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Abstract: An  equivalence  is  shown  between  functional  dependency statements of a relational  database,  where “+” has  the  meaning 
of “determines,” and  implicational  statements of propositional  logic,  where ‘‘+” has the meaning  of  “implies.”  Specifically,  it is shown 
that a dependency  statement  is a consequence of a set of dependency  statements iff the corresponding  implicational  statement is a con- 
sequence of the  corresponding  set of implicational statements.  The database designer can take  advantage of this  equivalence  to  reduce 
problems  of interest  to him to simpler  problems in propositional  logic. A detailed  algorithm  is  presented  for  such  an  application.  Two 
proofs of the  equivalence  are  presented: a “syntactic” proof and a “semantic”  proof.  The  syntactic  proof  proceeds in several  steps.  It 
is  shown  that 1) Armstrong’s  Dependency  Axioms  are  complete  for  dependency statements in the  usual  logical  sense that they  are 
strong  enough  to  prove  every consequence, and that 2) Armstrong’s  Axioms  are  also  complete for implicational statements in proposi- 
tional  logic. The  equivalence  then  follows  from 1) and 2) .  The  other proof  proceeds  by  considering appropriate semantic interpreta- 
tions for the  propositional  variables.  The  Delobel-Casey  Relational  Database  Decomposition  Theorems, which heretofore  have 
seemed  somewhat fortuitous,  are  immediate  and  natural  corollaries of the  equivalence.  Furthermore, a counterexample  is  demonstrat- 
ed,  which  shows  that  what  seems  to  be a mild  extension  of  the  equivalence fails. 

Introduction 
The  concept of functional dependencies [ 11 is one of the 
few in the  database  area  that is both intuitively simple 
and yet complex  enough that  an  advanced  development 
is possible (see,  for  example, [ 2- 61).  Functional  de- 
pendencies are  important tools for  database design: in 
fact, in one  approach  to  database design [6], they are 
essentially the only input. 

Because of their  importance and  intuitive  simplicity, 
there is considerable interest in studying their prop- 
erties.  In this paper,  it  is  shown  that in some ways func- 
tional dependencies  behave precisely the  same  as a 
certain well-studied subset of propositional logic. In 
particular, it is possible to  take  advantage of artificial 
intelligence research in the  area of theorem-proving  by 
directly  converting results in that  area  into  results  about 
functional dependencies. 

In this paper, we refer to functional dependencies by 
the name “dependency  statements.”  This is done  for 
several  reasons.  The first is to  emphasize  the analogy 
with  implicational statements, defined soon.  The second 
is that  there is some  confusion as  to  exactly what func- 
tional dependencies  are.  Codd [ 13 considers them to be 
statements,  or  sentences,  that can either hold or  not hold 
for a given database relation. However, Bernstein [6] 
defines a functional dependency  to be  a  “time-varying 
function.”  Some  practical  distinctions  resulting from  the 
two different definitions are  discussed in [ 71. By using 
the name “dependency  statements,” we emphasize  their 
role as simple sentences, which  can hold for  certain  data- 

534 base relations and  not hold for  others. 

We now give Codd’s definition. Assume  that 9 is a 
database relation, and  that  each column of 9 has a 
unique  “column name.” If A,, . . ., A,, B,, . . ., B, are 
among the column  names of 92 (they need  not be 
distinct), then we say  that A,, . . ., A, determine B,, . . ., 
B, (or B,, . . ., Br depend on A,, . . ., A,)  if whenever  two 
tuples (that is, rows) of 9 agree in columns A,, . . I, A,, 
then they  also  agree in columns B,, . .., B,. (Two tuples 
agree in  a  column if their entries  under  that column are 
the  same.) We write {A,, . . ., A,} -+ { B,, . . ., B,}, or, 
more  simply, A , .  . . A, + B, . . . B,, and we call each 
such  statement a dependency  statement. For  conve- 
nience, we assume throughout  this paper  that we are 
dealing with static  (i.e., time-invariant)  relations, al- 
though  only  trivial modifications are called for  to deal 
with time-varying relations, such  as would occur in ac- 
tual  relational databases.  Our  approach in this paper is 
to hold fixed a dependency  statement  or a set of depend- 
ency  statements and  then to  derive  properties of the 
collection of all relations 9 for which the given depen- 
dency  statements hold. 

With each column  name A we associate a  distinct 
propositional  (i.e.,  Boolean)  variable A. With each  de- 
pendency statement  A, . . . A, -+ B, . . . B, we associate 
the propositional statement A, A .  . . A A, 3 B, A .  . + A B,, 
or,  as we shall write  it, A , .  . . A, .$ B, . . . B,. We call 
each  such  statement  an implicationul  statement of prop- 
ositional logic. (We write + instead of the  more usual 
-+ to  prevent confusion with the  dependency symbol.) It 
is clear  that  the  correspondence is one-one and  onto; 
thus,  for  each implicational statement  there is also  a cor- 

R. FAGIN IBM J .  RES. DEVELOP. 



responding dependency  statement.  Let t be a truth as- 
signment, that  is, a mapping that assigns to  each propo- 
sitional  variable either  the value 0 (false)  or 1 (true). 
The propositional statement A, . . . A, .$ B, . . . Br has 
truth value 0 under  truth assignment t if each of A,, . . ., 
A, has  the  truth value 1 under t and  at least one of B,, 
. . ., Br has truth value 0; otherwise, it has  truth value 1 .  

Before we  can  state  the main result in this paper, we 
need to define some  concepts.  Assume  that DEP is a set 
of dependency  statements  and a is a single dependency 
statement. When we say that “a is a consequence of 
DEP,”  we mean that a holds for  every relation that  obeys 
each  dependency  statement in DEP.  That  is, a is a con- 
sequence of DEP iff there is no  “counterexample” rela- 
tion 9 such  that  each  dependency  statement in DEP is 
true in 92 but  such  that a is false  in 9. An  example might 
be helpful. Let DEP be the  set  {AB - C,  AC + D} of 
dependency  statements, and let a be  the  dependency 
statement  AB + D. We will show  that a is a conse- 
quence of DEP.  Let 92 be  arbitrary.  Assume  that DEP 
holds for 9; we will show  that a holds for 9. To show 
that a holds  for 92, we assume  that  the  two tuples T, and 
T, of 9 agree in  columns  A  and B;  we must  show that 
T, and T, agree in column D. Since T, and T, agree in 
columns  A and B, and since the  dependency  statement 
AB + C  holds for 9, we know that T, and T, agree in 
column C. Since T, and T, agree in columns  A  and C, 
and  since  the  dependency  statement AC - D  holds for 
9, we  know  that T, and T, agree in column D, which 
was to be  shown. 

