A. Inselberg

Variable Geometry Cochlear Model at Low Input
Frequencies: A Basis for Compensating Morphological
Disorders

Abstract: The implementation of an algorithm suitable for interactive experimentation with a mathematical model of the cochlea is
described. In the model, the cochlea’s exterior shell is represented by a surface of revolution. Internally, the cochlea is partitioned
symmetrically into two chambers (the scalae) by a midplane representing the basilar membrane with its bony supports together with
the “collapsed’” cochlear duct (third chamber). The two chambers are filled with a viscous and incompressible fluid and communicate
through a small opening (the helicotrema), at the cochlea’s apex. The system is driven by the piston-like movement with frequency
of the stapes at the cochlea’s basal end. An isotropic sectorial plate widening toward the apex represents the basilar membrane. Some
of the effects of the cochlear duct are considered through a provision for nonzero net pressure at the basilar membrane’s apical end.
The behavior of this system in the neighborhood of the low-frequency threshold, where the effects of cochlear geometry are most pro-

nounced, is described from the solutions of the equations of motion for w — 0.

Preface

From a mathematical model of the cochlea, whose for-
mulation and solution are reported elsewhere, a research
tool for cochlear mechanics has been developed. This
application is reported here because it involves, among
other things, considerable interactive graphics and com-
puting.

The user may specify any surface of revolution for the
cochlea’s exterior shell. Internally the cochlea is modeled
as two- or three-chambered. The basilar membrane is
represented by a tapered elastic plate. A variety of
boundary conditions at the helicotrema may be optionally
used. The behavior (i.e., place principle) of the model
for input frequencies very close to the low-frequency
threshold is computed and displayed. In this way pa-
thologies that some researchers have partially attrib-
uted to abnormal variations in the shape of the cochlea
can be studied. Also, insights into some optimal features
of the cochlea’s normal shape can be obtained.

Introduction
The ear is conveniently subdivided into three parts: out-
er, middle, and inner ear (Fig. 1). The outer ear consists
of the external flap and the ear canal leading to the drum
(i.e., tympanic) membrane of the middle ear. Attached
to this membrane is a chain of three small bones called
the middle ear ossicles. The innermost ossicle, called the
stapes, has its footplate implanted at the oval window of
the inner ear.

The auditory portion of the inner ear is a snail-shaped
structure called the cochlea. With the exception of an
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initial bulge at the basal end, where the stapes is embed-
ded, the cochlea narrows gradually towards its apex
(apical end). In man it winds about 2.75 turns; its un-
coiled length is about 35 mm. The cochlea (Fig. 2) is
composed of three fluid-filled chambers (scala tympani,
scala vestibuli, and scala media). The sense organ prop-
er, i.e., the organ of Corti with its accessory structures,

Figure 1 Schematic of the ear, with the cochlea rotated some-
what from the normal orientation to show its coils more clearly.
Reprinted with permission from Unpublished Drawings of the
Anatomy of the Human Ear, by Max Brodel; copyright 1946
by W. B. Saunders Co., Philadelphia.
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Figure 2 Cochlear cross section. Reprinted with permission
from The 1940 Year Book of Eye, Ear, Nose and Throat,
L. Bothman and S. J. Crowe, eds.; copyright 1940, Year Book
Medical Publishers, Inc., Chicago.
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Figure 3 Cross section of the cochlear duct. Reprinted
with permission from ‘“‘Acoustic Trauma in the Guinea Pig,”
H. Davisetal.,J. Acoust. Soc. Amer 25,1180 (1953).

is contained in the scala media (also called the cochlear
duct), and is supported by the fibrous basilar membrane
that forms part of one wall of the cochlear duct (Fig. 3).
The thin and pliant Reissner’s membrane separates the
cochlear duct from the scala vestibuli, which, at the ba-
sal end of the cochlea, communicates with the middle
ear through the oval window. The scala tympani ends at
the round window, an opening on the cochlear wall
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covered by a membrane. The cochlear duct, formed by
the basilar membrane and its supports and Reissner’s
membrane, ends ‘“‘blindly” just short of the cochlear
apex, leaving a small opening called the helicotrema.
This opening allows the scala tympani to communicte
with the scala vestibuli (see Figs. 4 and 5). The sensory
surface of the spiral cochlea, then, is contained in the
cochlear duct, a relatively narrow fluid-filled tube sepa-
rating two communicating fluid-filled chambers.

Hearing results from two kinds of processes, one
mechanical and the other electrochemical. The sound
signal is conducted via the outer and middle ear to the
cochlear fluids, which in turn force the basilar membrane
to oscillate. These are the mechanical events in the audi-
tory process (Fig. 6) [1-3]. While the conductive
mechanism is relatively well understood, the manifesta-
tion of acoustical information in terms of the motion of
the basilar membrane is not. Direct experimental mea-
surements of cochlear function are difficult to obtain due
to the inaccessibility of the cochlea and the delicate
structure of the basilar membrane. Consequently, mod-
eling is a particularly useful tool, and many mechanical,
electrical, and mathematical cochlear models [4-21]
have been developed. Surveys of cochlear modeling are
given in [ 22] and [23].

Von Békesy [24] (for more recent data see [25-27]
and also discussion in [22]) obtained extensive data on
the cochlea and found that

1. The basilar membrane has neither longitudinal nor
transverse tension in the resting state.

2. The stiffness of the basilar membrane decreases by
about two orders of magnitude from the stapes to
the helicotrema; the tapered shape of the mem-
brane can account for this. The basilar membrane
exhibits uniform elastic properties throughout (i.e.,
it is isotropic). However, Novoselova [16] has
recently proposed that the basilar membrane is ani-
sotropic.

3. The damping of basilar membrane motion due to
the cochlear fluid is essentially constant at all points
on the membrane except near the helicotrema, where
it increases.

4. Traveling waves exist in the motion of the basilar
membrane for excitation frequencies above 25 Hz.

5. There is a place principle—i.e., there exists a one-
to-one correspondence between excitation frequen-
cies and the positions of maximum membrane dis-
placement. Low frequencies result in maxima close
to the helicotrema and high frequencies produce
maxima near the stapes (see Fig. 7).

The generally accepted modern version of the place
principle is that there is no precise specificity of tonal
action [1]. In fact, other secondary or even primary

IBM J. RES. DEVELOP.




Scala vestibuli

Helicotrema
Oval window

Input from
stapes

Apical end

L7 Idealized basilar membrane
and collapsed cochlear duct

Round window Scala tympani

Basal end
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mechanical and/or neural mechanisms for frequency
analysis have been conjectured [28-30]. Nevertheless
the place principle, because it is a mathematically
precise and concise statement, often serves as a natural
(and satisfactory) criterion for judging the efficacy of
mathematical models of cochlear mechanics.

