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Abstract: We consider  the  estimation via simulation of confidence  intervals for steady-state  response  variables  for  stochastic  systems 
which  have a regenerative  stochastic  structure.  Sequential  stopping  rules  are  investigated which  allow  the  ratio of the  width  to  the mid- 
point of an estimated  confidence  interval to be specified  ahead of time. We prove that  the  resulting  confidence intervals are  valid asymp- 
totically as the relative width decreases to zero.  For  various relative widths we empirically investigate the validity of the  confidence 
intervals obtained when  the  stopping  rules are applied to the simulation of queuing systems having a regenerative stochastic structure. 
For the queuing systems and response  variables considered, a relative  width of 0.05 is found  to  be  sufficiently  small  to  yield  valid  con- 
fidence  intervals in almost all cases. In  addition, we  empirically  compare the sequential stopping rules with a fixed  stopping  rule. 

Introduction 
When  simulating  a stochastic  system  such  as a queuing 
system, in order  to  estimate  steady-state  response vari- 
ables, it is desirable to obtain both point and confidence 
interval estimates  for  the  response variables. A dis- 
tributional theory  for estimating  confidence  intervals is 
usually based on asymptotic results, so that it is necessary 
to run the simulation long enough to obtain valid con- 
fidence  intervals. In addition, it is desirable that  the 
widths of the  estimated confidence  intervals  be suffi- 
ciently small that useful conclusions  can  be drawn from 
the simulation experiment.  The width of an estimated 
confidence  interval  can be controlled by the  use of an 
appropriate sequential  stopping  rule. 

In this paper we are  concerned with sequential stop- 
ping rules for estimating steady-state  response variables 
for regenerative stochastic  processes when using the 
regenerative  method of simulation. Papers dealing with 
the regenerative  method of simulation which provide  a 
useful background for this paper  are cited in [ I  - 61. 
Since  the regenerative  method of simulation  involves 
estimating the ratio of the mean values of two  dependent 
random variables  from  a sequence of independent pairs 
of observations of the random  variables, we will be con- 
cerned with  sequential  stopping  rules for  such ratio esti- 
mation.  Previously, Chow and  Robbins [7] considered  a 
sequential  stopping rule for estimating the mean  value 
of a single random  variable from a sequence of indepen- 
dent  observations of the  random variable. This rule 
results in a  confidence  interval of specified width. They 

derived asymptotic properties of the  stopping rule as  the 
width decreases  to  zero, including the  asymptotic validity 
of the resulting  confidence interval. 

In  the next  section of this  paper, we briefly describe 
the regenerative method of simulation.  Sequential stop- 
ping rules, which control the relative width of an esti- 
mated  confidence  interval  (Le., the ratio of the width of 
the interval to its midpoint) and  can  be  used in con- 
junction with regenerative  simulation, are proposed in 
the third section, where we also  derive  the  asymptotic 
validity of the resulting  confidence  intervals  as the 
relative width decreases  to  zero.  The  fourth section 
contains  empirical results on the finite sample properties 
of the stopping  rules applied to  the regenerative  simula- 
tion of queuing systems.  For  the queuing systems  and 
response variables considered, we investigate how small 
the relative  width  must be in order  to obtain valid con- 
fidence intervals. In addition, we empirically compare  the 
sequential  stopping  rules with a fixed stopping rule. Our 
conclusions are  presented in the last  section. 

In a recent  paper Robinson [8] independently  con- 
sidered the application of sequential  stopping  rules to 
regenerative  simulation and  addressed  some of the  ques- 
tions we consider in this  paper. However,  the  asymptotic 
validity of the resulting  confidence intervals was not 
properly  established in that paper. (In particular, the 
limit theorem  due  to  Anscombe [9], which was used in 
[8] for establishing the  asymptotic validity, was proved 
under  certain  restrictive  assumptions which were  not 
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demonstrated  to hold for  the sequential  stopping rules.) 
In addition, our  paper includes much more extensive 
empirical studies  for queuing systems  than did [8]. 

Regenerative simulation 
Let {V(t)  : t 2 0} be  a  vector-valued continuous param- 
eter  stochastic  process  that  assumes values in k-dimen- 
sional  Euclidean space. We assume  that {V( t )  : t  3 0} is a 
regenerative  process with an infinite sequence of re- 
generation  points { ti : i = I ,  2 , .  . .}, where 0 5 t ,  < t, <. . .. 
Informally,  this  means that {V(t)  : t i  5 t < ti+,}, the 
evolution in time of the  process  between  two  successive 
regeneration  points, is a  statistically independent prob- 
abilistic replica of the evolution in time of the  process 
between  any two other  successive regeneration  points. 
The function {V( t )  : t i  5 t < ti+,} is called the  ith tour, 
i = 1 ,  2,.  . .. Let Xi = ti+l - ti denote  the  duration of the 
ith tour.  The random  variables {Xi : i  = 1, 2 ,  . . .} are iid 
(independent and identically distributed). 

Under certain mild regularity  conditions [3] it can  be 
shown that if X ,  is not  a discrete random  variable  and 
if E[X,] < 00, then 

pir P ( V ( t )  i v )  = P ( V  5 v ) ,  

i.e., {V( t )  : t  1 0} has a limiting probability  distribution. 
The random vector V is the so-called steady-state  vector. 
Let .f' be  a  real-valued  non-negative  measurable  function 
defined on k-dimensional Euclidean space, and  let 

t i+  1 

Yi = ii f [ V ( t ) l  dt. 

The random  variables { Yi : i = 1 ,  2,.  . .} are iid. I f  X ,  is not 
a discrete  random variable, if E[X,] < m and if E[f(V)]  
< 00, then,  under  certain mild regularity  conditions [3], 
it  can  be  shown  that 

E [ f ( v ) l  = f [ f [ v ( u ) l  du 

= E[ Y,] /E[X,], PI (with probability one). 
( 1 )  

Furthermore, let g be a real-valued  non-negative measur- 
able  function defined on 2k-dimensional Euclidean space, 
where g(x, y )  is a cost incurred when V ( t )  undergoes a 
transition  from state x to  state y. Let C ( r ,  g )  be the sum 
of the  costs incurred for all transitions which occur in 
the time interval [0, t ) ,  and  let 

C , ( g )  = C($+,' g )  - coi, g ) ,  

i.e., C , ( g )  is the total cost  incurred during the ith tour. 
The  random variables { C i ( g )  :i = 1 ,  2, . . .} are iid. If 
E[X,] < 00 and E[C,(g)] < m, it can be shown  that [3] 546 
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The limit is  the  average  cost per  unit time. (The  cost 
considered in [3] is somewhat  more general  than the 
cost  we  consider  here.) 

Similar results hold for a discrete  parameter regenera- 
tive stochastic  process {Vn:n = 1 ,  2, .  . .} with an infinite 
sequence of regeneration  points {ni:i = 1 ,  2, .  . .}, where 
0 5 n, < n2 <.  . .. If E[n, - n,] < 00 and the probability 
distribution of n, - n, does not assign all its weight to 
values that  are integer multiples of some  integer I > 1, 
then 

?I'm 
lim P(V, 5 v)  = P ( V  5 v ) .  

Further, if E[f(V)] < m, then 

E[.f(V)] = lim 2 f(V,) P1 
r r - r  n 

i = l  

We omit the  average  cost results. For  the  sake of sim- 
plicity we proceed with our discussion in terms of 
estimating E[f(V)]  for a continuous  parameter  re- 
generative stochastic  process. 

In  order  to  estimate  the  steady-state  response variable 
r = E[f( V) ] by the regenerative  method of simulation, 
we simulate the regenerative process {V(t) :t 1 0} and 
collect the  sequence of pairs of observations { ( X i ,  Yi) :i = 

1 ,  2, .  . .}. The pair (Xi, Y i )  is defined solely with respect 
to  the  ith  tour  and {(Xi, Yi) : i = 1 ,  2; . .} is a sequence of 
iid pairs of non-negative random variables. Point and 
confidence  interval estimates  for r are  obtained from 
these  observations  as follows: Let 

. n  
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l and, if E[X;] < co and E[Y;] < m, then  employed in the queuing  network  simulator APLOMB 

kcm ~ ( n + ~ ( n )  [ r ( n )  - r ] / ~ ( n )  5 t )  = 4 ( t ) ,  [ IO] .  Similar rules have  been  independently  investigated 
(4) by Robinson [ S I  (see  our  comments  at  the end of' the 

first section), We will establish that  for y sufficiently where 
small. the interval 

I 

I $( t )  = exp ( - u 2 / 2 )  du. 

