534

R. FAGIN

R. Fagin

Functional Dependencies in a Relational Database and
Propositional Logic

Abstract: An equivalence is shown between functional dependency statements of a relational database, where “—”" has the meaning
of “determines,” and implicational statements of propositional logic, where “>" has the meaning of “implies.” Specifically, it is shown
that a dependency statement is a consequence of a set of dependency statements iff the corresponding implicational statement is a con-
sequence of the corresponding set of implicational statements. The database designer can take advantage of this equivalence to reduce
problems of interest to him to simpler problems in propositional logic. A detailed algorithm is presented for such an application. Two
proofs of the equivalence are presented: a ‘‘syntactic” proof and a ‘‘semantic” proof. The syntactic proof proceeds in several steps. It
is shown that 1) Armstrong’s Dependency Axioms are complete for dependency statements in the usual logical sense that they are
strong enough to prove every consequence, and that 2) Armstrong’s Axioms are also complete for implicational statements in proposi-
tional logic. The equivalence then follows from 1) and 2). The other proof proceeds by considering appropriate semantic interpreta-
tions for the propositional variables. The Delobel-Casey Relational Database Decomposition Theorems, which heretofore have
seemed somewhat fortuitous, are immediate and natural corollaries of the equivalence. Furthermore, a counterexample is demonstrat-

ed, which shows that what seems to be a mild extension of the equivalence fails.

Introduction

The concept of functional dependencies [1] is one of the
few in the database area that is both intuitively simple
and yet complex enough that an advanced development
is possible (see, for example, [2-6]). Functional de-
pendencies are important tools for database design: in
fact, in one approach to database design {6], they are
essentially the only input.

Because of their importance and intuitive simplicity,
there is considerable interest in studying their prop-
erties. In this paper, it is shown that in some ways func-
tional dependencies behave precisely the same as a
certain well-studied subset of propositional logic. In
particular, it is possible to take advantage of artificial
intelligence research in the area of theorem-proving by
directly converting results in that area into results about
functional dependencies.

In this paper, we refer to functional dependencies by
the name ‘“dependency statements.” This is done for
several reasons. The first is to emphasize the analogy
with implicational statements, defined soon. The second
is that there is some confusion as to exactly what func-
tional dependencies are. Codd [1] considers them to be
statements, or sentences, that can either hold or not hold
for a given database relation. However, Bernstein [6]
defines a functional dependency to be a “time-varying
function.” Some practical distinctions resulting from the
two different definitions are discussed in [7]. By using
the name ‘“dependency statements,” we emphasize their
role as simple sentences, which can hold for certain data-
base relations and not hold for others.

We now give Codd’s definition. Assume that % is a
database relation, and that each column of % has a
unique ‘“column name.” If A, A, B, -, B, are
among the column names of % (they need not be
distinct), then we say that A, -, A determine B, ",
B, (or B,,- "+, B, depend on A, -+, A, if whenever two
tuples (that is, rows) of 2 agree in columns A ,- -+, A,
then they also agree in columns B, -, B,. (Two tuples
agree in a column if their entries under that column are
the same.) We write {A, -+, A} — {B,, - B}, or,
more simply, A, -+ A, — B, - B,, and we call each
such statement a dependency statement. For conve-
nience, we assume throughout this paper that we are
dealing with static (i.e., time-invariant) relations, al-
though only trivial modifications are called for to deal
with time-varying relations, such as would occur in ac-
tual relational databases. Our approach in this paper is
to hold fixed a dependency statement or a set of depend-
ency statements and then to derive properties of the
collection of all relations & for which the given depen-
dency statements hold.

With each column name A we associate a distinct
propositional (i.e., Boolean) variable A. With each de-
pendency statement A, --- A, — B, --- B, we associate
the propositional statement A, A---A A, = B, A--*AB,,
or, as we shall write it, A,--+ A, = B, - B_. We call
each such statement an implicational statement of prop-
ositional logic. (We write = instead of the more usual
— to prevent confusion with the dependency symbol.) It
is clear that the correspondence is one-one and onto;
thus, for each implicational statement there is also a cor-

IBM J. RES. DEVELOP.

responding dependency statement. Let ¢ be a truth as-
signment, that is, a mapping that assigns to each propo-
sitional variable either the value 0 (false) or 1 (true.
The propositional statement A, -+ A, = B, -~ B, has
truth value 0 under truth assignment ¢ if each of A, -,
A, has the truth value 1 under 7 and at least one of B,
-++, B, has truth value 0; otherwise, it has truth value 1.

Before we can state the main result in this paper, we
need to define some concepts. Assume that DEP is a set
of dependency statements and « is a single dependency
statement. When we say that “a is a consequence of
DEP,” we mean that o holds for every relation that obeys
each dependency statement in DEP. That is, « is a con-
sequence of DEP iff there is no “counterexample” rela-
tion &% such that each dependency statement in DEP is
true in % but such that « is false in . An example might
be helpful. Let DEP be the set {AB — C, AC — D} of
dependency statements, and let « be the dependency
statement AB — D. We will show that « is a conse-
quence of DEP. Let % be arbitrary. Assume that DEP
holds for %; we will show that « holds for %. To show
that « holds for %, we assume that the two tuples T, and
T, of % agree in columns A and B; we must show that
T, and T, agree in column D. Since T, and T, agree in
columns A and B, and since the dependency statement
AB — C holds for %, we know that T, and T, agree in
column C. Since T, and T, agree in columns A and C,
and since the dependency statement AC — D holds for
#, we know that T, and T, agree in column D, which
was to be shown.

Now let DEP be a set of implicational statements of
propositional logic, and let & be a single implicational
statement. (We use the name DEP for a set of implica-
tional statements since, later on, we think of DEP as be-
ing the set of implicational statements that correspond to
the set DEP of dependency statements.) When we say
that “a is a logical consequence of DEP,” we mean that
« has truth value 1 for every truth assignment that gives
truth value 1 to each implicational statement in DEP.
That is, « is a logical consequence of DEP iff there is no
counterexample truth assignment ¢ such that each impli-
cational statement in DEP has truth value 1 under ¢ but
such that « has truth value 0 under ¢.