Now let DEP be  a set of implicational statements of 
propositional logic, and let a be a single implicational 
statement.  (We  use  the name DEP for a set of implica- 
tional statements  since,  later  on, we think of DEP as be- 
ing the set of implicational statements  that  correspond  to 
the  set DEP of dependency  statements.) When we say 
that “a is a logical consequence of DEP,” we mean that 
a has  truth value 1 for  every  truth assignment that gives 
truth value 1 to  each implicational statement in DEP. 
That  is, (Y is a logical consequence of DEP iff there is no 
counterexample  truth assignment t such  that  each impli- 
cational statement in DEP has  truth value 1 under t but 
such  that (Y has truth value 0 under t .  

As  an example, let DEP be the  set {AB 3 C, AC 3 D} 
of implicational statements of propositional logic, and let 
a be the  statement AB 3 D. Then a is a logical conse- 
quence of DEP, because if t is one of the Z4 = 16 possi- 
ble truth assignments to (A, B, C, D) ,  and if it happens 
that  each  statement in DEP has  truth value 1 under  truth 
assignment t ,  then it is easy  to verify that so does a. 

We can now state  and  discuss  the main result in this 
paper, which establishes an equivalence between  de- 
pendency statements and implicational statements.  The 
proof is deferred until Section 3. 

NOVEMBER 1977 

Equivalence  Theorem Assume  that  DEP is a set of de- 
pendency statements  and a is a single dependency  state- 
ment.  Let DEP, a be,  respectively,  the corresponding set 
of implicational statements and single implicational 
statement.  Then a is a consequence of DEP iff a is a 
logical consequence of DEP. 

We can now see  the practical  and theoretical utility of 
the Equivalence Theorem.  As a first example, let DEP, 
as before, be  the  set  {AB + C,  AC -+ D} of dependen- 
cy statements,  and let a be the  dependency  statement 
AB -+ D;  let DEP be the corresponding set { A B 3  C, AC 
$ D} of implicational statements and a the implicational 
statement AB 3 D. In this case,  we  have  shown, by two 
quite different proofs,  that 

1. a is a consequence of DEP 
and  that 
2 .  a is a logical consequence of DEP. 

It is not  surprising that  the proofs of 1 and 2 are  quite 
different since  they  deal with  completely  different uni- 
verses of discourse.  According  to  the Equivalence Theo- 
rem, 1 and 2 above  are  either  both  true  or  both false. (In 
thls case, they are  both  true.) So, if a database designer 
were  confronted  with the problem (Problem 1 )  as  to 
whether 1 holds in a particular case of interest  (he might 
be normalizing relations [ I ]  or determining keys,  and 
many dependency  statements might be  involved), he 
could  instead solve  the  perhaps  easier problem (Prob- 
lem 2 )  as  to  whether 2 holds in propositional logic. He 
can solve  Problem 2 by whatever means he finds easiest 
(such as  by using truth tables, by using a  theorem- 
prover,  etc.),  and  he is automatically  guaranteed (by 
the Equivalence Theorem)  to get the  correct  answer  to 
Problem 1. 

Let us look at a specific example  (involving a new 
DEP and a)  in which the  database designer might solve 
Problem 1 by instead solving Problem 2 and using the 
tools of propositional logic. Assume  that  he is examining 
a relation 9 with  exactly four  columns,  A, B, C,  D, and 
for which the only dependency  statements  that hold are 
those in the following set DEP  (and its consequences) : 

AB + D 

B C + A  

BC ”+ D 

C D - A  

C D - B  

He is trying to  decide  whether  AB is a key of 9. Since 
he already  knows that  AB + A,  AB -+ B, and  AB - D, 
he  needs  to  determine  whether  or not AB + C.  Let a be 
the  dependency  statement  AB -+ C.  He  wants  to  solve 
Problem 1, that is, to know whether a is a consequence !Mi 
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of DEP. By the Equivalence Theorem, he can instead 
solye Problem 2, that is, to  determine  whether a is a log- 
ical consequence of DEP, where, of course, (Y is AB + C, 
and DEP is 

A B +  D 

B C +  A 

BC+ D 

C D ~  A 

C D +  B 

Let t be  the  truth assignment that assigns truth value  1 
to A, B, and D, and  truth  value 0 to C. It is very  simple 
to  check  that  each implicational statement in DEP has 
truth value  1 under t ,  whereas a has truth value 0 under 
t. So, since  we  have exhibited a counterexample  to  truth 
assignment t such  that  each  statement in DEP has  truth 
value  1 under t but such that a has  truth value 0 under t ,  
it follows that  the  answer  to Problem 2 is “No, a is not a 
logical consequence of DEP.” Hence, by the  Equiva- 
lence Theorem,  the  answer  to Problem 1 is “No, a is not 
a consequence of DEP,” and so AB is not a key. 

In addition to  the  truth-table method, there  are  fast, 
special-purpose theorem-provers for solving Problem 2. 
I t  follows from  the  Equivalence  Theorem  that  these 
theorem-provers  can  be used  directly as efficient means 
to solve  Problem 1. In  Section 2, we apply such a spe- 
cial-purpose theorem-prover  to give an efficient solution 
to  Problem 1. Thus,  one of the practical  benefits of the 
Equivalence Theorem is that  we  can  take  advantage of 
artificial intelligence research  that  has gone towards 
finding efficient solutions to Problem 2 to obtain  directly 
efficient solutions to Problem 1. 

In Sections 3 and  4, we present  two proofs of the 
Equivalence Theorem.  The first (syntactic) proof pro- 
ceeds in several  steps.  It is shown  that 1) Armstrong’s 
Dependency Axioms (see Section 3) are  complete  for 
dependency  statements. By complete, we mean that a is 
a consequence of DEP iff there is a proof (in a  finite 
number of steps) of a from DEP by applying Arm- 
strong’s  Axioms. Further,  we show that 2 )  Armstrong’s 
Axioms  (when  converted,  as  above, by replacing each 
occurrence of ”+ by 3) ,  are  complete  for implicational 
statements of propositional logic. We then show  that  the 
Equivalence Theorem follows  from 1)  and 2) .  

Our  other proof of the Equivalence Theorem is se- 
mantic in nature.  It  proceeds by considering appropriate 
interpretations  for  the propositional variables. 

In Section 5, we  show  that what seems  to be  a mild 
extension of the Equivalence Theorem fails. This some- 
what surprising  failure  shows the subtlety of the Equiva- 
lence Theorem.  Thus,  those who feel  that  the  Equiva- 
lence  Theorem is “obvious” might also feel that  the mild 

extension is only slightly less obvious, although,  in fact, 
it is false! 

In Section 6, we  show  that  the  important, widely ref- 
erenced  Decomposition  Theorems of Delobel  and  Casey 
[ 41 follow immediately  from our Equivalence Theorem. 
Perhaps  the main contribution of this paper is to  present 
new proofs of these  theorems.  Furthermore, we feel that 
our Equivalence Theorem as we state it is more  enlight- 
ening than  the  statement of the  Delobel-Casey  Theo- 
rems. 