A recent two-dimensional uniform geometry cochlear
model {19, 20] provides good qualitative agreement
with the place principle at high frequencies. It shows
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Figure 7 The place principle at low frequencies. The maxi-
mum of the time-envelope of the basilar membrane’s oscilla-
tions shifts towards the stapes (basal end) with increasing fre-
quency. Data obtained by G. von Békésy [24] from a cadaver
specimen. Solid portions indicate measurements and dotted por-
tions of the curves are interpolations.

that the high-frequency threshold is determined primari-
ly by the mechanical properties of the cochlear fluids
(i.e., viscosity and density) as well as by the modulus
of elasticity E of the basilar membrane. For an isotropic
basilar membrane it was conjectured that the low-fre-
quency threshold is intimately related to the geometric
structure of the cochlea including the basilar membrane’s
taper. This was confirmed with the formulation and study
at low frequencies of a three-dimensional cochlear model
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Figure 8 Summary of results for hyperbolic cochleas. Range
of x,,, between curve for narrowest cochleas and x = 1 corre-
sponds to quasi-three-chambered models.

endowed with some of the intricate geometry of the
cochlea [21]. The stagewise evolution of this model is
described in [22].

Here we exploit the general results in {21] and [22]
to study quantitatively the relationship between the
geometric structure of the cochlea and the low-frequen-
cy response at the basilar membrane level. First, we give
a summary description of the model and the results ob-
tained in {21] for a special class of cochlear shapes (see
Fig. 8). Subsequently, by means of spline interpolation,
arbitrary cochlear surfaces are constructed. The induced
load on the basilar membrane at low input frequencies
(idealized by w — 0 where w is the input frequency) is
computed together with the resulting deformation of the
basilar membrane’s centerline. The computation can be
carried out interactively, which makes it suitable for
experimentation with the model.

Model

o Description

The geometry of the cochlea’s main structures, as given
here, is an idealization based on the data of Wever [31].
As in previous models, the cochlea is modeled uncoiled
and consisting initially of two rather than three (actual)
chambers. The external shape of the uncoiled cochlea
(heretofore referred to as ‘“‘shell”) is well approximated
by a conical surface of revolution with radius r(x)
(Fig. 4). Because it is so thin, Reissner’s membrane can
transmit normal pressure from the scala vestibuli through
the cochlear duct to the basilar membrane (Fig. 3). How-
ever, any shear waves that may form on its upper surface
as a consequence of its interaction with the fluid of the
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scala vestibuli will be attenuated by the contents of the
cochlear duct before reaching the upper surface of the
basilar membrane. Hence, Reissner’s membrane and the
gel-like fluid contents of the cochlear duct are represented
by an idealized surface (capable of transmitting normal
pressure, but not shear) contiguous to the upper surface
of the basilar membrane. Further, it is assumed that no
relative motion exists between the basilar membrane and
this idealized surface. Internally, a plane consisting of the
basilar membrane with its rigid supports divides the coch-
lea into two fluid-filled chambers (the scalae tympani and
vestibuli). The midplane includes the idealized surface
consisting of the Reissner’s membrane and the collapsed
cochlear duct. The width w(x) of the basilar membrane
increases linearly as the cochlear cross section narrows.
It is convenient to represent the basilar membrane as a
circular sector of constant thickness, having a small
opening angle « at the basal end (dotted lines in Fig. 4).
Since the low-frequency effects are concentrated at the
apical end, the small nonzero width of the basilar mem-
brane at x = 0 can be safely neglected. Along the edges,
¢ = +a/2, the basilar membrane merges with the bony
cochlear walls and is assumed to be supported by fixed
hinges (in the parlance of elasticity theory this condition
is often referred to as ‘“‘simple supports’). Boundary
conditions at x = L are discussed separately. The system
is driven by the piston-like movement, with frequency o,
of the stapes anchored at the oval window, and the fluid
passes through the helicotrema connecting the two
chambers.

The mathematical description of the motion of such a
system requires the three-dimensional Navier-Stokes
and continuity equations for viscous and incompressible
fluids. The deflections of the two-dimensional basilar
membrane are described by the plate equation. Finding
the simultaneous solutions of these partial differential
equations for the appropriate initial and boundary con-
ditions is, to put it mildly, a formidable task. Some ob-
servations concerning the motion of the system can be
utilized to make a number of judicious simplifications.

e Solution

Due to symmetry, the maximum deflection of the basilar
membrane occurs along its centerline. To study the place
principle, it is thus sufficient to know the basilar mem-
brane’s centerline (BMC) deflection. Further, as w — 0,
the time dependence is eliminated from the equations of
motion and their solutions are readily obtained. This is
shown in [21] and more concisely in [22]. The induced
load p,(x) on the BMC is given by

pa(x) = 50[1 —(1-P) ggg] (1)

where from this point on x(i.e., x — x/L) is the normal-
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ized distance along the cochlear axis from the base to
apex, and § is the amplitude of the stapes’ oscillation at
x = 0. The constant 0 = P < 1 represents a possible
pressure difference at the BMC’s apical end (x = 1, dis-
cussed later in greater detail), and

T ds

F(s)’

Note that the load p,(x) is provided for an arbitrary

cochlear radius r(x) # 0 and that p (x) is strictly mono-

tone decreasing and is bounded by PS, = p,(x) = S,.
The sectorial plate, representing the basilar membrane,

has thickness d, modulus of elasticity E and Poisson ratio

N, all assumed constant. The BMC deflection «,(x) is

conveniently expressed by

G(x)=

0

a,(x) = Ax" + Cx""* + a, (x), (2)
f4

where the constants 4 and C are determined from the
boundary conditions at x=1, m==/a, witha 8 x 107
radians being the opening angle of the sectorial plate, and

aop(x) =A(x)x" + C(x)x™?, (3)
L[ 2

A(x) =fw[f X, H(xa)dxa} dx,, (3a)
0 x4 0

and
z o

C(x) =f ;7,153 [j X"R(x,) dxl] dx,, (3b)
0 2 (1}

where

__ p) ___Ed
RO = pm+ v P=1a0 -y and

4 m
H(x) =— xR (x) —xTn_—ljdxf R(x,) dx,.
0

e Boundary conditions at the helicotrema
At the apical end, three kinds of end supports —hinged-
end, free-end, and elastic-end—are investigated. All
these constraints are expressed as particular cases (i.e.,
specifying the c;;) of the two independent linear com-
binations

c.a,(1) + ca0(1) + cag(1) + ¢, a)’ (1) = 0, and

Cou (1) + cpap(1) + cppay(1) + cyay’ (1) = 0. (4)

For example, if the edge at x = 1 is simply supported
(hinged), (4) becomes

a,(1) =0,
[ag(l) + Nagy(1}) =0,
yielding
= (m+2) (m+ 1+ N)a, (1) + Nag (1) +ay (1)

A, =
22m+ 1+ N)
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and

m(m—1+ N)aop(l) - Na(;p(l) - a(,’p(])

h 22m+ 1+ N) ’

for the two constants in (2) with the subscript h indi-
cating the hinged-end condition.

