
may be several processes (Le., transactions  or appli- 
cations)  active  concurrently.  These  properties  require 
that reorganization be performed by a sequence of 
page permutations  between blocks  referenced  by a pro- 
cess.  The third section  treats  the problem of structuring 
the clustering  algorithm as a set of independent  tasks, 
one  corresponding  to  each  process.  The section  entitled 
"A permutation clustering algorithm" provides a specific 
implementation of these ideas: an algorithm which per- 
forms  reorganization  through  a sequence of exchanges 
or  transpositions of pages between blocks. Subsequently 
experiments  are described which were performed on a 
trace  taken  from  the AAS system.  The  results indicate 
that  dynamic clustering can result in organizations which 
yield improved  performance. This is especially interest- 
ing  in view of the fact that  the AAS system is one in 
which the application  programs all have  the  same logical 
view of the data  base  and logically consecutive  records 
are most often physically consecutive.  That is, the appli- 
cation  programs  were  designed with the knowledge of 
the method of organization. 

Principles and requirements 
Consider  the process of transfers  between main memory 
L, and lower levels. The unit of transfer into L, will be 
assumed to  consist of a block of q, = N pages which re- 
side on contiguous space in L,. When  a processor  re- 
quests  data not currently in main memory, a page  fault 
is said to  occur.  The page  containing the missing infor- 
mation,  and those  other pages belonging to  the  same 
block  which are  not currently in L,, are  brought  into 
main storage. The page replacement algorithm frees 
enough space in L, to hold the new pages. 

The  above discussion assumes the existence of a 
directory  for  the system. If pages are  subject  to reloca- 
tion between  blocks,  the  directory must have  an  entry 
for each page. A possible  format is: 

I Page name 1 Block namc I Addresof block I 
The block  containing  a  particular page has sometimes 
been  referred to  as the page home  address. 

When  a page is requested,  the  directory provides the 
name  and  address of the home address block.  Reorgani- 
zation  involves the movement of pages to different 
blocks. This may be done in a wide variety of ways. 
However, it is worth  considering to what extent  the 
clustering policy may be influenced by system consider- 
ations and  a requirement  for implementational simplici- 
ty. It will be  seen that  these  do much  toward determin- 
ing a class of suitable  techniques. 

A primary requirement is that  the clustering  method 
should  not  require  additional fetches from secondary 
storage. Thus 
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Figure 1 A three-level storage hierarchy. 
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1. Only  those  pages  currently in main  memory should 
be  considered  for  reorganization. 

Note  that  it is necessary  to  consider  the initiation  and 
termination of a  reorganization. For  example,  the  tech- 
nique  could  be  applied to a data  base which is used  only 
part of the time. Suppose  the  process  starts  at time to and 
continues until t,. A desirable  property  for  the  new orga- 
nization is that it should not  require  an  increased  amount 
of storage  on L,. In  other  words, 

2. The  number of blocks  should  not  be  increased. 

If empty blocks  and  empty  page  slots are regarded as 
always being present in main memory,  then subject  to 
block renaming, requirement 2 is equivalent to stating 
that reorganization  must  be a permutation of pages  among 
blocks  allocated to  the  data.  Note  that this  includes cases 
where the  number of such blocks decreases. 

At any  time t ,  a number of processes may be  active, 
perhaps referencing  disjoint sets of information. Re- 
quirement 2 ,  coupled  with the  observation  that  an  at- 
tempt should be  made  to  separate  sets of data  never 
used by the same process, suggests the following condi- 
tion: 

3.  Pages  should  be  permuted  only  between  blocks  refer- 
enced by  the  same  process. 

A process may be terminated at a  time  which cannot 
be predicted in advance. When such termination occurs, 
it is desirable to  be able to  conclude  the reorganization 
of the  data it is referencing. The following restriction 
ensures  that termination of the clustering process may 
be  done rapidly while adhering to  requirements 1-3. 

4. The reorganization of a  set of blocks  associated  with 
a  given  process  should  be  structured  as  a series of 
page  permutations,  each  involving  as few  pages  as 
possible. 529 
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Figure 2 Contents of a main memory for the case of four 
pages per block. 

Note  that a new organization results from each  such 
permutation, so that  the clustering process may be halt- 
ed without  incurring  much overhead.  The  class of algo- 
rithms discussed in the next  section operate by means of 
a sequence of page exchanges  or  transpositions,  each 
involving only two pages. 

Permutation clustering by independent  tasks 
The discussion in the previous section  suggests  that 
reorganization should be  performed by a procedure  that 
may be  termed “permutation  clustering.” This  section 
considers  the  structure of-the procedure in more  detail. 