2. An efficient  algorithm for determining 
consequence 
Let a be a deptndency  statement and DEP a set of de- 
pendency  statements.  Let a, DEP be the  corresponding 
implicational statements. By the Equivalence Theorem, 
the problem (Problem 1 ) as to  whether  or  not a is a 
consequence of DEP is equivalent to  the problem 
(Problem 2) as  to  whether  or  not a is a logical conse- 
quence of DEP. Now Problem 2 can be converted  into 
the well-studied  probiem of satisfiability of propositional 
Horn  clauses [ 8- lo]. A fast algorithm for  the  Horn 
clause satisfiability problem is the “first-literal  unit reso- 
lution procedure,” which is due  to Chang [ 1 1 ,  p. 1301. 
By the Equivalence Theorem, we can exploit Chang’s 
algorithm (which  solves  Problem 2) to  obtain  an effi- 
cient  algorithm to solve  Problem 1 .  We now explicitly 
describe  the resulting  algorithm. 

For  convenience, we assume  that  the  dependency 
statement a and  the  dependency  statements in DEP 
each  have  exactly  one column  name on  the right-hand 
side (it is easy to  see how to  convert problems in which 
this is not  the  case  into problems in which this is the 
case). 

In  the first step of the algorithm, we  form a set Y of 
strings of symbols. Each string contains  three  types of 
symbols:  column names, negation signs ( w ) ,  and com- 
mas (,) . For  each  statement  A,. . . A, ”+ B in DEP, we 
include in Y the string 

”A,, . . ., ”A,, B 

(For those who  want  a glimpse of what is going on be- 
hind the  scenes:  This string corresponds  to  the  “Horn 
clause” ”A, V . . . V ”A, V B, which is logically equiva- 
lent to the propositional formula A, A .  . . A A,,, .$ B.) 

If a is the  dependency  statement C, . . . C, - D,  then 
also include in 9 the ( k  + 1 ) strings 

Cl 

c, 
”D 
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For  example, if DEP and a! are  as in our first example 
in the  Introduction  (that is, DEP is {AB -+ C,  AC -+ 

D},  and a! is AB -+ D), then Y contains  the five strings 

“A, “B, C 
-A, -C, D 
A 
B 
N D  (1) 

We call each column  name an “atom,”  and  we call the 
concatenation of a  negation sign with  a  column name a 
“negative  atom.” To  get  our terminology  straight: in 
( l ) ,  there  are  two strings that  are  atoms  (namely, A  and 
B),  one string that is a  negative atom  (namely, N D ) ,  
and  three strings that “begin with” negative atoms  (the 
first, second, and fifth strings). 

The algorithm proceeds by searching for  an atom X 
such  that 

a. X is a  string  in Y ,  
and 
b. There is a  string  in Y that begins with -X. 

In  our example, there  are  two  atoms X (namely, 
A  and  B) that satisfy a, and two  atoms X (namely, A 
and D)  that satisfy b. The only atom X that satisfies 
both a and b is A. (If  there  were  several  atoms X that  sat- 
isfied both a  and b,  the algorithm would now arbitrarily 
select  one of them.)  In the next  step of the algorithm, 
we  shorten  each string that begins  with NX by erasing 
the leading negation sign, the X, and the  comma  that fol- 
lows X (if there is such a comma).  In ( I ) ,  where X is A, 
the first two strings are  shortened, and we are left with 

NB, C 
NC, D 
A 
B 
ND (2)  

We  repeat  the  procedure by again searching for  an atom 
X that satisfies both a and b above.  In ( 2 ) ,  the only such 
atom is B. After  the “shortening” procedure is applied, 
we are left with 

C 
NC, D 
A 
B 
N D  (3) 

We again repeat  the  procedure.  In (3 ) ,  the only atom X 
that satisfies both a  and  b is C.  After  the shortening pro- 
cedure,  we  are left with 
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C 
D 
A 
B 
N D  ( 4) 

After  another iteration (where X is now D)  , we  are  left 
with 

C 
D 
A 
B 
A (5) 

where A is the  empty string. The  entire algorithm halts 
either when 1 ) the  empty string A is generated  (as hap- 
pened in this case)  or when 2 )  there is no  atom X that 
satisfies both a  and b. If 1 )  occurs first, that is, if the 
empty string A is generated, then a! is a consequence of 
DEP  (as in this case). If 2 )  occurs first,  then a! is not a 
consequence of DEP. 

It  is easy to  see  that  the algorithm must always  termi- 
nate, and thereby give an  answer.  That this  algorithm 
gives the correct answer is an immediate consequence of 
Chang’s theorem  on  Horn  clauses  and  our Equivalence 
Theorem. 

3. Completeness of Armstrong’s Axioms, and the 
Equivalence  Theorem 
Armstrong’s  Axioms consist of the following three 
schemata: 

( A l )   A , . . . A ,  ”+ Ai, for i =  I;.., m. 

(A2) A,~~~A,+B,~~~Briff,foreachi,A,~~~A,+Bi. 

(A3)  IfA,~~~A,+B,~~~B,,andB,~~~B,+C,~~~C,, 
then  A,. . . A, + C, ‘ . . C,. 

Here  A,, ..., A,, B,, . .., B ,  C,, ..., C, are column 
names. [Actually, Armstrong’s original set of axioms is 
slightly different from this set,  but  the  two  sets  are 
equivalent,  since it is easy  to  check  that this set implies 
each axiom in the original set  and  that  Armstrong’s orig- 
inal axioms imply each of these.  It  turns  out  that axioms 
(A 1 ) - (A3 ) are more convenient  for  our  purposes than 
Armstrong’s original set, so we use (A1 ) - (A3) .] 