As an example, let DEP be the set {AB= C, AC = D}
of implicational statements of propositional logic, and let
a be the statement AB = D. Then « is a logical conse-
quence of DEP, because if ¢ is one of the 2* = 16 possi-
ble truth assignments to (A, B, C, D), and if it happens
that each statement in DEP has truth value 1 under truth
assignment z, then it is easy to verify that so does a.

We can now state and discuss the main result in this
paper, which establishes an equivalence between de-
pendency statements and implicational statements. The
proof is deferred until Section 3.

NOVEMBER 1977

Equivalence Theorem Assume that DEP is a set of de-
pendency statements and « is a single dependency state-
ment. Let DEP, « be, respectively, the corresponding set
of implicational statements and single implicational
statement. Then « is a consequence of DEP iff @ is a
logical consequence of DEP.

We can now see the practical and theoretical utility of
the Equivalence Theorem. As a first example, let DEP,
as before, be the set {AB — C, AC — D} of dependen-
cy statements, and let o be the dependency statement
AB — D; let DEP be the corresponding set {AB=> C, AC
= D} of implicational statements and « the implicational
statement AB = D. In this case, we have shown, by two
quite different proofs, that

1. ais a consequence of DEP
and that
2. ais a logical consequence of DEP.

It is not surprising that the proofs of 1 and 2 are quite
different since they deal with completely different uni-
verses of discourse. According to the Equivalence Theo-
rem, 1 and 2 above are either both true or both false. (In
this case, they are both true.) So, if a database designer
were confronted with the problem (Problem 1) as to
whether 1 holds in a particular case of interest (he might
be normalizing relations [1] or determining keys, and
many dependency statements might be involved), he
could instead solve the perhaps easier problem (Prob-
lem 2) as to whether 2 holds in propositional logic. He
can solve Problem 2 by whatever means he finds easiest
(such as by using truth tables, by using a theorem-
prover, etc.), and he is automatically guaranteed (by
the Equivalence Theorem) to get the correct answer to
Problem 1.

Let us look at a specific example (involving a new
DEP and «) in which the database designer might solve
Problem 1 by instead solving Problem 2 and using the
tools of propositional logic. Assume that he is examining
a relation # with exactly four columns, A, B, C, D, and
for which the only dependency statements that hold are
those in the following set DEP (and its consequences):

AB—>D
BC — A
BC - D
CD— A
CDh—>B

He is trying to decide whether AB is a key of . Since
he already knows that AB — A, AB — B, and AB— D,
he needs to determine whether or not AB — C. Let a be
the dependency statement AB — C. He wants to solve
Problem 1, that is, to know whether « is a consequence

FUNCTIONAL DEPENDENCIES

536

R. FAGIN

of DEP. By the Equivalence Theorem, he can instead
solye Problem 2, that is, to determine whether « is a log-
ical consequence of DEP, where, of course, a is AB = C,
and DEP is

AB=>D
BC> A
BC=>D
Ch=> A
CD=>B

Let 7 be the truth assignment that assigns truth value 1
to A, B, and D, and truth value 0 to C. It is very simple
to check that each implicational statement in DEP has
truth value 1 under 7, whereas a has truth value 0 under
t. So, since we have exhibited a counterexample to truth
assignment ¢ such that each statement in DEP has truth
value 1 under ¢ but such that « has truth value 0 under ¢,
it follows that the answer to Problem 2 is “No, a is not a
logical consequence of DEP.” Hence, by the Equiva-
lence Theorem, the answer to Problem 1 is “No, a is not
a consequence of DEP,” and so AB is not a key.

In addition to the truth-table method, there are fast,
special-purpose theorem-provers for solving Problem 2.
It follows from the Equivalence Theorem that these
theorem-provers can be used directly as efficient means
to solve Problem 1. In Section 2, we apply such a spe-
cial-purpose theorem-prover to give an efficient solution
to Problem 1. Thus, one of the practical benefits of the
Equivalence Theorem is that we can take advantage of
artificial intelligence research that has gone towards
finding efficienit solutions to Problem 2 to obtain directly
efficient solutions to Problem 1.

In Sections 3 and 4, we present two proofs of the
Equivalence Theorem. The first (syntactic) proof pro-
ceeds in several steps. It is shown that 1) Armstrong’s
Dependency Axioms (see Section 3) are complete for
dependency statements. By complete, we mean that « is
a consequence of DEP iff there is a proof (in a finite
number of steps) of a from DEP by applying Arm-
strong’s Axioms. Further, we show that 2) Armstrong’s
Axioms (when converted, as above, by replacing each
occurrence of — by =), are complete for implicational
statements of propositional logic. We then show that the
Equivalence Theorem follows from 1) and 2).

Our other proof of the Equivalence Theorem is se-
mantic in nature. It proceeds by considering appropriate
interpretations for the propositional variables.

In Section 5, we show that what seems to be a mild
extension of the Equivalence Theorem fails. This some-
what surprising failure shows the subtlety of the Equiva-
lence Theorem. Thus, those who feel that the Equiva-
lence Theorem is “‘obvious” might also feel that the mild

extension is only slightly less obvious, although, in fact,
it is false!

In Section 6, we show that the important, widely ref-
erenced Decomposition Theorems of Delobel and Casey
[4] follow immediately from our Equivalence Theorem.
Perhaps the main contribution of this paper is to present
new proofs of these theorems. Furthermore, we feel that
our Equivalence Theorem as we state it is more enlight-
ening than the statement of the Delobel-Casey Theo-
rems.

2. An efficient algorithm for determining
consequence

Let « be a depéndency statement and DEP a set of de-
pendency statements. Let a, DEP be the corresponding
implicational statements. By the Equivalence Theorem,
the problem (Problem 1) as to whether or not « is a
consequence of DEP is equivalent to the problem
(Problem 2) as to whether or not a is a logical conse-
quence of DEP. Now Problem 2 can be converted into
the well-studied problem of satisfiability of propositional
Horn clauses [8-10]. A fast algorithm for the Horn
clause satisfiability problem is the ‘‘first-literal unit reso-
lution procedure,” which is due to Chang [11, p. 130].
By the Equivalence Theorem, we can exploit Chang’s
algorithm (which solves Problem 2) to obtain an effi-
cient algorithm to solve Problem 1. We now explicitly
describe the resulting algorithm.

