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Variable  Geometry  Cochlear  Model  at Low Input 
Frequencies: A Basis for  Compensating  Morphological 
Disorders 

Abstract:  The  implementation of  an  algorithm  suitable  for  interactive  experimentation with a mathematical  model of the  cochlea is 
described. In the model, the cochlea’s  exterior  shell is  represented by a surface of revolution.  Internally,  the cochlea is partitioned 
symmetrically  into  two  chambers ( the scalae) by a midplane  representing the basilar  membrane with its  bony supports together with 
the “collapsed” cochlear duct (third chamber). The two chambers  are filled with a viscous  and  incompressible fluid and communicate 
through a small opening (the helicotrema), at the cochlea’s apex.  The system is driven by the piston-like  movement with frequency o 
of the stapes at  the cochlea’s basal end. An isotropic  sectorial plate widening  toward  the apex represents the basilar membrane.  Some 
of the  effects of the cochlear  duct  are  considered  through a provision  for  nonzero net pressure  at  the  basilar  membrane’s  apical  end. 
The  behavior of this system in the  neighborhood of the  low-frequency  threshold,  where the effects  of  cochlear  geometry  are most pro- 
nounced, is described  from the solutions of  the  equations of motion  for w + 0. 

Preface 
From a mathematical model of the  cochlea,  whose for- 
mulation  and  solution are  reported  elsewhere, a research 
tool for  cochlear mechanics  has  been developed.  This 
application is reported here because it involves,  among 
other things,  considerable interactive graphics  and  com- 
puting. 

The  user map specify any surface of revolution for  the 
cochlea’s exterior shell. Internally the  cochlea is modeled 
as two- or three-chumhered. The basilar  membrane is 
represented by a tapered elastic  plate.  A  variety of 
boundary  conditions at  the helicotrema may be  optionally 
used. The behavior  (Le.,  place  principle) of the model 
for  input frequencies  very  close to  the low-frequency 
threshold is computed and  displayed. In this way pa- 
thologies that  some  researchers  have partially attrib- 
uted to abnormal  variations in the  shape of the  cochlea 
can  be studied. Also, insights into  some  optimal features 
of the cochlea’s  normal shape  can be obtained. 

Introduction 
The  ear is conveniently  subdivided  into three  parts:  out- 
er, middle, and inner  ear  (Fig. 1 ) .  The  outer  ear consists 
of the external flap and  the  ear canal leading to  the  drum 
(i.e., tympanic) membrane of the middle ear.  Attached 
to this  membrane is a chain of three small bones called 
the middle ear ossicles. The innermost  ossicle, called the 
stapes,  has its  footplate implanted at the oval window of 
the  inner  ear. 

The auditory  portion of the  inner  ear is a snail-shaped 
structure called the  cochlea. With the  exception of an 
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initial bulge at  the basal end, where the  stapes is embed- 
ded,  the  cochlea narrows  gradually towards its  apex 
(apical end).  In man it winds about 2.75 turns; its  un- 
coiled length is about 35 mm. The  cochlea  (Fig. 2) is 
composed of three fluid-filled chambers  (scala tympani, 
scala vestibuli, and scala media).  The  sense organ  prop- 
er, Le., the organ of Corti with  its accessory  structures, 

Figure 1 Schematic of the ear, with the cochlea rotated  some- 
what from the normal  orientation  to  show its coils  more clearly. 
Reprinted  with  permission  from Unpuhlislrrd Drcrwin,ys o f f h e  
Anutomy of the Humun Errr, by Max Brodel; copyright 1946 
by W. B. Saunders Co., Philadelphia. 
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Figure 2 Cochlear  cross  section. Reprinted  with  permission 
from The 1940 Year Book of Eye,  Ear, Nose and Throat, 
L. Bothman and S. J .  Crowe, eds.; copyright 1940, Year Book 
Medical  Publishers,  Inc., Chicago. 

Figure 3 Cross section of the cochlear  duct. Reprinted 
with  permission  from “Acoustic  Trauma in the  Guinea Pig,” 
H. Davis et al., J .  Acoust. Soc. Amer 25, 1180 ( 1953). 

is contained in the  scala media (also called the  cochlear 
duct), and is supported by the fibrous basilar membrane 
that  forms  part of one wall  of the  cochlear  duct  (Fig. 3 ) .  
The thin and pliant Reissner’s  membrane separates  the 
cochlear duct  from  the  scala vestibuli,  which, at  the ba- 
sal  end of the  cochlea, communicates with the middle 
ear through the oval  window. The  scala tympani ends  at 
the round  window, an opening on the  cochlear wall 

covered by a membrane. The  cochlear  duct, formed by 
the basilar membrane and its supports and  Reissner’s 
membrane,  ends “blindly” just  short of the  cochlear 
apex, leaving  a  small  opening called the helicotrema. 
This opening allows the  scala  tympani  to  communicte 
with the  scala vestibuli (see Figs. 4 and 5).  The  sensory 
surface of the spiral cochlea,  then, is contained in the 
cochlear  duct, a  relatively narrow fluid-filled tube  sepa- 
rating two communicating fluid-filled chambers. 

Hearing  results  from  two kinds of processes,  one 
mechanical and  the  other electrochemical. The sound 
signal is conducted via the  outer  and middle ear  to  the 
cochlear fluids, which in turn  force  the basilar membrane 
to oscillate. These  are  the mechanical events in the audi- 
tory  process  (Fig. 6) [ 1-31. While the  conductive 
mechanism is relatively well understood,  the manifesta- 
tion of acoustical  information in terms of the motion of 
the basilar  membrane is not. Direct  experimental mea- 
surements of cochlear  function are difficult to  obtain  due 
to  the inaccessibility of the  cochlea and the delicate 
structure of the basilar membrane.  Consequently, mod- 
eling is a  particularly  useful  tool,  and many mechanical, 
electrical, and mathematical cochlear models [ 4- 2 11 
have been developed.  Surveys of cochlear modeling are 
given in [ 221 and [ 231. 

Von BCkesy [ 241 (for  more  recent  data  see [ 25-27] 
and also discussion in [ 221 ) obtained extensive  data on 
the  cochlea and  found that 

1. The basilar membrane  has  neither longitudinal nor 
transverse tension in the resting state. 

2. The stiffness of the basilar membrane  decreases by 
about  two  orders of magnitude from  the  stapes  to 
the helicotrema; the  tapered  shape of the mem- 
brane can account  for this. The basilar membrane 
exhibits uniform elastic  properties throughout  (Le., 
it is isotropic).  However,  Novoselova [ 161 has 
recently  proposed that  the basilar membrane is ani- 
sotropic. 

3 .  The damping of basilar  membrane motion due  to 
the  cochlear fluid is essentially constant  at all points 
on the membrane except  near  the helicotrema, where 
it  increases. 

4. Traveling waves exist in the motion of the basilar 
membrane for excitation frequencies  above  25 Hz. 

5 .  There is a pluce  principle--.e., there  exists a  one- 
to-one  correspondence  between excitation frequen- 
cies and  the positions of maximum membrane dis- 
placement. Low frequencies result in maxima  close 
to the helicotrema  and high frequencies  produce 
maxima near  the  stapes  (see Fig. 7 ) .  

The generally accepted modern  version of the place 
principle is that  there is no precise specificity of tonal 
action [ 11.  In fact,  other  secondary  or  even primary 
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Figure 4 Three-dimensional  two-chambered cochlear model. 