When the edge at x = 1 is unconstrained (the free-end
condition, subscripted by f), (4) becomes

aj(1) + Nlay (1) ~ ma,(1)] =0,

ag"(1) + (2= N)[ay(1) ~ (1 + m")ay(1) + 2m’ay(1)] =0,

and upon substitution from (2), provides the coefficients

_E(m+ 2N — em(m+ 2M;)
7 2m(m—1)(m—2P)(3+ N)

and

C - e(m—2)—E,

7 2(m+ 1) (m—2P)(3+ N)’

where

_1+N __3—-N _1+N
N=1—n M -~ PTiiN

E=ay(1) + (2= N)

X [ag (1) = (1+m)ay (1) + 2nta, (1)],
and
e =— a’ép(l) —-Na(’)p(l) + Nmzaop(l).

Finally we consider the elastic-end condition, where
the edge at x = 1 functions as a narrow beam partially
constraining the translation (with flexural rigidity B) and
rotation (with torsional rigidity C') of the basilar mem-
brane there. In this case, (4) is

(=m*(N + 2a)a,(1) + [(m’ + Da+ Nla,(1)
+ (1 —a)ay(1) =0,

and

[2m*(2 = N) — m’b(8 + m®) ] a,(1)
+ [-(2=N)(m*+ 1) +3b(2m" + 1)]a)(1)

+(2—=N=3b)aj(1) +a)"(1) =0,

where a =—C’'/D and b = B/ D.

When a = b= 0, the end beam offers no constraints, so
these equations reduce to the free-end condition as a
special case.

Solving for A and C and subscripting by E gives

_ e.mim+2M,) — E.(m+ 2N_) d
B mm—1(1-Ngo " 465
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c - E,—e,(m—2)
ET (m+1)(1—-N)Q’
with
Q=m(im+2M,) — (m—2)(m+ 2N),

_ 1, am—2) __1+N
T_1+(1—N)’ Ny T(1—N)’

N—-3—-b(2m~—3)

b(m—3)

P =14+—-——-= =

E 1-N "’ My I—-N+b(m—3)"’
E e

EE=——E1’ ehz—El’
P T

ey, == (1= a@aj (1) = [(m’ + Da + Nla; (1)
+m’ (N + 2a)aop(1),

and

Eg = ay (1) + [(2= N) = 3b]a; (1)
+ [~ —=N)(m* + 1) +3bQ2n" + 1)]a(',p(1)
+[2m*(2—N) —mzb(8+m2)]a0p(l).

We can now study the behavior of the model as w — 0.
The elastic properties of the basilar membrane appear
only in D [defined after (3)], which in turn appears in
R(x). With (4) being homogeneous in aff)(l), i=0,1,2,
3, it is easily seen that in 4 and C, and hence a,(x), D
occurs only in the factor 1/ D throughout. Therefore, the
position xy, of the maximum of a,(x) is independent of
the basilar membrane’s elastic properties. We can con-
clude that the low-frequency threshold (i.e., place
principle: location of x,, as @ — 0} is determined only
from the cochlear geometry [i.e., r(x)] and boundary
conditions atx=1 (i.e., the constants 4 and C).

o Hyperbolic quasi-three-chambered cochlear model
It was mentioned in the introduction that the efficacy
of a cochlear model is, in general, judged with respect
to the place principle. For the purpose of this discussion
it suffices to consider the following properties of the place
principle. For an input frequency w, let x,, (o) be the
position, along the basilar membrane, where the maxi-
mum (for all time 7) oscillation occurs. It is required that

X (@) be a continuous function with x| o,

limx . =0 (basal end), and &))
Xno = lin}) Xoax = 1 (apical end); (6)
(see Fig. 7).

Condition (5) pertains to the high-frequency threshold
and is essentially due to the signal input at x = 0. To
optimize, that is, to use the full length of the basilar mem-
brane for frequency discrimination, nature put x,, at
x =1 [condition (6)]. How is this done? Equation (1)
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provides the crucial clue. It shows that as w — 0, any
symmetric cochlea induces a strictly monotone de-
creasing load p (x) on the basilar membrane. The only
way that the position of maximum deflection x,,, can
approach x = 1 for such a load is for a basilar membrane
having a monotone decreasing stiffness; ergo: the
widening taper of the basilar membrane.

The most convenient shapes to study using Eq. (1) are
“hyperbolic cochleas™ of the form

1

r(x) =m,

forp > 0. (7)

A natural way to determine d is by specifying the ratio
R =7r(0)/r(1), which measures the cochlea’s narrowing
(“taper”). In humans R & 3, and in the range 1/3 =
p = 2, Eq. (7) yields shapes resembling that of an un-
coiled cochlea. These shapes were in fact studied ex-
tensively in [21], and the results of that study are sum-
marized in Fig. 8. It was found that for each p,

4 - <( 4 )l/(3p+1)
3p+5_xM°_ 3p+5 ’ ®)

this being independent of the boundary conditions at
x = 1. For narrowing cochleas, the x,, is close to the
upper bound, while for widening cochleas, x,, ap-
proaches the lower bound. For R = 1, that is, when the
cochlea is uniform (cylindrical), x,, = 4/5 [from (8)
with p = 0]. We conclude that the narrowing of the
cochlea is desirable since it pushes x,, toward x = 1.
However, for realistic values of p (say less than 2) and
R = 3, the narrowing of the cochlea and the basilar
membrane’s widening taper are not sufficient to bring
xyoto 1 (e, 0.38= x,, = 0.85).

Let us look again at the human cochlea (particularly
Fig. 2). Uncoiled, it looks somewhat like Fig. 5 with
three chambers, rather than the two chambers we have
considered so far. The middle chamber (cochlear duct)
plays a crucial role at very low frequencies.