A way to implement requirements 1 through 4 is to 
formulate the clustering as a number of tasks { C,}, 
where each Ci operates  on a set of blocks or pages asso- 
ciated  with  a single process Qi. These  tasks will then 
permute pages between blocks.  But suppose  the  system 
is such  that  there  are likely to  be a number of processes 
referencing the  same information. There  then  arises  the 
possibility of interference. The  tasks may be  designed to 
cooperate;  that is, each could be given  information  con- 
cerning  which pages have  been  or  are  to be  permuted  by 
the  others.  However, if the number of such  tasks is 
large,  then the complexity of such  cooperation may be 
great.  One way to avoid  this  problem is to assign each 
page resident in main memory to  at  most  one  task  for 
the  purpose of reorganization. This is the  approach tak- 
en below. The  result is that  the  tasks  become indepen- 

938 dent. 

Consider  the  data  to  be used as a basis for  the  reor- 
ganization.  Such data may  be of two kinds: that which 
pertains to currently active  processes,  and  that which 
represents earlier reference  patterns.  The  procedure fol- 
lowed here will be to maintain data only on  current pro- 
cesses.  These  data may consist of the  contents of main 
memory and  the identity of pages referenced by each 
process Q,. Data provided to  the  set { C,} of clustering 
tasks will be  further restricted so as  to eliminate  interac- 
tion between  them.  Each C, will be provided  with: 

1. A list L, of assigned pages along with  their  home 
address blocks. These  are  the pages eligible for per- 
muting by C,. 

2 .  The identity of pages in L, which have  been refer- 
enced by Q,. 

Figure 2 illustrates the  contents of main memory for a 
case  where qz, the number of pages per block, is four. 
There  are  two active processes Q, and Q2, each with an 
associated clustering task.  Referenced pages within each 
block are marked with an r .  Lines connect  the  set of ref- 
erenced pages  assigned to  each  task.  For  example, page 
u42 in block A, was referenced by both Q ,  and Q2 and is 
assigned to  task C,. 

The intent of the clustering tasks is to improve the 
page  fault  performance. In  order  to  determine what 
permutations tend to  further this goal, it is necessary  to 
formulate a model for  the  pattern of references.  The fol- 
lowing simplified model is sufficient for discussion. 

Suppose  that 

a.  There is only one  active  process Qi. 
b. Blocks  containing pages referenced by Qi remain 

c. All reference probabilities are  stationary but not  nec- 
resident in main memory until Qi is terminated. 

essarily independent. 

The  expected  number of page faults  incurred by Qi 
then becomes 

z = x 2 P(a,) ( 1 - PMjI aijl 1 > 

M N 

(1)  
j = 1  i = l  

where { A j } ,  j = 1 ,  2 ,  . . ., M is  the  set of blocks in the 
system; { au} ,  i = 1 ,  2,. . ., N is the  set of pages in block 
Aj ;  P(a,) is the probability that page uij is referenced by 
Qi; and P(AjI a,) is the probability that page uij is not the 
first in block Aj to be  referenced by Qi,  given that aij is 
referenced. 

The classical union bound  yields 

P(Aj1 aij) P(ak j l  aij) 7 ( 2 )  
k#i 

where P(  a,J uij) is  the probability of a  prior reference  to 
urj by Qi, given that aij is referenced.  The  bound is tight 
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when the probability for  one  such ukj is much  larger  than 
that  for  two or more. 

Substitution of ( 2 )  into ( 1 )  results in 

M N  r 

Equation (3) suggests that a goal for  the clustering be 
the maximizing of 

M N  

The significance of Eq. (4) is that  it specifies a  pairwise 
representation  for the  desirability of grouping  a set of 
pages together in a block.  Such  a representation  requires 
an approximation such  as  the  above  use of the union 
bound. In  the simplest case,  where page references  are 
both  stationary  and  independent, maximizing l/J is equiv- 
alent to placing the  most frequently  referenced  pages 
together.  The  set { P (  akjl aij) } may be  regarded as  entries 
in a pairwise page affinity matrix Vj ,  

For  the  purpose of dynamic  reorganization, perhaps 
the most  straightforward  assumption, that  taken  here, is 
that pages referenced  by  a  given process  have  reference 
probabilities  and  pairwise affinities sufficiently high that 
an effort should  be made  to place  them  together. Note 
that  due  to requirement 1 only pages currently in main 
memory  should be considered  for  relocation. Thus  the 
clustering of referenced  pages must be done by a se- 
quence of block or home address  exchanges with  unref- 
erenced pages  assigned to  the  same task Ci .  Because  the 
goal is to place  referenced  pages  together, the unref- 
erenced pages to  be displaced by the  home  address 
exchange procedure  must be adjacent.  In  other  words, 
unreferenced  pages must  be assigned to a task Ci in 
groups belonging to  the  same block. These  groups  are 
then eligible to  become cluster points, used  to  gather 
referenced pages. 