If DEP is a set of dependency  statements, and cy is a 
single dependency  statement,  then by a “proof of a! from 
DEP via  Armstrong’s  Axioms,” we  mean a sequence of 
lines (the  “proof”), in  which every line is a dependency 
statement,  and  the  last line is cy. Each line of the proof is 
either  a statement in DEP  or  else is obtained  from ear- 
lier lines  by an application of the axioms. For example, 
the  dependency  statement  A,. . . A, + C, . . . C, may be 537 
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one line which is  obtained from two earlier  lines A, . . . 
A ,  + B; . . B, and B; . . B, + C; . ’C, by an application 
of axiom (A3).  Note  that axiom (A2) is really two ax- 
ioms: It  says first that  the  statement A,.  . ‘A, + B; . . B, 
may appear  as a line of the proof  which is obtained  from 
earlier  lines A, . . . A, + Bi ( i  = 1, . . ., r )  ; second, a 
statement  A, . . . A, + Bi may appear  as a line of the 
proof  which is obtained  from an earlier line A,.  . . A, + 

B, . . . B,. Finally, an  instance of axiom ( A l )  can  appear 
no  matter  what  the previous  lines of the proof are,  since 
it is “unconditional.” To  clarify  this concept  of a  proof, 
let us give a proof  via  Armstrong’s Axioms of AB -+ D 
from  {AB + C,  AC + D}.  (This  is  the  example  we 
used  earlier. ) 
1. AB + C (assumption) 

2. AC + D (assumption) 

3.  AB + A (axiom A l )  

4. AB + AC (axiom A2 applied to 3 and 1) 

5 .  AB + D (axiom  A3 applied to 4 and  2) (6)  

We  can now state Armstrong’s Theorem  (this was 
Theorem 5 in [2] ). Let  DEP be a set of dependency 
statements,  and let DEP’ be the  set of dependency  state- 
ments that  can  be  proved  from DEP via  Armstrong’s 
Axioms  (for  convenience,  we  assume a fixed set of col- 
umn  names). We call DEP’  the closure of DEP. 

Armstrong’s  Theorem Let  DEP  be a set of depend- 
ency  statements,  and  DEP’  its  closure  under  Arm- 
strong’s  Axioms. Then  there  is a  relation 9 such  that 
DEP’ is precisely  the set of dependency  statements  that 
hold for 9. 

We now present  the  Dependency  Completeness 
Theorem.  This result was  never explicitly stated by 
Armstrong,  but,  as we will see, it follows  very  easily 
from the previous theorem. The  Dependency  Complete- 
ness  Theorem  says  that  the following two different con- 
cepts  are equivalent: 1) a is a consequence of DEP 
(which  means  that  there is no  counterexample relation 9 
such  that  every  dependency  statement in DEP holds for 
9, but such  that a does  not hold for 9) ; and 2) a can  be 
proved from DEP via  Armstrong’s  Axioms. 

Dependency  Completeness  Theorem Let  DEP be a set 
of dependency  statements  and a a single dependency 
statement.  Then a is a consequence of DEP iff a can  be 
proved  from DEP via  Armstrong’s  Axioms. 

Proof:+: This is the  “easy  direction” of the  proof,  since 
each of Armstrong’s Axioms is a valid statement  about 
dependency  statements.  For  example,  axiom  (A3) is 
valid, since if the first two  dependency  statements in 
(A3) hold for a  relation 9, then  also  the third dependen- 
cy  statement in (A3) holds  for 9. 

3: Assume  that a is a consequence of DEP,  that is, 
there is no  counterexample relation 9 such  that  every 
dependency  statement in DEP holds  for 9 but  such  that 
a does not hold for 9. We want  to  show  that  the axioms 
are powerful  enough to  prove a from  DEP.  Let  DEP’ be 
the  closure of DEP under Armstrong’s  Axioms.  Clearly 
DEP C DEP‘; we wish to  show  that a E DEP’.  It fol- 
lows  from Armstrong’s Theorem  that  there is a  relation 
92 such  that  DEP’ is precisely the  set of dependency 
statements  that hold for 9. Now  DEP holds for 9, and, 
by assumption,  whenever DEP holds, then a holds. 
Hence a holds for 9, and so a E DEP’, by construction 
of 92. Therefore, a can  be proved  from DEP via  the ax- 
ioms. 0 

We  now  temporarily  turn our  attention  away from 
dependency  statements and work completely in the 
realm of propositional logic, to  prove  the Implicational 
Completeness  Theorem. To prevent notational  confu- 
sion, we rewrite Armstrong’s Axioms in propositional 
form. 

( A l ’ )   A ; . . A , j A , , f o r i = l ; . . , m .  

(A27 A ; ~ ~ A , ~ B ; ~ ~ B , i f f , f o r e a c h i , A ; ~ ~ A , ~ B B , .  

(A3’) I f A ; ~ ~ A , ~ B , ~ ~ ~ B , a n d B , ~ ~ ~ B , ~ C , ~ ~ ~ C , ,  
then  A,. . . A, .$ C, . . . C,. 

Here A,, . . ., A,, B,, . . ., B,, C,, . . ., C, are propositional 
variables. 

Implicational Completeness Theorem Let DEP be a set 
of implicational statements of propositional logic and a a 
single implicational statement.  Then a is a logical conse- 
quence of DEP iff a can be  proved from DEP via Arm- 
strong’s  Axioms. 

ProoJ e : Once again, it is easy to verify that  each of the 
axioms are valid statements  about implicational state- 
ments. For example,  axiom (A3’) is valid, since if the 
first two implicational statements in (A3‘)  have  truth 
value 1 under a truth assignment t ,  then  also  the third 
implicational statement in (A3‘)  has  truth value 1 under t .  

3: Assume  that a is a logical consequence of DEP. We 
want  to  show  that  the axioms are  strong enough to  prove 
a from DEP. Assume  for definiteness that a is A,. . . A,,, 
3 Dl . . . D,. Let  PROVE  be  the  set of all propositional 
variables E such  that  the propositional statement A, . . . 
A, 3 E can  be  proved  from DEP via the axioms. By ax- 
iom (A1 ’), we  know  that A,, . . ., A, E PROVE.  Our 
goal is to  show  that Dl, . . ., D, E PROVE, since then 
by  axiom (A2’),  the implicational statement a can 
be proved from DEP via the  axioms-we simply put  to- 
gether  the proofs of the  statements A, . . . A, j Di and 
then  add a line A,. . . A, 3 Dl .  . . D, by applying  axiom 
(A2’) ; this is a proof of a from DEP via the axioms. 
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Without loss of generality, we  just show that Dl E 
PROVE.  Assume  that  it is false that Dl E PROVE; we 
will derive a  contradiction. Consider  the following as- 
signment of truth  values  to  the propositional  variables: 
Each propositional  variable in PROVE is assigned the 
truth value 1, and each remaining propositional  variable 
is assigned  the truth  value 0. We call this particular  truth 
assignment the magic truth assignment. In particular, Dl 
is assigned the  truth value 0 under  the magic truth  as- 
signment. Furthermore,  as we noted, A,, . . ., A, E 
PROVE, and hence A,, . .., A, are  each assigned the 
truth  value 1. Therefore, a has truth value 0 under  the 
magic truth assignment. We will show that  under  the 
magic truth assignment, each implicational statement in 
DEP has  truth value 1. Then  we will have  shown  that  the 
magic truth assignment is a counterexample  truth assign- 
ment (under which every implicational statement in DEP 
has  truth value 1 but under  which a has  truth  value 0). 
However, (Y is supposed  to  be a logical consequence of 
DEP, and so there is not  supposed  to be a counterexam- 
ple truth assignment. This is a contradiction. 

