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Sequential Stopping Rules for the Regenerative

Method of Simulation

Abstract: We consider the estimation via simulation of confidence intervals for steady-state response variables for stochastic systems
which have a regenerative stochastic structure. Sequential stopping rules are investigated which allow the ratio of the width to the mid-
point of an estimated confidence interval to be specified ahead of time. We prove that the resulting confidence intervals are valid asymp-
totically as the relative width decreases to zero. For various relative widths we empirically investigate the validity of the confidence
intervals obtained when the stopping rules are applied to the simulation of queuing systems having a regenerative stochastic structure.
For the queuing systems and response variables considered, a relative width of 0.05 is found to be sufficiently small to yield valid con-
fidence intervals in almost all cases. In addition, we empirically compare the sequential stopping rules with a fixed stopping rule.

Introduction

When simulating a stochastic system such as a queuing
system, in order to estimate steady-state response vari-
ables, it is desirable to obtain both point and confidence
interval estimates for the response variables. A dis-
tributional theory for estimating confidence intervals is
usually based on asymptotic results, so that it is necessary
to run the simulation long enough to obtain valid con-
fidence intervals. In addition, it is desirable that the
widths of the estimated confidence intervals be suffi-
ciently small that useful conclusions can be drawn from
the simulation experiment. The width of an estimated
confidence interval can be controlled by the use of an
appropriate sequential stopping rule.

In this paper we are concerned with sequential stop-
ping rules for estimating steady-state response variables
for regenerative stochastic processes when using the
regenerative method of simulation. Papers dealing with
the regenerative method of simulation which provide a
useful background for this paper are cited in [1-6].
Since the regenerative method of simulation involves
estimating the ratio of the mean values of two dependent
random variables from a sequence of independent pairs
of observations of the random variables, we will be con-
cerned with sequential stopping rules for such ratio esti-
mation. Previously, Chow and Robbins [7] considered a
sequential stopping rule for estimating the mean value
of a single random variable from a sequence of indepen-
dent observations of the random variable. This rule
results in a confidence interval of specified width. They
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derived asymptotic properties of the stopping rule as the
width decreases to zero, including the asymptotic validity
of the resulting confidence interval.

In the next section of this paper, we briefly describe
the regenerative method of simulation. Sequential stop-
ping rules, which control the relative width of an esti-
mated confidence interval (i.e., the ratio of the width of
the interval to its midpoint) and can be used in con-
junction with regenerative simulation, are proposed in
the third section, where we also derive the asymptotic
validity of the resulting confidence intervals as the
relative width decreases to zero. The fourth section
contains empirical results on the finite sample properties
of the stopping rules applied to the regenerative simula-
tion of queuing systems. For the queuing systems and
response variables considered, we investigate how small
the relative width must be in order to obtain valid con-
fidence intervals. In addition, we empirically compare the
sequential stopping rules with a fixed stopping rule. Our
conclusions are presented in the last section.

In a recent paper Robinson [8] independently con-
sidered the application of sequential stopping rules to
regenerative simulation and addressed some of the ques-
tions we consider in this paper. However, the asymptotic
validity of the resulting confidence intervals was not
properly established in that paper. (In particular, the
limit theorem due to Anscombe [9], which was used in
[8] for establishing the asymptotic validity, was proved
under certain restrictive assumptions which were not
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demonstrated to hold for the sequential stopping rules.)
In addition, our paper includes much more extensive
empirical studies for queuing systems than did [8].

Regenerative simulation
Let {V(¢):t = 0} be a vector-valued continuous param-
eter stochastic process that assumes values in k-dimen-
sional Euclidean space. We assume that {V(¢):t = 0}isa
regenerative process with an infinite sequence of re-
generation points {r,:i=1,2," -}, where 0 = 7, <, <---
Informally, this means that {V(¢):f, = r < 1.}, the
evolution in time of the process between two successive
regeneration points, is a statistically independent prob-
abilistic replica of the evolution in time of the process
between aﬁy two other successive regeneration points.
The function {V(z):z, = t < 1.} is called the ith rour,
i=1,2,--- Let X, =1, , —t, denote the duration of the
ith tour. The random variables {X;:i =1, 2, -} are iid
(independent and identically distributed).

Under certain mild regularity conditions [3] it can be
shown that if X, is not a discrete random variable and
if E[X,] < o, then

Ex_r'g PV(n)=v)=P(V=vy),

i.e.,, {V(¢#):t = 0} has a limiting probability distribution.

The random vector V is the so-called steady-state vector.

Let f be a real-valued non-negative measurable function

defined on 4-dimensional Euclidean space, and let
i1

Y,=| fIV(n)] .

4

The random variables {Y,:i=1, 2, - -} areiid. If X is not
a discrete random variable, if E[X,] <~ and if E[ (V)]
< o, then, under certain mild regularity conditions [3],
it can be shown that

EL)] =t L [ f1veo]
0

P1 (with probability one).
(1)

= E[Y,]/E[X,],

Furthermore, let ¢ be a real-valued non-negative measur-
able function defined on 24-dimensional Euclidean space,
where g(x, y) is a cost incurred when V(7) undergoes a
transition from state x to state y. Let C(t, g) be the sum
of the costs incurred for all transitions which occur in
the time interval [0, ¢}, and let

C,(g) = C(ti+1’ g) - C(ti’ g),

i.e., C,(g) is the total cost incurred during the ith tour.
The random variables {C,(g):i = 1, 2, -} are iid. If
E[X,] <= and E[C,(g)] < =, it can be shown that [3]
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C(t,g) EI[C,(g)]
}L‘Q P E(X,] P1. (2)

The limit is the average cost per unit time. (The cost
considered in [3] is somewhat more general than the
cost we consider here.)

Similar results hold for a discrete parameter regenera-
tive stochastic process {V,:n =1, 2,-- -} with an infinite
sequence of regeneration points {n,:i =1, 2,- -}, where
0=n, <n,<--- If E[n, — n,] < o and the probability
distribution of n, — n, does not assign all its weight to
values that are integer multiples of some integer I > 1,
then

lim P(V, = v) = P(V=v).
Further, if E[f(V)] < o, then

T
ELf(V)] = lim 2 fV) P1

ng—1
=[S V)] Eln = n.
1= nl
We omit the average cost results. For the sake of sim-
plicity we proceed with our discussion in terms of
estimating E[f(V)] for a continuous parameter re-
generative stochastic process.
In order to estimate the steady-state response variable
r = E[f(V)] by the regenerative method of simulation,
we simulate the regenerative process {V(¢):t = 0} and
collect the sequence of pairs of observations { (X, Y,):i=
2,++}. The pair (X,, Y,) is defined solely with respect
to the ith tour and {(X,, ¥,):i=1, 2, - -} is a sequence of
iid pairs of non-negative random variables. Point and
confidence interval estimates for r are obtained from
these observations as follows: Let

X(n) =i2 X,

n

Y =13y,

Sy(n) =——"~ é[Y—Yn)J

n

Sry(n = ;—Y(n)], and

StHn) = Sy(n) — 2r(n)Szy(n) + rz(n)Si(n).
Then it can be shown that

lim r(n) =r, pP1, (3)
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and, if E[X3] < = and E[Y}] < , then
lim P(r2X (n) [r(n) = r]/S(m) < 1) = $(0), (4)

where

1

0 (i)i j_tm exp (—u*/2) du.