For convenience, we assume that the dependency
statement o and the dependency statements in DEP
each have exactly one column name on the right-hand
side (it is easy to see how to convert problems in which
this is not the case into problems in which this is the
case).

In the first step of the algorithm, we form a set ¥ of
strings of symbols. Each string contains three types of
symbols: column names, negation signs (~), and com-
mas (,). For each statement A --- A — B in DEP, we
include in .% the string

NAI,”',NA B

m®

(For those who want a glimpse of what is going on be-
hind the scenes: This string corresponds to the “Horn
clause” ~A, V---V~A_ VB, which is logically equiva-
lent to the propositional formula A; A---A A, = B.)

If « is the dependency statement C, - - C, — D, then
also include in .¥ the (k + 1) strings
C

1

Ck
~D

IBM J. RES. DEVELOP.

For example, if DEP and « are as in our first example
in the Introduction (that is, DEP is {AB — C, AC —
D}, and a is AB — D), then .% contains the five strings

~A,~B, C

~A,~C,D

A

B

~D (1)

We call each column name an “atom,” and we call the
concatenation of a negation sign with a column name a
“negative atom.” To get our terminology straight: in
(1), there are two strings that are atoms (namely, A and
B), one string that is a negative atom (namely, ~D),
and three strings that “‘begin with” negative atoms (the
first, second, and fifth strings).

The algorithm proceeds by searching for an atom X
such that

a. X is a string in %,
and
b. There is a string in ¥ that begins with ~X.

In our example, there are two atoms X (namely,
A and B) that satisfy a, and two atoms X (namely, A
and D) that satisfy b. The only atom X that satisfies
both a and b is A. (If there were several atoms X that sat-
isfied both a and b, the algorithm would now arbitrarily
select one of them.) In the next step of the algorithm,
we shorten each string that begins with ~X by erasing
the leading negation sign, the X, and the comma that fol-
lows X (if there is such a comma). In (1), where X is A,
the first two strings are shortened, and we are left with

~D (2)

We repeat the procedure by again searching for an atom
X that satisfies both a and b above. In (2), the only such
atom is B. After the “‘shortening” procedure is applied,
we are left with

~C,D
A
B

We again repeat the procedure. In (3), the only atom X
that satisfies both a and b is C. After the shortening pro-
cedure, we are left with

NOVEMBER 1977

! ®>00

D (4)

After another iteration (where X is now D), we are left
with

> m OO0

(5)

where A is the empty string. The entire algorithm halts
either when 1) the empty string A is generated (as hap-
pened in this case) or when 2) there is no atom X that
satisfies both a and b. If 1) occurs first, that is, if the
empty string A is generated, then « is a consequence of
DEP (as in this case). If 2) occurs first, then « is not a
consequence of DEP.

It is easy to see that the algorithm must always termi-
nate, and thereby give an answer. That this algorithm
gives the correct answer is an immediate consequence of
Chang’s theorem on Horn clauses and our Equivalence
Theorem.

3. Completeness of Armstrong’s Axioms, and the
Equivalence Theorem

Armstrong’s Axioms consist of the following three
schemata:

(A1) A;---A,— A, fori=1,--,m
(A2) A,--+A,— B,---B,iff foreachi, A -A, — B,

(A3) IfA,---A,— B, B,andB-- B, —>C,---C,,

then A"~ A, = C--C,

Here A, -, A, B, -, B, C, -+ Cp are column
names. [Actually, Armstrong’s original set of axioms is
slightly different from this set, but the two sets are
equivalent, since it is easy to check that this set implies
each axiom in the original set and that Armstrong’s orig-
inal axioms imply each of these. It turns out that axioms
(A1)-(A3) are more convenient for our purposes than
Armstrong’s original set, so we use (Al)-(A3).]

If DEP is a set of dependency statements, and « is a
single dependency statement, then by a “‘proof of a from
DEP via Armstrong’s Axioms,” we mean a sequence of
lines (the “proof™), in which every line is a dependency
statement, and the last line is a. Each line of the proof is
either a statement in DEP or else is obtained from ear-
lier lines by an application of the axioms. For example,
the dependency statement A, - A, — C,---C, may be

537

FUNCTIONAL DEPENDENCIES

538

R. FAGIN

one line which is obtained from two earlier lines A, - -
A,— B, B, and B,--B, — C, -~ C by anapplication
of axiom (A3). Note that axiom (A2) is really two ax-
ioms: It says first that the statement A - --A — B ---B,
may appear as a line of the proof which is obtained from
earlier lines A, --- A, — B, (i=1,--+, r); second, a
statement A, --- A, — B, may appear as a line of the
proof which is obtained from an earlier line A, -+ A, —
B, - B,. Finally, an instance of axiom (A1) can appear
no matter what the previous lines of the proof are, since
it is “unconditional.” To clarify this concept of a proof,
let us give a proof via Armstrong’s Axioms of AB — D
from {AB — C, AC — D}. (This is the example we
used earlier.)

1. AB—>C (assumption)

2. AC— D (assumption)

3. AB—> A (axiom Al)

4. AB — AC (axiom A2 applied to 3 and 1)

5. AB—> D (axiom A3 applied to 4 and 2) (6)

We can now state Armstrong’s Theorem (this was
Theorem 5 in [2]). Let DEP be a set of dependency
statements, and let DEP’ be the set of dependency state-
ments that can be proved from DEP via Armstrong’s
Axioms (for convenience, we assume a fixed set of col-
umn names). We call DEP’ the closure of DEP.

Armstrong’s Theorem Let DEP be a set of depend-
ency statements, and DEP’ its closure under Arm-
strong’s Axioms. Then there is a relation % such that
DEP’ is precisely the set of dependency statements that
hold for .