Figure 5 Three-chambered uncoiled  cochlea. It differs from 
Fig. 4 in that it contains an  additional  narrow  asymmetrical 
middle chamber ending  “blindly” at  the helicotrema. 
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Figure 6 Sequence of auditory events. 

mechanical and/or neural  mechanisms for  frequency 
analysis have been  conjectured [ 28 - 301. Nevertheless 
the place  principle,  because it is a mathematically 

(and  satisfactory) criterion for judging the efficacy of 
mathematical  models of cochlear  mechanics. 

A recent two-dimensional  uniform  geometry cochlear 
model [ 19, 201 provides  good  qualitative  agreement 
with the place  principle  at high frequencies. It shows 

i, precise  and  concise statement, often serves  as a  natural 
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Figure 7 The place  principle at low frequencies.  The maxi- 
mum of the time-envelope of the basilar  membrane’s  oscilla- 
tions  shifts towards  the  stapes  (basal  end) with increasing  fre- 
quency.  Data obtained by G. von  Bekesy [24] from  a cadaver 
specimen. Solid portions  indicate measurements  and  dotted por- 
tions of the  curves  are interpolations. 

that  the high-frequency  threshold is determined primari- 
ly by the mechanical properties of the  cochlear fluids 
(i.e.,  viscosity and  density)  as well as by the modulus 
of elasticity E of the basilar membrane.  For  an isotropic 
basilar membrane it was  conjectured  that  the low-fre- 
quency threshold is intimately  related to  the geometric 
structure of the  cochlea including the basilar  membrane’s 
taper.  This  was confirmed with the formulation and  study 
at low frequencies of a  three-dimensional cochlear model 463 
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Hyperbolic Cochleas 
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r ( x )  = ~ 

(x  + d)’ I Pressure difference at x = I ,  P= 0 
4 

Poisson ratio N = 0.25 

Normalized position along basilar 
membrane centerline, x 

Added range of xMo 
due to cochlear duct 

Figure 8 Summary of results for hyperbolic  cochleas.  Range 
of xy0 between curve for  narrowest  cochleas  and x = 1 corre- 
sponds to quasi-three-chambered  models. 

endowed with some of the  intricate geometry of the 
cochlea  [21].  The stagewise  evolution of this model is 
described in [22]. 

Here we exploit the general results in [ 2 11 and [ 221 
to  study quantitatively the relationship between  the 
geometric structure of the  cochlea and the low-frequen- 
cy response  at  the basilar  membrane  level. First, we give 
a  summary  description of the model and the results ob- 
tained in [ 211 for a special class of cochlear shapes  (see 
Fig. 8).  Subsequently, by means of spline  interpolation, 
arbitrary  cochlear  surfaces  are  constructed.  The induced 
load on  the basilar membrane  at low input  frequencies 
(idealized  by o + 0 where w is the  input  frequency) is 
computed  together with the resulting  deformation of the 
basilar  membrane’s centerline.  The computation can be 
carried out interactively,  which  makes it suitable for 
experimentation with the model. 
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Model 

Description 
The geometry of the cochlea’s main structures,  as given 
here,  is  an idealization based  on  the  data of Wever [ 3 13. 
As in previous  models, the  cochlea is modeled  uncoiled 
and  consisting initially of two  rather  than  three  (actual) 
chambers.  The external shape of the uncoiled cochlea 
(heretofore referred to  as  “shell”) is well approximated 
by a  conical surface of revolution  with  radius r(x) 
(Fig. 4). Because it is so thin,  Reissner’s  membrane can 
transmit  normal pressure  from  the  scala vestibuli  through 
the  cochlear  duct  to  the basilar  membrane (Fig. 3 ) . How- 
ever, any shear  waves  that may form  on  its  upper  surface 
as  a consequence of its interaction with the fluid of the 

scala  vestibuli will be  attenuated by the  contents of the 
cochlear  duct before  reaching the  upper  surface of the 
basilar  membrane. Hence, Reissner’s membrane  and  the 
gel-like fluid contents of the  cochlear  duct  are  represented 
by an idealized surface  (capable of transmitting  normal 
pressure, but not  shear) contiguous to  the  upper  surface 
of the basilar  membrane. Further,  it is assumed  that  no 
relative motion exists  between  the basilar  membrane and 
this  idealized  surface. Internally, a plane  consisting of the 
basilar membrane with its rigid supports divides the  coch- 
lea into  two fluid-filled chambers  (the  scalae tympani and 
vestibuli).  The midplane  includes the idealized surface 
consisting of the Reissner’s membrane and the collapsed 
cochlear duct.  The width w ( x )  of the basilar membrane 
increases linearly as  the  cochlear  cross section narrows. 
It is convenient to  represent  the basilar membrane  as a 
circular sector of constant  thickness, having a  small 
opening  angle (Y at  the basal end  (dotted lines in Fig. 4) .  
Since  the low-frequency effects are  concentrated  at  the 
apical end,  the small nonzero width of the basilar mem- 
brane  at x = 0 can be safely neglected.  Along the  edges, 
6 = k a / 2 ,  the basilar membrane merges  with the bony 
cochlear walls and  is  assumed  to  be  supported by fixed 
hinges (in the parlance of elasticity theory this condition 
is often  referred to  as “simple supports”). Boundary 
conditions at x = L are  discussed separately. The  system 
is driven by the piston-like movement, with frequency w ,  

of the  stapes  anchored  at  the  oval window, and  the fluid 
passes through the helicotrema  connecting the  two 
chambers. 

The mathematical  description of the motion of such a 
system requires  the three-dimensional Navier-Stokes 
and continuity equations  for viscous  and  incompressible 
fluids. The deflections of the two-dimensional  basilar 
membrane  are  described by the plate equation. Finding 
the simultaneous solutions of these partial differential 
equations  for the appropriate initial and boundary  con- 
ditions  is, to put it mildly, a  formidable task.  Some  ob- 
servations concerning the motion of the  system  can be 
utilized to make  a  number ofjudicious simplifications. 

Solution 
Due  to  symmetry,  the maximum  deflection of the basilar 
membrane  occurs along its  centerline. To study  the place 
principle, it is thus sufficient to  know  the basilar mem- 
brane’s centerline (BMC) deflection. Further,  as w + 0, 
the time dependence is eliminated  from the  equations of 
motion  and their solutions are readily  obtained. This is 
shown in [ 2 1 3 and more  concisely in [ 221. The  induced 
load p o ( x )  on  the  BMC  is given by 

where from  this  point on  x(i.e., x + x / L )  is the normal- 
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ized distance along the  cochlear  axis from the  base  to 
apex,  and So is the amplitude of the  stapes' oscillation at 
x = 0. The  constant 0 5 P < 1 represents a  possible 
pressure difference at  the BMC's apical  end (x = 1 ,  dis- 
cussed  later in greater  detail),  and 

G ( x )  = [&. 
Note  that  the load p,(x) is provided for  an  arbitrary 
cochlear radius r ( x )  # 0 and that p,(x) is strictly  mono- 
tone decreasing and is bounded by PS,  5 p,(x) 5 s,. 

The sectorial  plate,  representing the basilar membrane, 
has  thickness d ,  modulus of elasticity E and Poisson  ratio 
N ,  all assumed  constant.  The BMC deflection u,(x) is 
conveniently expressed by 

.,(X) =Ax" + Cxm+* + a , ( x ) ,  (2  1 
where  the  constants A and C are  determined  from  the 
boundary  conditions at x= 1 ,  m= v / a ,  with a M 8 X 1 0-3 
radians being the opening angle of the sectorial  plate, and 

a (x) = A ( x ) x m  + C(x)xrn+*,  ( 3  1 
OP 

and 

where 

R ( x )  = 
P,(X)  

2 0  ( m  + 1 )xrn-l ' 
D =  Ed3 , and 

12(1 - N )  

H ( x )  = - x'R (X) - - x d - ~  [ xf"R (x,) dx,. 

