible but  not likely. 

2.  Computing “exposed uses” (also called the “live 
variable” computation) is treated in an analogous 
fashion. a )  If we are  interested in retaining knowl- 
edge  concerning  particular uses, then we  must,  as in 
the  case for  definitions,  provide  a computation  for 
each  such  use  under  the unaliased  and the single vari- 
able interference conditions.  Claims RRl  and RR2 
can be applied  directly to this  problem  by  substituting 
“USES” for “REACH” and u( i ,  1) ( a  use)  for d( i ,  I )  
( a  definition) and then  doing the  ordinary  “exposed 
use”  computation.  The  Claims  RE  and R1 can be 
transformed  into the analogous U E  and UI claims. 
The  same  considerations concerning parameters  and 
globals  also apply. If the summary “preserved” infor- 
mation is desired, hypothetical uses of variables  must 
be provided on each exit  arc. If one of these  uses 
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remains  exposed  at  the block entry, then that variable 
is  preserved  from  entry  to  the  exit  arc of the use. 
(This  requires  more  “uses”  to  be  introduced  than 
analogous “definitions”  which must simply appear  on 
the single block entry  arc.)  b) If  only live variable 
information is desired, i.e., whether  there is an  ex- 
posed  use  somewhere  (we  do not care which use it 
is) ,  then all local uses of a  variable can be  folded into 
a single “local use” bit, though again it must be dis- 
tinguished from the hypothetical  exit arc  uses.  The 
previous  claims have their  analogs for this computa- 
tion as well. 

We  have been  discussing the aliasing problem intro- 
duced by parameters  and hence have  been dealing only 
with parameters  and globals. The local variables cannot 
be aliased  by the  parameters  and  hence need  only be 
computed  under  the 0 or  no aliasing condition with re- 
spect  to  parameters  and globals. There  are,  however, 
purely  local aliasing problems that  we alluded to in the 
introduction. We have in mind address  arithmetic  as 
occurs when one  uses  constructs  such  as A ( I )  and P + 

X .  These  do  not  name variables but specify computa- 
tions  whose  results  name variables.  Definitions or  uses 
involving these  computations  must always be  preserved, 
independently of the  presence of definitions. Why? Be- 
cause  on  each  traversal of a path involving a definition 
for  such  an  address  computation,  the variable  named  by 
the  computation may be different. With  this adjustment, 
the  techniques  relevant  to  argument-parameter aliasing 
can  be  applied also to this local aliasing. 

Acknowledgments 
We are indebted to B. Rosen and F. Allen for reading 
and commenting on  an earlier draft of this paper. F. Allen 
also  read this  version and provided several sugges- 
tions  for  improvements  as well as correcting a number of 
errors.  Her  encouragement of this work  is  also ac- 

knowledged. Finally,  the  referees provided several useful 
suggestions that improved the clarity of the presentation. 

References 
1. E. Lowry and D. Medlock, “Object Code Optimization,” 

Commun.  ACM 12, 13 (1969). 
2. F. E. Allen and J.  Cocke,  “A Program Data Flow  Analysis 

Procedure,” Commun.  ACM 19, 137 ( 1976). 
3. S. L. Graham and M. Wegman, “A  Fast and Usually Lin- 

ear Algorithm for  Global Flow Analysis,” J .  ACM 23, 1 
(1976). 

4. M. S. Hecht and J. D. Ullman, “A Simple Algorithm for 
Global Data Flow  Analysis Problems,” SfAM J .  Comput. 
4, 519 (1975). 

5.  G.  A. Kildall, “A Unified Approach  to  Global Program 
Optimization,” Proceedings of the ACM  Symposium on 
Principles  of  Programming  Languages, October 1973, p. 
194. 

6. J. M. Barth, “An Interprocedural Data Flow Analysis Al- 
gorithm,” Proceedings of the Fourth ACM Symposium on 
Principles  of  Programming  Languages, January, 1977, p. 
119. 

7. T.  C. Spillman, “Exposing  Side Effects in a PL/ I  Opti- 
mizing Compiler,” Information  Processing 71, North Hol- 
land Publishing Co., Amsterdam, 1972, p. 376. 

8. T.  C. Spillman, “Analysis and Documentation  System,” 
Research  Report  RC 3706, IBM  Thomas J. Watson Re- 
search Center, Yorktown  Heights, NY, 1972. 

9. R. P. Tapscott,  “ADS: the Source Listing Annotator,” 
Research  Report  RC 5065, IBM Thomas  J. Watson Re- 
search Center, Yorktown  Heights, NY, 1974. 

10. L. D. Fosdick  and L. J .  Osterweil, “Data Flow Analysis in 
Software Reliability,” Computing  Surveys 8, 305 ( 1976). 

11. F. E. Allen, “Interprocedural Data Flow Analysis,” fnfor- 
mation  Processing 74, North Holland Publishing CO., 
Amsterdam,  1974,  p. 398. 

12. B. K. Rosen, “Data Flow Analysis for Recursive P L / I  
Programs,” Research  Report  RC 5211, IBM  Thomas J. 
Watson  Research Center, Yorktown  Heights, NY, 1975. 

The author is located  at the IBM  Thomas J .  Watson 
Research  Center,  Yorktown  Heights,  New  York  10598. 

Received  March 9 ,  1977 

NOVEMBER 1977 DATA F ’LOW P 

571 

LNALYSIS 