We now present the Dependency Completeness
Theorem. This result was never explicitly stated by
Armstrong, but, as we will see, it follows very easily
from the previous theorem. The Dependency Complete-
ness Theorem says that the following two different con-
cepts are equivalent: 1) « is a consequence of DEP
(which means that there is no counterexample relation %
such that every dependency statement in DEP holds for
A, but such that « does not hold for %) ; and 2) « can be
proved from DEP via Armstrong’s Axioms.

Dependency Completeness Theorem Let DEP be a set
of dependency statements and « a single dependency
statement. Then « is a consequence of DEP iff & can be
proved from DEP via Armstrong’s Axioms.

Proof:<: This is the “easy direction” of the proof, since
each of Armstrong’s Axioms is a valid statement about
dependency statements. For example, axiom (A3) is
valid, since if the first two dependency statements in
(A3) hold for a relation %, then also the third dependen-
cy statement in (A3) holds for #.

=: Assume that « is a consequence of DEP, that is,
there is no counterexample relation &% such that every
dependency statement in DEP holds for 2 but such that
a does not hold for 2. We want to show that the axioms
are powerful enough to prove « from DEP. Let DEP’ be
the closure of DEP under Armstrong’s Axioms. Clearly
DEP C DEP’; we wish to show that « € DEP’. It fol-
lows from Armstrong’s Theorem that there is a relation
% such that DEP’ is precisely the set of dependency
statements that hold for 4. Now DEP holds for %, and,
by assumption, whenever DEP holds, then « holds.
Hence a holds for %, and so a € DEP’, by construction
of #. Therefore, a can be proved from DEP via the ax-
ioms. d

We now temporarily turn our attention away from
dependency statements and work completely in the
realm of propositional logic, to prove the Implicational
Completeness Theorem. To prevent notational confu-
sion, we rewrite Armstrong’s Axioms in propositional
form.

(A1) A,---A, > A fori=1,-- m
(A2') A;---A,> B, B, iff, foreachi, A, A > B,

(A3') IfA,---A, > B, B,andB,---B,>C,---C
then A,---A, = C, - C,.

P

Here A,-, A B, B,C,-
variables.

-+, C, are propositional

Implicational Completeness Theorem Let DEP be a set
of implicational statements of propositional logic and « a
single implicational statement. Then « is a logical conse-
quence of DEP iff & can be proved from DEP via Arm-
strong’s Axioms.

Proof:<: Once again, it is easy to verify that each of the
axioms are valid statements about implicational state-
ments. For example, axiom (A3’) is valid, since if the
first two implicational statements in (A3’) have truth
value 1 under a truth assignment ¢, then also the third
implicational statement in (A3’) has truth value 1 under ¢.

=: Assume that « is a logical consequence of DEP. We
want to show that the axioms are strong enough to prove
« from DEP. Assume for definiteness that ais A, -+ A,
= D, - D,. Let PROVE be the set of all propositional
variables E such that the propositional statement A, - -
A, = E can be proved from DEP via the axioms. By ax-
iom (Al’), we know that A, -+, A, € PROVE. Our
goal is to show that D,,--, D, € PROVE, since then
by axiom (A2'), the implicational statement e can
be proved from DEP via the axioms—we simply put to-
gether the proofs of the statements A, -+ A, = D, and
then add a line A, -+ A = D, - D, by applying axiom
(A2'); this is a proof of « from DEP via the axioms.

IBM J. RES. DEVELOP.

Without loss of generality, we just show that D, €
PROVE. Assume that it is false that D, € PROVE; we
will derive a contradiction. Consider the following as-
signment of truth values to the propositional variables:
Each propositional variable in PROVE is assigned the
truth value 1, and each remaining propositional variable
is assigned the truth value 0. We call this particular truth
assignment the magic truth assignment. In particular, D,
is assigned the truth value 0 under the magic truth as-
signment. Furthermore, as we noted, A, -+, A, €
PROVE, and hence A, -+, A are each assigned the
truth value 1. Therefore, e has truth value 0 under the
magic truth assignment. We will show that under the
magic truth assignment, each implicational statement in
DEP has truth value 1. Then we will have shown that the
magic truth assignment is a counterexample truth assign-
ment (under which every implicational statement in DEP
has truth value 1 but under which e« has truth value 0).
However, a is supposed to be a logical consequence of
DEP, and so there is not supposed to be a counterexam-
ple truth assignment. This is a contradiction.
LetB,---B, = C, -~ C, be an arbitrary statement in
DEP. We are through if we can show that this implica-
tional statement has truth value 1 under the magic truth
assignment. There are two cases to consider:

Case 1 B,, -, B, € PROVE. Hence the implicational
statements A, - - A= B, can be proved from DEP via
the axioms (i= 1, - -, r). By now applying axiom (A2'),
we see that the implicational statement A -+ A, = B,
B, can be proved from DEP via the axioms. Further,
since the statement B, - - B, = C,--- C, is in DEP, it fol-
lows from axiom (A3’) that A;--- A, = C,--- C,. Then
by (A2'), the statements A, *-- A, = C, are conse-
quences of DEP. Hence, C; € PROVE for each i, so
each C, is assigned truth value 1 by the magic truth as-
signment. So, the implicational statement B, -- B, = C,
-+ C, has truth value 1 under the magic truth assign-
ment, as desired.

Case 2 At least one of B,- - -, B, is not in PROVE. So at
least one of B, -+, B, is assigned truth value 0. Hence,
once again, the implicational statement B, B = C, -
C, has truth value 1 under the magic truth assignment,
asdesired. [

The Equivalence Theorem follows easily from the two
Completeness Theorems, as we now see.

Equivalence Theorem Assume that DEP is a set of de-
pendency statements and « is a single dependency state-
ment. Let DEP, « be, respectively, the corresponding set
of implicational statements and single implicational state-
ment. Then « is a consequence of DEP iff « is a logical
consequence of DEP.

