may be several processes (i.e., transactions or appli-
cations) active concurrently. These properties require
that reorganization be performed by a sequence of
page permutations between blocks referenced by a pro-
cess. The third section treats the problem of structuring
the clustering algorithm as a set of independent tasks,
one corresponding to each process. The section entitled
“A permutation clustering algorithm” provides a specific
implementation of these ideas: an algorithm which per-
forms reorganization through a sequence of exchanges
or transpositions of pages between blocks. Subsequently
experiments are described which were performed on a
trace taken from the AAS system. The results indicate
that dynamic clustering can result in organizations which
yield improved performance. This is especially interest-
ing in view of the fact that the AAS system is one in
which the application programs all have the same logical
view of the data base and logically consecutive records
are most often physically consecutive. That is, the appli-
cation programs were designed with the knowledge of
the method of organization.

Principles and requirements

Consider the process of transfers between main memory
L, and lower levels. The unit of transfer into L, will be
assumed to consist of a block of g, = N pages which re-
side on contiguous space in L,. When a processor re-
quests data not currently in main memory, a page fault
is said to occur. The page containing the missing infor-
mation, and those other pages belonging to the same
block which are not currently in L,, are brought into
main storage. The page replacement algorithm frees
enough space in L, to hold the new pages.

The above discussion assumes the existence of a
directory for the system. If pages are subject to reloca-
tion between blocks, the directory must have an entry
for each page. A possible format is:

Page name Block name Address of block

The block containing a particular page has sometimes
been referred to as the page home address.

When a page is requested, the directory provides the
name and address of the home address block. Reorgani-
zation involves the movement of pages to different
blocks. This may be done in a wide variety of ways.
However, it is worth considering to what extent the
clustering policy may be influenced by system consider-
ations and a requirement for implementational simplici-
ty. It will be seen that these do much toward determin-
ing a class of suitable techniques.

A primary requirement is that the clustering method
should not require additional fetches from secondary
storage. Thus

NOVEMBER 1977

store

Central
processor
Storage hierarchy

-——= - - 11— """~~~ ~—"~" "~~~ ---= I
1 . |
| Ly Cache Replacement unit: |
| ine |
i || |
: L Main Replacement unit: :
;2 memory page |
!)
| |
! I
! |
l]
| L Backing |
| I
! |

Figure 1 A three-level storage hierarchy.

L. Only those pages currently in main memory should
be considered for reorganization.

Note that it is necessary to consider the initiation and
termination of a reorganization. For example, the tech-
nique could be applied to a data base which is used only
part of the time. Suppose the process starts at time ¢, and
continues until #,. A desirable property for the new orga-
nization is that it should not require an increased amount
of storage on L,. In other words,

2. The number of blocks should not be increased.

If empty blocks and empty page slots are regarded as
always being present in main memory, then subject to
block renaming, requirement 2 is equivalent to stating
that reorganization must be a permutation of pages among
blocks allocated to the data. Note that this includes cases
where the number of such blocks decreases.

At any time ¢, a number of processes may be active,
perhaps referencing disjoint sets of information. Re-
quirement 2, coupled with the observation that an at-
tempt should be made to separate sets of data never
used by the same process, suggests the following condi-
tion:

3. Pages should be permuted only between blocks refer-
enced by the same process.

A process may be terminated at a time which cannot
be predicted in advance. When such termination occurs,
it is desirable to be able to conclude the reorganization
of the data it is referencing. The following restriction
ensures that termination of the clustering process may
be done rapidly while adhering to requirements 1-3.

4. The reorganization of a set of blocks associated with
a given process should be structured as a series of
page permutations, each involving as few pages as
possible.

529

PERMUTATION CLUSTERING

530

Block L.D. Blocks referenced by

9, 2,
dl] Is
A a3 Ll
1
a3y
41
a]z r a12 r
2 7
A2 sy | 7 4| T
A | 7 A | 7
3
a23 r
4, 433
A3
a14 r
n A4) L
2
034 r
Q44
s
A5 45
a35 r
45

Figure 2 Contents of a main memory for the case of four
pages per block.

Note that a new organization results from each such
permutation, so that the clustering process may be halt-
ed without incurring much overhead. The class of algo-
rithms discussed in the next section operate by means of
a sequence of page exchanges or transpositions, each
involving only two pages.