In two-chamber models the net pressure on the basilar
membrane’s apical end is the same as the net pressure at
the adjacent helicotrema. There, with the possible ex-
ception of some slight friction losses, we have unimpeded
fluid flow. Hence the pressures just above and below
the helicotrema balance (pressure equalization). With
three chambers, however, the net pressure [here called
P (1)] along the edge x = 1 of the basilar membrane is
not zero, since the basilar membrane is shielded from the
helicotrema by Reissner’s membrane. Consequently,
Pra(1) is the difference between the pressures at x = 1
(see detail C in Fig. 5} in the scala tympani and coch-
lear duct (rather than the scala vestibuli as is the case in
two-chambered cochleas). A preliminary study of a
three-chambered cochlea {32] showed that

Pr(1) R 0.3 S,
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where S, is the input pressure from the stapes at x = 0.
For this reason the constant P is introduced in (1). We
write

pnet(l):PSO’

where P is a constant somewhat larger than 0.3 to allow
for small friction losses in the fluid flow. With this
condition the model may be called ‘“‘quasi-three-cham-
bered,” since at least as w — 0, it accounts for the
effects of the cochlear duct. We will see that in quasi-
three-chambered cochleas, x,, comes close to x = 1
(Fig. 8), and the boundary conditions there influence

Xy As long as x,, is far from x =1 (say x,,,= 0.92), the

constraints there do not affect it.

Cochleas whose shelis are arbitrary surfaces of
revolution

Physiologically, the lower frequencies are particularly
important since they dominate in speech (e.g., only
frequencies up to about 2 kHz are reliably transmitted
over the telephone). We have seen that cochlear geom-
etry influences primarily the low-frequency response.
So far, for mathematical convenience, only hyperbolic
shells have been studied. However, the generality of (1)
permits the study of cochleas enclosed by an arbitrary
surface of revolution. The microstructure at the basilar
membrane’s apical end (boundary conditions at x = 1)
may be examined as well. In this way the cochlea’s
normal shape, as we will see in the next section, can be
better understood.

There are also clinical motivations. Several hearing
pathologies such as cochlear otosclerosis and otospon-
giosis, endolymphatic hydrops (Méniere’s disease), and
others (see Table 1) have been morphologically linked
with anomalous variations in the cochlea’s internal
geometry. These variations take the form of hardening
or protrusions of the cochlear walls, distension of the
cochlear duct through the displacement of Reissner’s
membrane, atrophy or rupturing of the basilar membrane,
etc. To what extent can pathological behavior be at-
tributed to shape deformations? By imitating such shape
variations in the cochlear model we can better assess the
relationship between the pathology (i.e., deficiencies in
perceiving low-frequency sounds) and the associated
anomalous shapes.

While it is nearly impossible to intrude into the interior
of the cochlea without destroying it, it is relatively easy
to reach the external cochlear shell. Perhaps the function
of a cochlea having internal defects can be restored to
normal (or can at least be improved) by making small
compensating alterations in the shape of the cochlear
shell. This clinically exciting prospect as well as the
other points outlined above can be explored with the
computational cochlear model described in this section.
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Table 1 Some disorders affecting the morphology of the
cochlea (compiled from Reference [33]).

I. Affected region: osseous labyrinth (cochlear portion)
A. Formation or destruction of bone on labyrinth walls

1. Bone diseases
a. Otosclerosis: Spongy bone may form in the coch-

lea, particularly near the oval and round windows.
Otosclerosis causes deafness in more than one
percent of the population.

b. Paget’s disease: In the cochlea this disease causes
active reconstruction of bone. Two symptoms
differing from those of otosclerosis are tinnitus and
rapid loss of hearing.

c. Osteogenesis imperfecta: A general symptom is
fragility of bones. In the cochlea, growth of spongy
bone may be hard to distinguish from otosclerosis.

2. Purulent labyrinthitis: Lining of the cochlea is in-
flamed and bone formation may be stimulated. This
may be associated with inflammation of the middle
ear {(otitis media) or with cerebrospinal meningitis.

3. Syphilis: Bone growth and destruction may result in a
variety of deformations. Deafness occurs rather
suddenly with symptoms like those of Méniére’s
disease.

4. Cogan’s syndrome: Bone formation, often in the scala
media, distinguishes this from Méniére’s disease.
Symptoms are like those of Méniere’s disease.

5. Pendred’s syndrome: Associated with goiter, this
disorder may result in hydrops (see Méniére’s dis-
ease) and in incomplete development of or bone
growths in the labyrinth.

B. Miscellaneous effects

1. Genetic deformities.

2. Fractures of the temporal bone.

I1. Affected region: membranous labyrinth (cochlear portion)
A. Distension or collapse of Reissner’s membrane

1. Méniére’s disease: Excess endolymph builds up
(endolymphatic hydrops) and causes Reissner’s
membrane to bulge (and occasionally rupture). Symp-
toms include deafness, vertigo and tinnitus.

2. Serious labyrinthitis: Lining of cochlea is inflamed.
Membranous labyrinth is distended, but not as much
or as uniformly as in Méniere’s disease.

3. Rubella: Infection of fetus may result in distension
or collapse of Reissner’s membrane.

4. Tuberculous meningitis: Reissner’s membrane may
be distended.

5. Presbycusis: Loss of hearing with old age may be
associated with degeneration of the neural and vascu-
lar networks in the cochlea. Failure of the vascular
stria may cause Reissner’'s membrane to collapse.
(Degeneration of the basilar membrane and the spiral
ligament may also play a role in presbycusis.)

B. Miscellaneous effects

1. Genetic deformities.

2. Neoplasms: Schwannoma tumors in the internal audi-
tory meatus may lead to degenerative changes in the
membranous labyrinth, particularly in the basal turn.

We offer a challenge, and an opportunity, to clinicians
to provide a list of pathologies unequivocally due to
defects in the cochlear shell and affecting low-frequency
hearing. By comparing the model’s predictions for these
pathologies with the known behavior (data), the basic
model can be validated or invalidated.
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e Cochlear shell definition and construction

The shell is generated by rotating a planar curve about
the x axis. Cubic splines are a convenient way of repre-
senting the generatrix and are well suited for interactive
computation.

A general method of surface definition developed by
Dimsdale [34] is adapted. The specific algorithm of
spline interpolation used here is given in [35], work
which was motivated by the needs of this study. We
briefly discuss the process.

The user defines the cochlear radius r(x) by specifying
a number of points which are usually called knots,
(x;, r;), i=1,--+, N', lying on the desired curve. Sub-
sequently, by means of the interpolation algorithm from
[35], the spline r(x) is constructed on [0, 1] so that

1. r(x,) = r, that is, the spline passes through every knot;

2. on each interval I, = [x,, x,,,], ¥(x) is a cubic polyno-
mial in x—that is, r(x) is piecewise cubic on [0, 1];

3. at each knot, r(x) has continuous second derivatives;
ie., r(x) € C*(0, 1); and

4. r(x) is the curve which minimizes the strain energy of
the deformation from among all curves passing
through the knots: r(x) “behaves’ like a real material
having stiffness.