From (3), the point estimator r(n) is a strongly consis-
tent estimator of r. From (4) it follows that

nggc P(rin) —8(n, a) <r<r(n)+8na))=a,

where
8(n, a) = & '[(1 +a)/21S(n) /n2X (n). (5)

Thus, if n tours are simulated and # is sufficiently large,
the interval

(r(n) —8(n, o), r(n) +8(n, a))

is an approximately 100 X « percent confidence interval
for r. Other point and confidence interval estimators
which have been considered in conjunction with the
regenerative method are discussed in [4].

Specifying n ahead of time, i.e., using a fixed stopping
rule for the simulation, has the disadvantage that the
width 28 (n, @) or the relative width 28(n, a) /r (n) of the
estimated confidence interval cannot be specified in
advance. In the remainder of this paper we derive theo-
retical results for and empirically investigate sequential
stopping rules for the regenerative method of simulation.
These rules allow the relative width of the estimated
confidence interval to be specified ahead of time.

Sequential stopping rules

We next define a sequential stopping rule that termi-
nates a regenerative simulation when the relative width
of the estimated confidence interval falls below a specified
value. Recall that {(X,, Y,):i=1,2,--} are iid pairs of
non-negative random variables where (X,, Y,) is ob-
served on the ith tour. The response variable to be esti-
mated is r=E[Y,] /E[ X,]. We assume that 0 < E[X] <
w,0 < E[Y}] < »and P(Y,=rX,) < 1. The last assump-
tion excludes the trivial case r= Y,/ X, with probability
one, for which the exact value of r can be obtained by
observing a single tour.

Foranyy>0,and0 < a < 1,let

N(y,a) =min{n:n = 2;
S(n) > 0; 28(n, a) /r(n) < y}. (6)

We stop the simulation when N(y, ) tours have been
simulated. This sequential stopping rule is not new and
was mentioned by Iglehart [5). A generalization of this
stopping rule, which we discuss later in this section, was
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employed in the queuing network simulator APLOMB
[10]. Similar rules have been independently investigated
by Robinson [8] (see our comments at the end of the
first section). We will establish that for y sufficiently
small, the interval

I(y,a) = (r(N(y, @) —8(N(y, ), a),
r(N(y, @) +8(N(y, @), a)), (7

where 8(n, a), as given by (5), is approximately a
100 X « percent confidence interval for r. The relative
width of this interval is less than y.

Let (0, A, P) denote the underlying probability space
for the regenerative process as defined in [3]. Then
N(vy, a) is a random variable defined on this probability
space. For each w € Q, N(v, a, @) is nondecreasing as y
decreases. In Appendix 1, we prove the following
lemmas.

Lemma 1

lim N(y, a) =2, Pl.

Lemma 2

lim X(N(y, «)) = E[X,], P1,
y—>0+
lim Y(N(y, a)) = E[Y,], P1,

}yg)rlwr(N(y, «)) =r, P1, and

lig S(N(v, ) =5, P,

where §° = var (¥, — rX,).
Lemma 3
lim ¥’N(y, ) = D, P1,
y=>0+
where D = {2¢ '[(1 + &) /2]S/E[Y,]1}%
Note that since P(Y, — rX, = 0) < 1, it follows that
S > 0 and, hence, D > 0. Lemma 3 is the key resuit
which we use to prove the following theorem.

Theorem 1

lim P(N(y, a)2X(N{y, &))
>0+

X[r(N(y,@)) —r}/S(N(y,@)) = 1) = (1).

Proof Let Z,= Y, — rX, Then {Z;:i=1,2,--} is a se-
quence of iid random variables, each with mean zero
and variance S°. Let

] n
Z(n) =;§—1 Z.

Using Lemma 3 we can proceed in a manner similar to
that used by Chung [11], pp. 197-199, in proving a
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central limit theorem in the case of a random number of
terms, and establish that

lim P(N(y, 0)PZ(N(y, @) /S = 1) = $(1).

Since Z(N(y, a)) = X(N(y, &)} [r(N(y, a)) —r], and
lim S(N(y, a)) =S, P1,
=0+

the application of Theorem 4.4.8 in Chung [11] com-
pletes the proof. 0

It follows from Theorem 1 that for y sufficiently small,
the interval I(y, a) given by (7) is approximately a
100 X a percent confidence interval for r. In order to
implement the sequential stopping rule it is necessary
to recompute the relative width of the confidence interval
after each additional tour is simulated. However, we can
modify the stopping rule so that this computation is
done every K tours, where K > 1, instead of every tour.
Furthermore, it may be desirable to guarantee that at
least a fixed minimum number of tours is always simu-
lated. For any positive integers K = 1 and L = 2, and any
v > 0, let

N(K,L,y,a) =min{Kn:Kn= L; S(Kn) > 0;
28(Kn, a) / r{(Kn) < y}. (8)

We stop the simulation when N(K, L, y, a) tours have
been simulated; N(K, L, y, a) is never less than L.
Furthermore, the relative width is only computed every
K tours. Lemmas 1-3 and Theorem 1 can be shown to
hold for this sequential stopping rule. Thus, for y suf-
ficiently small,

("(N(K, La Y, a)) —S(N(K9 La Y, a)’ a);
r(N(K, L, y,a)) +8(N(K, L, v, a), a))

is approximately a 100 X a percent confidence interval
for r.

[t may also be desirable to place a fixed upper bound on
the number of tours that are simulated, thus com-
bining aspects of a fixed and sequential stopping rule.
For any positive integer M > L, let

N(K,L,M,y,a) =min(N(K, L, vy, ), M).

It can be proved from previous results for the pure fixed
stopping rule and for the pure sequential stopping rule
that for vy sufficiently small and M sufficiently large,

(V(N(K, L, M, Y, Ol)) _8(N(Kv Lv M’ Y a)a a)a
HN(K,L,M,y,a)) +3(N(K,L,M, vy, a), a))

is approximately a 100 X « percent confidence inter-
val for r. This last stopping rule was implemented in
APLOMB [10].
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In the sequential stopping rules we have discussed, we
do not stop after n tours if S{(r) = 0, and hence, §(n, @)/
r(n) = 0. It is straightforward to show that S(n) = 0 if
and only if Y,/X, = Y,/X,="--=7Y,/X,. Therefore,
for any n = 2, S(n) > 0if §(2) > 0, and P(S(n) > 0,
n=2,3-9)=PS(2) >0 =PY,/X, #X,/Y,). If
P(Y,/X, =Y,/X,) >0, then P(S(2) = 0) > 0. If, for
example, we replace (6) with

N'(y, @) =min{n:n=2; 28(n, a)/r(n) < vy},

where the restriction S(#) > 0 is omitted, then if p* =
P(Y,/X,=Y,/X,) >0,itfollows that P(N'(y,a) =2) =
p* > 0, where p* does not depend on y. Hence,

P(lim N'(y, a) =) = 1 — p*,
y—0+

i.e., Lemma 1 does not hold. We have avoided this situ-
ation by stopping after n tours only if S(n) > 0. If
P(Y,/X, = Y,/ X,) = 0, which holds, for example, if
Y,/ X, is absolutely continuous, then we do not need this
restriction. Another way to avoid this problem is to
replace (6) with

N'(y, a) =min{n:n = 2; [28(n, a) /r(n)] + 1/n < y}.