Let B, . . . Br 3 C, . . . C, be an  arbitrary  statement in 
DEP. We are through if we can show  that this implica- 
tional statement  has  truth value  1 under  the magic truth 
assignment. There  are  two  cases  to consider: 

Case 1 B,, . . ., B, E PROVE.  Hence  the implicational 
statements A, . . . A, 3 Bi can  be proved from DEP via 
the axioms ( i =  1; . ., r ) .  By now  applying  axiom (A2‘),  
we  see  that the implicational statement A , .  . . A, 3 B, . . . 
Br can  be proved  from DEP via  the axioms. Further, 
since  the  statement B, . . . B, 3 C, . . . C, is in DEP, it fol- 
lows  from  axiom (A3’)  that A,.  . . A,,, 3 C, . . . C,. Then 
by (A2’),  the  statements A, . . . A, Ci are  conse- 
quences of DEP. Hence, Ci E PROVE  for each i ,  so 
each Ci is assigned truth value 1 by the magic truth as- 
signment. So, the implicational statement B, . . . B, + C, 
. . . C, has  truth value 1 under  the magic truth assign- 
ment,  as  desired. 

Case 2 At  least  one of B,; . ., B, is not in PROVE. So at 
least  one of B,, . . ., B, is assigned truth value 0. Hence, 
once again, the implicational statement B, . . . Br 3 C, . . . 
C, has truth value 1 under  the magic truth assignment, 
as  desired. 0 

The Equivalence Theorem follows  easily from  the  two 
Completeness  Theorems,  as we now see. 

Equivalence  Theorem Assume  that DEP is a set of de- 
pendency statements  and a is a single dependency  state- 
ment. Let DEP, a be, respectively, the corresponding set 
of implicational statements and single implicational state- 
ment.  Then a! is a consequence of DEP iff a is a logical 
consequence of DEP. 
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Proof Assume  that a is a consequence of DEP. By the 
Dependency  Completeness  Theorem,  there  is a proof of 
a! from DEP using only  Armstrong’s  Axioms. Hence, 
there is also a proof of a from DEP by using only (the 
propositional  form of) Armstrong’s  Axioms,  since the 
proof  can  be  obtained by a direct translation of the 
dependency proof,  in  which we replace  each column 
name A by its  corresponding propositional  variable A, 
and in which we  replace  each  occurrence of += by 3. For 
example, the proof, in (6)  where we showed, via Arm- 
strong’s  axioms, that  AB -+ D is a consequence of 
{AB += C, AC += D},  can be converted  into  the following 
proof that AB 3 D is a logical consequence of {AB C, 
AC D}: 

1 .  AB 3 C (assumption) 

2. AC 3 D (assumption) 

3. A B 3  A (axiom Al ’ )  

4. AB AC (axiom  A2’ applied to 3 and  1) 

5. AB 3 D (axiom  A3’ applied to 4 and  2) 

So, by the  “easy direction” of the Implicational Com- 
pleteness  Theorem, we know that a is a logical conse- 
quence of DEP. We have  shown  that if a is a conse- 
quence of DEP, then a is a logical consequence of DEP. 
Similarly, if a is a logical consequence of DEP, then a is 
a consequence of DEP. 0 

4. Semantic proof of the Equivalence  Theorem 
It would be nice if, given a  relation 9, we could find in- 
terpretations  for  the propositional  variables such  that, 
for  example,  the  dependency  statement  AB += C would 
hold iff the propositional statement AB 3 C had truth 
value 1 .  One  such possible interpretation of the proposi- 
tional  variables might be to let A mean “the tuple’s entry 
in column  A has been  assigned.” Then,  the  statement 
AB 3 C would say  “If  the tuple’s entry in column  A has 
been  assigned, and if the tuple’s entry in column  B has 
been  assigned, then  the tuple’s entry in column C has 
been  assigned.” However, this seems difficult to formal- 
ize (for example,  who  assigns the value of an  entry of 
the tuple?  Where are  the  quantifiers?).  Another possible 
approach is to let A mean “Tuples 1 and 2 agree in col- 
umn A.” Again, there  are difficulties-Are  tuples 1 and 
2  special  tuples? Are they  somehow “representative” 
tuples? We now present a  semantic proof of the Equiva- 
lence Theorem in which we use this  “two-tuple”  inter- 
pretation of the propositional  variables in a precise  way, 
by showing that, roughly speaking, we can  restrict  our 
attention  to two-tuple  relations. 

Semantic proof of the Equivalence  Theorem Let  DEP, 
a, DEP, a be as before.  We must  show  that  the following 
are equivalent: 539 
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1 .  a is a consequence of DEP. 
2. a is a logical consequence of DEP. 

Define  a  two-tuple  relation to be  a  relation  with exactly 
two tuples (that is, rows). Define “a is a consequence of 
DEP in the world of two-tuple  relations” to mean that a 
holds in every two-tuple  relation that  obeys  each  de- 
pendency statement in DEP.  That is, a is a consequence 
of DEP in the world of two-tuple  relations iff there  is no 
counterexample two-tuple  relation 9 such  that  each 
dependency  statement in DEP holds for 92 but  such  that 
a does not hold for 9. To prove  that 1 and 2 above  are 
equivalent, we show first that 1 is equivalent to 

3. a is a consequence of DEP in the world of two-tuple 
relations. 

Then  we  show  that 2 is equivalent to 3. I t  follows that 
1 and 2 are equivalent, as  desired. 

We  now show  that 1 and 3 are equivalent. I t  is clear 
that 1 implies 3. So, we need only show  that 3 implies 1. 
Assume not. Let  DEP, (Y be  dependency  statements  such 
that 3 holds but  not 1. Let 9 be a relation  (which  may 
contain many tuples)  such  that  each  statement in DEP 
holds for 9 but  such  that a does not hold for 9. There  is 
such  an 9 since 1 fails. Assume  for definiteness that a is 
A,.  . . A, + B; . . B,. Then  there  are  two tuples of 9 such 
that  the two  tuples agree in  columns A,.  ’ ’ A,, but dis- 
agree in one of columns B,, . . ., B,. Let 9 be a  two-tuple 
relation  which  contains  only these  two  tuples.  It is easy 
to verify that  each  statement in DEP holds for B but  that 
a does  not hold for 9. This  contradicts 3. 

We have  shown  that 1 and 3 are equivalent.  We  now 
show  that 2 and 3 are equivalent. We need the following 
lemma. 

Semantic  Lemma Let t be a truth assignment  and 9 a 
two-tuple  relation, where t and B interrelate in the fol- 
lowing special  way: For  each column name A, the  two 
tuples  in B agree in column  A iff the  corresponding  prop- 
ositional  variable A is assigned truth value 1 by t. Then 
the  (arbitrary)  dependency  statement  A,. . . A, + B, . . . 
B, holds for 9 iff the  corresponding implicational state- 
ment A , .  . . A, 3 B, . . . B, has  truth value 1 under  truth 
assignment t .  