I 
From (3), the point  estimator r (  n )  is a  strongly  consis- r ( N ( y ,  a ) )  + 6(N(Y, a ) ,  a ) ) ,  ( 7 )  

tent  estimator  ofr.  From (4) it follows that  where 6 ( n ,  a ) ,  as given by ( 5 ) ,  is approximately a I 

100 X a percent confidence  interval for r .  The relative 
width of this  interval is less  than  y. 

where Let (a, A ,  P )  denote  the underlying  probability space 
for  the  regenerative  process  as defined in [3]. Then 

space.  For each w E a, N (  y, CY, w )  is nondecreasing as y 
decreases.  In Appendix 1, we prove the following 
lemmas. 

6 ( n , a )  =4"[(1 + a ) / 2 ] S ( n ) / n + X ( n ) .  ( 5 )  N ( y ,  a )  is a random variable defined on this  probability 

Thus, if n tours  are simulated  and n is sufficiently large, 
the interval 

( r ( n )  - 6(n, a ) ,  r ( n )  + 6(n ,  a )  

is an approximately 100 X a percent confidence  interval 
for r .  Other point and confidence  interval estimators lim N(y ,  a)  = m, P1. 
which have been  considered in conjunction with the 
regenerative method are discussed in [ 4 ] .  Lemma 2 

Specifying n ahead of time, Le., using a fixed stopping 
rule for  the simulation, has  the  disadvantage  that  the y+o+ 

width 26(n, a )  or  the relative width 26(n ,  a )  / r  ( n )  of the lim Y ( N ( y ,  a ) )  = E[ y , ~ ,  
estimated  confidence  interval cannot be specified in YOt 

advance.  In  the remainder of this paper we derive  theo- lim r ( N ( y ,  a ) )  = Y, P1, and 
retical results  for and empirically investigate  sequential yvof 

stopping  rules for  the regenerative  method of simulation. lim s ( N ( ~ ,  a ) )  = S, p1, 
These rules allow the relative width of the estimated y+w 
confidence  interval to be specified ahead of' time. where S2 = var ( Y ,  - rX , )  . 

Lemma 1 

Y+Df 

lim X ( N ( y ,  a ) )  = E[X,l, P I ,  

P I ,  

Lemma 3 
Sequential stopping rules 
We next define a  sequential  stopping  rule that termi- 
nates a regenerative  simulation when  the relative  width 
of the estimated  confidence  interval  falls below a specified 
value.  Recall that { ( X i ,   Y i )  : i = 1, 2 , .  . .} are iid pairs of 
non-negative random variables where ( X i ,   Y i )  is ob- 
served  on the ith  tour.  The  response variable to be esti- 
mated is Y = E[ Y,] / E[ X , ] .  We assume  that 0 < E[X:] < 
m, 0 < E[ Y;]  < 00 and P(  Y ,  = r X , )  < 1 .  The last  assump- 
tion  excludes the trivial case r = Y , /  X, with probability 
one, €or which the  exact value of r can be  obtained by 
observing a single tour. 

Foranyy>O,andO<a<  1 , le t  

N(y, a )  = min{n:n 2 2 ;  

S(n) > 0; 2 6 ( n ,  a ) / r ( n )  < y}. (6) 

lim y2N(y, a )  = D,  P I ,  
Y- tDf  

whereD={2+-'[(l+a)/2]S/E[Y1]}' .  

Note  that  since P (  Y ,  - rX,  = 0) < 1, it follows that 
S > 0 and,  hence, D > 0. Lemma 3 is the key result 
which we use to  prove  the following theorem. 

Theorem 1 

lim P ( N ( ~ ,  a ) + ~ ( ~ ( y ,  a )  1 
VDf 

x [ r ( N ( y ,  a ) )  - r l / S ( N ( y ,  a ) )  5 t )  = + ( t ) .  

Proof Let Zi = Y ,  - rXi .  Then { Zi: i = 1, 2 , .  . .} is a se- 
quence of iid random  variables, each with mean zero 
and  variance S2. Let 

We stop  the simulation  when N ( y ,  a )  tours  have been z(n) =- zi. 
simulated. This sequential  stopping rule is not new and 
was mentioned  by  Iglehart [SI. A generalization of this  Using Lemma 3 we can proceed in a manner similar to 
stopping  rule,  which we discuss  later in this section, was that  used by Chung [ 111, pp. 197-  199, in  proving  a 547 

I "  
n i-1 

NOVEMBER 1977 REGENERATIVE SIMULATION 



the application of Theorem 4.4.8 in Chung [ 1 1 1  com- 
pletes  the proof. 0 

It follows from  Theorem 1 that  for y sufficiently small, 
the interval I ( y ,  a )  given by (7 )  is approximately  a 
100 X a percent confidence interval  for r. In  order  to 
implement the sequential  stopping  rule it is  necessary 
to  recompute  the relative  width of the confidence  interval 
after  each additional tour  is simulated. However,  we  can 
modify the stopping rule so that this  computation is 
done  every K tours,  where K > 1, instead of every  tour. 
Furthermore, it may be desirable  to  guarantee  that  at 
least  a fixed minimum number of tours is always simu- 
lated. For  any positive  integers  K 1 1 and L P 2 ,  and any 
y > 0, let 

N(K, L,  y ,  a) = min{Kn:Kn? L; S(Kn) > 0; 

26(Kn,  a)/r(Kn) < y } .  (8 )  

We stop  the simulation when N(K,  L, y, a )  tours  have 
been  simulated; N(K,  L,  y ,  a )  is never less  than L. 
Furthermore,  the relative  width is only computed  every 
K tours.  Lemmas 1 - 3 and  Theorem 1 can  be  shown  to 
hold for this  sequential  stopping rule. Thus,  for y suf- 
ficiently small, 

is approximately  a 100 X (Y percent confidence  interval 
for r. 

It may also  be  desirable  to place  a fixed upper bound on 
the number of tours  that  are simulated, thus  com- 
bining aspects of a fixed and  sequential  stopping  rule. 
For  any positive  integer M > L, let 

It can be proved from previous results  for  the  pure fixed 
stopping  rule and  for  the  pure sequential  stopping  rule 
that  for y sufficiently small and M sufficiently large, 

( r (N(K,  L, M ,  y ,  a) 1 - 6(N(K, L, M ,  y ,  a), a), 

r (N(K,  L,  M ,  y ,  a)) + S ( N ( K ,  L,  M ,  y ,  a ) ,  a ) )  

is approximately  a 100 X a percent confidence  inter- 
val for r. This  last stopping rule was  implemented in 
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In  the sequential  stopping rules  we  have  discussed,  we 
do  not  stop  after n tours if S (n) = 0, and  hence, 6 (n, a )  / 
r(n) = 0. It is straightforward to  show  that S ( n )  = 0 if 
and  only if Y,/ X ,  = Y z / X 2  = ’ . . = Yn/Xn. Therefore, 
for  any n 3 2 ,  S(n) > 0 if S ( 2 )  > 0, and P(S(n) > 0,  
n = 2 ,  3;*.) = P ( S ( 2 )  > 0 )  = P ( Y , / X ,  # X z / Y 2 ) .  If 
P ( Y , / X ,  = Y J X J  > 0,  then P ( S ( 2 )  = 0 )  > 0. If,  for 
example, we replace (6) with 

N ’ ( y ,  a )  = min{n:n E 2 ;  B ( n ,  a ) / r ( n )  < y } ,  

where  the restriction S ( n )  > 0 is  omitted,  then if p* = 
P (  Y,/ X ,  = Y , / X , )  > 0, it follows that P ( N ’ ( y ,  a )  = 2) 1 
p* > 0, where p*  does  not  depend on y. Hence, 

Le., Lemma 1 does  not hold. We  have avoided  this  situ- 
ation  by  stopping after n tours only if S (  n) > 0. If 
P ( Y , / X ,  = Y J X J  = 0,  which  holds, for  example, if 
Y , / X ,  is absolutely continuous,  then we do  not need this 
restriction. Another way to avoid this  problem is  to 
replace (6) with 

N”(y ,  a )  = min{n:n 1 2 ;  [2S(n, a ) / r ( n ) ]  + l / n  < y}. 

Empirical studies 
In this  section we will present empirical results  on  the 
actual  coverage obtained when using the sequential  rules 
in the regenerative  simulation of queuing systems  that 
have known analytic solutions.  We also empirically 
compare  the sequential  rules  with a fixed stopping  rule. 
We describe  the queuing systems,  the  response variables 
to be considered,  and how the  regenerative method can 
be  applied to  estimate  these  response variables. 