NOVEMBER 1977

Proof Assume that « is a consequence of DEP. By the
Dependency Completeness Theorem, there is a proof of
a from DEP using only Armstrong’s Axioms. Hence,
there is also a proof of @ from DEP by using only (the
propositional form of) Armstrong’s Axioms, since the
proof can be obtained by a direct translation of the
dependency proof, in which we replace each column
name A by its corresponding propositional variable A,
and in which we replace each occurrence of — by =. For
example, the proof, in (6) where we showed, via Arm-
strong’s axioms, that AB — D is a consequence of
{AB — C, AC — D}, can be converted into the following
proof that AB = D is a logical consequence of {AB= C,
AC = D}:

1. AB>C (assumption)
2. AC> D (assumption)
3. AB> A (axiom Al’)

4. AB=> AC (axiom A2’ applied to 3 and 1)

5. AB=> D (axiom A3’ applied to 4 and 2)

So, by the “easy direction” of the Implicational Com-
pleteness Theorem, we know that « is a logical conse-
quence of DEP. We have shown that if « is a conse-
quence of DEP, then « is a logical consequence of DEP.
Similarly, if « is a logical consequence of DEP, then « is
a consequence of DEP. O

4. Semantic proof of the Equivalence Theorem

It would be nice if, given a relation £, we could find in-
terpretations for the propositional variables such that,
for example, the dependency statement AB — C would
hold iff the propositional statement AB > C had truth
value 1. One such possible interpretation of the proposi-
tional variables might be to let A mean “the tuple’s entry
in column A has been assigned.” Then, the statement
AB = C would say “If the tuple’s entry in column A has
been assigned, and if the tuple’s entry in column B has
been assigned, then the tuple’s entry in column C has
been assigned.” However, this seems difficult to formal-
ize (for example, who assigns the value of an entry of
the tuple? Where are the quantifiers?). Another possible
approach is to let A mean “Tuples 1 and 2 agree in col-
umn A.” Again, there are difficulties — Are tuples 1 and
2 special tuples? Are they somehow ‘‘representative”
tuples? We now present a semantic proof of the Equiva-
lence Theorem in which we use this “two-tuple” inter-
pretation of the propositional variables in a precise way,
by showing that, roughly speaking, we can restrict our
attention to two-tuple relations.

Semantic proof of the Equivalence Theorem Let DEP,
o, DEP, a be as before. We must show that the following
are equivalent:

539

FUNCTIONAL DEPENDENCIES

540

R. FAGIN

1. «is a consequence of DEP.
2. ais a logical consequence of DEP.

Define a two-tuple relation to be a relation with exactly
two tuples (that is, rows). Define “a is a consequence of
DEP in the world of two-tuple relations” to mean that «
holds in every two-tuple relation that obeys each de-
pendency statement in DEP. That is, « is a consequence
of DEP in the world of two-tuple relations iff there is no
counterexample two-tuple relation % such that each
dependency statement in DEP holds for % but such that
a does not hold for %. To prove that 1 and 2 above are
equivalent, we show first that 1 is equivalent to

3. a is a consequence of DEP in the world of two-tuple
relations.

Then we show that 2 is equivalent to 3. It follows that
1 and 2 are equivalent, as desired.

We now show that 1 and 3 are equivalent. It is clear
that 1 implies 3. So, we need only show that 3 implies 1.
Assume not. Let DEP, « be dependency statements such
that 3 holds but not 1. Let &% be a relation (which may
contain many tuples) such that each statement in DEP
holds for % but such that a does not hold for %. There is
such an £ since 1 fails. Assume for definiteness that « is
A, -+ A, — B, B, Then there are two tuples of % such
that the two tuples agree in columns A, - - A, but dis-
agree in one of columns B,,- -+, B,. Let be a two-tuple
relation which contains only these two tuples. It is easy
to verify that each statement in DEP holds for & but that
« does not hold for #. This contradicts 3.

We have shown that 1 and 3 are equivalent. We now
show that 2 and 3 are equivalent. We need the following
lemma.

Semantic Lemma Let t be a truth assignment and £ a
two-tuple relation, where r and & interrelate in the fol-
lowing special way: For each column name A, the two
tuples in & agree in column A iff the corresponding prop-
ositional variable A is assigned truth value 1 by . Then
the (arbitrary) dependency statement A --- A, — B,---
B, holds for & iff the corresponding implicational state-
ment A, -+ A, = B, B, has truth value 1 under truth
assignment 7.

Proof of lemma Assume first that the dependency state-
ment A,--- A — B,--- B, holds for 7. We will show that
the implicational statement A --- A_= B,--- B, has truth
value 1 under the truth assignment t. There are two
cases, depending on whether or not the two tuples of &
agree in all of the columns A ,- -, A

Case 1 The two tuples of & agree in all of the columns
A,, -+, A, Since the dependency statement A - - A —

B, - B, holds for 2, it follows that the two tuples agree
in columns B,," - -, B,. So, by assumption, eachof B,," -,

B, has truth value 1 under truth assignment ¢. Hence, the
implicational statement A, - A, = B, - B, has truth
value 1, as desired.

Case 2 The two tuples of & disagree in at least one of
the columns A, -+, A, , say in A,. Then A has truth
value 0 under truth assignment ¢. Hence, once again, the
implicational statement A, - A, = B, - B, has truth
value 1.

We have shown that if the dependency statement A,

-+ A, — B, - B, holds for #, then the implicational

statement A, -*- A, = B, B, has truth value 1 under
the truth assignment ¢t. The converse can be proved by a
very similar argument.

This concludes the proof of the lemma. We now con-
tinue with our proof of the theorem.

We are trying to show that 2 and 3 are equivalent. We
show first that 3 implies 2. Assume not. Then a is a conse-
quence of DEP in the world of two-tuple relations, but a
is not a logical consequence of DEP. Since « is not a log-
ical consequence of DEP, there is a truth assignment ¢ to
the propositional variables such that every statement in
DEP has truth value 1 under ¢, but such that & has truth
value 0 under 7. Define a two-tuple relation & for which
the column names will be those appearing in DEP
and/or a. The first tuple of 2 has 1 as every entry. The
second tuple of £ has O as entry in column A if ¢ assigns
truth value 0 to A; otherwise, this entry is 1. This pro-
cedure is followed for each column name A. It is easy to
see that 7 and & interrelate as in the hypotheses of the
Semantic Lemma. Therefore, since every implicational
statement in DEP has truth value 1 under ¢, it follows
from the Semantic Lemma that every dependency state-
ment in DEP holds for #. Since « is a consequence of
DEP in the world of two-tuple relations, it follows that
also a holds for #. So, by the Semantic Lemma again,
we know that e has truth value 1 under ¢. This is a con-
tradiction.