Proof of lemma Assume first that  the  dependency  state- 
ment A,. . . A,,, + B, . . . B, holds for 9. We will show  that 
the implicational statement A,.  . . A, 3 B; . . B, has  truth 
value 1 under  the  truth assignment t .  There  are  two 
cases, depending on  whether  or not the  two tuples of 9’ 
agree in all of the columns A,, . . ., A,. 

Case 1 The  two tuples of B agree in all of the columns 
A,, . . ., A,. Since  the  dependency  statement  A,. . . A, + 

B, . . . B, holds for 9, it follows that  the  two tuples agree 
in columns B,; . ., B,. So, by assumption,  each of B,; . ., 

B, has  truth value 1 under  truth assignment t .  Hence,  the 
implicational statement A, . . . A, 3 B, . . . B, has  truth 
value 1, as  desired. 

Case 2 The  two tuples of 9 disagree in at  least  one of 
the columns A,, . . ., A,, say  in A,. Then A, has  truth 
value 0 under  truth assignment t .  Hence,  once again, the 
implicational statement A, . . . A, .$ B, . . . B, has  truth 
value 1 .  

We have  shown  that if the  dependency  statement A, 
. . . A, + B, . . . B, holds for 9, then the implicational 
statement A, . . . A, 3 B, ’ . ‘ B, has  truth value 1 under 
the  truth assignment t .  The  converse can  be  proved by a 
very similar argument. 

This  concludes  the proof of the lemma. We now  con- 
tinue  with our proof of the  theorem. 

We are trying to  show  that 2 and 3 are equivalent. We 
show first that 3 implies 2. Assume not. Then a is a c o m e  
quence of DEP in the world of two-tuple  relations, but a 
is not a logical consequence of DEP. Since a is not a log- 
ical consequence of DEP, there  is a truth assignment f to 
the propositional  variables such  that  every  statement in 
DEP has  truth value 1 under t ,  but  such  that a has  truth 
value 0 under t. Define  a  two-tuple  relation B for which 
the column names will be those appearing  in DEP 
and/  or a. The first tuple of B has 1 as  every  entry.  The 
second tuple of 9 has 0 as  entry in  column A iff assigns 
truth value 0 to A; otherwise, this entry  is 1. This pro- 
cedure is followed for  each column  name A. It is easy  to 
see  that t and B interrelate  as in the  hypotheses of the 
Semantic  Lemma.  Therefore,  since  every implicational 
statement in DEP has  truth value 1 under t ,  it follows 
from  the  Semantic  Lemma  that  every  dependency  state- 
ment in DEP holds for 9. Since a is a consequence of 
DEP in the world of two-tuple relations, it follows that 
also a holds for B. So, by the Semantic Lemma again, 
we know that a has  truth value 1 under t .  This is a con- 
tradiction. 

We conclude our proof by showing that 2 implies 3. 
Assume not. Then a is a logical consequence of DEP, 
but a is not a consequence of DEP in the world of two- 
tuple  relations. Since a is not a consequence of DEP in 
the world of two-tuple  relations, there is a  two-tuple re- 
lation 9 for which each  statement in DEP holds but for 
which a does  not hold.  Define a new truth assignment t 
as follows. If the  two tuples of 9 agree in  column A, 
then t assigns to propositional  variable A the  truth value 
1, and  otherwise 0. This  procedure is followed for  each 
column name A. Once again, t and B interrelate  as in the 
hypotheses of the  Semantic Lemma. So, since  each 
statement in DEP holds for 9, it follows  from the Se- 
mantic Lemma  that  each  statement in DEP has  truth 
value 1 under t .  Since iu is a logical consequence of DEP, 
also a has  truth value 1 under t .  So by the Seman- 
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tic Lemma again, a holds for 9. But this is a contra- 
diction. 0 

5. Counterexample to an extension of the 
Equivalence  Theorem 
In this  section we show  that a  natural extension of the 
Equivalence  Theorem is false. 

Let a and p be  dependency  statements,  and let DEP 
be a set of dependency  statements. Recall that when we 
say that “a is a consequence of DEP,” we mean that a 
holds for  every relation that  obeys  each  dependency 
statement in DEP.  Thus, a is a consequence of DEP iff 
there is no  counterexample relation 9 such  that  each 
dependency  statement in DEP holds for 9 but  such  that 
a does  not hold for 9. We similarly define the meaning of 
“a V p is a consequence of DEP”  to mean that  either a 
or /3 holds for  every relation that  obeys  each  dependen- 
cy  statement in DEP.  Thus, a V /3 is a consequence of 
DEP iff there is no  counterexample relation 9 such  that 
each  dependency  statement in DEP holds for 9 but such 
that neither a nor p holds for 9. 

Now let a and j3 be  implicational statements,  and DEP 
a set of implicational statements. Recall that when we 
say  that “a is a logical consequence of DEP,” we mean 
that a has  truth value 1 for  every  truth assignment that 
assigns truth value 1 to  each implicational statement in 
DEP. Thus, a is a logical consequence of DEP iff there is 
no  counterexample  truth assignment t such  that  each 
implicational statement in DEP has  truth value 1 under t 
but such  that a has  truth value 0 under t .  We similarly 
define the meaning o f “  a V j3 is a logical consequence of 
DEP” to mean that  either a or j3 has  truth value 1 for 
every  truth assignment that assigns truth value 1 to  each 
implicational statement in DEP. Thus, a V j3 is a logical 
consequence of DEP iff there is no  counterexample  truth 
assignment t such  that  each implicational statement in 
DEP has  truth value 1 under t but  such  that neither a nor 
p has  truth value 1 under t .  

Recall that  the Equivalence Theorem  states  that if 
DEP, a ,  DEP, a are  as before, then a is a consequence of 
DEP  iff a is a consequence of DEP. Consider  the follow- 
ing fairly natural  generalization. 

Alleged  extension of Equivalence  Theorem Assume  that 
DEP is a set of dependency  statements and a and p are 
a  pair of dependency  statements.  Let DEP, a, j3 be, 
respectively, the  corresponding  set of implicational 
statements and  pair of implicational statements.  Then a 
V p is a consequence of DEP iff a V p is a logical conse- 
quence of DEP. 

We now show by example that  the alleged extension 
of the Equivalence Theorem is false. Let DEP contain 
only the single dependency  statement A + A (we could 
just  as well have  taken DEP to  be  the  empty  set in  this ex- 

NOVEMBER 1977 

Table 1 Counterexample. 

A B 

0 0 
0 1 
1 0 

ample,  but we  choose not to in order  to  prevent possible 
confusion).  Let a be the  dependency  statement A + B, 
and let /3 be the  dependency  statement B + A. It is false 
that a V p is a consequence of DEP.  That is, there is a 
counterexample relation 9 such  that  each  dependency 
statement in DEP holds for 9 but such  that neither a 
nor /3 holds for 9. One  such  counterexample relation 
9 is exhibited in Table 1 (as  the  reader  can easily 
verify). 