A wide  variety of clustering  algorithms may be  formu- 
lated by varying the method  used to assign pages to  the 
clustering tasks as well as that for  choosing cluster 
points. Figure 3 shows a  possible outcome of reorganiz- 
ing the main memory contents illustrated in Fig. 2 when 
unreferenced pages in A, and A,  are assigned as  cluster 
points to  tasks C,  and C,, respectively. Note  that superi- 
or results would have been  obtained had block A ,  been 
used as a cluster point for C,. In this case, blocks A, and 
A ,  would hold all the referenced  pages after reorganiza- 
tion. 

A permutation clustering algorithm 
This section describes a dynamic reorganization algo- 
rithm  which is a  simple  implementation of the ideas de- 
veloped in the previous  sections. It is sufficient to indi- 
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Blocks referenced by 
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A3 
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Figure 3 One way of reorganizing  the  main  memory contents 
illustrated in Fig. 2. 

cate  the  procedures followed by a single clustering task 
Ci associated with a process Qi.  

1. 

2. 

3. 

4. 

5 .  

A  referenced page is assigned to  the  task Ci if Qi was 
the first process  to  reference it during its  current  stay 
in main memory. 
Let A, be  the block  which contains  the page aim cor- 
responding to  the first  page  fault  produced by Qi. 
Unreferenced pages brought in as  the  result of the 
fault are assigned as a cluster point for Ci. A parame- 
ter R is set  to  the  number of such pages. Note  that 
this may be smaller than N - 1, since some  pages 
belonging to A, may already be resident in L,. 
The page aim is assigned to Ci as  the result of pro- 
cedure 1. As  other referenced pages are assigned to 
Ci ,  their names are placed on a first-in, first-out list 
Vi,, and R decremented by their number. There is a 
separate  such list for  each  cluster point. 
When R reaches  zero,  the unreferenced  pages asso- 
ciated  with the  next fault  generated  by Qi become  the 
next  cluster point,  and R is reset. 
At  the time that  an unreferenced  page  from  a cluster 
point is about  to be removed from L,, its home ad- 
dress is exchanged with that of a page from  the  asso- 
ciated  list Vi,. 
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Time - consecutively  numbered  physical data  records,  or pages, 
- - - - =  - =  - - are considered as members of one block for  the  purpose 

a l l  a23 a31 a34 a25 a15 a17 a21 a35 ofblock fetches. That is, q 2 =  N =  8. 

Miss  ratios  were obtained for a number of memory 

( b )  

Figure 4 Operation of the  cluster algorithm on a reference 
string. (a) The reference trace, in  which faults have a double 
overbar, with a column of fetched pages  below. First references 
to pages already in L, are indicated by a single overbar. Cluster 
points are encircled. (b)  The resulting reorganization of A, and 
A,,  blocks containing cluster points. 

6. As  the  last unreferenced page from  a cluster point is 
removed  from main memory, the list V i ,  associated 
with it is deleted. Thus pages on this list will no long- 
er  be  subject  to  home  address exchange. R is set to 
zero. 

The  above algorithm was chosen largely because of its 
implementational simplicity. Neither  the  choice of clus- 
ter points nor  the assignment of referenced  pages is opti- 
mal. Nevertheless,  the  observed performance  gains, 
described in the following section, were substantial. 
Note  that  the algorithm is described  without reference to 
a page replacement policy. However,  it is assumed  that 
pages referenced by  a process Qi are generally kept in 
main memory  longer than unreferenced  pages  brought in 
by this process  as  the  result of block fetches, a property 
that may be  expected of most page replacement policies. 

Figure 4 shows  the  operation of the  above algorithm 
on  the string of references  generated by  a process Q,. 
Note  that a,, does  not  get placed  in a cluster point, since 
the first reference  to it by Q, is before  a cluster point was 
assigned. 

Reorganization of a data base 
This section describes a number of experiments  on a 
trace  tape comprising three  days of transactions  on  the 
AAS data  base.  The  transactions  correspond  to  the  pro- 
cesses  discussed  above.  There  are 6 X lo6 data  base ref- 
erences in the  trace, an average of 38 references  per 
transaction. 

Each 1693-byte  physical data  record containing  sev- 
eral  AAS logical records  corresponds  to  one page. Eight 

sizes  and a variety of memory  management policies: 

1. LRU (least recently used) page replacement with 
demand paging. Here only the faulted  page is fetched. 

2. Block fetching (prefetching)  without reorganization. 
For  purpose of comparison with  earlier experiments, 
the page replacement policy used was one developed 
by Bennett and  McKellar [ 31. 