Boundary conditions ut  the helicotrema 
At  the apical end,  three kinds of end supports - hinged- 
end,  free-end,  and elastic-end - are investigated. All 
these  constraints  are  expressed  as particular cases (i.e., 
specifying the cii) of the two independent linear  com- 
binations 

r 

c,,a,( 1 )  + clzaA(l) + c,,ug( 1 )  + c14ul ' ( l )  = 0, and 

c * p , ( l )  + czzab(l)  + c23";(1) + c*,a;'(t) = 0. (4) 

i 
For  example, if the  edge at x = 1 is simply supported 
(hinged), (4) becomes 

a,(1) = 0,  

b a ; ( l )  + N a A ( l ) = O ,  

yielding 

- ~ ~ + 2 ~ ~ m + 1 + N ) a 0 ( 1 ) + N a ~ ( 1 ) + u ~ ( 1 )  

2(2m+ 1 + N )  
A ,  = P P P 
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and 

m ( m  - 1 + N ) u o P ( 1 )   - N U ; ,  (1 )  - ( 1 )  
c, = 

P 

2(2m + I + N )  

for  the two constants in ( 2 )  with the  subscript h indi- 
cating the hinged-end condition. 

When the  edge  at x = 1 is  unconstrained  (the  free-end 
condition,  subscripted  by f ) ,  (4) becomes 

i a6(1) + N [ a A ( l )  -rn'a,( l ) ]  = o ,  
a ~ ' ( l ~ + ( 2 - ~ ) [ u b ' ( l ) - ( 1 + m 2 ~ U ~ ( 1 ) + 2 r n ~ u ~ ( 1 ) l = 0 ,  

and upon  substitution from ( 2 ) ,  provides the coefficients 

E,(m + ZN,) - e,m(m + 2M,) 
2 m ( m  - 1 )  ( m  - 2P,) (3  + N )  

A ,  = 

and 

C,  = 
e,(m - 2 )  - E, 

2 ( m  + l ) ( m -   2 P f ) ( 3  + N ) '  

where 

N ,  =- 1 + N  M -  3 - N   l + N  
1 - N '   1 - N '  P, = - 

3 + N '  

E f = d " ( l )  + ( 2 - N )  

OP 

OP 

X [a" ( I )  - ( 1  + m2)u6 ( I )  + 2m2a, (111, 

and 

e,=- ug ( 1 )  -Nu '  ( 1 )  + Nm'u, ( 1 ) .  
P OP P 

Finally we  consider  the elastic-end condition,  where 
the edge at x = 1 functions as a narrow beam  partially 
constraining the translation (with flexural rigidity B )  and 
rotation (with  torsional rigidity C ' )  of the basilar  mem- 
brane  there. In this case, (4) is 

c-m2(N+ 2u)a , ( l )  + [ ( m ' +  l ) u + N ] u l , ( l )  

+ ( 1  - u)ub'( 1 )  = 0,  

and 

[2m2(2  - N )  - m2b(8 + m')]u,(  1)  

+ [-(2 - N )  (m' + 1 )  + 3h(2m2 + l ) ] a l , (  1 )  

+ ( 2 - N - 3 b ) u ; ( l )   + u ; ' ( l ) = O ,  

where u = -C'/ D and h = B /  D.  

When u = b = 0, the end  beam offers no  constraints, so 
these  equations  reduce  to  the free-end condition  as a 
special  case. 

Solving for A and C and  subscripting by E gives 

e,m(m + 2M,) - E,(m + 2N,) 
m ( m -  1 ) ( 1  - N ) Q  

A ,  = , and 
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C ,  = 
E ,  - e,(m - 2 )  

( m +  i ) ( i - ~ ) ~ ’  

with 

Q = m ( m  + 2M,) - ( m -  2) ( m  + 2N,), 

T = l +   N E =  1 + N  
( 1 - N ) ’  T ( l  - N ) ’  

b ( m  - 3 )   N - 3 - b ( 2 m - 3 )  P , =  1 + ME = 1 - N  ’ I - N + b ( m - 3 )  ’ 

e,,=- ( 1  - a ) a i  (1) - [ ( m ’ +  1)a + N]ab (1) 

+ m2(N + 2a)a0 ( I ) ,  
P 

and 

E , , = a ~ ~ ( l ) + [ ( 2 - N ) - 3 h ] a ’ , ’ ( l )  P 

+ [-(2 - N ) ( m 2  + 1)   +3b(2m2+  l ) ]uip( l )  

+ [ 2 m 2 ( 2 - N ) - m 2 b ( 8 + m 2 ) ] a o  (1) .  
P 

We can now study  the  behavior of the model as w -+ 0. 
The  elastic  properties of the basilar membrane  appear 

only in D [defined after (3)],  which  in turn  appears in 
R ( x ) .  With (4) being homogeneous in a:)( l ) ,  i= 0,  1,2, 
3, it is easily seen  that in A and C ,  and  hence a o ( x ) ,  D 
occurs  only in  the factor 1 / D  throughout. Therefore, the 
position xMo of the maximum of a , ( x )  is independent of 
the basilar membrane’s  elastic  properties. We can  con- 
clude  that  the low-frequency  threshold  (i.e., place 
principle:  location of xMo as w +- 0) is determined only 
from  the  cochlear  geometry [Le., . ( x ) ]  and  boundary 
conditions a tx=  1 (Le., theconstantsA  andC). 

Hyperbolic quasi-three-chambered  cochlear model 
It  was mentioned in the  introduction  that  the efficacy 
of a cochlear model is, in  general, judged with respect 
to  the place  principle. For  the  purpose of this  discussion 
it suffices to  consider  the following properties of the  place 
principle. For  an input frequency w ,  let x,, ,(w) be the 
position,  along the basilar membrane,  where  the maxi- 
mum (for all time t )  oscillation occurs. I t  is required  that 

xmaX ( w )  be a continuous  function with xmax J w ,  

lim x,,, = 0 (basal  end),  and 
W‘T ( 5 )  

x M o -  -0 
(6) - lim x,,, = 1 (apical  end) ; 

(see Fig. 7).  

Condition ( 5 )  pertains to the high-frequency  threshold 
and is essentially due  to  the signal input at x = 0. T o  
optimize, that is, to  use  the full length of the basilar mem- 
brane  for  frequency discrimination, nature  put xMo at 

466 x = 1 [condition (6)]. How  is this done?  Equation ( 1 ) 

provides the crucial clue. It  shows  that  as w + 0, any 
symmetric  cochlea  induces a strictly monotone  de- 
creasing load p , ( x )  on  the basilar  membrane. The only 
way that  the position of maximum  deflection xMo can 
approach x = 1 for  such a load is  for a  basilar membrane 
having  a monotone decreasing  stiffness;  ergo: the 
widening taper of the basilar membrane. 