Empirical studies

In this section we will present empirical results on the
actual coverage obtained when using the sequential rules
in the regenerative simulation of queuing systems that
have known analytic solutions. We also empirically
compare the sequential rules with a fixed stopping rule.
We describe the queuing systems, the response variables
to be considered, and how the regenerative method can
be applied to estimate these response variables.

e M/G/1 queue

We consider an M/ G/ 1 queue with Poisson arrivals at
rate A and general service times having mean 1/,
finite fourth moment, and probability distribution func-
tion F(¢). Let @, denote the queuing time (waiting time
plus service time) for the nth customer to arrive. If p =
Mup < 1,then {Q,:n=1, 2, -} is a discrete parameter
regenerative stochastic process with regeneration points
{n:i=1,2, -}, where n, is the serial number of the ith
customer which arrives to find the system empty [1].
By letting Q denote the mean steady-state queuing time,
the regenerative method can be applied to obtain point
and confidence interval estimates for the response
variable

np-1

0=E[$ o]/Btn—n

i=ny

e Cyclic queue with hyperexponential service times
We consider a cyclic queuing system that consists of two
service centers, each of which is a single server queue
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with customers served in the order of their arrival
(Fig. 1). The number of customers in the system is fixed
and equal to N. All service times are mutually indepen-
dent random variables, and service times at service
center [ are iid with mean 1/, and probability distribu-
tion function

F,-(t) = Pi[l — exp (_ZPiF'it)] + (1 —Pi)
X {1 —exp[—2(1 — p)p,t]}, tz0, (9

where p,=[C*+ 1— (C!— 1)7]/[2(C*+ 1)],and C,> 1
is the coefficient of variation of the service times at ser-
vice center i. By using the method of stages [12], a ser-
vice time at service center i can be represented as two
independent exponential stages of service in parallel.

For any ¢ 2 0, let V(1) = (n, (1), 5,(1), n,{1), 5,(8)),
where n,(?) is the number of customers in service center i
at time ¢, 5,(¢) is the stage of service of the customer in
service at service center i at time ¢ if n(s) > 0, and
5;(t) = 0if n,(r) = 0. Then {V(r) :t = 0} is a continuous
parameter finite-state irreducible Markov process.
Hence, {V(¢):t = 0} is a regenerative process with re-
generation points {ti:i =1, 2, -}, which are the suc-
cessive times at which the process enters a fixed state v*,
and E[r,— 1] < [2]. We call v* the tour-defining state.
By choosing appropriate functions f, the regenerative
method can be used to estimate such response variables
as the mean steady-state number of customers in service
center 1. Here, however, we will be concerned with
estimating a different quantity.

We call the time between successive arrivals by a
customer at service center 1 a cycle time. Let T, denote
the cycle time for the ith customer to arrive at service
center 1 (i.e., the ith customer to complete service at
service center 2). We wish to estimate the average cycle
time

1 n
lim n E T

i=1
provided this limit exists. The sequence {7,:i=1, 2, -}
is a discrete parameter stochastic process, but we have
not been able to find an infinite sequence of regeneration
points for this process. However, we show in Appendix
2 that

lim 1> 7,=T<=  PL
i=1

and by Little’s formula [ 13], that

T=NJ/A,

where

A = lim 4 PI1, (10)
—>o t
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Service center 1 Service center 2

Figure 1 Cyclic queuing system.

Service center 1
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Figure 2 Central server model.

and A(7) is the number of arrivals at service center 1
in the time interval [0, ¢). The term A(r) counts all
transitions from states with k customers in service center
1 to states with k& + 1 customers in service center 1, for
k=0,1,--, N— 1. Since {V(#) :t = 0} is a finite state
irreducible Markov process, E[A4(2,) — A(z,)] < . It
follows from (2) that

_E[4]

A= E(X,]’

where X, =1, — t, and A, = A(r,,,) — A(¢,). Hence,
_ NE[X]
E[4,] °

and the regenerative method can be applied to obtain
point and confidence interval estimates for the average
cycle time.

o Central server model with exponential service times
We consider the closed queuing system shown in Fig. 2,
consisting of M service centers, each of which is a single
server queue with customers served in the order of their
arrival. The number of customers is fixed and equal to N.
A customer completing service at service center 1 im-
mediately enters service center / with branching prob-
ability p, > 0,i= 2, -+, M, where

M
2 p;= I;
i=2

a customer completing service at service center i, i = 2,
-+, M, immediately enters service center 1. All service
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P3
o)

L :
~M-O— . 1-n(j)

(j = customer
type)

Service center 1

—pﬁ M

Figure 3 Closed queuing system with two types of customers.

times are mutually independent random variables and
service times at service center [ are iid and are ex-
ponentially distributed with mean 1/, (This queuing
system was called the central server model by Buzen
[14], who proposed it as a simple model of a multi-
programmed computer system having a fixed level N of
multiprogramming, a single processor, and M — 1 input-
output devices. Service center 1, called the central server,
represents the processor.)

For any t = 0, let V(¢) = (n,(1), -+, n,(f)), where
n,(t) is the number of customers in service center i at
time ¢. Then {V(#):# = 0} is a continuous parameter
finite state irreducible Markov process, and hence is a
regenerative process. The regeneration points {f,;:i = 1,
2, -} are the successive times at which the process
enters a fixed state v*, the tour-defining state, and
E[:, — 1,] < ». We call the time between successive
arrivals by a customer at service center 1 a cycle time,
and let T, denote the cycle time for the ith customer to
arrive at service center 1. Then, as for the cyclic queue, it
can be shown that the average cycle time exists and is
finite, i.e.,

n

1

EH%!;ZITIZT<°°’ ri,
and that
T=NE[X‘],
E[Al]
where X, =1, —t, 4;,= A(t,,,) —A(t,),and A(¢) is the

number of customers arriving at service center 1 in the
time interval [0, 7). The regenerative method can be
applied to obtain point and confidence interval estimates
for the average cycle time.

s, Closed queuing system with two types of customers
We consider the closed queuing system consisting of M
service centers (Fig. 3). There are two types of cus-
tomers in the network. The number of type 1 customers
is fixed and equal to N, and the number of type 2 cus-
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tomers is fixed and equal to N,. Service center 1 has
N = N, + N, identical parallel servers; hence a customer
never has to wait for a server at service center 1 to be-
come free. Service center 2 is a single server processor
sharing queue [ 15]; i.e., all customers present at service
center 2 receive service simultaneously, and, if there are
n customers present, each customer is served at (1/n)th
of the server’s rate. Service centers 3, -, M are single
server queues with customers served in the order of their
arrival. A customer completing service at service center
1 immediately enters service center 2; a customer of
either type completing service at service center 2 im-
mediately enters service center i with probability p, > 0,
i=3,--+, M, where

p=1

s

i=3

|

a type j customer completing service at service center i,
i =3, --, M, immediately enters service center 2 with
probability p(j) > 0, or immediately enters service
center 1 with probability 1 — p(j) > 0. All service times
are mutually independent random variables. Fori=1, 2,
service times at service center i for type j customers are
iid and exponentially distributed with mean 1/ ( ;)5 for
i=3,---, M, service times at service center / are iid and
are exponentially distributed with mean 1/u; for both
types of customers. This queuing system is illustrative
of fairly complex queuing models of interactive computer
systems. Service center 1 represents a collection of
currently active terminals; service center 2 represents a
processor, which is scheduled in a round-robin manner;
service centers 3, --, M represent input-output devices,
each of which is scheduled on a first-come, first-served
basis. There are two types of users at the terminals and
the two types differ in their think times (service times
at service center 1), processor times between input-out-
put requests (service times at service center 2), and
number of input-output requests per interaction (number
of visits to service centers 3, -, M between visits to
service center 1). The particular assumptions we have
made about this model allow us to compute the average
response time defined later [ 16].