Permutation clustering by independent tasks
The discussion in the previous section suggests that
reorganization should be performed by a procedure that
may be termed ‘‘permutation clustering.” This section
considers the structure of.the procedure in more detail.
A way to implement requirements 1 through 4 is to
formulate the clustering as a number of tasks {C,},
where each C, operates on a set of blocks or pages asso-
ciated with a single process Q, These tasks will then
permute pages between blocks. But suppose the system
is such that there are likely to be a number of processes
referencing the same information. There then arises the
possibility of interference. The tasks may be designed to
cooperate; that is, each could be given information con-
cerning which pages have been or are to be permuted by
the others. However, if the number of such tasks is
large, then the complexity of such cooperation may be
great. One way to avoid this problem is to assign each
page resident in main memory to at most one task for
the purpose of reorganization. This is the approach tak-
en below. The result is that the tasks become indepen-
dent.

B. T. BENNETT AND P. A, FRANASZEK

Consider the data to be used as a basis for the reor-
ganization. Such data may be of two kinds: that which
pertains to currently active processes, and that which
represents earlier reference patterns. The procedure fol-
lowed here will be to maintain data only on current pro-
cesses, These data may consist of the contents of main
memory and the identity of pages referenced by each
process Q,. Data provided to the set {C,} of clustering
tasks will be further restricted so as to eliminate interac-
tion between them. Each C, will be provided with:

1. A list L, of assigned pages along with their home
address blocks. These are the pages eligible for per-
muting by C,.

2. The identity of pages in L, which have been refer-
enced by Q,.

Figure 2 illustrates the contents of main memory for a
case where ¢,, the number of pages per block, is four.
There are two active processes Q, and @Q,, each with an
associated clustering task. Referenced pages within each
block are marked with an r. Lines connect the set of ref-
erenced pages assigned to each task. For example, page
a,, in block 4, was referenced by both O, and Q, and is
assigned to task C,.

The intent of the clustering tasks is to improve the
page fault performance. In order to determine what
permutations tend to further this goal, it is necessary to
formulate a model for the pattern of references. The fol-
lowing simplified model is sufficient for discussion.

Suppose that

a. There is only one active process Q.

b. Blocks containing pages referenced by @, remain
resident in main memory until Q, is terminated.

c. All reference probabilities are stationary but not nec-
essarily independent.

The expected number of page faults incurred by Q,
then becomes

Z=22P(aij)(l—P[Aj|aij])’ (])

where {Aj}, j=1,2,--+, M is the set of blocks in the
system; {aij}, i=1,2,--+, N is the set of pages in block
Ajy; P(ay) is the probability that page a;; is referenced by
Q;; and P(4,|a;) is the probability that page a;; is not the
first in block 4, to be referenced by Q,, given that q;; is
referenced.

The classical union bound yields

P(Ajlay) =Y Plaga,), (2)

kesti

where P(akj|aij) is the probability of a prior reference to
a,; by Q,, given that a;; is referenced. The bound is tight

IBM J. RES. DEVELOP.

when the probability for one such a,; is much larger than
that for two or more.
Substitution of (2) into (1) results in

E”%%ﬂ (3)

ki

M N
z=3 3 Pay|i-
j=1i=1

Equation (3) suggests that a goal for the clustering be
the maximizing of

M N
b=3 3 Plap] 3 Plagay |)
j=t i=1 k=i

The significance of Eq. (4) is that it specifies a pairwise
representation for the desirability of grouping a set of
pages together in a block. Such a representation requires
an approximation such as the above use of the union
bound. In the simplest case, where page references are
both stationary and independent, maximizing ¢ is equiv-
alent to placing the most frequently referenced pages
together. The set { P(a,;a;;) } may be regarded as entries
in a pairwise page affinity matrix V.

For the purpose of dynamic reorganization, perhaps
the most straightforward assumption, that taken here, is
that pages referenced by a given process have reference
probabilities and pairwise affinities sufficiently high that
an effort should be made to place them together. Note
that due to requirement 1 only pages currently in main
memory should be considered for relocation. Thus the
clustering of referenced pages must be done by a se-
quence of block or home address exchanges with unref-
erenced pages assigned to the same task C,. Because the
goal is to place referenced pages together, the unref-
erenced pages to be displaced by the home address
exchange procedure must be adjacent. In other words,
unreferenced pages must be assigned to a task C; in
groups belonging to the same block. These groups are
then eligible to become cluster points, used to gather
referenced pages.

A wide variety of clustering algorithms may be formu-
lated by varying the method used to assign pages to the
clustering tasks as well as that for choosing cluster
points. Figure 3 shows a possible outcome of reorganiz-
ing the main memory contents illustrated in Fig. 2 when
unreferenced pages in 4, and A, are assigned as cluster
points to tasks C, and C,, respectively. Note that superi-
or results would have been obtained had block 4, been
used as a cluster point for C,. In this case, blocks 4, and
A, would hold all the referenced pages after reorganiza-
tion.