The  corresponding  set DEP of implicational state- 
ments contains  only the single implicational statement A 
.$ A. Further,  the  corresponding a is  the implicational 
statement A .$ B, and j3 is B .$ A. We  now show  that  it 
is true that a V j3 is a logical consequence of DEP. Assume 
not.  Then  there  is a counterexample  truth assignment t 
such  that  each (in  this case,  the  only) implicational 
statement in DEP has  truth value 1 under t but  such  that 
neither a nor j3 has truth value 1 under t .  Since a (that 
is, A + B) has  truth value 0 under t ,  this means  that t 
assigns truth  value 1 to A and  truth value 0 to B. But 
then /3 (that is, B 3 A)  has  truth value 1 under t. This  is 
a  contradiction. 

Thus, we have exhibited DEP, a, /3 such  that 1 )  
a V p is not a consequence of DEP, although 2 )  a V j3 is 
a logical consequence of DEP. Hence,  our seemingly 
mild extension of the  Equivalence  Theorem fails. 

As we now show,  our  example  can  also be  used to 
prove  the following theorem. 

Theorem  A There is a set DEP of implicational state- 
ments  and  a  pair a, j3 of implicational statements  such 
that simultaneously 

a. a is not  a logical consequence of DEP. 
b. j3 is  not a logical consequence of DEP. 
c. a V j3 is a logical consequence of DEP. 

Proof As  before, let DEP contain only the implicational 
statement A 3 A (or,  even simpler,  let DEP be  the 
empty  set), let a be A .$ B, and  let j3 be B .$ A. We have 
already shown  that c  holds. To show  that a  holds,  let t 
be  the  truth assignment that assigns truth value 1 to A 
and  truth value 0 to B. Then t is a counterexample  truth 
assignment that assigns truth value 1 to  each implica- 
tional statement in DEP but that assigns truth value 0 to 
a. Therefore, a  holds. We can similarly show  that b 
holds. 0 
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By contrast, we have  the following theorem  about 
dependency  statements. 

Theorem B It is impossible that  there is a set  DEP of 
dependency  statements  and a pair a,  /3 of dependency 
statements  such  that simultaneously 

a. a is not a consequence of DEP. 
b. j3 is not a consequence of DEP. 
c. a V /3 is a consequence of DEP. 

ProofAssume  that  there  exist  DEP, a,  /3 such  that a, b, 
and c all hold simultaneously. Let  DEP‘  be  the  closure 
of DEP under Armstrong’s  Axioms. By Armstrong’s 
Theorem,  there is a  relation 9 such  that  DEP’ is pre- 
cisely the  set of dependency  statements  that hold for 9. 
Since DEP holds for 9, it follows from c that  either a or 
/3 holds for 9. Assume  that a holds for 9; we will derive 
a contradiction. (Similarly, the assumption that /3 holds 
for 9 leads to a contradiction.)  Since a holds for 9, it 
follows by definition of 9 that a is in DEP’. By the 
Dependency  Completeness  Theorem,  DEP’ is the  set of 
dependency  statements  that  are  consequences of DEP. 
Therefore,  since a! is in DEP’,  it follows that a is a 
consequence of DEP.  This  contradicts a. 

Under  the terminology of Beeri, Fagin, and  Howard 
[ 31, Theorem A shows  that Armstrong’s Axioms  are 
not  “strongly  complete” for implicational statements, 
although, by the  Dependency  Completeness  Theorem, 
they  are  complete  for implicational statements. By con- 
trast, Armstrong’s  Axioms are strongly complete  for 
dependency  statements. 

6. The Delobel-Casey Theorems 
In this section,  we  show  that  the  Delobel-Casey  Re- 
lational Database  Decomposition  Theorems, which 
heretofore  have  seemed  somewhat  unexpected and sur- 
prising, are natural consequences of the  Equivalence 
Theorem. 

Let  A, . . . A, + B, . . . B, be a  typical dependency 
statement.  The Jirst  Delobel-Casey transform of this 
dependency  statement is the propositional (or Boolean) 
statement A, . . . A,  B,’ +. . . + A,. . . A,  B,.‘. Here Bi’ is 
the negation of Bi, and “+” is the “logical or”  (or Bool- 
ean sum). Thus, this propositional statement  has  truth 
value 1 iff first, A,, . . ., A, each  have  truth value 1, and 
second,  for some i it  happens  that Bi has  truth value 0. If 
DEP is a set of dependency  statements,  then  the first 
Delobel-Casey transform of the  set  DEP is the proposi- 
tional statement which is the Boolean sum of the  first 
Delobel-Casey  transforms of each of its  members.  For 
example, if DEP is {AB + CD, C + A}, then  the first 
Delobel-Casey transform of DEP is ABC’ + ABD’ + CA’. 

The first Delobel-Casey  Theorem  relates  the equiva- 
lence of two  sets of dependency  statements  to  the equiv- 

alence of the corresponding first Delobel-Casey trans- 
forms. We will now look at  an example,  which is taken 
from Delobel and Casey’s paper [ 41. Consider  the fol- 
lowing set  DEP, of dependency  statements: 

P + T  

P H + Y  

P H + N  

H N + P  

H N + Y  

H Y + P  

H Y + N  

The first Delobel-Casey transform of this set is the Bool- 
ean expression BOOL, given by 

PT’ + PHY’ + PHN’ + HNP’ + HNY’ + HYP’ + HYN‘. 

By using Karnaugh  maps, Delobel  and  Casey  show  that 
this Boolean expression  BOOL, is equivalent to  the 
Boolean expression  BOOL, given by 

PT’ + HYT’ + HYTN’ + PTHN’ + NHTY’ + NYTHP’ + 
NHT’ . 
This  expression is the first Delobel-Casey transform of 
the following set  DEP, of dependency  statements: 

P + T  

H Y + T  

HYT + N 

PTH + N 

N H T  + Y 

NYTH + P 

N H + T  

The  First  Delobel-Casey  Theorem tells us that be- 
cause  BOOL, and BOOL,  are equivalent  Boolean 
expressions, it follows that  the  sets  DEP,  and  DEP,  are 
equivalent sets of dependency  statements (DEP, and 
DEP,  are said to be equivalent if each  statement 
in DEP, is a consequence of the  set  DEP, and each 
statement in DEP, is a consequence of the  set  DEP,) . 
First Delobel-Casey  Theorem Let  DEP,  and  DEP, 
be  sets of dependency  statements and let BOOL,  and 
BOOL,  be  the first Delobel-Casey  transforms.  Then 
DEP, is equivalent to DEP, iff BOOL, is equivalent 
to BOOL,. 