Typically, for anything but the most unusual shapes,
five to seven knots suffice to specify the desired shape. If
needed, provisions exist for introducing additional con-
straints on the spline, including vertical slopes at any
given points. In that case the resulting spline has some-
what weaker properties than 1 through 4 (see [34]
and [35]).

This process provides us with a specification

r(x) = b’ + bx* + blx + bl (9)

of the generatrix (x) on /,,i=1, -, N'— 1. Note that
since r(x) # Vx € [0, 1] (that is, the cochlear passages
are not blocked), r,(x) # 0 on I,

e FEvaluation of the load and BMC deflection
The integral

‘du
o (1)

occurring in the load p (x) in Eq. (1) is calculated by
expanding the integrand in a power series. An efficient
scheme for obtaining the power series of the reciprocal
of a polynomial (and in general of the reciprocal of
an analytic function) is given in [36]. Specifically,
if p,(z) is a polynomial of degree & in the complex
variable z, then the coeflicients of the reciprocal series

Gx)=

1 Z n
) =n2:0anz (10)
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can be found by means of the recursive formula
". .
S =1)""ba, ;=0, (11)
=0
where

X
pp(z) =3 b2’

J=0
Alternatively, since (11) is a kth order difference equa-
tion with constant coefficients, the a, can be obtained in
closed form [36] in terms of the zeros of p, (2).

The intervals of convergence of the series in (10) are
determined by the location of the zeros of p,(z).

The power series of 1/ tf should converge on /,. To
check for convergence, we need to consider two cases.
We use the notation A, s = I, 2, 3 for the zeros of r;(x),
and ¢;= (x;+ x,,,) /2 for the midpoint of ;.

i+l
Case 1 I\,— ¢;| > ¢;¥s € {1, 2,3}. Then the power series
of 1/r) about ¢, converges on all of /.

Case 23s € {1,2,3} 3 |\,— ¢;| = ¢,. In this case A\, must
be a complex zero since, as noted earlier, all real zeros of
r,(x) are not on [,. For convenience let \, = A, A, = XS,
and let A, be the real zero of r,(x). We subdivide /; into
the subintervals /; = [x, Re(A)] and /; = [Re(),),
x;,,]. Letting G, and ¢, be the midpoints of I and /;,
respectively, we can see that the power series of 1/ r‘“i
about ¢, [ =1, 2, will converge on [;,.

The subdivision of I,, as required by case 2, is carried
out whenever necessary and results in N —1 = N'— 1
subintervals of [0, 1]. For notational convenience the
subintervals are relabeled consecutively from 1 to N — 1.
As well, the interval endpoints are enumerated con-
secutively by x, fori=1,--- N.

A piecewise redefinition of the spline [i.e., Eq. (9)] is
required wherever /; is partitioned due to case 2 above.
Such a redefinition in general alters the shape (i.e., the
graph of the spline), which is unacceptable here since we
wish to study the behavior of a fixed cochlear shape,
while the spline redefinition is needed only for computa-
tional convenience. The interpolation algorithm used here
provides splines (even those having vertical slopes at
some points) that are unaffected by this process (i.e.,
interval subdivision), and hence the cochlear shell shape
is left unaltered. This pertains to the partition invariant
property of the splines (see discussion in [35]).

Oneach/,i=1,"-:, N— 1, the series
r?(;x)zg) a,(x—¢)", (12)
about the midpoint ¢, of /,, converges on all of /.

From the identity

.

I3 ) .
2 h].xJ EE Bj(x — ¢y,
i=0 j=0
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we obtain the formula

A.
5=3 (;) b,
by means of which r?(x) can be converted to a poly-
nomial in (x — ¢;). Then (11), and the other results in
[36], can be used to obtain the coefficients of the series
in (12).

The evaluation of G (x) is now straightforward. For
xel s

du
Gl = Ef r(u) )

Letting L, = x,,

. — X;, we obtain

@

G(x)=G;+3 _:"1 (x—c].)"“, (13)
n=0
where
Jj-1 « a, 2+l a n+1

G<= Z D1 _— ( 1)n+1 nj=j . .

T &2y 2 E 12T
From (13),

N-1 o aZniL?"H

C=3 25, "

The load p,(x) given by (1) can be evaluated. Since S,
occurs as a factor throughout it will not affect the position
of the maximum deflection Xyg» SO We may set S = 1. For
the same reason we take D = 1 in ¢, (x) given by (3),
the formula for the particular solutlon of the BMC de-
flection.

Proceeding with the calculation, we obtain

X (m+6) _a-=pr
20im+ 1) {(m+2)(l6—m2) [' G(1) Gf}

A (X) Xm -

P) hat e n+ 1 ronitl r
- (,(1 2n+1 ( r >(_‘i)x

><[(m+n+3—r)(m+n+5——r)(—m+n+5—1‘)]71},

(14a)
and
Cloa™" = 2(mx:— 1) {(4—]m2) [1 Bl (1(;?11)9) GJ’]
><[(m+n+3—r)(—m+n+3—r)]“}. (14b)

Adding, we find that
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R Cernmary |- ar )

(I_P) ntl AT onafl-r
Gy Z(n+1) ( r >(_‘f)x

X[(m+n+3—-r)(—m+n+3—r)

a(,p(X) =—

><(m+n+5—r)(—m+n+5—r)]_l}. (15)

From (15) and the formulae following Eq. (4), the co-
efficients 4 and C in (2) can be evaluated for the various
boundary conditions. These coeflicients together with
(15) provide the deflection a,(x) [see Eq. (2)] of the
BMC as the input frequency w — 0, for the cochlear
geometry given by the spline r,(x) on I, i=1,--, N— 1.

We now estimate the errors arising in the computation
of p,(x) and a,(x).

s Error bounds

The series in (12) for 1/ rf(x) converges uniformly on /,.
Hence for a given £ > 0, there is a minimum integer N,
such that the following inequality is true for all x in the
interval /;

N

n 1
D dylx—¢) _r':(,r)

n=0

€
IR (16)

Since r;(x) is available, 1/ rf(x) can be computed directly
and N, can be explicitly found.