For any ¢t = 0, let V(¢) = (V,(8), -+, V,(¢)), where
V(1) is a list of the types of the customers in service
center i at time ¢ in the order of their arrival at the service
center. It can be shown that {V(7) :¢ > 0} is a continuous
parameter finite-state irreducible Markov process, and,
hence, is a regenerative process. The regeneration points
{t,:i=1, 2,--} are the successive times at which the
process enters a fixed state v*, the tour-defining state,
and E[7, — 1] < . We call the time from when a cus-
tomer leaves service center 1 until that customer next
returns to service center 1 a response time. Let R, denote
the response time for the ith customer to leave service
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center 1. Then it can be shown that the average response
time exists and is finite, i.e.,

1 n
,{E&;E&ZR<°"’ P1,

i=1

and that

_E[L]
T E[4,]

where 4, = A(1,,,) — A(1), L, = ;1 n(r) dt, A1) is
the number of customers that leave service center 1 in the
time interval [0, ¢), and n(r) is the total number of cus-
tomers in service centers 2,---, M at time t. Thus, the
regenerative method can be used to obtain point and con-
fidence interval estimates for the average response time.

The empirical studies we next describe were carried
out using APLOMB [10], a FORTRAN program which
simulates a broad class of queuing systems having a re-
generative stochastic structure and uses the regenerative
method to obtain point and confidence intervals for
steady-state response variables. Integer random numbers
are generated in APLOMB by the multiplicative congru-
ential generator W, = 7° W,_,(mod 2*' — 1) discussed
in [ 17]. A realization of an exponentially distributed ran-
dom variable having mean 1/u is obtained by the
transformation —(1/u) In[ W,/ ( 2*' — 1)]. A realization
of an Erlang-k random variable is obtained by summing
realizations of an exponential random variable. A hyper-
exponential random variable having the probability dis-
tribution function given in (9) can be represented by the
method of stages as shown in Fig. 4, where U, and U, are
independent exponentially distributed random variables
having means 1/2(1 — p,)u; and 1/2p,u, respectively,
and 8§ = (1 —2p,)p,/ (1 — p,). In APLOMB a realization of
a hyperexponential random variable is obtained by using
this representation from a realization of U, a realization
of a binary-valued random variable and, if necessary, a
realization of U,.

We conducted two sets of experiments to study the
finite sample properties of sequential stopping rules, and a

Table 1b M /G /1 queue: empirical results.

1-8

oy

Figure 4 Representation of hyperexponential random variable.

third set of experiments to compare the finite sample
properties of fixed and sequential stopping rules. Each
experiment consisted of / independent replications of a
regenerative simulation, where I = 100 unless we state
otherwise. Each simulation was started in the tour-de-
fining state. For each replication we determined whether
or not the known response variable » was contained in the
estimated confidence interval for ». From the I replica-
tions comprising an experiment we obtained point and
90-percent confidence interval estimates for the true
coverage of the confidence interval for r. (The confidence
interval for the true coverage was estimated as described
in Appendix 3.) When the confidence interval for the
true coverage contains the desired coverage o, we say
that the confidence interval for r is valid. The sequential
stopping rule we used is to simulate N(K, L, y, «) tours,
where N(K, L, y, &) is given by (8), L=10and « =0.9.
In addition, for each experiment we obtained point and
90-percent confidence interval estimates for the rela-
tive bias of the point estimate for r. [If /' is the point
estimate of r, the relative bias in percent is equal to
100(E[#'] — r)/r]. The confidence interval estimate was

Table 1a M /G/1 queue: description of systems.

System A In C p Q
1 0.500 1.000 0.5 0.50 1.625
0.500 1.000 1.0 0.50 2.000
3 0.500 1.000 2.0 0.50 3.500

System K y Coverage Number of Tours Relative Bias (%)
1 10 0.10 0.88 (0.82, 0.92) 1414 (1337, 1491) —0.9 (—1.4,—0.4)
1 50 0.10 0.86 (0.79, 0.91) 1442 (1373, 1511) —0.8 (—1.3,—0.3)
1 100 0.10 0.90 (0.84, 0.94) 1472 (1394, 1550) —0.8 (—1.4,—0.3)
2 10 0.10 0.85 (0.78, 0.90) 4455 (4285, 4625) —0.7 (—1.3,-0.2)
2 50 0.10 0.90 (0.84, 0.94) 4489 (4320, 4657) -0.7 (—1.2,-0.2)
2 100 0.10 0.86 (0.79, 0.91) 4566 (4383, 4749) —0.7 (—1.3,—0.2)
3 10 0.10 0.86 (0.79, 0.91) 31652 (30681, 32624) —0.8 (—1.4,—0.2)
3 50 0.10 0.84 (0.77, 0.89) 31886 (30909, 32863) —-0.6 (—1.2,—0.1)
3 100 0.10 0.85 (0.78, 0.90) 31503 (30532, 32474) —0.8 (—1.4,—0.3)
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obtained from the / independent samples of (#' — r) / rby
using the r-statistic with 7 — 1 degrees of freedom. For
each experiment using a sequential stopping rule we ob-
tained point and 90-percent confidence interval estimates
for E[N(K, L, y, a)] in the same manner.

The purpose of the first set of experiments was to
study the effect of different values of K, and K was
allowed to have the values 10, 50 and 100. The fixed

function F(t). The three forms are Erlang-k with co-
efficient of variation equal to 0.5, i.e., k= 4, exponential,
and the hyperexponential form given in (9) with co-
efficient of variation equal to 2. The description of these
three systems is summarized in Table 1a, where C de-
notes the coefficient of variation of the service times and
Q is the known mean steady-state queuing time. Re-

sults of the nine experiments are given in Table 1b. The
first column identifies one of the systems in Table 1a.
Except for one experiment, valid confidence intervals
were obtained for the response variable. Furthermore,
we concluded that different values of K have little effect
on the results.

The second set of experiments was more extensive
and was used to explore the effects of different values of
v, the specified relative width. The value of K used
depended on the particular system (see Appendix 4).

value y = 0.1 was used. The systems studied were
M/G/1 queues with A = 0.5, u = 1 and three different
forms for the service time probability distribution

Table 2a M/G/1 queue: description of systems.

System A ® ¢ P Q First we ran experiments for the M/G/1 queue with
1 0.250 1.000 0.5 0.25 1.208 three different arrival rates and the three forms for the
2 0.500 1.000 0.5 0.50 1.625 service time distribution discussed ahove. These nine
3 0.750 1.000 0.5 0.75 2.877 systems are summarized in Table 2a. Table 2b contains
4 0.250 1.000 1.0 0.25 1.333 . . . .
5 0.500 1.000 1.0 0.50 2,000 results of 27 experiments with these nine systems using
6 0.750 1.000 1.0 0.75 4.003 the values 0.3, 0.2, and 0.1 for y. Valid confidence inter-
7 0.250 1.000 2.0 0.25 1.833 vals were obtained for Q in eight of the nine experi-
8 0.500 1.000 2.0 0.50 3.500 . _ . . . .
9 0.750 1.000 2.0 0.75 8507 ments with y = 0.1, in four of the nine experiments with

v = 0.2, and in none of the experiments with y = 0.3.

Table 2b M/G/1 queue: empirical results.