Proof Let DEP, be the  set of implicational statements 
which correspond  to DEP,  as  before, in which we replace 
each column name A  by its corresponding  propositional 
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variable A, and  in  which we replace each  occurrence of + 

by 3. Similarly, define DEP,. It  is straightforward to 
check that  the conjunction of the implicational state- 
ments  in DEP, is equivalent to  the negation of BOOL,; 
similarly for DEP, and  BOOL,. I t  follows  easily that 
BOOL, is equivalent to  BOOL, iff DEP, is equivalent to 
DEP,. So, to  prove  the  theorem,  we need  only  prove that 
DEP, is equivalent to  DEP, iff DEP, is equivalent to 
DEP,. But this  follows from  the Equivalence Theorem,  as 
we will show. Actually, we will only show  that if DEP, is 
equivalent to  DEP,, then DEP, is equivalent to DEP,; the 
proof of the  converse  is very similar. Assume  that  DEP, 
is equivalent to  DEP,. To show  that DEP, is equivalent to 
DEP,, we must show  that  each implicational statement in 
DEP, is a logical consequence of DEP, and  that  each 
implicational statement in DEP, is a logical consequence 
of DEP,. Without loss of generality, we will only show 
that  each implicational statement in DEP, is a logical 
consequence of DEP,. Let cy be an  arbitrary implicational 
statement in DEP,; we must  show  that (Y is a logical con- 
sequence of DEP,. Let (Y be the  dependency  statement in 
DEP, which corresponds  to  the implicational statement 
cy in DEP,. Since  DEP, is equivalent to DEP,,  it follows 
that (Y (like  every  other  dependency  statement in DEP,) 
is a consequence of DEP,. So, by the Equivalence Theo- 
rem, (Y is a logical consequence of DEP,, which was  to 
be shown. 0 

We now discuss  the second Delobel-Casey  Theorem. 
Assume  that K,, . . ., K, are some (or  all) of the column 
names of relation 9. We say that {K,,  . .., K,} (or, 
more  simply, K, . . . K,) is a  key of 9 if no  two distinct 
tuples of 9 agree in all of the  columns K,; . ., K,. Thus, 
K, . . . K, is a key iff K, . . . K, + A for  each column 
name A. (We  are tacitly  assuming that  the  same tuple 
does  not  appear twice in relation %?.) For  convenience, 
we are allowing the possibility that a proper  subset of a 
key be a key (our definition of key corresponds  to Bern- 
stein’s [6] definition of “superkey.”) 

If  Dl,. . ., D, are all of the column names of 9, and if 
DEP is a set of dependency  statements (involving only 
column names Dl, .  . ., D,), then by the second Delobel- 
Casey  transform of DEP,  we mean the propositional 
statement which is the Boolean sum of Dl .  . . D, and  the 
first  Delobel-Casey transform of DEP.  For  example, if 
DEP is {AB + CD, C + A}, and A, B, C, D are all of 
the column  names of 9, then the  second Delobel-Casey 
transform of DEP is ABCD + ABC‘ + ABD ’ + CA‘. 

Second  Delobel-Casey  Theorem  The following are 
equivalent: 

1. It is a consequence of DEP that K; . . K, is a  key. 
2 .  The propositional statement K, . . . Km logically im- 

plies the second Delobel-Casey  transform of DEP. 
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Note  In 2 above, when we  say  that  one propositional 
statement logically implies a second, we mean that  the 
second  statement  has  truth value 1 for  every  truth assign- 
ment that assigns truth value 1 to  the first  propositional 
statement. 

Proof Statement 1 is equivalent to  the  assertion  that  the 
dependency  statement K, . . . K, + D l .  . . D, is a conse- 
quence of DEP,  where  Dl, . . ., D, are all of the column 
names.  Hence, by the Equivalence Theorem, 1 holds iff 
the implicational statement K, . . . K, ”-f Dl . . . D, is a 
logical consequence of the  set DEP (of propositional 
statements) which corresponds to DEP.  What  about 2? 
It is straightforward to verify that  the  second Delobel- 
Casey transform of DEP is logically equivalent to  the 
propositional statement /3 .$ Dl . . . D,, where p is the 
conjunction of the propositional statements in DEP. So, 
2 says  that y logically implies the  statement P 6, 
where y is K, . . . K,, where P is the conjunction of the 
statements in DEP, and where 6 is D l .  . . D,. In general, 
“7 logically implies the  statement /3 .$ 6” holds iff “P 
logically implies the  statement y + 6”; this can easily 
be verified by considering each of the 2? = 8 possible 
truth assignments to (p,  y ,  6) .  But in this case,  as 
we showed,  the  sentence “ p  logically implies the  state- 
ment y + s,’’ i.e., “DEP logically implies the  statement 
K, . . . K, 3 Dl . . . D,,” is equivalent to 1. So 1 and 2 
are equivalent. 0 

We  close  this section with remarks  on earlier  proofs of 
the  Delobel-Casey  Theorems. Delobel and  Casey’s orig- 
inal proofs are  somewhat involved  and contain  case-by- 
case examination of the effect of the  “star algorithm” for 
generating  prime  implicants of disjunctive Boolean for- 
mulas.  Armstrong [ 2 ]  gave  another proof in which he 
interprets  the propositional  variable A corresponding to 
column  name  A as a certain Boolean function of Bool- 
ean  functions. Hopefully, our proof eliminates some of 
the  mystery. 

7. Multivalued  dependency  statements 
The main result of this paper is that  the relational data- 
base  concept of “determines”  (where  the  dependency 
statement A ”+ B is read “A determines  B”)  has  some 
of the  same formal properties as the propositional  con- 
cept of “implies.” We remark  that  the  author  has defined 
another natural kind of relational database  dependency, 
called “multivalued dependency” [ 121, which has  quite 
different  formal properties  (although  the  dependency 
statements dealt  with in the  present  paper  turn  out  to be 
a  special case). A complete axiomatization for multival- 
ued dependency  statements is given in Beeri,  Fagin, and 
Howard [3]. Of course, this  axiomatization is different 
from that given by Armstrong’s Axioms. 543 
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8. Summary 
We have  demonstrated  an equivalence between  depend- 
ency  statements  (or functional dependencies) of a  rela- 
tional database  on  the  one hand and of implicational 
statements of propositional logic on the  other hand.  We 
have exploited  this  equivalence to prove the Delobel- 
Casey Relational Database  Decomposition  Theorems. 
This equivalence may also be of use  to a database  de- 
signer,  who can  use  the  tools of propositional logic to 
answer  questions  about  dependency  statements. We 
have  presented a  detailed  algorithm for  such  an applica- 
tion. Furthermore,  we  have  demonstrated  an  example 
that  shows  that an apparently mild extension of the 
equivalence  fails. 
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