The  most  convenient  shapes  to  study using Eq. ( 1 ) are 
“hyperbolic  cochleas” of the  form 

A natural way to  determine d is by specifying the  ratio 
R = r ( 0 )  / r (  1 ), which measures  the cochlea’s  narrowing 
(“taper”). In humans R M 3, and in the range 1 /3  5 
p 5 2, Eq. (7) yields shapes resembling that of an  un- 
coiled cochlea. These  shapes  were in fact studied  ex- 
tensively in [21], and  the  results of that study are sum- 
marized in Fig. 8. I t  was  found that  for  each p ,  

-< < -  4 
3p + 5 - x M o -  ( 3p + 5 Y 3 p + ’ ’ 3  

this being independent of the  boundary conditions at 
x = 1 .  For narrowing cochleas,  the xMO is close to  the 
upper  bound, while for widening cochleas, xMo ap- 
proaches  the  lower  bound.  For R = 1, that  is,  when  the 
cochlea is uniform (cylindrical), xMo = 4/ 5 [from (8) 
with p = 01. We conclude  that  the narrowing of the 
cochlea is desirable since it pushes xMo toward x = 1. 
However,  for realistic  values of p (say less than 2 )  and 
R M 3, the narrowing of the  cochlea and the basilar 
membrane’s widening taper  are not sufficient to bring 
xMo to 1 (Le., 0.385 x M o 5  0 . 8 5 ) .  

Let us look again at  the human cochlea  (particularly 
Fig. 2 ) .  Uncoiled,  it looks somewhat like Fig. 5 with 
three chambers,  rather  than  the  two  chambers we have 
considered so far. The middle chamber  (cochlear  duct) 
plays a crucial  role at very  low frequencies. 

In  two-chamber models the  net  pressure  on  the basilar 
membrane’s  apical end is the same  as the net  pressure  at 
the  adjacent helicotrema. There, with the possible  ex- 
ception of some slight friction losses, we have unimpeded 
fluid flow. Hence  the  pressures  just  above  and below 
the helicotrema  balance (pressure  equalization). With 
three  chambers,  however,  the  net  pressure  [here called 
p,,,( 1 ) ] along the edge x = 1 of the basilar membrane is 
not zero,  since  the basilar membrane  is shielded  from the 
helicotrema  by  Reissner’s membrane.  Consequently, 
p,,,( 1 ) is the difference between  the  pressures  at x = 1 
(see detail  C  in  Fig. 5) in the scala tympani and coch- 
lear duct (rather  than  the  scala vestibuli as is the  case in 
two-chambered  cochleas). A preliminary  study of a 
three-chambered  cochlea [32] showed  that 

P,,t ( 1 ) M 0.3 sa, 
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where So is the  input  pressure  from  the  stapes  at x = 0. 
For this  reason the  constant P is introduced  in ( 1 ) . We 
write 

where P is a constant  somewhat larger  than 0.3 to allow 
for small friction losses in the fluid flow. With this 
condition the model may be  called  “quasi-three-cham- 
bered,” since at  least  as w + 0, it accounts  for  the 
effects of the  cochlear  duct. We will see  that in quasi- 
three-chambered  cochleas, xMo comes close to x = 1 
(Fig. 8 ) ,  and  the boundary  conditions there influence 
xwo. As long  as xM0 is far  from x = 1 (say xMo 5 0.92),  the 
constraints  there  do not affect it. 

Cochleas  whose  shells are arbitrary  surfaces of 
revolution 
Physiologically, the lower frequencies  are particularly 
important since they  dominate in speech (e.g., only 
frequencies up to  about 2 kHz are reliably  transmitted 
over  the  telephone). We  have seen  that  cochlear geom- 
etry influences primarily the low-frequency response. 
So far,  for mathematical convenience, only  hyperbolic 
shells have been studied.  However,  the generality of ( 1 ) 
permits the  study of cochleas enclosed by an  arbitrary 
surface of revolution. The  microstructure  at  the basilar 
membrane’s  apical end  (boundary conditions at x = 1)  
may be  examined as well. In this way the cochlea’s 
normal shape,  as we will see in the  next  section, can  be 
better  understood. 

There  are  also clinical motivations.  Several  hearing 
pathologies  such as  cochlear  otosclerosis and otospon- 
giosis,  endolymphatic hydrops (MCnikre’s disease), and 
others  (see  Table 1 )  have been morphologically linked 
with  anomalous  variations in the cochlea’s  internal 
geometry.  These variations take  the form of hardening 

cochlear  duct through the displacement of Reissner’s 
membrane,  atrophy  or rupturing of the basilar membrane, 
etc. To what extent can pathological behavior  be at- 
tributed to  shape  deformations? By imitating such  shape 
variations in the  cochlear model we can better  assess  the 
relationship  between the pathology  (i.e.,  deficiencies in 
perceiving  low-frequency sounds) and the  associated 
anomalous  shapes. 

While it is nearly  impossible to intrude into  the  interior 
of the  cochlea  without  destroying  it,  it is relatively easy 
to  reach  the external cochlear shell. Perhaps  the function 

normal (or can at  least be improved) by making small 
cornpensuting  alterations in the  shape of the  cochlear 
shell. This clinically exciting prospect  as well as the 
other points  outlined above can  be  explored with the 
computational  cochlear model described in this  section. 

i or  protrusions of the  cochlear walls, distension of the 

1 of a cochlea having internul  dyfects can  be restored  to 

Table 1 Some  disorders affecting the  morphology of the 
cochlea  (compiled  from Reference [33] 1. 

I .  Affected region: osseous labyrinth (cochlear  portion) 
A. Formation  or  destruction of hone on labyrinth walls 

a. Otosclerosis: Spongy  bone may form in the coch- 
lea,  particularly near  the oval and round  windows. 
Otosclerosis  causes  deafness in more  than one 
percent of the population. 

b. Paget’s disease:  In  the cochlea  this disease  causes 
active  reconstruction of bone.  Two  symptoms 
differing from those of otosclerosis are tinnitus and 
rapid loss of hearing. 

c. Osteogenesis  imperfecta:  A  general symptom is 
fragility of hones.  In the cochlea,  growth of spongy 
bone may be hard to distinguish from otosclerosis. 

2. Purulent labyrinthitis: Lining of the  cochlea is in- 
flamed and  bone formation may he stimulated. This 
may be associated with inflammation of the middle 
ear  (otitis  media)  or with cerebrospinal meningitis. 

3.  Syphilis: Bone growth and  destruction may result in a 
variety of deformations. Deafness  occurs  rather 
suddenly with symptoms like those of Menihe’s 
disease. 

4. Cogan’s syndrome: Bone formation, often in the  scala 
media,  distinguishes  this  from Menitre’s disease. 
Symptoms  are like those of Menitre’s  disease. 

5 .  Pendred’s syndrome:  Associated with goiter,  this 
disorder may result in hydrops  (see Mtniltre’s  dis- 
ease) and in incomplete development of or bone 
growths in the  labyrinth. 

1. Bone diseases 

B.  Miscellaneous yfects 
I .  Genetic deformities. 
2. Fractures of the temporal  hone. 

11. Affected region:  membranous  labyrinth (cochlear  portion) 
A. Distension or collapse of Reissner’s  membrane 

I .  Mkniiire’s disease:  Excess endolymph  bailds up 
(endolymphatic  hydrops)  and  causes Reissner’s 
membrane to bulge (and  occasionally rupture). Symp- 
toms include deafness, vertigo and tinnitus. 

2. Serious labyrinthitis: Lining of cochlea is inflamed. 
Membranous labyrinth is distended, but  not as much 
or  as uniformly as in Menitre’s  disease. 