We conclude our proof by showing that 2 implies 3.
Assume not. Then « is a logical consequence of DEP,
but « is not a consequence of DEP in the world of two-
tuple relations. Since « is not a consequence of DEP in
the world of two-tuple relations, there is a two-tuple re-
lation & for which each statement in DEP holds but for
which « does not hold. Define a new truth assignment ¢
as follows. If the two tuples of & agree in column A,
then ¢ assigns to propositional variable A the truth value
1, and otherwise 0. This procedure is followed for each
column name A. Once again, ¢ and £ interrelate as in the
hypotheses of the Semantic Lemma. So, since each
statement in DEP holds for &, it follows from the Se-
mantic Lemma that each statement in DEP has truth
value 1 under ¢. Since @ is a logical consequence of DEP,
also a has truth value 1 under ¢. So by the Seman-

IBM J. RES. DEVELOP.

tic Lemma again, « holds for #. But this is a contra-
diction. a

5. Counterexample to an extension of the
Equivalence Theorem

In this section we show that a natural extension of the
Equivalence Theorem is false.

Let « and B be dependency statements, and let DEP
be a set of dependency statements. Recall that when we
say that “a is a consequence of DEP,” we mean that o
holds for every relation that obeys each dependency
statement in DEP. Thus, « is a consequence of DEP iff
there is no counterexample relation % such that each
dependency statement in DEP holds for & but such that
a does not hold for %. We similarly define the meaning of
“a V B is a consequence of DEP” to mean that either a
or 3 holds for every relation that obeys each dependen-
cy statement in DEP. Thus, « V 8 is a consequence of
DEP iff there is no counterexample relation &2 such that
each dependency statement in DEP holds for £ but such
that neither o nor 8 holds for %.

Now let & and B be implicational statements, and DEP
a set of implicational statements. Recall that when we
say that “a is a logical consequence of DEP,” we mean
that e has truth value 1 for every truth assignment that
assigns truth value 1 to each implicational statement in
DEP. Thus, « is a logical consequence of DEP iff there is
no counterexample truth assignment ¢ such that each
implicational statement in DEP has truth value 1 under ¢
but such that & has truth value 0 under ¢. We similarly
define the meaning of *“ @ V B is a logical consequence of
DEP” to mean that either « or B8 has truth value 1 for
every truth assignment that assigns truth value 1 to each
implicational statement in DEP. Thus, « V 8 is a logical
consequence of DEP iff there is no counterexample truth
assignment ¢ such that each implicational statement in
DEP has truth value 1 under ¢ but such that neither a nor
B has truth value 1 under ¢.

Recall that the Equivalence Theorem states that if
DEDP, «, DEP, a are as before, then « is a consequence of
DEP iff « is a consequence of DEP. Consider the follow-
ing fairly natural generalization.

Alleged extension of Equivalence Theorem Assume that
DEP is a set of dependency statements and « and 8 are
a pair of dependency statements. Let DEP, a, 8 be,
respectively, the corresponding set of implicational
statements and pair of implicational statements. Then a
V B is a consequence of DEP iff a V 8 is a logical conse-
quence of DEP.

We now show by example that the alleged extension
of the Equivalence Theorem is false. Let DEP contain
only the single dependency statement A — A (we could
Jjust as well have taken DEP to be the empty set in this ex-

NOVEMBER 1977

Table 1 Counterexample.

A B
0 0
0 1
1 0

ample, but we choose not to in order to prevent possible
confusion). Let o be the dependency statement A — B,
and let B8 be the dependency statement B — A. It is false
that a V B is a consequence of DEP. That is, there is a
counterexample relation £ such that each dependency
statement in DEP holds for & but such that neither a
nor B holds for #. One such counterexample relation
is exhibited in Table ! (as the reader can easily
verify) .

The corresponding set DEP of implicational state-
ments contains only the single implicational statement A
= A. Further, the corresponding « is the implicational
statement A > B, and B is B~ A. We now show that it
is true that e V B is a logical consequence of DEP. Assume
not. Then there is a counterexample truth assignment ¢
such that each (in this case, the only) implicational
statement in DEP has truth value 1 under ¢ but such that
neither « nor B has truth value 1 under 7. Since o (that
is, A = B) has truth value 0 under ¢, this means that ¢
assigns truth value 1 to A and truth value 0 to B. But
then B (that is, B= A) has truth value 1 under ¢. This is
a contradiction.

Thus, we have exhibited DEP, «, 8 such that 1)
o V B is not a consequence of DEP, although 2) a V B is
a logical consequence of DEP. Hence, our seemingly
mild extension of the Equivalence Theorem fails.

As we now show, our example can also be used to
prove the following theorem.

Theorem A There is a set DEP of implicational state-
ments and a pair «, 8 of implicational statements such
that simultaneously

a. « is not a logical consequence of DEP.
b. B is not a logical consequence of DEP.
¢. a V B is a logical consequence of DEP.

Proof As before, let DEP contain only the implicational
statement A = A (or, even simpler, let DEP be the
empty set), let @ be A=> B, and let 8 be B> A. We have
already shown that ¢ holds. To show that a holds, let ¢
be the truth assignment that assigns truth value 1 to A
and truth value 0 to B. Then 7 is a counterexample truth
assignment that assigns truth value 1 to each implica-
tional statement in DEP but that assigns truth value 0 to
a. Therefore, a holds. We can similarly show that b
holds. O

541

FUNCTIONAL DEPENDENCIES

542

R. FAGIN

By contrast, we have the following theorem about
dependency statements.

Theorem B It is impossible that there is a set DEP of
dependency statements and a pair «, 8 of dependency
statements such that simultaneously

a. a is not a consequence of DEP.
b. B is not a consequence of DEP.
c. a V Bis aconsequence of DEP.