M / G / I  queue 
We consider an M / G /  1 queue with Poisson arrivals at 
rate A and  general service times having mean  1 / p ,  
finite fourth  moment,  and probability  distribution func- 
tion F (  t )  . Let Qn denote  the queuing  time  (waiting  time 
plus service time) for  the nth customer  to arrive. If p = 
A /  p < 1,  then { Qn: n = 1, 2,. . .} is a discrete  parameter 
regenerative stochastic  process with regeneration points 
{ n,: i = 1, 2 , .  . .}, where ni is the serial  number of the  ith 
customer which arrives  to find the  system  empty [ 13. 
By letting Q denote  the mean steady-state queuing  time, 
the regenerative  method can be  applied to  obtain point 
and confidence  interval estimates  for  the  response 
variable 

8 Cyclic queue with hyperexponential  service  times 
We consider a  cyclic  queuing system  that  consists of two 
service  centers,  each of which is a single server  queue 
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with customers  served in the  order of their arrival 
(Fig. 1). The number of customers in the  system  is fixed 
and  equal  to N. All service times are mutually indepen- 
dent  random variables, and  service times at  seriice 
center i are iid with mean 1 /p i  and probability  distribo- 
tion function 

w h e r e p i = [ C ~ + 1 - ( < - l ) ~ ] / [ 2 ( C : + 1 ) ] , a n d C , >  1 
is the coefficient of variation of the  service times at  ser- 
vice center i.  By using the method of stages [ 121, a ser- 
vice  time at  service  center i can be  represented  as  two 
independent exponential  stages of service in parallel. 

For  any t I O ,  let V ( t )  = ( n , ( t ) ,  s l ( t ) ,  n , ( t ) ,  s , ( t ) ) ,  
where ni( t )  is  the  number of customers in service  center i 
at time t ,  si( t )  is  the  stage of service of the  customer in 
service at service  center i at time t if ni( t )  > 0, and 
s i ( t )  = 0 if n,(t) = 0. Then { V ( t )  : t  10) is a continuous 
parameter finite-state  irreducible Markov  process. 
Hence, { V( t )  : t I 0) is a regenerative  process with re- 
generation  points { t i :  i = 1 ,  2 ,  . ' .), which are  the suc- 
cessive  times at which the  process  enters a fixed state v*, 
and E[ t ,  - t l ]  < m [ 21. We call v* the tour-dej?ning state. 
By choosing appropriate functions f ,  the  regenerative 
method can be  used to  estimate  such  response variables 
as  the  mean  steady-state  number of customers in service 
center 1. Here,  however,  we will be concerned with 
estimating  a different quantity. 

We call the time between  successive  arrivals by a 
customer at service  center 1 a cycle  time. Let Ti denote 
the  cycle time for  the  ith  customer  to  arrive  at  service 
center 1 (i.e., the  ith  customer to complete  service at 
service center 2) .  We wish to  estimate  the  average  cycle 
time 

provided  this limit exists. The  sequence { T i : i  = 1 ,  2;  . .> 
is a discrete  parameter  stochastic  process,  but  we  have 
not been  able  to find an infinite sequence of regeneration 
points for this process.  However,  we  show in Appendix 
2 that 

!im ; 2 Ti = T < m, PI ,  

and by  Little's formula [ 131, that 

T =  N / A ,  

1 "  
i=l  

where 

A = L~I 
t '  

Service center 1 Service  center 2 

Figure 1 Cyclic  queuing  system. 

Service center 1 

M 

Figure 2 Central  server model. 

and A (  t )  is the number of arrivals at  service  center 1 
in the time  interval [0, t ) .  The  term A ( t )  counts all 
transitions  from states with k customers in service  center 
1 to  states with k + 1 customers in service  center 1 ,  for 
k = 0,  l , . . . ,  N - 1. Since { V ( t )  : t  10) is a finite state 
irreducible Markov  process, E[A (t,) - A ( t , ) ]  < a. It 
follows from (2) that 

where X ,  = ti+] - ti, and A ,  = A (ti+,) - A ( t i ) .  Hence, 

NE[X,l T = -  
E[A,l  ' 

and  the  regenerative  method  can  be applied to obtain 
point  and  confidence  interval estimates  for  the  average 
cycle time. 

Central  server  model with exponential  service  times 
We consider  the closed  queuing system  shown in Fig. 2, 
consisting of M service  centers,  each of which is a single 
server  queue with customers  served in the  order of their 
arrival. The  number of customers is fixed and equal to N .  
A customer completing service at service  center 1 im- 
mediately enters service center i with branching  prob- 
ability p i  > 0, i = 2, .  . ., M ,  where 
M 

i=2 

a customer completing service at service  center i, i = 2, 
. . ., M ,  immediately enters  service  center 1. All service 549 
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L0-l 
Service center 1 

Figure 3 Closed queuing system with two  types of customers. 

times are mutually independent  random variables  and 
service times at service center i are iid and  are  ex- 
ponentially distributed with mean 1 /pi. (This queuing 
system was called the  central  server model by Buzen 
[ 141, who  proposed it as a  simple model of a multi- 
programmed computer  system having  a fixed level N of 
multiprogramming, a single processor, and M - 1 input- 
output devices. Service  center 1 ,  called the central server, 
represents  the processor.) 

For  any t 2 0, let V (   t )  = (n , (  t )  , . . ., nM( t ) ) ,  where 
q ( t )  is the  number of customers in service  center i at 
time t. Then { V ( t )  : t 1 0) is a continuous  parameter 
finite state irreducible Markov  process,  and  hence  is a 
regenerative  process. The regeneration  points { t i  : i = 1 ,  
2 ,  . . .} are  the  successive times at which the  process 
enters a fixed state v*, the tour-defining state,  and 
E [ t ,  - t l ]  < 00. We call the time between  successive 
arrivals  by a customer  at  service  center 1 a cycle  time, 
and  let Ti denote  the  cycle time for  the  ith  customer  to 
arrive at  service  center 1 .  Then, as for  the cyclic queue,  it 
can  be  shown that  the  average cycle  time exists  and  is 
finite, Le., 

lim - 2 TI = T < m, 1 "  

and  that 

n-ta n P I ,  
i = l  

NErX.1 

where X i  = ti+, - ti, Ai  = A ( ti+l) - A  ( t i ) ,  and A ( t )  is the 
number of customers arriving at  service  center 1 in the 
time  interval 10, t )  . The  regenerative method can be 
applied to obtain  point and confidence  interval estimates 
for  the  average cycle  time. 

Closed  queuing  system  with  two  types of customers 
We consider  the closed  queuing system consisting of M 
service  centers  (Fig. 3 ) .  There  are  two  types of cus- 
tomers in the network. The  number of type 1 customers 
is fixed and  equal  to N ,  and the  number of type 2 cus- 550 
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tomers is fixed and equal to N,. Service  center 1 has 
N = N ,  + N ,  identical parallel servers;  hence a customer 
never  has  to wait for a server  at  service  center 1 to be- 
come  free.  Service  center 2 is a single server  processor 
sharing queue [ 151 ; i.e., all customers  present  at  service 
center 2 receive service simultaneously, and, if there  are 
n customers  present,  each  customer is served  at ( 1 / n)  th 
of the server's rate.  Service  centers 3, . . ., M are single 
server  queues with customers  served in the  order of their 
arrival.  A customer completing service  at  service  center 
1 immediately enters  service  center 2; a customer of 
either  type completing service  at service center 2 im- 
mediately enters  service  center i with probability pi > 0, 
i = 3,. . ., M ,  where 
.!4 
2 Pi= 1 ;  
i=3 

a type j customer completing service  at  service  center i, 
i = 3, . . ., M ,  immediately enters  service  center 2 with 
probability p ( j )  > 0, or immediately enters service 
center 1 with probability 1 - p ( j )  > 0. All service times 
are mutually independent random  variables. For i = 1,2 ,  
service times at  service  center i for  type j customers  are 
iid and  exponentially distributed with mean 1 / ( pij)  ; for 
i = 3, .  . ., M ,  service times at  service  center i are iid and 
are exponentially distributed with  mean 1 /pi for both 
types of customers.  This queuing system is illustrative 
of fairly complex  queuing models of interactive  computer 
systems.  Service  center 1 represents a collection of 
currently  active terminals;  service  center 2 represents a 
processor, which is scheduled in a  round-robin manner; 
service  centers 3 ,  . . ., M represent  input-output  devices, 
each of which is scheduled on a first-come,  first-served 
basis. There  are  two  types of users  at  the terminals  and 
the  two  types differ in their think  times (service times 
at  service  center 1 )  , processor times between input-out- 
put requests  (service times at  service  center 2 ) ,  and 
number of input-output requests  per interaction (number 
of visits to  service  centers 3, . . ., M between  visits to 
service  center 1 ) .  The particular assumptions we have 
made  about this  model  allow us to  compute  the  average 
response time defined later [ 161. 