We let the superscript T stand for the variable (as
indicated) computed from the truncated series. Specifi-
cally, let

N

Gl(x) = > anij (u—c;)" du
n=0 Ly

_ C)n+1 _ (Xi_ Ci)nﬂ]‘

[
i

Then
z ) N 1
T N n -
|G, (x) = G(x)| = L ngo a,{u—c) TP
< eG,(x). (17)

For x € 1]., write

i1
G(x) =3 G(x,,) + G;(x),
and

j-1 )
G'(x) =% G (x,,) +G;(x),

i=0

so that 469
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1G(x) = " = 3 1Gylxi) — GTix,, )]

i=0

+]G,(x) = Gj ()]

< 3J§ G,(x) +sG].(x) —eG(x). (18)

i=0

We have shown that the same relative error is incurred
in the computation of G(x) as in the computation of
1/ rs(x). Proceeding with our estimates, we assume that
1 > € > 0. The inequalities

(1—e)G(x) <G"(x) < (1+&)G(x),

obtained directly from (18), imply that G”(x) = 0 since
G (x) = 0. Specifically, for x =1,

(1—-e)G(1) < G™(1) < (1+e)G(1).

Therefore,
1—-eG(x) _GTx) 1+eGx
1+eG(l) ~G™(1) “1t—eGO)

so together with the identities

1+s=1+ 2e and

1—¢ 1—e¢

l—e_ ., _ 28

1+¢ 1—¢’

we obtain

_ 2 G _Gw_ GWw 2 G(x)
Il+eG(l) ~G'(1) G(1) 1—eG(1)’

In turn, this implies that

G'(x) _ G(x)|

2e G(x)
G"(1) Gl

1—¢ G(1)’

since obviously 2e/(1 —&) > 2e/(1 +¢).
Proceeding, we find that

T = (1 — py |G GT(x)
[p,(x) = py(x)| = (1= P) ()~ G

_ 2¢e G(x)
<U=P G0y (19)

Since G(x)/G(1) is strictly monotone increasing while
po(x) is strictly monotone decreasing, controlling the
relative error in the computation of p (x) [more pre-
cisely pz(x)] is a somewhat delicate matter.

When P # 0 (i.e., with the presence of a third cham-
ber—the cochlear duct), the minimum value of p,(x) is
pP,(1) =P >0, and from (19) we have

2¢e 1—P

T p®). P #0. (200)

|Po(x) — polx)| <

When P=0, however, a different consideration is needed.

A. INSELBERG

m

Let z,= 10" be the *“zero” of the computation. That is, if
our computation is precise to within 107", then 10™
and O are indistinguishable. Now the minimum p (x) is
P,(1) = 0 (which we take as p (1) = z,_). Hence

< 28 py(x)

—_— ’IV
1Py (x) — po(x)] 1= 2

C

Actually, for e, = 2¢/2,(1 — &), we take z, = 10’1.91 and
obtain £, = V20e for £ << 1. Therefore,

|po(x) — py(x)| < V20e p,(x), for P=0. (20b)
We combine the two cases and write

1Py(x) = Po(xX)| < £,p,(X), (20c)

with ¢, being given in (20a) or (20b).
Rewriting (20¢) as

(1—2,)p,(x) < pa(x) < (1+ &) p,(x),

we see that pg(x) = 0,when 1>¢, > 0.
For the computed particular solution of the BMC
deflection

aOTp(x) =A"(x)x" + CT(x)x™"%,

the bounds

(1—¢,)C(x) < C'(x) < (1+ e,)C(x);

(1+e)A(x) < A"(x) < (1—¢,)A4(x)

are similarly obtained. Applied jointly, they imply that
g (0 = ay ()] <& Q, 21
where

O(x) =C()x"™* = A(0)x".

An estimate for Q(x) in terms of a, (x) is needed.
From (14a) and (14b) we find that

___x m’ + 4m’ — 10m ~ 28 _u=-p
W == {[(m+2)(16—m2)(4—m2):H:1 G(1) GJ’]
(-P) 2 a, "dy/m+1 roneter
6 Zﬂn+lr:0< r >(_(f)x

X[ m =" —F+2nr+2m— 101+ 10r + 23 :”
(m+n+3—-pn(m+tn+3-r(m+n+5—r(m+n+5-ni}

We are actually interested in computing the BMC de-
flection for very small opening angles of the sectorial
plate representing the basilar membrane. This is equiva-
lent to m being large (for example, m = 400). For large
m we can approximate and obtain

(1—-P)

~_ X1 _a=p ] _0=P
Q) = mz[l G() Gf] G(1)

n+1 (___)r n+l-r
© a n+1 r G X

ZGrn Zmtn—nmrn—n
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Similarly, for large m we obtain from (15) that

~_ i)l (1—=P) (1—P)

aop(x)N 2x m4[] ) Gj]+ G
n+1 r_on+l-r

a n+l1 ( r >(_cj)x

> nfl 2 (m+n—r*—m+n—r°

n=90 r=0

The contribution of the individual terms to the indi-
cated sums becomes negligible well before n reaches the
value of m = 400. By comparison to m, then, we can
neglect n and r to obtain the approximations

N < (1—P) (1—P)
Q(X)N—W{'_ G 2T TG

X i a"j (x_ CV)nH]’
n+1 J

n=0

and

- 2x (1—P)+(1—P)
”op(““"?[“ G(H G

% i a"j (X_ C')'Hl]-
n+1 I

n=0

In turn, we have shown that for large m,

~m
Q) &~ 7 a, (x),

a very useful estimate enabling us, by means of (21), to
complete the overall estimation of the computational

error and obtain

Em
2 faop(XH- (22)

Pazp()r) —a, ()] <

The error estimates in (18), (20), and (22) are given
in terms of the relative error bound ¢ in (16). The con-
vergence of the series (12) in (16) can be substantially
accelerated. In fact, in [37] a method is specified for
a) partitioning /; symmetrically about its midpoint into
three subintervals, and b) re-expanding (12) about the
center points of the subintervals.

In this way the summation of the series can be ap-
preciably speeded up. Such a scheme is particularly
advantageous when, as in our case { see [36] and the dis-
cussion on (12)], there is an efficient way of computing
the coefficients of the specific Taylor series. For this
reason, a) and b) as discussed in [37] have been in-
corporated in the computational algorithm here.
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Figure 9 Contracting (R = 2) and expanding (R =2/3) one-
third-power hyperbolic ‘‘cochleas™ (generators of the surfaces
of revolution representing the cochlea).

Computational accuracy check

The constants 4 and C, in Eq. (2) for the BMC de-
flection, are determined from the boundary conditions
at the helicotrema (x=1). We have chosen three specific
supports for the basilar membrane there, with three
different expressions, subscripted by h, f and E, for the
constants 4 and C [see formulae after Eq. (4)]. Since
the constants are given in terms of a((,”(l ),i=0,1, 2,3,
estimating the errors in 4 and C—due to an error in
aop(l)—is very difficult. Analyzing the conditioning of
the coefficients matrix in the equations for 4 and C (for
the three different supports at x = 1) is not very helpful
in obtaining error bounds for 4 and C.