System K v Coverage Number of Tours Relative Bias (%)
1 10 0.30 0.82 (0.75, 0.87) 51 (45,57) —1.9 (4.0, 0.0)
1 10 0.20 0.81 (0.74, 0.87) 128 (118, 138) —2.1 (-3.2,—0.9)
1 30 0.10 0.91 (0.85, 0.95) 546 (526, 566) —0.9 (—1.4,—0.5)
2 10 0.30 0.66 (0.58, 0.73) 87 (76, 98) ~7.9 (-10.0, —5.8)
2 20 0.20 0.75 (0.67, 0.81) 278 (254, 302) —3.3 (—4.4,-2.2)
2 81 0.10 0.88 (0.82, 0.92) 1498 (1415, 1580) -—0.8 (—1.4,—0.3)
3 33 0.30 0.62 (0.54, 0.70) 305 (265, 344) —8.5 (—10.7, —6.2)
3 74 0.20 0.71 (0.63, 0.78) 1004 (893, 1115) -4.9 (—6.2,—3.5)
3 297 0.10 0.84 (0.77, 0.89) 5325 (5051, 5599) —~1.0 (—1.5,—-0.5)
4 12 0.30 0.84 (0.77, 0.89) 207 (194, 219) —3.4 (—5.0,—1.8)
4 28 0.20 0.88 (0.82, 0.92) 520 (492, 548) —1.8 (2.8, —0.7)
4 112 0.10 0.88 (0.82,0.92) 2227 (2159, 2294) —0.9 (—1.4,—0.3)
5 27 0.30 0.75 (0.67, 0.81) 368 (334, 402) —5.6 (—7.3,-3.9)
5 60 0.20 0.88 (0.82, 0.92) 1083 (1015, 1151) —1.6 (—2.7,—0.5)
5 243 0.10 0.88 (0.82, 0.92) 4697 (4496, 4898) —0.5 (—1.0, 0.0)
6 73 0.30 0.74 (0.66, 0.81) 965 (858, 1072) ~5.0 (=7.0,-3.1)
6 165 0.20 0.82 (0.75, 0.87) 2742 (2564, 2921) —2.2 (-3.3,—1.1)
6 663 0.10 0.86 (0.79, 0.91) 12060 (11606, 12514) —1.0 (—1.6,—0.5)
7 102 0.30 0.83 (0.76, 0.88) 1799 (1669, 1930) —3.4 (—5.1,—1.8)
7 229 0.20 0.87 (0.80, 0.92) 4264 (4066, 4462) —2.2 (—3.3,—-1.3)
7 918 0.10 0.88 (0.82, 0.92) 18167 (17664, 18671) -0.4 (—0.9, 0.0)
8 179 0.30 0.82 (0.75, 0.87) 3047 (2841, 3252) —3.5 (—5.0, —2.0)
8 404 0.20 0.87 (0.80, 0.92) 7583 (7229, 7937) —-1.3 (—2.3,-0.3)
8 1618 0.10 0.86 (0.79, 0.91) 31826 (30936, 32717) —0.7 (—-1.2,-0.2)
9 319 0.30 0.79 (0.72, 0.85) 4967 (4563, 5370) —3.5 (-5.3,-1.8)
9 718 0.20 0.83 (0.76, 0.88) 12946 (12065, 13826) —1.8 (-2.9,—0.7)
9 2872 0.10 0.89 (0.83, 0.93) ) —0.9 (—1.4,—0.4)

56435 (54484, 58385
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Table 3a Cyclic queuing systems: description of systems.

System By My ¢ ¢, Py Py N T
1 1.000 1.000 2 2 0.72 0.72 5 6.959
2 1.000 1.000 2 2 0.79 0.79 10 12.585
3 1.000 1.000 4 4 0.65 0.65 5 7.644
4 1.000 1.000 4 4 0.70 0.70 10 14.308
5 1.000 1.000 8 8 0.63 0.63 5 7.902
6 1.000 1.000 8 8 0.66 0.66 10 15.148
7 0.667 1.333 2 2 0.91 0.45 5 8.276
8 0.667 1.333 2 2 0.97 0.48 10 15.543
9 0.667 1.333 4 4 0.83 0.42 5 8.984
10 0.667 1.333 4 4 0.88 0.44 10 17.079
11 0.667 1.333 8 8 0.81 0.40 5 9.304
12 0.667 1.333 8 8 0.82 0.41 10 18.186
Table 3b Cyclic queuing systems: empirical results.
System K y Coverage Number of Tours Relative Bias (%)
1 10 0.30 0.80 (0.73, 0.86) 50 (46, 54) —4.5 (—5.9, —3.0)
1 10 0.20 0.84 (0.77, 0.89) 125 (119, 131) -1.9 (=2.9,-0.9)
1 10 0.10 0.91 (0.85, 0.95) 525 (511, 538) -0.6 (—1.1,-0.1)
2 10 0.30 0.70 (0.62, 0.77) 26 (23, 29) -4.9 (—6.6,—3.1)
2 10 0.20 0.71 (0.63, 0.78) 58 (53, 64) —3.7 (—5.4,-2.0)
2 10 0.10 0.89 (0.83, 0.93) 287 (273, 300) -1.0 (=1.7,-0.3)
3 10 0.30 0.77 (0.69, 0.83) 240 (226, 254) —6.3 (—9.0, —3.5)
3 10 0.20 0.83 (0.76, 0.88) 592 (572, 612) —2.0 (—3.6,—-0.3)
3 10 0.10 0.91 (0.85, 0.95) 2471 (2442, 2500) —0.4 (0.9, 0.0)
4 10 0.30 0.67 (0.59, 0.74) 115 (104, 127) —4.8 (-~7.7,—1.8)
4 10 0.20 0.78 (0.70, 0.84) 312 (292, 331) —3.8 (—5.8,—1.7)
4 10 0.10 0.91 (0.85, 0.95) 1411 (1386, 1435) ~0.4 (—0.8, 0.0)
5 10 0.30 0.52 (0.44, 0.60) 705 (616, 794) —24.5 (—29.2,—-19.9)
5 10 0.20 0.69 (0.61, 0.76) 2130 (1963, 2296) ~11.5 (~=15.4,-7.6)
5 10 0.10 0.87 (0.80, 0.92) 10444 (10244, 10644) —0.8 (—2.0,0.2)
6 10 0.30 0.65 (0.57, 0.72) 479 (433, 524) —16.2 (—20.2,-12.1)
6 10 0.20 0.74 (0.66, 0.81) 1266 (1182, 1350) —8.0 (—i1.4,—4.6)
6 10 0.10 0.85 (0.78, 0.90) 5669 (5520, 5819) —1.5 (3.0, 0.0)
7 10 0.30 0.82 (0.75, 0.87) 141 (133, 149) —3.8 (=5.6,—2.1)
7 10 0.20 0.86 (0.79, 0.91) 336 (325, 348) —1.5 (—2.6,—0.4)
7 10 0.10 0.93 (0.88, 0.96) 1420 (1399, 1440) —0.5 (—1.0,-0.1)
8 10 0.30 0.84 (0.77, 0.89) 125 (116, 134) —3.7 (=5.4,-2.0)
8 10 0.20 0.89 (0.83, 0.93) 308 (295, 321) —1.4 (—2.4,-0.4)
8 10 0.10 0.89 (0.83, 0.93) 1292 (1270, i314) —0.7 (=1.1,-0.2)
9 10 0.30 0.77 (0.69, 0.83) 618 (585, 651) —-5.5 (—8.2,-2.8)
9 10 0.20 0.88 (0.82, 0.92) 1538 (1502, 1573) —1.1 (=2.2,0.0)
9 10 0.10 0.91 (0.85, 0.95) 6335 (6264, 6405) —0.4 (0.9, 0.0)
10 10 0.30 0.79 (0.72, 0.85) 535 (508, 562) —4.0 (—6.1, —2.0)
10 10 0.20 0.89 (0.83, 0.93) 1305 (1267, 1342) —1.6 (—3.0,-0.2)
10 10 0.10 0.89 (0.83, 0.93) 5449 (5383, 5515) —0.4 (0.9, 0.0)
11 10 0.30 0.58 (0.50, 0.66) 2093 (1877, 2308) —18.2 (=22.5,-13.9)
11 10 0.20 0.87 (0.80, 0.92) 6438 (6203, 6674) ~2.6 (—4.5,—0.6)
11 10 0.10 0.90 (0.84, 0.94) 27216 (26933, 27498) -0.3 (—0.8,0.1)
12 10 0.30 0.50 (0.42, 0.58) 1710 (1496, 1923) —23.2 (—27.8,—18.7)
12 10 0.20 0.84 (0.77, 0.89) 5904 (5647, 6160) —3.7 (—6.0, —1.3)
12 10 0.10 0.85 (0.78, 0.90) 25228 (24965, 25492) -0.3 (—0.8,0.1)

the values 0.3, 0.2, and 0.1 were used for y. The tour-
defining state for each system was the state for which all
customers are in service center 1 and the customer in
service is in the first stage of service (i.e., the leftmost
stage in Fig. 4). Table 3b contains results of the 36
experiments. Valid confidence intervals for T were ob- 553