For  any t 2 0, let V ( t )  = ( V , ( t ) ; . ;   V , ( t ) ) ,  where 
V i ( t )  is a list of the  types of the  customers in service 
center i at time t in the  order of their arrival at  the  service 
center.  It can  be  shown that { V (   t )  : t 2 O }  is a continuous 
parameter finite-state  irreducible Markov  process,  and, 
hence, is a regenerative process.  The regeneration  points 
{ t i :  i = 1, 2, . . .} are  the  successive times at which the 
process  enters a fixed state v*, the tour-defining state, 
and E[  t ,  - t l ]  < m. We call the time from when  a cus- 
tomer leaves service  center 1 until that  customer  next 
returns  to  service  center 1 a response  time. Let Ri denote 
the  response time for  the  ith  customer  to  leave service 
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center 1. Then it can  be  shown  that  the  average  response 
time exists and is finite, i.e., 

and that 

where A i  = A ( t i + l )  - A ( t i ) ,  Li = Jtli+l n ( t )  dt, A ( t )  is 
the  number of customers  that  leave sdrvice center 1 in the 
time  interval [ 0, t )  , and n( t )  is  the total number of cus- 
tomers in service  centers 2 ,  . . ., M at time t .  Thus,  the 
regenerative  method can be  used to obtain  point  and  con- 
fidence  interval estimates  for  the  average  response time. 

The empirical studies  we next describe  were carried 

simulates  a  broad class of queuing systems having  a re- 
generative stochastic  structure  and  uses  the regenerative 
method to obtain  point  and  confidence intervals  for 
steady-state  response variables. Integer random numbers 
are  generated in APLOMB by the multiplicative congru- 
entia1 generator W ,  = 75 W,-,(mod 2"' - 1) discussed 
in [ 171. A realization of an exponentially  distributed ran- 
dom variable having mean 1 / p  is obtained  by the 
transformation -( 1 / p)  In[ W,/ ( 231 - I ) ] .  A realization 
of an Erlang-k random variable is obtained by summing k 
realizations of an exponential random variable. A hyper- 
exponential  random  variable  having the probability dis- 
tribution  function  given in (9) can be represented by the 
method of stages  as  shown in  Fig. 4, where U ,  and U ,  are 
independent exponentially distributed  random variables 
having means 1 / 2 (  1 - pi) pi and 1 / 2pipi respectively, 
and 6 = ( 1 - 2 p i ) p i /  ( 1 - pi). In APLOMB a realization of 
a hyperexponential random variable is obtained by using 
this representation  from a realization of U,, a  realization 
of a binary-valued  random  variable and, if necessary, a 
realization of U,.  

We conducted  two  sets of experiments  to  study  the 
finite sample properties of sequential  stopping  rules, and a 

Out  Using APLOMB [ lo], a FORTRAN program which 

Table l b  M / G /  1 queue:  empirical  results. 

Figure 4 Representation of hyperexponential  random  variable. 

third set of experiments  to  compare  the finite sample 
properties of fixed and  sequential  stopping  rules. Each 
experiment consisted of I independent replications of a 
regenerative  simulation, where I = 100 unless we state 
otherwise.  Each simulation was  started in the  tour-de- 
fining state. For  each replication we determined  whether 
or not the  known  response variable r was  contained in the 
estimated  confidence  interval for r. From  the I replica- 
tions  comprising an experiment we obtained  point and 
90-percent confidence  interval estimates  for  the  true 
coverage of the confidence  interval for r. (The confidence 
interval for  the  true coverage  was  estimated as described 
in Appendix 3 . )  When the confidence  interval for  the 
true  coverage contains the desired coverage a, we say 
that  the confidence  interval for r is valid. The sequential 
stopping  rule we used is to simulate N (  K ,  L,  y ,  a)  tours, 
where N (  K ,  L, y, a )  is given by ( 8 ) ,  L = 10 and CY = 0.9. 
In addition, for  each  experiment  we  obtained point and 
90-percent confidence  interval estimates  for  the rela- 
tive bias of the point estimate  for r .  [If r' is the point 
estimate of r,  the relative bias in percent is equal to 
100( E [  r ' ]  - r )  / r ]  . The confidence  interval estimate was 

Table l a  M / G /  1 queue:  description of systems. 

System x P C P Q 

1 0.500 
2 

1.000 0.5 0.50 1.625 

3 
0.500 1.000 1.0 0.50 2.000 
0.500 1.000 2.0 0.50 3.500 

~~ 

System 

NOVEMBER 1977 

K 

10 
50 

100 
10 
50 

100 
10 
50 

100 

Y 

0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 

-~ 
Coverage 

0.88 (0.82,  0.92) 
0.86  (0.79, 0.91) 
0.90  (0.84,  0.94) 
0.85 (0.78,  0.90) 
0.90  (0.84, 0.94) 
0.86  (0.79, 0.91) 
0.86  (0.79, 0.91) 
0.84 (0.77,  0.89) 
0.85 (0.78, 0.90) 

Number of Tours 
~~ ~. ~ . .  

1414 (1337, 1491) 
1442 (1373, 1511) 
1472 (1394, 1550) 
4455 (4285,4625) 
4489 (4320,4657) 
4566 (4383,4749) 

31652  (30681,  32624) 
3 1 886 (30909,  32863) 
31 503 (30532,  32474) 

Relatiue  Bias (%) 

-0.9  (-1.4, -0.4) 
-0.8  (-1.3, -0.3) 
-0.8 (-1.4, -0.3) 
-0.7  (-1.3, -0.2) 
-0.7  (-1.2, -0.2) 
-0.7  (-1.3, -0.2) 
-0.8 (-1.4, 4 . 2 )  
-0.6  (-1.2, -0.1) 
-0.8 (-1.4, 4 . 3 )  
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obtained from the 1 independent samples of (r' - r )  / r by 
using the t-statistic  with 1 - 1  degrees of freedom. For 
each  experiment using a sequential  stopping  rule we ob- 
tained  point and  90-percent confidence  interval estimates 
for E [ N ( K ,  L, y ,  a ) ]  in the  same manner. 

The  purpose of the first set of experiments was to 
study  the effect of different values of K ,  and K was 
allowed to  have  the values  10, 50 and 100.  The fixed 
value y = 0.1 was used. The  systems studied were 
M / G /  1 queues with X = 0.5, p = 1 and  three different 
forms  for  the  service time  probability  distribution 

Table 2a M / G /  1 queue:  description of systems. 

System A P C P Q 

0.250 1.000 
0.500 1 .ooo 
0.750 1 .ooo 
0.250 1 .ooo 
0.500 1.000 
0.750 1.000 
0.250 1.000 
0.500 1.000 
0.750 1.000 

0.5 0.25 1.208 
0.5 0.50 1.625 
0.5 0.75 2.877 
1.0  0.25 1.333 
1.0 0.50 2.000 
1.0 0.75 4.003 
2.0 0.25 1.833 
2.0 0.50 3.500 
2.0 0.75 8.507 

Table 2b M / G /  1 queue:  empirical  results 

function F ( t )  . The  three  forms  are Erlang-k with co- 
efficient of variation  equal to 0.5, i.e., k = 4, exponential, 
and  the  hyperexponential  form given  in (9) with  co- 
efficient of variation equal  to 2. The description of these 
three  systems is summarized in Table  la,  where C de- 
notes  the coefficient of variation of the  service times and 
Q is the known mean steady-state queuing  time.  Re- 
sults of the nine experiments  are given in Table  lb.  The 
first column identifies one of the  systems in Table la. 
Except  for  one  experiment, valid confidence intervals 
were obtained for  the  response variable. Furthermore, 
we concluded that different values of K have little effect 
on the results. 

The  second  set of experiments  was  more  extensive 
and was  used to  explore  the effects of different  values of 
y ,  the specified relative  width. The value of K used 
depended  on  the  particular  system  (see  Appendix 4). 
First we ran  experiments  for  the M / G /  1 queue with 
three different  arrival rates  and  the  three  forms  for  the 
service time  distribution  discussed above.  These nine 
systems  are summarized in Table 2a. Table  2b  contains 
results of 27 experiments with these Qine systems using 
the values 0.3, 0.2, and 0.1 for y. Valid confidence  inter- 
vals were obtained for Q in  eight of the nine  experi- 
ments with y = 0.1, in four of the nine experiments with 
y = 0.2, and  in none of the  experiments with y = 0.3. 