A way out of this impasse is offered by recalling that
for some hyperbolic cochlear shapes [Eq. (7)], the BMC
deflection a,(x) is available in closed form. In particular,
for

O irmen ST @
we find
po(x) =1—Fx— Fx’, (24)
and
2 x* Fx°
o, ) =E[(nf “HE =16 =9) (= 25)
(= uf)fm - 36)}’ @3
where
F L-P d

I (R -2 "
p={U-PR—-1)

P2+ (R 1)
From (25) and the formulae for 4 and C, the deflection
of a,(x) is obtained. For any R, we can describe (i.e.,
“fit”), to within a specified error, the corresponding
hyperbola by a spline. The load and deflection can sub-
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Figure 10 Computational accuracy check for the two shapes in Fig. 9. The fractional error for r(x) is computed halfway between the
knots where the deviation between the spline and the exact shape is maximum. The shape for R =2/ 3 required 15 and that for R =2
required 23 knots to yield the accuracy shown in r(x). Additionally at x =0 and x = 1, the hyperbola’s exact slope was imposed on the

spline.

sequently be computed from the truncated series in (13) shapes (Fig. 9) obtained from Eq. (23). One is con-

and (15) and can be compared to the exact values tracting with R =2 and the other expanding with R=2/3.

obtained from (24) and (25). Such a comparison reveals Note that the cochlear radius #(x) is normalized with

whether 4 and C are computed accurately, and in fact r(0) = 1. For consistency with our previous error esti-

provides an overall check for the accuracy of the algo- mates we use as our comparison criterion for a variable
472 rithm. Below, we show such a comparison for two exact V(x), the fractional (reiative) error defined by
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Ve (x) = V.(x)

F-E[V(x)]= V) .

where the subscript E indicates the exact values obtained
from (23) through (25), and C indicates the value ob-
tained from (13) and/or (15) for the hyperbolic shape
approximated by a spline.

The results of the comparison are summarized in Fig.
10. In order to obtain F - E[r(x)] < 107°%, 15 knots were
needed to describe the shape defined by R=2/3 and 23
knots for the shape given by R = 2. In addition, the
slopes for the spline at x =0 and x = 1 were matched,
using the spline interpolation algorithm, to those of the
exact shapes obtained from (23). For ¢ = 107° [see
(16)], only two terms in the series for 1/7(x) sufficed
on each interval between knots! In both cases and for all
the variables, F CE = 107%% As expected from the
discussion in the previous section on error bounds, the
error is somewhat smaller for P # 0 (in this case P =
0.35) than for P = 0.

The results in these examples are representative of
several comparisons that were actually carried out. They
show that the error bounds in (18), (20) and (22) are
quite conservative and that the algorithm described above
is accurate and reliable. Incidentally, note that the error
values in these examples not only bound the propagation
of the truncation error in (16) but also the error due to
the approximate representation of r(x), obtained from
(23), by a spline.

Implementation

The algorithm is implemented on an APL conversational
terminal system attached to a graphics display console
(described in [38]) —a mode well suited for experimenta-
tion with the model. We wish, by means of some exam-
ples, to demonstrate the salient features of the system
and model.

At first, in order to understand the effects of cochlear
taper, defined by R = r(0) /r(1), we examine the three
conical shapes shown in Fig. 11. (In all cases we have
set N = 0.25. Varying the Poisson ratio does not alter
Xy, appreciably.) Incidentally, these “cochleas™ can be
easily generated by means of our spline interpolation,
which can produce straight line segments on specified
intervals. For shape C, the taper is about 3.33, as in the
human cochlea. The load induced by the conical two-
chambered (i.e., P = 0) cochlear shape increases point-
wise with increasing taper. Hence, in the resulting defor-
mation of the basilar membrane centerline, the position
Xy, Of the maximum increases with increasing taper.
Recall that it is the position rather than the amplitude of
the maximum deflection which, according to the place
principle, is characteristic of the input frequency w.

Here the computations are for @ — 0, so x,,, should be
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Figure 11 Effect of cochlear taper —x,,, increases as the taper

R =r(0)/r(1) increases.

Mo

as close to the helicotrema at x = 1 as possible [see Fig.
7, Eq. (6), and previous discussion]. We can conclude,
at least for conical shapes, that a contracting (R > 1)
cochlea is more desirable, in the sense that it yields a
larger x,,, than a cylindrical or expanding cochlea. This
may be a reason why the human cochlea is contracting.
By the way, for hyperbolic cochleas when p is large (see
Fig. 8), a comparable variation in the taper produces a

more dramatic variation in x,, than for conical cochleas.
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Figure 12 Contracting cochleas. Shape C (also shown in Fig.
11) is given by r(x) = 1 — 0.7x. Shape H is a one-third-power
hyperbola for R = 3.33 and N resembles somewhat the shape of
the human cochlea.

On an IBM System VM 370 Model 145 computer,
about three seconds of virtual CPU time was required to
compute the load and deflection for each cochlear shape
shown. In time-sharing mode, the keyboard time was
two to three minutes for each shape, including the plots,
when the system had a normal number of users. These
times are nominal and do not vary much for different
cochlear shapes.

Normalized distance along basilar membrane centerline, x

Figure 13 Effect of pinches and bulges on the basic shape N
(also shown in Fig. 12). Shape NW is obtained from N by flat-
tening the bulge. Shape N2 is shape N with a 30 percent pinch
at x = 0.8, and shape N1 is N with a 30 percent pinch at x = 1.

Having decided on the desirability of the contracting
cochleas we compare next two different shapes having R
= 3.33, as shown in Fig. 12, with the contracting conical
cochlea C. Shape H is a one-third-power hyperbola de-
termined from (23). Shape N resembles the human
cochlea, which has a bulge close to the basal end and
then narrows down. The results imply that N is superior
since it yields the largest x,,. The shape N, however, is
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not entirely optimal. For example, a similar shape, not
shown, with the bulge shifted toward the apex [having
maximum radius r(0.45) = 1.3] yields x,,, =0.92.

The cochlear geometry determines x,, in a very com-
plicated way. For P = 0, it was empirically found that
Xy 1S approximately determined by the slope p,(1) di-
vided by the integral of the load from x =0.5to x= 1.

The algorithm converges slowly when the slope of the
cochlear shape is steep. Convergence is accelerated in
such cases by partitioning the intervals between the
knots specifying the cochlear shape. Subsequently the
spline is reconstructed, but with a greater number of
knots due to the partitioning. With the cubic portions de-
fined on smaller subintervals the convergence is faster.
Furthermore, the partition invariance property of our
spline (see [35]) guarantees that the new spline con-
structed with the larger number of knots yields the same
shape.