3. Rubella: Lnfection of fetus may result in distension 
or collapse of Reissner’s  membrane. 

4. Tuberculous meningitis: Reissner’s  membrane may 
he distended. 

5 .  Presbycusis: Loss of hearing with old age may be 
associated with degeneration of the  neural and  vascu- 
lar networks in the  cochlea.  Failure of the  vascular 
stria may cause Reissner’s  membrane to collapse. 
(Degeneration of the basilar  membrane  and the spiral 
ligament may also play a role in presbycusis. ) 

E.  Miscellaneous  effects 
1. Genetic deformities. 
2. Neoplasms:  Schwannoma  tumors in the internal  audi- 

tory  meatus may lead to degenerative  changes in the 
membranous  labyrinth,  particularly in the basal turn. 

We offer a challenge, and  an  opportunity,  to clinicians 
to provide  a list of pathologies  unequivocally due  to 
defects in the  cochlear shell  and affecting low-frequency 
hearing. By comparing the model’s predictions for  these 
pathologies with the known  behavior (data),  the basic 
model can  be  validated or invalidated. 
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Cochlear  shell  definition  and  construction can be  found by means of the  recursive formula 
The shell is generated by rotating a planar curve  about 
the x axis. Cubic splines are a convenient way of repre- 
senting the  generatrix and are well suited for interactive 
computation. 

A general  method of surface definition developed by 
Dimsdale [34] is adapted.  The specific algorithm of 
spline  interpolation used here is given in [35], work 
which  was  motivated by the  needs of this study. We 
briefly discuss  the  process. 

The  user defines the  cochlear radius r ( x )  by specifying 
a  number of points  which are usually called knots, 
(x i ,  Ti), i = 1 ,  . . ., N', lying on  the desired curve. Sub- 
sequently, by means of the interpolation  algorithm  from 
[35], the spline r ( x )  is constructed  on [0, 1 1  so that 

1. r ( x i )  = ri, that is, the spline passes through every  knot; 
2. on  each interval I i  = [xi, xi+1], r ( x )  is a cubic  polyno- 

mial in x-that  is, r ( x )  is piecewise cubic on [ 0, 1 3  ; 
3 .  at  each  knot, r ( x )  has continuous  second  derivatives; 

i.e., r ( x )  E C2(0 ,  1 ) ;  and 
4. r ( x )  is the  curve which minimizes the strain  energy of 

the deformation  from  among all curves passing 
through the knots: r ( x )  "behaves" like a real material 
having stiffness. 

Typically, for anything but  the most unusual  shapes, 
five to  seven  knots suffice to specify the desired shape. If 
needed, provisions exist  for introducing  additional  con- 
straints  on  the spline, including vertical slopes  at  any 
given  points. In  that  case  the resulting  spline has  some- 
what  weaker properties  than 1 through 4 (see [ 341 
and [35]) .  

This  process provides us with a specification 

r i ( x )  = bhiXY + biiX' + biix + hai ( 9 )  

of the generatrix r ( x )  on I i ,  i = 1 , .  .., N '  - 1 .  Note  that 
since r ( x )  # Vx E [O. 11 (that is,  the cochlear passages 
are not blocked), r i ( x )  # 0 on I?. 

1; 

(-I )fL-jbja,-j = 0,  ( 1 1 )  
j = o  

where 
p .  

p,(z) = E bjZJ. 
j = O  

Alternatively,  since ( 1 1  ) is a kth order difference  equa- 
tion with constant coefficients, the a,  can be obtained in 
closed  form [ 361 in terms of the zeros of p k  (2). 

The intervals of convergence of the series in ( I O )  are 
determined by the location of the  zeros of p,(z). 

The  power series of l /ry should converge  on l i .  To 
check  for  convergence, we need to  consider  two  cases. 
We  use the notation A,, s = I ,  2, 3 for the  zeros of r i ( x ) ,  
and ci = (xi + xi+,) / 2 for  the midpoint of I i .  

CUSP I IA,- ciI > ci Vs E { 1 ,  2, 3 ) .  Then the power series 
of 1 /r; about ci converges  on all of l i .  

Cuse 2 3s E { 1 ,  2, 3 )  3 IA,- ciI 5 ci. In this case As must 
be a  complex zero  since,  as noted earlier, all real zeros of 
r i (x )  are not on I i .  For  convenience let A, = A,, A, = A,, 
and let A, be the real zero of ri (x). We subdivide I i  into 
the subintervals li, = [x i ,  Re(&)]  and li2 = [ R e ( & ) ,  
xi+,]. Letting ci and cip be  the midpoints of I i l  and I i 2 ,  
respectively, we can see  that  the  power series of 1 /( 
about til, 1 = 1 ,  2, will converge on l i t .  

The subdivision of I i ,  as  required by case 2, is carried 
out  whenever  necessary  and  results in N - I 3 N '  - 1 
subintervals of [0, I ] .  For notational convenience  the 
subintervals  are relabeled  consecutively  from 1 to N - 1 .  
As  well,  the  interval endpoints  are  enumerated  con- 
secutively by xi for i = 1, .  . ., N .  

A  piecewise redefinition of the spline  [Le., Eq. ( 9 ) ]  is 
required wherever I i  is partitioned due  to  case 2 above. 
Such a redefinition in general alters  the  shape  (i.e.,  the 
graph of the  spline), which is  unacceptable  here  since we 
wish to  study  the behavior of a $xed cochlear shape, 

1 

Evaluation o f t h e  loud crnd BMC deflection while the spline redefinition is needed  only for  computa- 
The integral  tional  convenience. The interpolation algorithm used here 

provides  splines (even  those having  vertical slopes  at 
some points)  that  are unaffected  by  this process  (i.e., 
interval subdivision),  and  hence  the cochlear shell shape 

occurring  in the load in Eq. ( 1 )  is calculated by is left  unaltered. This pertains to  the partition  invuriunt 

scheme  for obtaining the power  series of the reciprocal On each I i ,  i = 1 , .  . ., N - 1, the  series 
of a polynomial (and in general of the reciprocal of 1 
an analytic function) is given in [36]. Specifically, ,-;(x) ,=,, 
if p k ( z )  is a polynomial of degree k in the complex 
variable z,  then  the coefficients of the reciprocal  series 

G ( x ) =  7 loX r,$ 

expanding the integrand in a power  series. An efficient  property of the splines (see discussion in [351). 

~- , - 2 Uni(x-  Ci)?', ( 1 2 )  

about  the midpoint ci of Ii, converges on all of l i .  
From  the identity 
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we obtain  the  formula 

by means of which ((x) can be converted  to a poly- 
nomial in ( x  - e t ) .  Then ( 1 1 ) ,  and the  other  results in 
[ 3 6 ] ,  can  be  used to  obtain  the coefficients of the  series 
in (12 ) .  

The evaluation of G ( x )  is now straightforward. For 
x E l j ,  

Letting Li = . x i f l  - xi, we obtain 

where 

From ( 1 3 ) ,  

v-1 m .. , 2 l l + l  

The load p , , ( x )  given by ( 1 ) can be evaluated. Since So 
occurs  as a factor throughout it  will not affect the position 
of the maximum deflection xMO, so we may set S O =  1. For 
the  same reason we take D = I in a (x) given by ( 3  ), 
the formula  for the particular  solution of the BMC  de- 
flection. 