Next we ran experiments for the twelve cyclic queuing
systems with hyperexponential service times described
in Table 3a. The quantity p, in the table is the utilization
of service center i, and T is the known average cycle time.
We considered both balanced systems (i.e., p, = p,)
and unbalanced systems (i.e., p, # p,). For each system
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Table 4a Central server model: description of systems.

System M ®y Mo, My D, Dy P, P, P, N State T
1 3 1.00 0.50 0.50 0.5 0.5 0.67 0.67 0.67 4 112 6.000
2 3 1.00 0.50 0.50 0.5 0.5 0.80 0.80 0.80 8 116 10.000
3 3 1.00 0.90 0.10 0.9 0.1 0.67 0.67 0.67 4 112 6.000
4 3 1.00 0.90 0.10 0.9 0.1 0.80 0.80 0.80 8 116 10.000
S 3 1.00 0.25 0.25 0.5 0.5 0.38 0.76 0.76 4 112 10.531
6 3 1.00 0.25 0.25 0.5 0.5 0.44 0.88 0.88 8 116 18.280
7 3 1.00 0.45 0.05 0.9 0.1 0.38 0.76 0.76 4 112 10.530
8 3 1.00 0.45 0.05 0.9 0.1 0.44 0.88 0.88 8 512 18.279
9 3 1.00 1.00 1.00 0.5 0.5 0.91 0.46 0.46 4 301 4,385
10 3 1.00 1.00 1.00 0.5 0.5 0.99 0.50 0.50 8 701 8.072
i1 3 1.00 1.80 0.20 0.9 0.1 0.91 0.46 0.46 4 310 4.385
12 3 1.00 1.80 0.20 0.9 0.1 0.99 0.50 0.50 8 710 8.072

tained in all twelve experiments with y = 0.1, in five of
the twelve experiments with y = 0.2 and in none of the
experiments with y = 0.3.

Next we ran experiments for the twelve central server
models with exponential service times described in
Table 4a. Each central server model has three service
centers and either four or eight customers. The quantity
p, is the utilization of service center i and T is the known
average cycle time. Note that we considered various bal-
anced and imbalanced systems with equal and unequal
branching probabilities. The three columns labeled srate
give'the number of customers in the three service centers
in the tour-defining state. The tour-defining state for a
system was chosen to minimize the mean number of
service completions in the system during a tour. Such a
state can be analytically determined for these systems.
For each system the values 0.3, 0.2, 0.1 and 0.05 were
used for y. Results of the 48 experiments are given in
Table 4b. For nine of the twelve experiments with y =
0.05, valid confidence intervals for T were obtained.
Valid confidence intervals were obtained in only six of
the twelve experiments with y = 0.1 and in none of the
experiments with y = 0.2 or y = 0.3.

Finally we ran experiments for the two closed queuing
systems with two types of customers described in
Table 5a. Each system has six service centers, forty
type 1 customers and four type 2 customers. The quantity
p; is the utilization of service center i and R is the
known average response time. The four columns headed
state give for the tour-defining state the number of type 1
customers in service center 1, the number of type 2 cus-
tomers in service center 1, the number of type 1 cus-
tomers in service center 2, and the number of type 2
customers in service center 2. There are no customers in
service centers 3-6 in the tour-defining state. For each
system the values 0.2, 0.1, and 0.05 were used for vy.
Only fifty replications were run for the experiments in
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which y = 0.05. (For y = 0.05 a large amount of com-
puter time was required for each replication.) Results
of the six experiments are given in Table Sb. Valid
confidence intervals for R were obtained in both of the
experiments with y = 0.05 and in none of the experiments
with y = 0.1 or y = 0.2.

The third set of experiments used a fixed stopping
rule; i.e., each simulation was stopped after a fixed
number of tours had been simulated. Experiments were
performed with the nine M/ G/ 1 queues described in
Table 2a and the second closed system described in Table
Sa. The values of the number of tours # used for a system
were equal to the point estimates of E[N(K, L, vy, a)]
obtained when using the sequential stopping rule for the
system for different values of y. The goal was to compare
the fixed and sequential stopping rules for the same
mean number of tours. Results of the 27 experiments with
the M/ G/ 1 queues are given in Table 6 and results of
the three experiments with the closed system are given
in Table 7. The confidence intervals obtained by using the
fixed stopping rules are valid more frequently than the
confidence intervals obtained by using the sequential stop-
ping rules. This is particularly so for the larger relative
widths and correspondingly smaller number of tours. The
sequential stopping rules have worse small sample be-
havior than the fixed stopping rules. Of course, with a
fixed stopping rule, the relative width of an estimated
confidence interval cannot be specified ahead of time.

Conclusions

We conducted extensive empirical studies using se-
quential stopping rules to estimate confidence intervals
having a specified relative width when simulating a
variety of queuing systems by the regenerative method.
For the systems, response variables and 90-percent
level of confidence we considered, a relative width of 0.05
was small enough to yield valid confidence intervals in
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Table 4b Central server model: empirical results.