A permutation clustering algorithm

This section describes a dynamic reorganization algo-
rithm which is a simple implementation of the ideas de-
veloped in the previous sections. It is sufficient to indi-

NOVEMBER 1977

Blocks referenced by

Q, 2,
ey
4, 1
431
41
45 445
A2 a | a|r
935 25
a42") ag, [7
Cluster block for C | a4
5
A 433
43
an, r
4, 24
a34 r
44
a23 r
A5 n |7

Cluster block
for c,

Figure 3 One way of reorganizing the main memory contents
illustrated in Fig. 2.

cate the procedures followed by a single clustering task
C, associated with a process Q,.

1. A referenced page is assigned to the task C, if Q, was
the first process to reference it during its current stay
in main memory.

2. Let A,, be the block which contains the page a,, cor-
responding to the first page fault produced by Q,.
Unreferenced pages brought in as the result of the
fault are assigned as a cluster point for C,. A parame-
ter R is set to the number of such pages. Note that
this may be smaller than N — 1, since some pages
belonging to 4,, may already be resident in L,.

3. The page a,, is assigned to C, as the result of pro-
cedure 1. As other referenced pages are assigned to
C,, their names are placed on a first-in, first-out list

Vim» and R decremented by their number. There is a
separate such list for each cluster point.

4. When R reaches zero, the unreferenced pages asso-
ciated with the next fault generated by Q, become the
next cluster point, and R is reset.

5. At the time that an unreferenced page from a cluster
point is about to be removed from L,, its home ad-
dress is exchanged with that of a page from the asso-
ciated list V,,,.

531

PERMUTATION CLUSTERING

532

Time =

ol
s

a1 %3 431 34 11 s a5 %17 41 435
13 214 a7
%33 A4 437
a3 Ga4 447
(a)
Az | ags 4, 17
43 7
34 a3s
a3 221

(b}

Figure 4 Operation of the cluster algorithm on a reference
string. (a) The reference trace, in which faults have a double
overbar, with a column of fetched pages below. First references
to pages already in L, are indicated by a single overbar. Cluster
points are encircled. (b) The resulting reorganization of 4, and
A, blocks containing cluster points.

6. As the last unreferenced page from a cluster point is
removed from main memory, the list V, associated
with it is deleted. Thus pages on this list will no long-
er be subject to home address exchange. R is set to
Zero.

The above algorithm was chosen largely because of its
implementational simplicity. Neither the choice of clus-
ter points nor the assignment of referenced pages is opti-
mal. Nevertheless, the observed performance gains,
described in the following section, were substantial.
Note that the algorithm is described without reference to
a page replacement policy. However, it is assumed that
pages referenced by a process Q, are generally kept in
main memory longer than unreferenced pages brought in
by this process as the result of block fetches, a property
that may be expected of most page replacement policies.

Figure 4 shows the operation of the above algorithm
on the string of references generated by a process Q,.
Note that a,, does not get placed in a cluster point, since
the first reference to it by Q, is before a cluster point was
assigned.

Reorganization of a data base
This section describes a number of experiments on a
trace tape comprising three days of transactions on the
AAS data base. The transactions correspond to the pro-
cesses discussed above. There are 6 x 10° data base ref-
erences in the trace, an average of 38 references per
transaction.

Each 1693-byte physical data record containing sev-
eral AAS logical records corresponds to one page. Eight

B. T. BENNETT AND P. A. FRANASZEK

consecutively numbered physical data records, or pages,
are considered as members of one block for the purpose
of block fetches. That is, g,= N = 8.

Miss ratios were obtained for a number of memory
sizes and a variety of memory management policies:

1. LRU (least recently used) page replacement with
demand paging. Here only the faulted page is fetched.

2. Block fetching (prefetching) without reorganization.
For purpose of comparison with earlier experiments,
the page replacement policy used was one developed
by Bennett and McKellar [3].

3. The Affinity Algorithm 1 evaluated by Bennett and
McKellar [3]. This is a clustering algorithm which
does not adhere to requirements 2, 3, and 4 in the
section entitled ‘‘Principles and requirements.”

4. Block prefetching with dynamic reorganization. In
addition, for a memory size of 2048 pages,

5. Block prefetching and dynamic reorganization which
is halted after operating for a variable period of time.

Figure 5 shows the miss ratios for policies 1-4. Note
that for a memory size of 2048 pages, block fetching has
a miss ratio that is approximately 11.5 percent lower
than LRU. This indicates that references tend to be cor-
related, and that the linear ordering of pages into blocks
is advantageous. Note that this might be due to the
programmers’ knowledge that the data base is linearly
ordered; e.g., knowledge of the linear ordering may en-
courage linear searches. Application of the dynamic re-
organization algorithm yields a reduction of approxi-
mately eight percent in the miss ratio when compared
to block fetching.