% 

Proceeding with the calculation, we obtain 

x [ ( m + n + 3 - - r ) ( - m + n + 3 - r ) ] "  . (14b) I 
Adding, we find that 
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uop(x )  = - 2x4 1 [ I  -% Gj] 
[(m - 4) (m2 - 16) 

~ [ ( m + n + 3 - r ) ( - m + n + - t - r )  

X ( m + n + 5 - r ) ( - m + n + 5 - r ) ] "  . I (15) 

From ( 15) and  the formulae following Eq. (4 ) ,  the co- 
efficients A and C in (2)  can be  evaluated for  the various 
boundary conditions. These coefficients together with 
( 15) provide the deflection a n ( x )  [see  Eq. (2) ]  of the 
BMC  as  the input frequency o -+ 0, for  the  cochlear 
geometry given by the spline r i ( x )  on Ii, i = 1; . ., N - 1 .  

We now estimate  the  errors arising in the computation 
of p,(x) and a,(x) . 

Error bounds 
The series in ( 12) for 1 ,' ri (x)  converges uniformly on l i .  
Hence  for a  given E > 0, there is a minimum integer N i  
such  that  the following inequality is true  for all x in the 
interval I i :  

Since r i ( x )  is available, 1 ,';:(x) can be computed directly 
and N i  can be explicitly found. 

We  let the  superscript T stand for  the variable (as 
indicated) computed from the  truncated  series. Specifi- 
cally,  let 

n=O 

n=v 

Then 

and 
j - 1  

G T ( x )  = GT(x,+,) + G?(x) ,  
i = O  
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i = O  

We have  shown  that  the  same relative error is incurred 
in the computation of G (x) as in the  computation of 
1 /$(x). Proceeding  with our  estimates, we assume  that 
1 > E > 0. The inequalities 

( l - E ) G ( x )  < G T ( x )  < ( l+E)G(X) ,  

obtained  directly  from (18), imply that G T ( x )  1 0 since 
G (x) 1 0. Specifically, for x = 1 ,  

( 1 - & ) G ( 1 )  < G T ( l )  < ( l + E ) G ( l ) .  

Therefore, 

_ _ ~  1 - E  G(x) <7<" C'(x) 1 + E G ( x )  
1 + E G ( 1 )  G ( 1 )  1 - & G ( l ) '  

so together with the identities 

" I+&- 1 +- 2E and 
1 - E  1 - E  

1 - E -  2e 
l + &  1 "E' 

we  obtain 

" 1 -~ 

" 2E G ( x )  ~ C'(x) G ( x )  2 E  
1 + e G ( 1 )  G'(1) G(1)  < I - -EG(1 ) .  

In  turn, this implies that 

since obviously 2 ~ /  ( 1 - E )  > 2 4  ( 1 + E ) .  

Proceeding, we find that 

-I 
< ( 1  - P )  - 2E 

l - E G ( 1 ) '  

Since G(x) / G (  1) is strictly monotone increasing while 
p o ( x )  is strictly monotone  decreasing, controlling the 
relative error in the  computation of p o ( x )  [more pre- 
cisely $,(x)] is a somewhat  delicate  matter. 

When P # 0 (Le., with the  presence of a third cham- 
ber-the  cochlear  duct),  the minimum value of p , ( ~ )  is 
po(  1 )  = P > 0, and  from  (19)  we  have 

470 When P =  0, however, a different  consideration is needed. 

Let z, = 10"" be the "zero" of the compL 

luip(x) - uop(x)I < EIIQ(x)I, 

where 

Q ( x )  C ( X ) X ' ~ + ~  - A ( x ) x " .  

An  estimate  for Q ( x )  in terms of 
From ( 14a)  and ( 14b) we find that 

ttation. Tha It is, if 
our  computation is precise  to within lo"""', then lo-" 
and 0 are indistinguishable. Now  the minimum p o ( x )  is 
po( 1 )  = 0 (which we take  as po(  1 )  = zc).  Hence 

Actually, for E ,  = 2e/z,( 1 - E ) ,  we  take z, = lo"&, and 
obtain E ,  = for E << 1. Therefore, 

Ipo(x) - p%(x) l  < m p o ( x ) ,  for P = 0. (20b) 

We  combine the  two  cases  and  write 

IP0(X) - P',(X) I < & , P 0 ( X ) ,  (20c) 

with E ,  being given in (20a)  or  (20b). 
Rewriting (20c)  as 

( 1  - E l ) P O ( 4  < &) < ( 1  + E1)PO(X)  > 

we  see  that p ; ( x )  1. 0, when 1 > E ,  > 0. 

deflection 
For  the  computed particular  solution of the BMC 

UT (x) =AT(x)x"  + CT(X)xm+2,  

( 1  - E l ) C ( X )  < C'(x) < ( 1  + E , )  C ( x )  ; 

( 1  + E J A ( X )  < A T ( x )  < ( 1  - & , ) A  (x) 

OP 

the bounds 

are similarly obtained. Applied jointly,  they imply that 

uo (x) is needed. 
P 

We are actually interested in computing the BMC de- 
flection for very small opening angles of the sectorial 
plate representing the basilar  membrane. This is equiva- 
lent to m being large (for example, m = 400).  For large 
m we can  approximate  and obtain 
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Similarly, for large rn we  obtain from (15) that 

The  contribution of the individual terms  to  the indi- 
cated  sums  becomes negligible well before n reaches  the 
value of rn = 400. By comparison to rn, then, we can 
neglect n and r to  obtain  the approximations 

(x - C j )  V ’ ” ] ,  

n=o 

and 

In  turn,  we  have  shown  that  for large m,  

Q(x) M aOp(x), 

a  very useful estimate enabling us, by means of (21),  to 
complete  the overall  estimation of the computational 
error and  obtain 

F 

The  error  estimates in ( 18),  (20) ,  and (22) are given 
in terms of the relative error bound e in ( 16). The con- 
vergence of the series (12) in ( 16) can be substantially 
accelerated.  In  fact, in [37] a  method is specified for 
a )  partitioning Ii symmetrically about its midpoint  into 
three subintervals,  and b) re-expanding ( 12) about  the 
center points of the  subintervals. 

In this way the summation of the  series  can be  ap- 
L preciably speeded up. Such a scheme is particularly 

advantageous  when,  as in our  case  [see [ 361 and the dis- 
cussion on ( 12)], there is an efficient way of computing 
the coefficients of the specific Taylor series. For this 
reason, a) and b) as  discussed in [37] have been in- 
corporated in the  computational algorithm here. 
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Normalized  distance  along b a s h  membrane  centerline, .r 

Figure 9 Contracting (R = 2) and expanding (R = 2 / 3 )  one- 
third-power  hyperbolic “cochleas”  (generators of the surfaces 
of revolution  representing  the cochlea). 

Computational accuracy  check 
The  constants A and C, in Eq. (2)  for  the  BMC  de- 
flection, are  determined from the  boundary conditions 
at  the helicotrema (x = 1 ) . We have  chosen  three specific 
supports  for  the basilar  membrane there, with three 
different expressions,  subscripted by h,  f and E, for  the 
constants A and  C [see formulae after Eq. (4)] .  Since 
the  constants  are given in terms of a”’( 1 ), i = 0, 1 ,  2, 3 ,  
estimating the  errors in A and  C-due  to  an  error in 
a ( I  ) -is very difficult. Analyzing the conditioning of 
the coefficients matrix in the  equations  for A and C (for 
the  three different supports  at x = 1 ) is not  very helpful 
in obtaining error bounds for A and  C. 