System K £% Coverage Number of Tours Relative Bias (%)
1 10 0.30 0.78 (0.70, 0.84) 19 (17, 21) —1.1(-2.8,04)
1 10 0.20 0.79 (0.72, 0.85) 42 (38, 45) —0.7 (—1.9, 0.4)
1 10 0.10 0.84 (0.77, 0.89) 170 (162, 177) —1.3 (—1.9,—-0.6)
1 33 0.05 0.88 (0.82, 0.92) 685 (673, 696) -0.1 (=0.3,0.1)
2 10 0.30 0.65 (0.57,0.72) 13 (12, 14) 0.4 (—0.8, 1.8)
2 10 0.20 0.68 (0.60, 0.75) 17 (15, 19) 0.0 (1.0, 1.1)
2 10 0.10 0.72 (0.64, 0.79) 44 (39, 48) —0.5 (-1.2,0.1)
2 10 0.05 0.80 (0.73, 0.86) 192 (179, 206) —0.4 (-0.7,—0.1)
3 10 0.30 0.68 (0.60, 0.75) 38 (32, 44) —2.5 (—4.6,—0.3)
3 10 0.20 0.65 (0.57, 0.72) 93 (79, 106) —3.8 (—5.1,-2.5)
3 29 0.10 0.75 (0.67, 0.81) 534 (494, 575) —1.3 (2.0, —0.6)
3 119 0.05 0.92 (0.86, 0.95) 2469 (2396, 2543) —0.1 (0.4, 0.0)
4 10 0.30 0.65 (0.57,0.72) 30 (26, 33) 3.0 (0.3, 5.8)
4 10 0.20 0.70 (0.62, 0.77) 45 (38, 52) 0.2 (—1.1, 1.5)
4 10 0.10 0.66 (0.58, 0.73) 113 (93, 133) —2.1 (=2.7,—1.5)
4 36 0.05 0.81 (0.74, 0.87) 654 (594, 714) —0.7 (—1.1,-0.4)
5 10 0.30 0.77 (0.69, 0.83) 30 (27, 32) —0.9 (—2.6,0.7)
5 10 0.20 0.84 (0.77, 0.89) 67 (62, 72) -0.5 (—1.6,0.5)
5 15 0.10 0.86 (0.79, 0.91) 307 (296, 318) -0.8 (—1.3,-0.3)
5 61 0.05 0.87 (0.80, 0.92) 1250 (1232, 1268) —0.2 (—0.5, 0.0)
6 10 0.30 0.72 (0.64, 0.79) 23 (21, 26) 0.4 (—1.1, 2.0)
6 10 0.20 0.67 (0.59, 0.74) 39 (34, 44) —0.7 (1.9, 0.4)
6 10 0.10 0.74 (0.66, 0.81) 131 (118, 143) —0.3 (—1.1, 0.3)
6 32 0.05 0.87 (0.80, 0.92) 662 (640, 684) -0.1 (0.4, 0.0)
7 10 0.30 0.61 (0.53, 0.69) 72 (60, 84) —7.1 (—9.0,-5.1)
7 15 0.20 0.67 (0.59, 0.74) 209 (183, 236) —4.5 (—6.1,—2.8)
7 61 0.10 0.87 (0.80, 0.92) 1193 (1145, 1240) 0.7 (-1.2,—0.2)
7 246 0.05 0.91 (0.85, 0.95) 5055 (4965, 5145) 0.0 (—0.2,0.2)
8 10 0.30 0.62 (0.54, 0.70) 10 (10, 11) —0.8 (—1.9,0.3)
8 10 0.20 0.54 (0.46, 0.62) 90 (75, 106) —3.4 (—4.6,—2.2)
8 32 0.10 0.73 (0.65, 0.80) 534 (472, 596) —1.6 (—2.3,—0.9)
8 128 0.05 0.84 (0.77, 0.89) 2684 (2563, 2805) —0.1 (0.4, 0.2)
9 10 0.30 0.84 (0.77, 0.89) 27 (25, 29) —0.8 (—2.2,0.5)
9 10 0.20 0.83 (0.76, 0.88) 57 (54, 61) -1.1 (-2.2,0.0)
9 11 0.10 0.91 (0.85, 0.95) 242 (235, 248) —0.7 (—1.2,-0.2)
9 47 0.05 0.90 (0.84; 0.94) 989 (976, 1002) —0.2 (0.5, 0.0)

10 10 0.30 0.77 (0.69, 0.83) 27 (25, 29) —1.8 (—3.5,-0.1)
10 10 0.20 0.83 (0.76, 0.88) 62 (58, 66) —1.5 (—2.5,—-04)
10 12 0.10 0.86 (0.79, 0.91) 246 (238, 253) —0.9 (—1.4,—04)
10 50 0.05 0.91 (0.85,0.95) 1038 (1022, 1054) 0.0 (—0.2,0.1)
11 10 0.30 0.82 (0.75, 0.87) 44 (40, 48) 0.2 (—1.4,1.8)
11 10 0.20 0.84 (0.77, 0.89) 93 (86, 100) —1.2 (=2.3,—0.1)
11 24 0.10 0.89 (0.83, 0.93) 425 (403, 447) —0.8 (—1.3,—-0.4)
11 98 0.05 0.93 (0.88, 0.96) 1944 (1890, 1998) —0.2 (—0.5, 0.0)
12 10 0.30 0.81 (0.74, 0.87) 40 (35, 44) —1.1 (=2.9, 0.6)
12 10 0.20 0.82 (0.75, 0.87) 89 (82, 96) —~1.6 (—2.7,—0.4)
12 18 0.10 0.94 (0.89, 0.97) 346 (329, 363) —0.6 (—1.0,—-0.1)
12 74 0.05 0.89 (0.83, 0.93) 1498 (1466, 1530) -0.1 (—0.4, 0.0)

almost all experiments. In many experiments

larger rela-

tive widths were adequate. For a fixed relative width,
the expected number of tours varied widely from system

to system. For y = (.1, the point estimates
pected number of tours varied from 546 to

for the ex-
56435 for

the M/ G/ 1 queues. Thus, it would be extremely difficult
to know ahead of time the fixed number of tours which
should be simulated to achieve a desired relative width.
However, for small sample sizes, fixed stopping rules
yielded confidence intervals having more adequate cover-
age than those obtained using sequential stopping rules.
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Thus, if one needs only a rough but valid estimate of a
response variable (i.e., if a valid confidence interval
having an unspecified and possibly large relative width is
adequate), then a fixed stopping rule may be appropriate.
If, on the other hand, one would like a precise valid esti-
mate of a response variable (i.e., if a valid confidence
interval having a specified small relative width is desired),
then a sequential stopping rule seems appropriate.

Since sequential stopping rules work poorly for large
relative widths it is worthwhile to try to modify these
rules to improve their small-sample properties (e.g.,
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Table 5a Closed system with two types of customers: description of systems.

System [T My T Moy State p(1) p(2) T
1 0.07 0.07 100.00 10.00 35351 0.95 0.95 2.390
2 0.20 0.10 100.00 10.00 31292 0.90 0.95 1.810

For all these cases M =6, u, = u, = u, = p, = 28.57, p, = p, = p, = p, = 0.25, N, =40, N, = 4.
For case 1 p, = 0.82, p, = p, = p, = py = 0.44.
For case 2 p, = 0.96, p, = p, = p, = p, = 0.57.

Table 5b Closed system with two types of customers: empirical results.

System K y Coverage Number of Tours Relative Bias (%)
1 10 0.20 0.61 (0.53, 0.69) 50 (44, 56) —0.2 (2.1, 1.7)
1 10 0.10 0.70 (0.62, 0.77) 264 (244, 284) —0.4 (—1.3,0.5)
1 10 0.05 0.86 (0.76, 0.92) 1208 (1137, 1279) —0.2 (—1.0, 0.5)
2 10 0.20 0.65 (0.57, 0.72) 15 (13,17) —0.1 (—1.2, 1.0)
2 10 0.10 0.75 (0.67, 0.81) 53 (49, 58) —0.1 (0.9, 0.5)
2 10 0.05 0.92 (0.83, 0.96) 253 (239, 267) —0.2 (—0.6, 0.1)
[8]). In addition, it would be worthwhile to empirically number. This implies that N* =, a contradiction. Hence,

compare the sequential stopping rules with a two-stage
stopping rule in which the number of tours required to
achieve a specified relative width is estimated during a
short pilot run, and the run is then continued until the
estimated number of tours have been simulated.

P(}i_{l(}+N(y, o) =) =1, |

Lemma 2 is a direct consequence of Lemma 1 and the
strong law of large numbers; its proof is omitted.