Figure 6 compares the performance of dynamic reor-
ganization to that of block fetching over a period of 6 X
10° references for a main memory size of 2048 pages.
The figures are normalized to the performance of block
fetching with the original AAS organization. That is, 100
percent denotes the miss ratio for block fetching. The
lower curve gives the performance for dynamic reorgani-
zation. Departures from this curve, which result from
dynamically reorganizing the data base for 1, 2,- - -, 5 mil-
lion page references, indicate the performance of the new
organization. Points on the curves are the average miss
ratio for 10° references.

An interval of 10° references corresponds to approxi-
mately 30 minutes for this trace. The median time to
complete a transaction is of the order of 2 minutes. The
curves indicate that the organization resulting from the
reordering is superior to the original for, in most cases,
an hour or longer. This suggests that the ‘““optimal” orga-
nization for AAS is time varying, and that the home
address exchange algorithm tends to track it.

The new organizations obtained from the home ad-
dress exchange process, which has been halted at dif-

1BM J. RES. DEVELOP.

2.50

)

—1

Miss ratio (X 10

0.75 l 1 L
1024 2048 4096 8192 16384

Memory size (pages)

Figure 5 Miss ratios for various memory management policies
for four million references: o, LRU page replacement; A, block
fetching; +, affinity algorithm 1; X, block fetching with dynamic
reorganization.

ferent times, can be expected to be dissimilar. However,
Fig. 6 shows that the shapes of the performance curves
exhibit a substantial similarity after a transient period of
an hour or so (2 X 10° references). This suggests that
there may be periods of time during which there are a
significant number of sequential accesses. At other
times, the reference clustering is less well ordered, and
dynamic reorganization shows larger gains.

Concluding remarks
A class of dynamic reorganization algorithms has been
described which exhibits a number of desirable system
properties. A member of this class was then used for
several experiments involving a dynamic reorganization
of the AAS data base. The results indicate that the opti-
mal organization is time varying and that dynamic tech-
niques can indeed improve performance. When the clus-
tering is stopped, the resulting organization is superior to
the original for some time, after which there is little dif-
ference. The performance gains obtained were, while
interesting, not sufficient to justify adoption for this ap-
plication.

The extent to which these results would be typical for
a variety of data bases is open to conjecture. The organi-
zation of the AAS data is familiar to the application
developers, and reference patterns may reflect this
knowledge. For systems containing data bases which are
subject to accessing and modification in unpredictable
ways, dynamic reorganization may be the best alterna-
tive.

NOVEMBER 1977

105

100

95

90

Block fetch miss ratio (percent)

85 L L] 1]
0 1000 2000 3000 4000 5000 6000

Reference at end of interval (X 103)

Figure 6 Normalized miss ratios for block fetching with dy-
namic reorganization running continuously and being halted af-
ter 1, 2,---, S million references. A value of 100 percent de-
notes the miss ratio for block fetching without reorganization.
Points on the curve are the average miss ratio for 10° refer-
ences.

The discussion has centered on properties of simple
algorithms for performing the reorganization and on
experiments for determining their benefits in terms of
lowered miss ratios. Topics not discussed in any detail
were the issues of cost, implementation, and what addi-
tional information relating to usage patterns might be
used for the permutation clustering.

References

1. J. Geceseld, D. R. Slutz, I. Traiger, and R. Mattson, “Evalua-
tion Techniques for Storage Hierarchies,” /BM Syst. J. 9,
78 (1970).

2. M. Joseph, “An Analysis of Paging and Program Behav-
iour,” Comput. J. 13,48 (1970).

3. B. T. Bennett and A. C. McKellar, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY. Private commu-
nication.

4. IBM System{360 Operating System [ndexed Sequential
Access Method, Form No. Y28-6618, IBM Corporation,
White Plains, NY.

5. D. J. Hatfield and J. Gerald, “Program Restructuring for
Virtual Memory,” IBM Syst. J. 10, 168 (1971).

6. J. P. Considine and A. H. Weis, ‘“‘Establishment and
Maintenance of a Storage Hierarchy for an On-line Data
Base Under TSS/360,” AFIPS Conference Proceedings,
Fall Joint Computer Conference, 1969, p. 433.

7. J. H. Wimbrow, ‘A Large-Scale Interactive Administrative
System,” IBM Syst. J. 10,260 (1971).

Received February 1, 1977

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

533

PERMUTATION CLUSTERING