Proof Assume that there exist DEP, a, 8 such that a, b,
and ¢ all hold simultaneously. Let DEP’ be the closure
of DEP under Armstrong’s Axioms. By Armstrong’s
Theorem, there is a relation & such that DEP’ is pre-
cisely the set of dependency statements that hold for 2.
Since DEP holds for £, it follows from c that either « or
B holds for %. Assume that a holds for %; we will derive
a contradiction. (Similarly, the assumption that 8 holds
for % leads to a contradiction.) Since « holds for 2, it
follows by definition of % that a is in DEP’. By the
Dependency Completeness Theorem, DEP’ is the set of
dependency statements that are consequences of DEP.
Therefore, since « is in DEP’, it follows that « is a
consequence of DEP. This contradicts a. |

Under the terminology of Beeri, Fagin, and Howard
[3], Theorem A shows that Armstrong’s Axioms are
not “strongly complete” for implicational statements,
although, by the Dependency Completeness Theorem,
they are complete for implicational statements. By con-
trast, Armstrong’s Axioms are strongly complete for
dependency statements.

6. The Delobel-Casey Theorems

In this section, we show that the Delobel-Casey Re-
lational Database Decomposition Theorems, which
heretofore have seemed somewhat unexpected and sur-
prising, are natural consequences of the Equivalence
Theorem.

Let A --- A, — B, -+ B, be a typical dependency
statement. The first Delobel-Casey transform of this
dependency statement is the propositional (or Boolean)
statement A -~ A, B/'+---+ A ---A B' HereB/is
the negation of B, and “+” is the *“‘logical or” (or Bool-
ean sum). Thus, this propositional statement has truth
value 1 iff first, A, -+, A, each have truth value 1, and
second, for some / it happens that B, has truth value 0. If
DEP is a set of dependency statements, then the first
Delobel-Casey transform of the set DEP is the proposi-
tional statement which is the Boolean sum of the first
Delobel-Casey transforms of each of its members. For
example, if DEP is {AB — CD, C — A}, then the first
Delobel-Casey transform of DEP is ABC' + ABD' + CA'.

The first Delobel-Casey Theorem relates the equiva-
lence of two sets of dependency statements to the equiv-

alence of the corresponding first Delobel-Casey trans-
forms. We will now look at an example, which is taken
from Delobel and Casey’s paper [4]. Consider the fol-
lowing set DEP, of dependency statements:

P—>T
PH—>Y
PH — N
HN —> P
HN—->Y
HY —» P
HY — N

The first Delobel-Casey transform of this set is the Bool-
ean expression BOOL, given by

PT’' + PHY' + PHN' + HNP' + HNY' + HYP' + HYN',

By using Karnaugh maps, Delobel and Casey show that
this Boolean expression BOOL, is equivalent to the
Boolean expression BOOL, given by

PT' + HYT' + HYTN' + PTHN’ + NHTY' + NYTHP' +
NHT'.

This expression is the first Delobel-Casey transform of
the following set DEP, of dependency statements:

P—>T
HY—>T
HYT —> N
PTH— N
NHT - Y
NYTH — P
NH—->T

The First Delobel-Casey Theorem tells us that be-
cause BOOL, and BOOL, are equivalent Boolean
expressions, it follows that the sets DEP, and DEP, are
equivalent sets of dependency statements (DEP, and
DEP, are said to be equivalent if each statement
in DEP, is a consequence of the set DEP, and each
statement in DEP, is a consequence of the set DEP).

First Delobel-Casey Theorem Let DEP, and DEP,
be sets of dependency statements and let BOOL, and
BOOL, be the first Delobel-Casey transforms. Then
DEP, is equivalent to DEP, iff BOOL, is equivalent
to BOOL,.

Proof Let DEP, be the set of implicational statements
which correspond to DEP, as before, in which we replace
each column name A by its corresponding propositional

IBM J. RES. DEVELOP.

variable A, and in which we replace each occurrence of —
by =. Similarly, define DEP,. It is straightforward to
check that the conjunction of the implicational state-
ments in DEP, is equivalent to the negation of BOOL,;
similarly for DEP, and BOOL,. It follows easily that
BOOL, is equivalent to BOOL, iff DEP, is equivalent to
DEP,. So, to prove the theorem, we need only prove that
DEP, is equivalent to DEP, iff DEP, is equivalent to
DEP,. But this follows from the Equivalence Theorem, as
we will show. Actually, we will only show that if DEP, is
equivalent to DEP,, then DEP, is equivalent to DEP,; the
proof of the converse is very similar. Assume that DEP,
is equivalent to DEP,. To show that DEP, is equivalent to
DEP,, we must show that each implicational statement in
DEP, is a logical consequence of DEP, and that each
implicational statement in DEP, is a logical consequence
of DEP,. Without loss of generality, we will only show
that each implicational statement in DEP, is a logical
consequence of DEP,. Let a be an arbitrary implicational
statement in DEP,; we must show that & is a logical con-
sequence of DEP,. Let « be the dependency statement in
DEP, which corresponds to the implicational statement
« in DEP,. Since DEP, is equivalent to DEP,, it follows
that o (like every other dependency statement in DEP,)
is a consequence of DEP,. So, by the Equivalence Theo-
rem, « is a logical consequence of DEP,, which was to
be shown, O

We now discuss the second Delobel-Casey Theorem.
Assume that K, - -+, K, are some (or all) of the column
names of relation #. We say that {K,, ---, K} (or,
more simply, K, -~ K,) is a key of Z if no two distinct
tuples of % agree in all of the columns K, -, K,,. Thus,
K,"+ K, is akey iff K, --- K, = A for each column
name A. (We are tacitly assuming that the same tuple
does not appear twice in relation %.) For convenience,
we are allowing the possibility that a proper subset of a
key be a key (our definition of key corresponds to Bern-
stein’s [6] definition of “superkey.”)