System K Y Coveruge  Number of Tours Relative Bias (%) 

1 10 
1 10 
1  30 
2 10 
2 20 
2 81 
3 33 
3 74 
3 297 
4 12 
4 28 
4 112 
5 27 
5 60 
5 243 
6 73 
6 165 
6 663 
7 102 
7 229 
7 918 
8 179 
8 404 
8 1618 
9  3 19 
9 718 
9 2872 

552 

0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 
0.30 
0.20 
0.10 

0.82 (0.75, 0.87) 
0.81 (0.74, 0.87) 
0.91 (0.85, 0.95) 
0.66 (0.58, 0.73) 
0.75 (0.67, 0.81) 
0.88 (0.82, 0.92) 
0.62 (0.54,  0.70) 
0.71 (0.63, 0.78) 
0.84 (0.77, 0.89) 
0.84 (0.77, 0.89) 
0.88 (0.82, 0.92) 
0.88 (0.82, 0.92) 
0.75 (0.67, 0.81 j 
0.88 (0.82,  0.92) 
0.88 (0.82, 0.92) 
0.74 (0.66, 0.81) 
0.82 (0.75, 0.87) 
0.86 (0.79, 0.91 j 
0.83 (0.76, 0.88) 
0.87 (0.80, 0.92) 
0.88 (0.82, 0.92) 
0.82 (0.75, 0.87) 
0.87 (0.80, 0.92) 
0.86 (0.79, 0.91) 
0.79 (0.72, 0.85) 
0.83 (0.76, 0.88) 
0.89 (0.83, 0.93) 

51 (45, 57) 
128 (118, 138) 
546 (526, 566) 

87 (76,  98) 
278 (254, 302) 

1498 (1415, 1580) 
305 (265, 344) 

1004 (893, 1115) 
5325 (5051, 5599) 

207 (194, 219) 
520 (492,  548) 

2227 (2159,  2294) 
368 (334,402) 

1083 (1015, 1151) 
4697 (4496,4898) 

965 (858, 1072) 
2742 (2564,  2921) 

12060 (11606,  12514) 
1799 (1669, 1930) 
4264 (4066,4462) 

18 167 (17664, 18671) 
3047 (2841, 3252) 
7583 (7229, 7937) 

31 826 (30936,  32717) 
4967 (4563, 5370) 

12946  (12065,  13826) 
56435  (54484,  58385) 

-1.9  (-4.0, 0.0) 
-2.1  (-3.2, -0.9) 
-0.9 (-1.4, 4 . 5 )  

-7.9 (-10.0, -5.8) 
-3.3  (-4.4,  -2.2) 
-0.8 (-1.4, -0.3) 

-8.5 (-10.7, -6.2) 
-4.9 (-6.2, -3.5) 
-1.0  (-1.5, -0.5) 
-3.4 (-5.0, -1.8) 
-1.8  (-2.8, 4 . 7 )  
-0.9 (-1.4, -0.3) 
-5.6  (-7.3, -3.9) 
-1.6  (-2.7, -0.5) 

4 . 5  (-1.0, 0.0) 
-5.0  (-7.0, -3.1 ) 
-2.2  (-3.3, -1.1) 
-1.0  (-1.6, -0.5) 
-3.4  (-5.1, -1.8) 
-2.2  (-3.3, -1.3) 

-0.4  (-0.9, 0.0) 
-3.5 (-5.0, -2.0) 
-1.3  (-2.3, -0.3) 
-0.7  (-1.2, -0.2) 
-3.5  (-5.3, -1.8) 
-1.8  (-2.9, -0.7) 
-0.9  (-1.4,  -0.4) 
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Table 3a Cyclic queuing systems: description of systems. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1.000 
1.000 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 

1 .ooo 
1 ,000 
1 .ooo 
1 .ooo 
1.000 
1.000 
1.333 
1.333 
1.333 
1.333 
1.333 
1.333 

2 
2 
4 
4 
8 
8 
2 
2 
4 
4 
8 
8 

2 
2 
4 
4 
8 
8 
2 
2 
4 
4 
8 
8 

0.72 
0.79 
0.65 
0.70 
0.63 
0.66 
0.9 1 
0.97 
0.83 
0.88 
0.8 1 
0.82 

0.72 
0.79 
0.65 
0.70 
0.63 
0.66 
0.45 
0.48 
0.42 
0.44 
0.40 
0.41 

5 
10 
5 

10 
5 

10 
5 

10 
5 

10 
5 

10 

6.959 
12.585 
7.644 

14.308 
7.902 

15.148 
8.276 

15.543 
8.984 

17.079 
9.304 

18.186 

Table 3b Cyclic queuing systems: empirical results. 

System 

2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
9 
9 
9 

10 
10 
10 
11 
11 
11 
12 
12 
12 

K Y 

10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 
10  0.30 
10 0.20 
10 0.10 
10 0.30 
10 0.20 
10 0.10 

Coverage 

0.80 (0.73, 0.86) 
0.84 (0.77,  0.89) 
0.91 (0.85, 0.95) 
0.70 (0.62, 0.77) 
0.71 (0.63,  0.78) 
0.89 (0.83,  0.93) 
0.77 (0.69,  0.83) 
0.83 (0.76, 0.88) 
6.91 (0.85, 0.95) 
0.67 (0.59, 0.74) 
0.78 (0.70, 0.84) 
0.91 (0.85, 0.95) 
0.52 (0.44, 0.60) 
0.69 (0.61, 0.76) 
0.87 (0.80,  0.92) 
0.65 (0.57,  0.72) 
0.74 (0.66, 0.81) 
0.85 (0.78, 0.90) 
0.82 (0.75,  0.87) 
0.86 (0.79,  0.91) 
0.93 (0.88, 0.96) 
0.84 (0.77,  0.89) 
0.89 (0.83, 0.93) 
0.89 (0.83, 0.93) 
0.77 (0.69,  0.83) 
0.88 (0.82, 0.92) 
0.91 (0.85, 0.95) 
0.79 (0.72, 0.85) 
0.89 (0.83, 0.93) 
0.89 (0.83, 0.93) 
0.58 (0.50, 0.66) 
0.87 (0.80, 0.92) 
0.90 (0.84, 0.94) 
0.50 (0.42, 0.58) 
0.84 (0.77,  0.89) 
0.85 (0.78, 0.90) 

Next  we  ran  experiments  for  the twelve  cyclic  queuing 
systems with  hyperexponential service times described 
in Table 3a. The  quantity pi in the  table is the utilization 
of service  center i, and Tis  the known average  cycle time. 
We  considered both balanced systems (i.e., p1 = p,) 
and  unbalanced systems (i.e., p, # p,) . For  each  system 

NOVEMBER 1977 

Number of Tours  Relative  Bias (%) 
~ " 

50 (46, 54) 
125 (119,  131) 

-4.5  (-5.9, -3.0) 
-1.9  (-2.9, -0.9) 

525 (511, 538) 
26 (23,  29) 

-0.6  (-1.1. -0.1) 

58 (53,  64) 
-4.9  (-6.6,  -3.1 ) 

287 (273,  300) 
-3.7  (-5.4, -2.0) 
-1.0 (-1.7,-0.3) 

240 (226, 254) -6.3  (-9.0, -3.5) 
592 (572,  612) 

2471 (2442, 2500) 
-2.0  (-3.6, -0.3) 

-0.4 (-0.9, 0.0) 
115 (104,  127) 
312 (292,  331) 

-4.8 (-7.7,-1.8) 

1411 (1386,  1435) 
-3.8 (-5.8, - I  .7) 

-0.4 (-0.8, 0.0) 
705 (616,  794) 

2130 (1963,  2296) 
-24.5  (-29.2, -19.9) 
"1 1.5 (-15.4, -7.6) 

10444 (10244,  10644) -0.8 (-2.0, 0.2) 
479 (433,  524) -16.2  (-20.2, -12.1) 

1266 (1182, 1350) -8.0 (-1 1.4, -4.6) 
5669 (5520, 5819) 

141 (133,  149) 
-1.5 (-3.0, 0.0) 

-3.8  (-5.6,  -2.1 ) 
336 (325,  348) -1.5  (-2.6, -0.4) 

1420 (1399,  1440) -0.5 (-1.0, "0.1 ) 
125 (116,  134) 
308 (295,  321) 

-3.7 (-5.4,-2.0) 
-1.4  (-2.4, -0.4) 

618 (585, 651) 
1538 (1502,  1573) 

-5.5 (-8.2, -2.8) 

6335 (6264, 6405) -0.4  (-0.9, 0.0) 
535 (508, 562) 

1305 (1267,  1342) 
-4.0  (-6.1, -2.0) 
-1.6  (-3.0, -0.2) 

5449 (5383,  5515) -0.4 (-0.9, 0.0) 
2093 (1877, 2308) -18.2  (-22.5, 713.9) 
6438 (6203, 6674) -2.6  (-4.5, -0.6) 

27216 (26933,  27498)  -0.3 ( -0 .8,  0.1 ) 
1710 (1496, 1923) 
5904 (5647,  6160) 

1292 (1270, 1314)  -0.7 (-1.1, -0.2) 

-1.1  (-2.2, 0.0) 

-23.2  (-27.8, -I 8.7) 
-3.7  (-6.0, -1.3) 

25228 (24965,  25492)  -0.3 (-0.8, 0.1) 

the values  0.3, 0.2, and 0.1 were  used for y .  The  tour- 
defining state  for  each  system was the  state  for which all 
customers  are in service center 1 and the  customer in 
service is in the first stage of service (i.e.,  the leftmost 
stage in Fig. 4). Table 3b contains  results of the 36 
experiments. Valid confidence intervals  for T were  ob- 553 
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Table 4a Central  server model:  description of systems. 