A way out of this  impasse is offered by recalling that 
for  some hyperbolic cochlear  shapes [Eq. (7)] ,  the  BMC 
deflection uo(x )  is available in closed form.  In particular, 
for 

OP 

OP 

we find 

p , ( x )  = 1 - F,x - F,x2, (24) 

and 

x4 F,x5 
(rn’-4)(rn2-16) (m’-9)(rn2-25) 

- 

- 

where 

F ,  = 
1 - P  

1 + ( R 3  - 1) /2  and 

F, = (1 - P )  ( R 3  - 1) 
2 + ( R 3 -  I )  ’ 

From (25) and  the formulae for A and C,  the deflection 
of ao(x) is obtained. For  any R ,  we can  describe (i.e., 
“fit”),  to within a specified error,  the  corresponding 
hyperbola by a  spline. The load and  deflection  can  sub- 471 
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Normalized  distance  along  basilar  rncrnbrane  centerline, I- 

Figure 10 Computational  accuracy  check for the  two  shapes in Fig. 9. The fractional error  for r ( x )  is computed halfway between  the 
knots where the deviation between  the spline and  the  exact  shape is maximum. The  shape  for R = 2/ 3  required 15 and  that for R = 2 
required  23 knots  to yield the  accuracy  shown in r ( x )  . Additionally at x = 0 andx = 1 ,  the hyperbola's exact slope  was  imposed on the 
spline. 

sequently be computed  from  the  truncated  series in ( 1  3 ) shapes (Fig. 9 )  obtained from  Eq. (23 ). One is con- 
and ( 15) and  can be compared  to  the  exact values tracting with R = 2 and  the  other expanding with R = 2 / 3.  
obtained  from (24) and (25).  Such a comparison reveals Note  that  the  cochlear radius r ( x )  is normalized  with 
whether A and C are  computed  accurately,  and in fact r ( 0 )  = 1 .  For  consistency with our previous error  esti- 
provides an overall  check for  the  accuracy of the algo- mates we use  as  our  comparison criterion for a variable 

472 rithm. Below, we  show  such a comparison  for  two  exact V ( x ) ,  the fractional (reiative)  error defined by 
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F . E [ V ( x ) ]  = 

where  the  subscript E indicates the  exact values  obtained 
from  (23) through ( 2 5 ) ,  and C indicates the value  ob- 
tained from ( 13 ) and / or ( 15) for  the hyperbolic shape 
approximated by  a  spline. 

The  results of the comparison are summarized in Fig. 
10. In  order  to obtain F . E [ r ( x ) ]  < 15 knots were 
needed to  describe  the  shape defined by R = 213  and 23 
knots  for  the  shape given by R = 2 .  In  addition,  the 
slopes  for  the spline at x = 0 and x = I were  matched, 
using the spline  interpolation  algorithm, to  those of the 
exact  shapes obtained  from ( 2 3 ) .  For E. = [see 
( 16)],  only two  terms in the  series  for 1 /;"(x) sufficed 
on  each interval between knots! In both cases and for all 
the variables, F . - E  5 lo-"'. As expected  from  the 
discussion in the previous section  on  error  bounds,  the 
error is somewhat smaller for P # 0 (in this case P = 

0.35) than for P = 0. 
The  results in these examples are  representative of 

several comparisons that were  actually carried  out.  They 
show that  the  error bounds in ( 1 8) ,  (20)  and  (22)  are 
quite conservative  and  that  the algorithm described above 
is accurate  and reliable.  Incidentally, note  that  the  error 
values in these  examples not only  bound the propagation 
of the  truncation  error in ( 1  6 )  but  also  the  error  due  to 
the  approximate  representation of r ( x ) ,  obtained  from 
(23 ) , by a  spline. 

Implementation 
The algorithm is implemented on  an APL conversational 
terminal system  attached  to a  graphics  display  console 
(described in [ 381 ) -a mode well suited for  experimenta- 
tion with the model. We wish, by means of some exam- 
ples, to  demonstrate  the salient features of the  system 
and model. 

At first, in order  to  understand  the effects of cochlear 
taper, defined by R = r ( 0 )  / r (  I ) ,  we examine  the  three 
conical shapes shown in Fig. 1 1 .  (In all cases we have 
set N = 0.25. Varying the Poisson  ratio does not alter 
xMn appreciably.)  Incidentally, these "cochleas"  can  be 
easily generated by means of our spline  interpolation, 
which can produce straight line segments on specified 
intervals. For  shape C, the  taper is about 3.33, as in the 
human cochlea.  The load  induced by the conical  two- 
chambered  (i.e., P = 0) cochlear  shape  increases point- 
wise with increasing taper.  Hence, in the resulting  defor- 
mation of the basilar  membrane centerline,  the position 
xhln of the maximum increases with increasing  taper. 
Recall that it is the position rather  than  the amplitude of 
the maximum deflection which, according to  the place 
principle, is characteristic of the input frequency w. 
Here  the  computations  are  for w -+ 0, so xbln should  be 

1 .o Induced  load  for 
P= 0 at helicotrema 

0.5 - 

0 

BMC deflection for 
elasticend  conditlon 
at hellcotrema 

maximum  deBection, xMO 
Position of 

rlormalized distance  along  basilar  membrane  centerline, x 

Figure 11 Effect of cochlear taper-x,, increases as the taper 
R = r ( 0 )  / r (  1 )  increases. 

as close to  the helicotrema at x = 1 as possible [see Fig. 
7, Eq. ( 6 ) ,  and  previous discussion]. We  can conclude, 
at least for conical shapes,  that a contracting ( R  > 1 )  
cochlea is more  desirable, in the  sense  that it yields a 
larger xMn, than a cylindrical or expanding  cochlea. This 
may be a  reason why the human cochlea is contracting. 
By the way, for hyperbolic cochleas  when p is large (see 
Fig. 8 ) ,  a comparable variation in the  taper  produces a 
more dramatic variation in xMn than for conical cochleas. 473 
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Figure 12 Contracting  cochleas.  Shape C (also shown in Fig. 
11)  is given by Y(X) = 1 - 0 . 7 ~ .  Shape H is a one-third-power 
hyperbola for R = 3.33 and N resembles  somewhat  the  shape of 
the human cochlea. 

On  an  IBM  System  VM 370 Model 145 computer, 
about  three  seconds of virtual CPU time  was  required to 
compute  the load and deflection for  each cochlear shape 
shown.  In time-sharing  mode, the keyboard  time  was 
two  to  three minutes for  each  shape, including the plots, 
when  the  system had a normal  number of users.  These 
times are nominal and do not vary  much  for  different 

474 cochlear  shapes. 
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Figure 13 Effect of pinches and  bulges on  the basic shape N 
(also shown in Fig. 12).  Shape NW is obtained  from N by flat- 
tening the bulge. Shape N2  is shape N with  a 30 percent pinch 
at x = 0.8,  and  shape N 1 is N with a 30 percent pinch at x = 1. 

Having decided on  the desirability of the  contracting 
cochleas we  compare  next  two different shapes having R 
= 3 . 3 3 ,  as  shown in Fig. 12, with the  contracting conical 
cochlea C. Shape H is a  one-third-power hyperbola de- 
termined from (23) .  Shape N resembles the human 
cochlea, which has a bulge close to  the basal end and 
then narrows down. The  results imply that N is superior 
since it yields the largest xy0. The  shape N ,  however, is 
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not  entirely  optimal. For example, a similar shape, not 
shown, with the bulge shifted toward the  apex  [having 
maximum  radius r (  0.45) = 1.3 j yields xyo = 0.92. 

The cochlear  geometry determines xMo in a  very  com- 
plicated  way. For P = 0, it was empirically found that 
xMo is approximately  determined  by the slope ph( 1) di- 
vided by the integral of the load from x = 0.5 to x = 1 .  