Lemma 3

Appendix 1 limy’N(v,a) =D,  PI,
Here we prove Lemmas 1-3. y=0+

where D = {267'[ (1 + ) /2]S/E[Y,]}"
Lemma 1

Proof 1t follows from (11) and Lemma 2 that
lin(l) N(y, a) =, P1.
Yoot P(lim inf ¥"N(y, a) = D) = 1.
Proof It follows from (6) that for all w € Q, Y0+
Ny, @, ) > [aS(N(y, & ©)) /Y (N(y, &, o)) 1%, It follows from (6) that forallw € Q, if S(N (y, @, w) — 1)

(1 1) > 0, then

where o =2¢ '[ (1 + @) /2]. Suppose Y(N(y, a, @) — 1)
P(lim N(y, a) =) < 1. =[aS(N(y, &, @) — 1) /Y(N(y, &, w) — D)]".
y—0+
Since

P(HmS(N(v.@) = 1) =$) =1,

Then, for some fixed finite integer N*,

P(éi_{&N(y, a) =N*) > 0.
where § > 0, it follows that for any € > 0 there exists
y(€) > 0 such that P(S(N(y,a) = 1) >0, Vy=1y(e)) =
1 — €. Thus,

Let Q* = {w € Q: lim N(y, a, w) = N*}.
y—=> 0+

Then for any o € Q*, there exists y¥ > 0, such that if
y= v¥, then N(y, a, w) = N*, S(N(y, 0, w)) =S(N*) > P (N(y,a) — 1)

w)) = *). , if
0, and Y(N(vy, a, o)) Y(N*). Thus, from (11), i < [aS(N(y. @) — 1)/ Y(N(y, @) — DI

w € 0%, then
N* > [aS(N*)/ Y(N*)]*/5* vr=v() =1-e
556 for all y = vy*, where aS(N*)/Y(N*) is a fixed positive Using Lemma 2, this implies that
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P(Ji_)r&sup Y(N(y,a) —1)=D) =1 —e.

Since € is arbitrary,

P(lim sup y’N(y, &) = D) =1,
y—=0+
which completes the proof. O

Appendix 2

We consider the cyclic queue described in the section
on empirical studies. The ith cycle time T, is the sum of
two quantities, the time the customer spends in service
center 1 during the cycle time, denoted Tl.,l, and the time
the customer spends in service center 2 during the cycle
time, denoted T,,. The sequence {Ti’lzi =1,2,--}isa
discrete parameter regenerative process with regenera-
tion points {lj :j=1,2,--}, where /; is the serial number
of the jth arrival at service center 1 which finds the
service center empty and leaves the process { V(1) :1 =0}
in a fixed state. Since {V(7):f = 0} is a finite-state ir-
reducible Markov process, it follows that E[[, — [,] < «
and E[g, — g,] < =, where g, is the time at which the
/ith arrival occurs. Furthermore, since there are N cus-
tomers in the network,

-1
B[S 7] = NEla— ).
i=l

By using the above results it can be shown in a similar
manner to that used in [13] that

T,=N,/A <,
where A is given by (10), that
P R
lim- ;1 T, =T, P1,
and
1 t
}LIB;J m(wdu=N,  PL
o

The sequence {Tm:i =1, 2, -} is adiscrete parameter
regenerative  stochastic process with regeneration
points {m]. :j=1,2,--}, where m; is the serial number of
the jth arrival at service center 2 which finds the service
center empty and leaves the process {V(r):t = 0} ina
fixed state. Thus, it can be shown that

Table 6 M/G/1 queue: empirical results —fixed sampling.

System K

Coverage

Relative Bias (%)

51
128
546
87
278
1498
305
1004
5325
207
520
2227
368
1083
4697
965
2742
12060
1799
4264
18167
3047
5583
31826
4967
12946
56435

NWNOWOOWWXII~TADA LD WL WwWh N = e -

0.82 (0.75, 0.87)
0.84 (0.77, 0.89)
0.84 (0.77, 0.89)
0.79 (0.72, 0.85)
0.81 (0.74, 0.87)
0.89 (0.83, 0.93)
0.81 (0.74, 0.87)
0.87 (0.80, 0.92)
0.88 (0.82, 0.92)
0.86 (0.79, 0.91)
0.84 (0.77, 0.89)
0.86 (0.79, 0.91)
0.86 (0.79, 0.91)
0.94 (0.89, 0.97)
0.84 (0.77, 0.89)
0.85 (0.78, 0.90)
0.88 (0.82, 0.92)
0.90 (0.84, 0.94)
0.89 (0.83, 0.93)
0.87 (0.80, 0.92)
0.87 (0.80, 0.92)
0.86 (0.79, 0.91)
0.91 (0.85, 0.95)
0.83 (0.76, 0.88)
0.86 (0.79, 0.91)
0.85 (0.78, 0.90)
0.89 (0.83, 0.93)

~0.5 (=2.4, 1.1)
—0.8 (—1.9, 0.3)
—~1.0 (—1.5,—0.5)
—1.7 (~3.8,0.3)
—1.1 (=2.2, 0.0)
—0.7 (1.2, -0.3)
2.7 (—4.6,—0.9)
—1.9 (3.0, —0.8)
—0.9 (—1.3,-0.5)
—1.2 (-2.9, 0.3)
—1.6 (=2.7,—0.6)
—0.6 (—1.2, 0.0}
—2.9 (—4.4,—1.4)
—0.7 (1.7, 0.1)
~0.7 (=1.3,-0.2)
—0.7 (=2.5,0.9)
—1.3 (—2.3,-0.3)
—0.5 (—0.9, 0.0)
—0.8 (—2.3, 0.6)
—0.8 (—1.9,0.1)
—0.3 (—0.8, 0.1)
—0.7 (=2.4,0.7)
—1.3 (=2.3,—0.1)
—0.3 (—0.8, 0.2)
—2.0 (3.5, —0.4)
—0.6 (—1.8, 0.4)
~0.5 (~1.0, 0.0)

Table 7 Closed system with two types of customers: empirical
results — fixed sampling.

System K Coverage Relative Bias (%)
2 15 0.76 (0.68, 0.82) —0.3 (—1.4, 0.8)
2 53 0.85 (0.78, 0.90) —0.1 (0.8, 0.4)
2 253 0.82 (0.71, 0.89) 0.0 (—0.4,0.3)

Thus, since N, + N, =N,

T=T7T,+T,
=N/A
Appendix 3

Here we give the method used to obtain confidence
intervals for the coverage based on ! independent replica-
tions. For the ith replication, let

= <
T,=Ny/A <=, 1, if response variable contained in confidence
where 9. = interval,
rlzl—l)roloi > I,,=T, P1, 0 else.

i=1 Then 6,,- -+, 8, are iid random variables and p=P(0,=1)

and is the true coverage. Let

1 t 1 I
lirg—f n,(u)du=N,, P1. on =36,
o, I3 557
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Then,
JimP(IF[6(1) = p1/ [p(1 —p)] = 1) = $(1), (12)

and it can be shown that from (12) that for I sufficiently

large, (a(l, B) — b(], B), a(1, B) + b(I, B)) is approxi-
mately a 100 X 8 percent confidence interval for p, where

a(l, B) = [6(D) +¢*(B) /2111/[I + ¥ ()],
b(1, B) ={6(D[1—6(D]/1+ [w(B)/21]*}
X 14(B)/[1+¢*(B)], and

W(B) =¢ '[(1+p)/2].

Appendix 4

For the simulation studies with the M/ G/ 1 queues and
central server models in the second set of experiments,
we set K equal to max (10, D/20v"), where D, given in
Lemma 3, is the value to which ¥’ N(y, &) converges
with probability one. We made this choice for the pur-
pose of not having to compute the relative width of the
estimated confidence interval more than about 20 times
during a simulation run. We required that K be at least
10, since confidence intervals are estimated in APLOMB
only if at least ten tours have been simulated. The value
D was computed for the M/ G/ 1 queues by using busy
period analysis techniques (e.g., [ 18]); it was computed
for the central server models using techniques for com-
puting moments of first passage times in a semi-Markov
process [ 19]. It is much more difficult to compute D for
the cyclic queuing system and closed systems with two
types of customers, and we did not attempt these com-
putations. For these systems we set K equal to 10.
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