System M Pl 
~- 

1 3 1 .oo 
2 3 1 .oo 
3 3 1 .oo 
4 3 1 .oo 
5 3 1 .oo 
6 3 1 .oo 
7 3 1 .oo 
8 3 1 .oo 
9 3 1 .oo 

10 3 1 .oo 
11 3 1 .oo 
12 3 1 .oo 

M 

0.50 
0.50 
0.90 
0.90 
0.25 
0.25 
0.45 
0.45 
1 .oo 
1 .oo 
1.80 
1.80 

___ 
P3 

0.50 
0.50 
0.10 
0.10 
0.25 
0.25 
0.05 
0.05 
1 .oo 
1.00 
0.20 
0.20 

PP p3 

0.5 0.5 
0.5 0.5 
0.9 0.1 
0.9 0.1 
0.5  0.5 
0.5 0.5 
0.9  0.1 
0.9 0.1 
0.5 0.5 
0.5 0.5 
0.9 0.1 
0.9 0.1 

~~ "~ 

P1 

0.67 
0.80 
0.67 
0.80 
0.38 
0.44 
0.38 
0.44 
0.9 1 
0.99 
0.91 
0.99 

_ _  
PZ P3 N State 

0.67 0.67 4 1 1 2  
0.80 0.80 8 1 1 6  
0.67 0.67 4 1 1 2  
0.80 0.80 8 1 1 6  
0.76 0.76 4 1 1 2  
0.88 0.88 8 1 1 6  
0.76 0.76 4 1 1 2  
0.88 0.88 8 5 1 2  
0.46 0.46 4 3 0 1  
0.50 0.50 8 7 0 1  
0.46 0.46 4 3 1 0  
0.50 0.50 8 7 1 0  

T 

6.000 
10.000 
6.000 

10.000 
10.53 1 
18.280 
10.530 
18.279 
4.385 
8.072 
4.385 
8.072 

I tained in all twelve experiments with y = 0.1, in five of 
the twelve experiments with y = 0.2 and in none of the 
experiments with y = 0.3. 

Next we ran experiments  for  the twelve central  server 
models with exponential service times  described  in 
Table  4a.  Each  central  server model has  three  service 
centers  and  either  four  or eight customers.  The  quantity 
p i  is the utilization of service  center i and T i s  the  known 
average  cycle time. Note  that we considered  various bal- 
anced and  imbalanced systems with  equal  and  unequal 
branching  probabilities. The  three columns  labeled state 
give 'the number of customers in the  three service centers 
in the tour-defining state.  The tour-defining state  for a 
system was chosen  to minimize the mean  number of 
service completions  in the  system during a tour.  Such a 
state  can be  analytically determined  for  these  systems. 
For  each  system  the values 0.3, 0.2, 0.1 and 0.05 were 
used for y.  Results of the 48 experiments  are given  in 
Table 4b. For nine of the twelve experiments with y = 

0.05, valid confidence  intervals for T  were obtained. 
Valid confidence  intervals  were  obtained in only six of 
the twelve experiments with y = 0.1 and in none of the 
experiments with y = 0.2 or y = 0.3. 

Finally we ran experiments  for  the  two closed  queuing 
systems with two  types of customers  described in 
Table 5a. Each  system  has six service  centers,  forty 
type 1 customers and four  type 2 customers.  The quantity 
pi is  the utilization of service center i and R is the 
known average  response time. The  four columns  headed 
state give for  the tour-defining state  the number of type 1 
customers in service center 1, the  number of type 2 cus- 
tomers  in service  center 1, the  number of type 1 cus- 
tomers in service  center  2,  and  the  number of type 2 
customers in service  center 2. There  are  no  customers in 
service  centers 3 - 6  in the tour-defining state.  For  each 
system  the values 0.2, 0.1, and 0.05 were used for y. 

554 Only fifty replications were run for  the  experiments in 

which y = 0.05. (For y = 0.05 a large amount of com- 
puter time  was required  for  each replication.) Results 
of the six experiments  are given in Table  5b. Valid 
confidence  intervals for R were obtained  in both of the 
experiments with y = 0.05 and in none of the  experiments 
with y = 0.1 or y = 0.2. 

The third set of experiments used  a fixed stopping 
rule; Le., each simulation was  stopped  after a fixed 
number of tours had  been  simulated. Experiments  were 
performed  with the nine M/ G/  1 queues  described in 
Table  2a and the  second closed system  described in Table 
Sa. The values of the number of tours n used for a system 
were  equal  to  the point estimates of E[N( K ,  L, y ,  a ) ]  
obtained  when using the  sequential stopping  rule for  the 
system for different  values of y. The goal was  to  compare 
the fixed and sequential stopping  rules for  the  same 
mean number of tours. Results of the 27 experiments with 
the M/G/  1 queues  are given in Table 6 and  results of 
the  three  experiments with the closed system  are given 
in Table 7. The confidence intervals obtained by using the 
fixed stopping  rules are valid more  frequently  than the 
confidence  intervals  obtained by using the  sequential stop- 
ping rules. This is particularly so for  the larger  relative 
widths  and  correspondingly  smaller number of tours.  The 
sequential  stopping  rules have  worse small sample be- 
havior than  the fixed stopping  rules. Of course, with  a 
fixed stopping  rule, the relative  width of an  estimated 
confidence interval  cannot  be specified ahead of time. 

Conclusions 
We conducted  extensive empirical studies using se- 
quential  stopping  rules to  estimate confidence  intervals 
having a specified relative  width  when simulating a 
variety of queuing systems by the  regenerative method. 
For  the  systems,  response variables and  90-percent 
level of confidence we  considered, a relative width of 0.05 
was small  enough to yield valid confidence  intervals  in 
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Table 4b Central server model: empirical results. 

System 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 

10 
I O  
10 
10 
11 
11 
11 
11 
12 
12 
12 
12 

K Y Coverage Number of Tours 

I O  
IO 
10 
33 
10 
10 
10 
10 
10 
10 
29 

119 
10 
10 
10 
36 
10 
IO 
15 
61 
10 
IO 
10 
32 
10 
15 
61 

246 
10 
10 
32 

128 
10 
10 
11 
47 
IO 
I O  
12 
50 
10 
10 
24 
98 
I O  
10 
18 
74 

0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 
0.30 
0.20 
0.10 
0.05 

0.78 (0.70, 0.84) 
0.79  (0.72, 0.85) 
0.84 (0.77, 0.89) 
0.88 (0.82,  0.92) 
0.65 (0.57, 0.72) 
0.68 (0.60, 0.75) 
0.72 (0.64, 0.79) 
0.80 (0.73, 0.86) 
0.68 (0.60,  0.75) 
0.65 (0.57, 0.72) 
0.75 (0.67, 0.81) 
0.92 (0.86,  0.95) 
0.65 (0.57, 0.72) 
0.70  (0.62, 0.77) 
0.66 (0.58, 0.73) 
0.81 (0.74, 0.87) 
0.77 (0.69,  0.83) 
0.84 (0.77, 0.89) 
0.86 (0.79, 0.91) 
0.87 (0.80, 0.92) 
0.72 (0.64, 0.79) 
0.67 (0.59, 0.74) 
0.74  (0.66, 0.8 1 ) 
0.87 (0.80, 0.92) 
0.61 (0.53, 0.69) 
0.67  (0.59, 0.74) 
0.87 (0.80, 0.92) 
0.91 (0.85, 0.95) 
0.62 (0.54, 0.70) 
0.54 (0.46, 0.62) 
0.73 (0.65, 0.80) 
0.84 (0.77,  0.89) 
0.84 (0.77, 0.89) 
0.83 (0.76, 0.88) 
0.91 (0.85, 0.95) 
0.90 (0.84, 0.94) 
0.77 (0.69, 0.83) 
0.83 (0.76, 0.88) 
0.86 (0.79, 0.91) 
0.91 (0.85, 0.95) 
0.82 (0.75, 0.87) 
0.84 (0.77, 0.89) 
0.89 (0.83, 0.93) 
0.93 (0.88, 0.96) 
0.81 (0.74,  0.87) 
0.82 (0.75, 0.87) 
0.94 (0.89, 0.97) 
0.89  (0.83, 0.93) 