The algorithm converges slowly when the  slope of the 
cochlear  shape is steep.  Convergence is accelerated in 
such  cases by partitioning the intervals between  the 
knots  specifying the cochlear shape.  Subsequently  the 
spline is  reconstructed, but with a greater  number of 
knots  due  to  the partitioning. With the cubic  portions  de- 
fined on smaller  subintervals the  convergence is faster. 
Furthermore,  the partition invariance  property of our 
spline (see [ 3 5 ]  ) guarantees  that  the new spline  con- 
structed with the larger number of knots yields the  same 
shape. 

Earlier we had  suggested that  there may be clinical 
reasons  for wanting to study perturbations in a  particular 
cochlear  shape  (see  Table 1 ) .  This  can certainly  be done 
by specifying a sufficient number of knots.  However, it 
is more  convenient  to  have special  functions for rapid 
shape alterations. For this reason  we  have included 
functions  which generate  “pinches”  or “bulges” in a 
given cochlear  shape.  The  user specifies the location 
where  the pinch or bulge is to  be  centered  and  the rela- 
tive amount  [in percentage of r(x) j of change desired. 
Subsequently, in the given cochlear shape, a pinch or 
bulge normally distributed  [again in percentage of r ( x )  j , 
about  the specified point is  generated.  This is demon- 
strated in Fig. 13, where  the effects of such changes 
on  the  shape N are illustrated.  When the bulge is lev- 
eled, xMo is somewhat reduced. With a pinch at x = 0.8 - 
just before xhl0 for N -both xyo and the maximum ampli- 
tude  are  reduced, while  a pinch at x = 1 (i.e.,  past xM0 in 
N) has  the  opposite effect. 

It is evidently  very difficult to predict the  outcome of 
various shape modifications. Let us exemplify this fur- 
ther. We chose  the simplest shape, cylindrical cochlea, in 
order  to study the  consequences of shifting the  same 
pinch to different locations as  shown in Fig. 14. Observe 
that a  pinch  before xM0 reduces xyo and the maximum 
amplitude,  a pinch at .xMo slightly reduces xMo and in- 
creases  the amplitude, while a pinch after xMo increases 
xMo and  the amplitude. In general,  contracting the  cochlea 
increases  the load while expanding the  cochlea  results in 
a  reduced  load.  Pinches (bulges) before x = 0.5 do not 
alter xMo much but decrease  (increase) maximum ampli- 
tude.  Near xMo, local alterations of the  cochlear  shape 
produce significant changes, with bulges producing ef- 
fects  opposite  to  those produced by pinches. The apical 
end ( x  = 1) is the position  most  sensitive to  shape modi- 
fications. 

n 9n 

0 

I Normali7ed dt\tancc dong  hasllar mcmhrane ccnterl~nc, .r 

Figure 14 Varying the location of a  pinch. Shapes B1, B2 and 
B3 are obtained  from  the  cylindrical cochlea B by locating a 50 
percent pinch at x = 0.6, 0.8, and 1, respectively. 

In two-chambered cochleas,  as in  all our examples so 
far, P = 0, yielding .xMo somewhat  far from x = 1. The 
real cochlea, however, is three-chambered, with P,  the net 
pressure  across  the basilar membrane  at x = 1, being 
nonzero; ergo the provision for quasi-three-chambered 
cochlear  models  having P # 0 in Eq. ( 1 ) .  In quasi- 
three-chambered  cochleas, xR.lo is close to  the helicotre- 
ma  (see section on  Model) not only for hyperbolic coch- 
leas, as shown in Fig. 8, but also,  as we show  next,  for 
more general shapes.  For  the  shape BH (Fig. 151, 
which  resembles  a hyperbola with a bulge, there is a 
dramatic change  from xM0 m 0.82 when P = 0, to xMo m 475 
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Figure 15 Two-chambered ( P  = 0) and quasi-three-cham- 
bered  cochlea with  the same  shape BH. Notice, in end  detail of 
the deformation, the flapping of the  free  end. 

0.99 when P = 0.35. As long as xMo is far from the heli- 
cotrema, it is not influenced by the end support  there. 
Now,  as  the end  detail (for  0.98 5 x 5 1 .00) of the  de- 
formation vividly portrays,  the  matter of proper  bounda- 
ry  conditions at x = 1 can no longer be ignored.  A  glance 
at Fig. 7 shows  that  because  the basilar membrane moves 
at x = 1, this  endpoint cannot be fixed. This  rules  out  the 
hinged-end boundary condition. Allowing the basilar 
membrane to be unconstrained  at x = 1,  corresponding 
to  the free-end condition,  poses a problem. In  the  last 
half percent or so of its  length the basilar membrane 
seems  to flap (recall that  the envelope of the oscillation 
is symmetrical about  the x axis and only the positive 
.,(x) portion is  shown).  Such a spirited  oscillation  could 
tear  the membrane. This  does  not  occur with the elastic- 
end condition at x = 1. The implication is that  the mi- 
crostructure of the basilar membrane  at its  apical end is 
approximated by the  support  that a thin beam at x = 1 
would provide.  Intrigued by this prospect,  Dr. F. Linthi- 
cum of the  Ear  Research  Institute in Los Angeles  pro- 
vided a  preliminary  confirmation of this after examining 

human cochleas with a scanning electron  microscope 
[ 391. He  found that  the basilar  membrane  becomes  no- 
ticeably  more fibrous very  close to  the helicotrema,  with 
a rather strong ‘‘ligament’’ constraining  its motion there 
to  prevent it from flapping and tearing. The flexural and 
torsional strengths of this  ligament are  measured by the 
constants a and b [defined just prior to A ,  and C ,  be- 
low Eq.  (4)]. With the elastic-end  condition, then,  we 
obtain xMo = 0.99 for  the  shape  BH in Fig. 15 without 
any flapping of the basilar membrane. 

The effect of increasing P from 0 to  0.36 in three con- 
tracting cochleas is seen in Fig. 16. While N is a “bet- 
ter”  shape (i.e., xMo larger) than BH when the  cochlea is 
two-chambered, the  reverse is true  for  quasi-three- 
chambered cochleas. In  fact,  the  shape  BH satisfies 
condition (6) with xMo = 1. Actually,  BH is a more real- 
istic representation of the human cochlea  than N. 
Though  the  cochlea bulges initially, the  stapes,  where 
the input occurs,  is positioned after the peak in the 
bulge. This  corresponds  to  the initial portion of BH  (or 
a curve  such as H )  where ~ ( x )  is monotone decreasing. 
The bulge in BH is an  attempt  to  represent  some of the 
local variations -from strictly monotone decreasing - in 
cross-sectional  areas of the  actual cochlea. The differ- 
ence in performance  (i.e., difference in xMo) between N 
and  BH  (or  H) suggests that  the position of the  stapes 
on  the bulge is fairly significant. 

In Fig. 17 we show a comparison  for  shapes N and 
BH with BHl  obtained by putting  a bulge close  to  the 
apical end in H.  The variation in xhfo for  BH1 as P in- 
creases from 0 to 0.36 is rather striking.  Among other 
things the  comparison suggests that  BH is “close” to  an 
“ideal” shape in the  sense of yielding xMo = 1. 

These examples  illustrate the difficulty of describing 
the  dependence of xMo on  cochlear geometry. Hopefully, 
they  also illustrate the kind of information that  can be 
gained through interactive  experimentation with the 
model. 
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