If D, - D, are all of the column names of %, and if
DEP is a set of dependency statements (involving only
column names D, -+, D,), then by the second Delobel-
Casey transform of DEP, we mean the propositional
statement which is the Boolean sum of D, - - - D, and the
first Delobel-Casey transform of DEP. For example, if
DEPis {AB - CD, C - A}, and A, B, C, D are all of
the column names of %, then the second Delobel-Casey
transform of DEP is ABCD + ABC’' + ABD ' + CA’.

Second Delobel-Casey Theorem The following are
equivalent:

1. Itis a consequence of DEP that K,- - K, is a key.
2. The propositional statement K, - -+ K, logically im-
plies the second Delobel-Casey transform of DEP.

NOVEMBER 1977

Note In 2 above, when we say that one propositional
statement logically implies a second, we mean that the
second statement has truth value 1 for every truth assign-
ment that assigns truth value 1 to the first propositional
statement.

Proof Statement 1 is equivalent to the assertion that the
dependency statement K, --- K — D,--- D, is a conse-
quence of DEP, where D, -+, D, are all of the column
names. Hence, by the Equivalence Theorem, 1 holds iff
the implicational statement K, ---K_ -~ D --- D, is a
logical consequence of the set DEP (of propositional
statements) which corresponds to DEP. What about 2?
It is straightforward to verify that the second Delobel-
Casey transform of DEP is logically equivalent to the
propositional statement 8 = D, --* D,, where 8 is the
conjunction of the propositional statements in DEP. So,
2 says that y logically implies the statement 8 = 8,
where v is K, --- K, where 8 is the conjunction of the
statements in DEP, and where 8 is D, - D,. In general,
“vy logically implies the statement 8 = & holds iff “8
logically implies the statement y = 8”; this can easily
be verified by considering each of the 2* = 8 possible
truth assignments to (8, v, 8). But in this case, as
we showed, the sentence “B logically implies the state-
ment y = 8,” i.e., “DEP logically implies the statement
K, - K, = D ---D,” is equivalent to 1. So 1 and 2
are equivalent, 0O

We close this section with remarks on earlier proofs of
the Delobel-Casey Theorems. Delobel and Casey’s orig-
inal proofs are somewhat involved and contain case-by-
case examination of the effect of the “‘star algorithm” for
generating prime implicants of disjunctive Boolean for-
mulas. Armstrong [2] gave another proof in which he
interprets the propositional variable A corresponding to
column name A as a certain Boolean function of Bool-
ean functions. Hopefully, our proof eliminates some of
the mystery.

7. Multivalued dependency statements

The main result of this paper is that the relational data-
base concept of “determines” (where the dependency
statement A — B is read ““A determines B”’) has some
of the same formal properties as the propositional con-
cept of “implies.”” We remark that the author has defined
another natural kind of rélational database dependency,
called “multivalued dependency” [12], which has quite
different formal properties (although the dependency
statements dealt with in the present paper turn out to be
a special case). A complete axiomatization for multival-
ued dependency statements is given in Beeri, Fagin, and
Howard [3]. Of course, this axiomatization is different
from that given by Armstrong’s Axioms.

543

FUNCTIONAL DEPENDENCIES

544

R. FAGIN

8. Summary

We have demonstrated an equivalence between depend-
ency statements (or functional dependencies) of a rela-
tional database on the one hand and of implicational
statements of propositional logic on the other hand. We
have exploited this equivalence to prove the Delobel-
Casey Relational Database Decomposition Theorems.
This equivalence may also be of use to a database de-
signer, who can use the tools of propositional logic to
answer questions about dependency statements. We
have presented a detailed algorithm for such an applica-
tion. Furthermore, we have demonstrated an example
that shows that an apparently mild extension of the
equivalence fails.

Acknowledgments

The author is grateful to R. G. Casey for reading the
paper and providing useful comments, and to J.-M.
Cadiou and J. H. Howard for helpful discussions.

References

1. E. F. Codd, “Further Normalization of the Data Base Re- k

lational Model,” Courant Computer Science Symposia 6,
Data Base Systems, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1971, p. 33.

2. W. W. Armstrong, “Dependency Structures of Data Base
References,” IFIP Conf. Proc. 1974, North Holland Pub-
lishing Co., Amsterdam, 1974, p. 580.

3. C. Beeri, R. Fagin, and J. H. Howard, “A Complete Ax-
iomatization for Functienal and Multivalued Dependencies
in Database Relations,” Proc. ACM SIGMOD, D. C. P.
Smith, ed., New York, NY, 1977, p. 47.

4. C. Delobel and R. G. Casey, “Decomposition of a Data
Base and the Theory of Boolean Switching Functions,”
IBM J. Res. Develop. 17,374 (1973).

5. J. Rissanen, “Independent Components of Relations,”
ACM Trans. Database Syst., to be published.

6. P. A. Bernstein, “Synthesizing Third Normal Form Rela-
tions from Functional Dependencies,” ACM Trans. Data-
base Syst. 1,277 (1976).

7. R. Fagin, “The Decomposition Versus the Synthetic Ap-
proach to Relational Database Design,” Proceedings of the
1977 Very Large Data Bases Conference, to be published.

8. A. Horn, “On Sentences Which are True of Direct Unions
of Algebras,” J. Symbol. Logic 16, 14 (1951).

9. L. Henschen and L. Wos, “Unit Refutations and Horn
Sets,” J. ACM 21, 590 (1974).

10. D. Kuehner, “Some Special Purpose Resolution Systems,”
Machine Intelligence, Vol. 7, B. Meltzer and D. Michie,
eds., American Elsevier, New York, 1972, p. 117.

11. C. L. Chang, “DEDUCE — A Deductive Query Language
for Relational Data Bases,” Pattern Recognition and Artifi-
cial Intelligence, C. H. Chen, ed., Academic Press, Inc.,
New York, 1976, p. 108.

12. R. Fagin, “Multivalued Dependencies and A New Normal
Form-for Relational Databases,” ACM Trans. Database
Syst. 2, 262 (1977).

Received May 6, 1977, revised July 8, 1977

The author is located at the IBM Research Division lab-
oratory, 5600 Cottle Road, San Jose, California 95193.

IBM J. RES. DEVELOP.