19 (17,  21) 
42  (38, 45) 

170 (162,  177) 
685  (673, 696) 

13 (12,  14) 
17 (15, 19) 
44  (39, 48) 

192 (179, 206) 
38 (32, 44) 

93 (79,  106) 
534 (494, 575) 

2469 (2396,  2543) 
30 (26,  33) 
45 (38,  52) 

113 (93, 133) 
654 (594,  714) 

30  (27, 32) 
67 (62, 72) 

307 (296, 318) 
1250 (1232, 1268) 

23 (21, 26) 
39 (34,44) 

131 (118, 143) 
662 (640, 684) 

72 (60, 84) 
209 (183,  236) 

1193 (1145, 1240) 
5055 (4965, 5145) 

10 (10, 1 1 )  
90 (75,  106) 

534 (472, 596) 
2684 (2563,  2805) 

27 (25, 29) 
57 (54, 61) 

242 (235,  248) 
989 (976, 1002) 

27 (25, 29) 
62 (58, 66) 

246 (238, 253) 
1038 (1022, 1054) 

44 (40,48) 
93 (86, 100) 

425 (403,  447) 
1944 (1890,  1998) 

40  (35, 44) 
89 (82,  96) 

346 (329, 363) 
1498 (1466, 1530) 

555 

NOVEMBER 1977 REGENERATIVE SIMULATION 

Relative Bius (%) 

-1.1 (-2.8, 0.4) 
-0.7  (-1.9, 0.4) 

-1.3  (-1.9, -0.6) 
-0.1 (-0.3, 0.1 ) 

0.4 (-0.8, 1.8) 
0.0 (-1.0, 1.1) 

-0.5 (-1.2, 0.1) 
-0.4  (-0.7, -0.1 ) 
-2.5 (-4.6, -0.3) 
-3.8 (-5.1, -2.5) 
-1.3  (-2.0, -0.6) 

-0.1  (-0.4, 0.0) 
3.0 (0.3, 5.8) 

0.2 (-1.1, 1.5) 
-2.1 (-2.7,-1.5) 
-0.7  (-1.1, -0.4) 

-0.9  (-2.6, 0.7) 
-0.5 (-1.6, 0.5) 

-0.8  (-1.3, -0.3) 
-0.2 (-0.5, 0.0) 

0.4 (-1.1, 2.0) 
-0.7 (-1.9, 0.4) 
-0.3 (-1.1, 0.3) 
-0.1 (-0.4, 0.0) 

-7.1  (-9.0, -5.1 ) 
-4.5  (-6.1, -2.8) 
-0.7 (-1.2, -0.2) 

0.0 (-0.2,  0.2) 
-0.8 (-1.9, 0.3) 

-3.4  (-4.6, -2.2) 
"1.6 (-2.3, -0.9) 

-0.1 ( 4 . 4 ,  0.2) 
-0.8 (-2.2, 0.5) 
-1.1  (-2.2, 0.0) 

-0.7  (-1.2, -0.2) 
-0.2 (-0.5, 0.0) 

-1.8  (-3.5, -0.1) 
-1.5 (-2.5, -0.4) 
-0.9  (-1.4, -0 .4)  

0.0 (-0.2, 0.1 ) 
0.2 (-1.4, 1.8) 

-1.2  (-2.3, -0.1) 
-0.8 (-1.3, -0.4) 

-0.2 (-0.5, 0.0) 
-1 .1 (-2.9, 0.6 j 

"1.6 (-2.7, -0.4) 
-0.6 (-1.0, -0.1) 

-0.1 (-0.4, 0.0) 

almost all experiments.  In many experiments larger  rela- 
tive widths were  adequate.  For a fixed relative  width, 
the  expected number of tours varied widely from system 
to  system.  For y = 0.1, the point estimates  for  the  ex- 
pected number of tours varied from  546  to  56435  for 
the M/ G /  1 queues.  Thus, it would be  extremely difficult 
to  know  ahead of time the fixed number of tours which 
should  be  simulated to  achieve a desired relative  width. 
However,  for small sample  sizes, fixed stopping  rules 
yielded confidence intervals having more  adequate  cover- 
age than those obtained using sequential  stopping  rules. 

Thus, if one  needs only  a rough but valid estimate of a 
response variable (i.e., if a valid confidence  interval 
having an unspecified and  possibly large relative width is 
adequate), then  a fixed stopping rule may be appropriate. 
If,  on  the  other hand, one would like a  precise valid esti- 
mate of a response variable (Le., if a valid confidence 
interval having a specified small  relative width is  desired), 
then  a  sequential  stopping rule seems  appropriate. 

Since sequential  stopping  rules work poorly for large 
relative  widths it is worthwhile to try to modify these 
rules to improve their small-sample properties  (e.g., 



Table Sa Closed system with two types of customers: description of systems. 

System P I  1 k 2  PZl Pzz State P ( 1 )  P(2) T 

1 0.07 0.07 100.00 10.00 3 5 3 5 1  0.95 0.95 2.390 
2 0.20 0.10 100.00 10.00 3 1 2 9 2  0.90 0.95 1.810 

For all these cases M = 6, pa = fi4 = p5 = p6 = 28.57, pa = p4  = ps  = p6  = 0.25, N, = 40, N, = 4. 
For case 1 p ,  = 0.82, p s  = p4 = p5 = p s  = 0.44. 
For case 2 p z  = 0.96, pa = p4 = p 5  = p s  = 0.57. 

Table 5b Closed system with two types of customers: empirical results. 

System K Y Coverage  Number of Tours Relative Bias (%) 

1 10 0.20 0.61 (0.53, 0.69) 50 (44,  56) -0.2 (-2.1, 1.7) 
10 0.10 0.70  (0.62, 0.77) 264 (244.  284) 

1 10 0.05 0.86 (0.76, 0.92) 1208 (1137, 1279) 
-0.4 (-1.3, 0.5) 
-0.2  (-1.0, 0.5) 

10 0.20 0.65 (0.57, 0.72) 15 (13,  17) 
10 0.10 0.75 (0.67,  0.81) 53 (49, 58) 

-0.1  (-1.2, 1.0) 

10 0.05 0.92 (0.83, 0.96) 253 (239, 267) -0.2 (-0.6, 0.1) 

1 

2 
2 
2 

-0.1 (-0.9, 0.5) 

- 

[8]).  In addition, it would be worthwhile to empirically 
compare  the sequential  stopping  rules  with  a  two-stage 
stopping  rule in which the number of tours required to 
achieve a specified relative width is  estimated during a 
short pilot run, and the run is then  continued until the 
estimated  number of tours  have been  simulated. 

Appendix 1 
Here we  prove  Lemmas 1 - 3.  

Lemma 1 

l i i + N ( y ,  a)  = m, P1. 

Proof It follows from (6) that for all w E R, 

N ( y ,  a, w )  > [ a S ( N ( y ,  a, w))/yY(N(y, a, w))I2, 
(11) 

where a = 24-’[ ( 1 + a)  / 21. Suppose 

P(!ty+N(y, a )  = m) < 1. 

Then,  for  some fixed finite integer N*,  

P (  lim N ( y ,  a )  = N * )  > 0. 

Let R* = { w  E R: Iim N ( y ,  a ,  w )  = N * } .  

Then  for  any o E a*, there  exists y,* > 0, such  that if 
7 5  yz, then N ( y ,  a,  w )  = N*, S ( N ( y , a , w ) )  = S ( N * )  > 
0,  and Y(N(y, a ,  w ) )  = Y ( N * ) .  Thus, from ( l l ) ,  if 
a~ E R*, then 

N* > [ U S ( N * ) / Y ( N * ) ] ~ / ~ ~  

Y-+@+ 

Y-@+ 

556 for all y 5 yz, where a S ( N * )  / Y(N*) is a fixed positive 

number.  This implies that N* = m, acontradiction.  Hence, 

P(lim N ( y ,  a )  = m) = 1. 0 

Lemma 2 is a direct consequence of Lemma  1 and  the 
strong law of large numbers; its proof is  omitted. 