3.  The Affinity Algorithm  1  evaluated by Bennett and 
McKellar [3] .  This is a  clustering  algorithm which 
does  not  adhere  to  requirements 2 ,  3, and 4 in the 
section entitled  “Principles  and  requirements.” 

4. Block prefetching  with dynamic reorganization. In 
addition, for a  memory  size of 2048  pages, 

5. Block prefetching and  dynamic reorganization which 
is halted after operating for a variable  period of time. 

Figure 5 shows the miss ratios  for policies 1-4. Note 
that  for a memory  size of 2048 pages,  block  fetching has 
a miss ratio  that  is approximately 1 1.5 percent lower 
than LRU. This indicates that  references tend to  be  cor- 
related, and  that  the linear  ordering of pages into blocks 
is  advantageous.  Note  that this might be  due  to  the 
programmers’  knowledge that  the  data  base is linearly 
ordered; e.g., knowledge of the linear  ordering may en- 
courage linear searches. Application of the  dynamic re- 
organization  algorithm yields a reduction of approxi- 
mately eight percent in the miss ratio  when compared 
to block fetching. 

Figure 6 compares  the performance of dynamic reor- 
ganization to  that of block  fetching over a period of 6 X 

lo6 references  for a main memory size of 2048  pages. 
The figures are normalized to  the performance of block 
fetching  with the original AAS organization. That is,  100 
percent  denotes  the miss ratio  for block  fetching. The 
lower curve gives the performance for dynamic  reorgani- 
zation. Departures from  this curve, which result  from 
dynamically  reorganizing the  data  base  for  1,  2,. . ., 5 mil- 
lion page references, indicate the  performance of the new 
organization. Points  on  the  curves  are  the  average miss 
ratio  for io5 references. 

An interval of lo5  references  corresponds  to approxi- 
mately 30 minutes for this trace.  The median  time to 
complete a transaction is of the  order of 2 minutes. The 
curves indicate that  the organization  resulting  from the 
reordering is superior  to  the original for, in most cases, 
an  hour  or longer. This suggests that the  “optimal”  orga- 
nization  for AAS is time  varying, and  that  the home 
address  exchange algorithm tends  to  track it. 

The new organizations  obtained from  the home ad- 
dress exchange process, which has been  halted at dif- 
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Figure 5 Miss  ratios for various  memory  management  policies 
for  four million references: 0, LRU page replacement; A, block 
fetching; +, affinity algorithm 1; X, block  fetching  with  dynamic 
reorganization. 

ferent times, can be expected  to be  dissimilar. However, 
Fig. 6 shows  that  the  shapes of the performance curves 
exhibit a substantial similarity after a transient period of 
an  hour  or so ( 2  x lo5 references).  This suggests that 
there may be periods of time during which there  are a 
significant number of sequential accesses.  At  other 
times, the  reference clustering is less well ordered,  and 
dynamic reorganization shows larger  gains. 

Concluding remarks 
A class of dynamic  reorganization  algorithms has been 
described which exhibits  a  number of desirable  system 
properties. A member of this class  was then  used for 
several experiments involving a dynamic reorganization 
of the  AAS  data base. The  results indicate that  the opti- 
mal organization is time  varying  and that dynamic tech- 
niques can indeed  improve  performance.  When the clus- 
tering is stopped,  the resulting  organization is superior  to 
the original for  some time, after which there is little dif- 
ference. The performance gains obtained  were, while 
interesting,  not sufficient to justify  adoption for this  ap- 
plication. 

The  extent  to which these  results would be typical for 
a variety of data  bases is open  to  conjecture.  The organi- 
zation of the  AAS  data is familiar to  the application 
developers, and reference  patterns may reflect this 
knowledge. For  systems containing data  bases which are 
subject to accessing  and modification in unpredictable 
ways,  dynamic  reorganization may be  the  best  alterna- 
tive. 

d! 
Reference at end of interval ( X  I O  ) 

Figure 6 Normalized miss ratios  for  block  fetching with dy- 
namic  reorganization  running  continuously  and being halted  af- 
ter 1, 2, . . ., 5 million references.  A  value of 100 percent  de- 
notes  the miss ratio for block  fetching  without  reorganization. 
Points  on  the  curve  are  the average miss ratio for  lo5 refer- 
ences. 

The discussion has  centered  on  properties of simple 
algorithms  for  performing the reorganization and  on 
experiments  for determining  their benefits in terms of 
lowered  miss  ratios. Topics not  discussed in any detail 
were the issues of cost, implementation, and  what addi- 
tional  information  relating to usage patterns might be 
used for  the  permutation clustering. 
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