Lemma 3 

l $ , f N ( y ,  a )  = D, P I ,  

where D={2q5”[(1  +a)/2]S/E[Y1]}2. 

Proof It follows from ( 11) and Lemma 2 that 

P (lim inf y 2 N ( y ,  a )  E D) = 1. 

It follows from (6) that  for all w E R, if S( N ( y ,  a,  w )  - 1) 
> 0,  then 

y-ot 

Y+@+ 

y 2 ( N ( y ,  a, w )  - 1) 

5 [ a S ( N ( y ,  a,  0) - l ) /Y(N(y ,  a, w )  - 1)IZ. 

Since 

P (  lim S ( N ( y ,  a )  - 1) = S) = 1, 

where S > 0, it follows that  for  any E > 0 there exists 
Y ( E )  > 0 such that P ( S ( N ( y ,  a )  - 1) > 0, V y 5  Y ( E ) )  1 

Y-*@+ 

1 - e. Thus, 

P ( y 2 ( N ( y ,  a )  - 1) 

5 [ a S ( N ( y ,  a )  - l ) /Y(N(Y, a)  - 1)12, 

vy5 Y ( E ) )  1 1  - E .  

Using Lemma 2 ,  this implies that 
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P(1im sup y 2 ( N ( y ,  a) - 1 )  5 D )  2 1 - E .  

Since E is  arbitrary, 

Y+@+ 
Table 6 M / G /  1 queue:  empirical  results-fixed  sampling. 

System K Coveruge  Relative Bias (%) 

P (  lim sup y 2 N ( y ,  a) 5 D )  = 1 ,  

which completes  the proof. 0 

y+o+ 
1 51  0.82 (0.75, 0.87) -0.5 (-2.4, 1.1) 
1 
1 

128 0.84 (0.77, 0.89) -0.8 (-1.9, 0.3) 
546 0.84 (0.77, 0.89) -1.0 (-1.5, - 0 . 5 )  

2 87 0.79 (0.72, 0.85) -1.7  (-3.8, 0.3) 
2 278 0.81 (0.74, 0.87) -1.1 (-2.2, 0.0) 

Appendix 2 2 1498 0.89 (0.83, 0.93)  -0.7 (-1.2, -0.3) 
3 

We consider  the cyclic queue  described in the  section 
305 0.81 (0.74, 0.87) -2.7 (-4.6,-0.9) 

3 1004 0.87 (0.80, 0.92) -1.9 (-3.0, -0.8) 
on empirical studies.  The  ith  cycle  time Ti is the  sum of 
two  quantities,  the time the  customer  spends in  service 
center 1 during the  cycle time, denoted Ti,,, and the time 
the  customer  spends in service  center 2 during the cycle 
time, denoted Ti,,. The  sequence { Ti,, : i = 1 ,  2, .  . .} is a 
discrete  parameter regenerative process with regenera- 
tion points { lj : j  = 1 ,  2, .  . .}, where l j  is the serial  number 
of the j t h  arrival at service center 1 which finds the 
service  center  empty  and  leaves  the  process { V(  t )  : t 2 0}  

3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 

5325 0.88 (0.82, 0.92) 
207 0.86 (0.79, 0.91) 
520 0.84 (0.77, 0.89) 

2227 0.86 (0.79, 0.91) 
368 0.86 (0.79, 0.91) 

1083 0.94 (0.89, 0.97) 
4697 0.84 (0.77, 0.89) 
965 0.85 (0.78, 0.90) 

2742 0.88 (0.82, 0.92) 
12060 0.90 (0.84, 0.94) 

1799 0.89 (0.83, 0.93) 
4264 0.87 (0.80, 0.92) 

-0.9  (-1.3, -0.5) 
-1.2  (-2.9, 0.3) 

-1.6  (-2.7, -0 .6 )  
-0.6  (-1.2, 0.0) 

-2.9  (-4.4, -1.4) 
-0.7 (-1.7, 0.1) 

-0.7  (-1.3, -0.2) 
-0.7 (-2.5, 0.9) 

-1.3  (-2.3, -0.3) 
-0.5 (-0.9, 0.0) 
-0.8 (-2.3, 0.6) 
-0.8 (-I .9, 0.1 ) 

in a fixed state.  Since { V ( t )  : t E 0 )  is a  finite-state  ir- 7 18167 0.87 (0.80, 0.92) -0.3  (-0.8, 0.1) 
reducible Markov  process, it follows that E[[, - 4 3  < QI 

8 
8 

3047 0.86 (0.79, 0.91) -0.7  (-2.4, 0.7) 

and E[q, - q,] < QI, where qj is the  time at which the 
5583 0.91 (0.85, 0.95) -1.3  (-2.3, -0.1) 

8 31826 0.83 (0.76, 0.88) -0.3  (-0.8, 0.2) 
4th  arrival occurs.  Furthermore, since there  are N cus- 9 4967 0.86 (0.79, 0.91) -2.0  (-3.5, -0.4) 

tomers in the  network, 9 
9 

12946 0.85 (0.78, 0.90) -0.6  (-1.8, 0.4) 
56435 0.89  (0.83,  0.93) -0 .5 (-1.0, 0.0) 

E['%' Ti,,] 5 N E [  q, - q , ] .  

where A is given by ( lo ) ,  that 

lim- Ti,, = T,, P1, 

and 

I" t lim- n, (u)du  = N , ,  

1 "  
n i-1 n-= 

l[ P1. 

The  sequence { Ti,, : i = 1, 2 , .  . .} is a discrete  parameter 
regenerative stochastic  process with  regeneration 
points { mj : j  = 1 ,  2 ;  . .}, where mj is the serial  number of 
the j t h  arrival at  service  center 2 which finds the  service 
center  empty  and  leaves  the  process { V(  t )  : t 1 0} in a 
fixed state.  Thus,  it  can  be shown that 

T ,  = N 2 /  A < QI, 

where 

lim- Ti,, = T,, 

and 

I+== l i m l l  t n,(u)du = N,,  P1. 

1 "  
n-tm n p1, 

i= l  

2 15 0.76 (0.68, 0.82) -0.3 (-1.4, 0.8) 
2 53 0.85 (0.78, 0.90) -0.1 (-0.8,  0.4) 
2 253 0.82 (0.71,  0.89) 0.0 (-0.4, 0.3 j 

Thus, since N, + N ,  = N ,  

T = T, + T ,  

= N /  A. 

Appendix 3 
Here we give the  method used to obtain  confidence 
intervals for the  coverage based on I independent replica- 
tions. For  the ith  replication,  let 

if response variable  contained in cofifidence 
Oi = [:: else. 

interval, 

Then O1,. . ., 13, are iid random  variables and p = P (  8, = 1 ) 
is the  true  coverage. Let 
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s. s. LP 

Then, 

limP(If[B(I) - p] /  [ p (  I - p ) ]  5 t )  = + ( t ) ,  
I” (12)  

and it can be shown  that  from ( 12)  that  for I sufficiently 
large, (u(Z, P )  - N I ,  PI, a(1 ,  P )  + b(1, P ) )  is approxi- 
mately  a 100 x /3 percent confidence  interval for p ,  where 

a(z, P )  = r e u )  + +’((P)/~III/[I+  +‘(P)I, 

b ( ~ , P ) = { ~ ( ~ ) [ 1 - - 8 ( ~ ) l / ~ + [ + ( P ) / 2 ~ 1 2 } t  

X I+(P)  / [ I  + $(PI],  and 

+(PI = +-Y ( 1 + P )  /21. 

Appendix 4 
For  the simulation studies with the M / G /  1 queues  and 
central  server models  in the  second  set of experiments, 
we set K equal to max ( 10, D /  20y2),  where D ,  given in 
Lemma 3, is the value to which y 2 N ( y ,  a )  converges 
with probability  one.  We made this  choice for the pur- 
pose of not having to  compute  the relative width of the 
estimated  confidence  interval  more than  about  20 times 
during a simulation  run.  We  required that K be at  least 
10, since confidence intervals  are estimated in APLOMB 

only if at  least  ten  tours  have been  simulated. The  value 
D was computed  for  the M/G/  1 queues by using busy 
period  analysis techniques  (e.g., [ 181 ) ; it was computed 
for the  central  server models using techniques for com- 
puting moments of first passage  times in a semi-Markov 
process [ 191. It  is much  more difficult to  compute D for 
the cyclic  queuing system  and closed systems with two 
types of customers,  and we did not  attempt  these com- 
putations. For these  systems we set K equal  to 10. 
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