Earlier we had suggested that there may be clinical
reasons for wanting to study perturbations in a particular
cochlear shape (see Table 1). This can certainly be done
by specifying a sufficient number of knots. However, it
is more convenient to have special functions for rapid
shape alterations. For this reason we have included
functions which generate ‘“pinches” or “bulges” in a
given cochlear shape. The user specifies the location
where the pinch or bulge is to be centered and the rela-
tive amount [in percentage of r(x)] of change desired.
Subsequently, in the given cochlear shape, a pinch or
bulge normally distributed [again in percentage of r(x)],
about the specified point is generated. This is demon-
strated in Fig. 13, where the effects of such changes
on the shape N are illustrated. When the bulge is lev-
eled, x,,, is somewhat reduced. With a pinch at x =0.8 —
Just before x,,, for N —both x,,, and the maximum ampli-
tude are reduced, while a pinch at x = 1 (i.e., past x, in
N) has the opposite effect.

It is evidently very difficult to predict the outcome of
various shape modifications. Let us exemplify this fur-
ther. We chose the simplest shape, cylindrical cochlea, in
order to study the consequences of shifting the same
pinch to different locations as shown in Fig. 14. Observe
that a pinch before x,, reduces x,, and the maximum
amplitude, a pinch at x,, slightly reduces xy, and in-
creases the amplitude, while a pinch after x,,, increases
Xy, and the amplitude. In general, contracting the cochlea
increases the load while expanding the cochlea results in
a reduced load. Pinches (bulges) before x = 0.5 do not
alter x,,, much but decrease (increase) maximum ampli-
tude. Near x,,, local alterations of the cochlear shape
produce significant changes, with bulges producing ef-
fects opposite to those produced by pinches. The apical
end (x = 1) is the position most sensitive to shape modi-
fications.
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Figure 14 Varying the location of a pinch. Shapes B1, B2 and
B3 are obtained from the cylindrical cochlea B by locating a 50
percent pinch at x = 0.6, 0.8, and 1, respectively.

In two-chambered cochleas, as in all our examples so
far, P = 0, yielding x,,, somewhat far from x = 1. The
real cochlea, however, is three-chambered, with P, the net
pressure across the basilar membrane at x = 1, being
nonzero; ergo the provision for quasi-three-chambered
cochlear models having P # 0 in Eq. (1). In quasi-
three-chambered cochleas, x, is close to the helicotre-
ma (see section on Model)} not only for hyperbolic coch-
leas, as shown in Fig. 8, but also, as we show next, for
more general shapes. For the shape BH (Fig. 15),
which resembles a hyperbola with a bulge, there is a
dramatic change from x,;, & 0.82 when P = 0, to x,, ~
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Figure 15 Two-chambered (P = 0) and quasi-three-cham-
bered cochlea with the same shape BH. Notice, in end detail of
the deformation, the flapping of the free end.

0.99 when P = 0.35. As long as x,, is far from the heli-
cotrema, it is not influenced by the end support there.
Now, as the end detail (for 0.98 = x = 1.00) of the de-
formation vividly portrays, the matter of proper bounda-
ry conditions at x = 1 can no longer be ignored. A glance
at Fig. 7 shows that because the basilar membrane moves
at x = 1, this endpoint cannot be fixed. This rules out the
hinged-end boundary condition. Allowing the basilar
membrane to be unconstrained at x = 1, corresponding
to the free-end condition, poses a problem. In the last
half percent or so of its length the basilar membrane
seems to flap (recall that the envelope of the oscillation
is symmetrical about the x axis and only the positive
a,(x) portion is shown). Such a spirited oscillation could
tear the membrane. This does not occur with the elastic-
end condition at x = 1. The implication is that the mi-
crostructure of the basilar membrane at its apical end is
approximated by the support that a thin beam at x = 1
would provide. Intrigued by this prospect, Dr. F. Linthi-
cum of the Ear Research Institute in Los Angeles pro-
vided a preliminary confirmation of this after examining

A. INSELBERG

human cochleas with a scanning electron microscope
[39]. He found that the basilar membrane becomes no-
ticeably more fibrous very close to the helicotrema, with
a rather strong “‘ligament” constraining its motion there
to prevent it from flapping and tearing. The flexural and
torsional strengths of this ligament are measured by the
constants ¢ and b [defined just prior to A, and C be-
low Eq. (4)]. With the elastic-end condition, then, we
obtain x,, = 0.99 for the shape BH in Fig. 15 without
any flapping of the basilar membrane.

The effect of increasing P from 0 to 0.36 in three con-
tracting cochleas is seen in Fig. 16. While N is a “bet-
ter” shape (i.e., x, larger) than BH when the cochlea is
two-chambered, the reverse is true for quasi-three-
chambered cochleas. In fact, the shape BH satisfies
condition (6) with x,,, = 1. Actually, BH is a more real-
istic representation of the human cochlea than N.
Though the cochlea bulges initially, the stapes, where
the input occurs, is positioned after the peak in the
bulge. This corresponds to the initial portion of BH (or
a curve such as H) where r(x) is monotone decreasing.
The bulge in BH is an attempt to represent some of the
local variations —from strictly monotone decreasing —in
cross-sectional areas of the actual cochlea. The differ-
ence in performance (i.e., difference in x;;) between N
and BH (or H) suggests that the position of the stapes
on the buige is fairly significant.

In Fig. 17 we show a comparison for shapes N and
BH with BH1 obtained by putting a bulge close to the
apical end in H. The variation in x,,, for BHI as P in-
creases from 0 to 0.36 is rather striking. Among other
things the comparison suggests that BH is “‘close” to an
“ideal” shape in the sense of yielding x,,, = 1.

These examples illustrate the difficulty of describing
the dependence of x,, on cochlear geometry. Hopefully,
they also illustrate the kind of information that can be
gained through interactive experimentation with the
model.
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search.

References and notes
1. E. G. Wever and M. Lawrence, Physiological Acoustics,
Princeton University Press, Princeton, NJ, 1954,

SEPTEMBER 1977

Normalized distance along basilar membrane centerline, x

Figure 17 Three cochlear shapes indicating the effects of local
variations in geometry for two-chambered and quasi-three-
chambered cochleas.

2. T. S. Littler, The Physics of the Ear, The MacMillan Co.,
New York, 1965.

3. H. Davis, “Excitation of Auditory Receptors,” Handbook
of Physiology, Section 1 (Neurophysiology), Vol. 1,]. Field,
ed., Amer. Physiol. Soc., Washington, DC, 1959, p. 565.

4. H. L. F. von Helmhotz, Sensations of Tone, Dover Publi-
cations, New York, 1954. (Republication of the second
(1885) edition of the Ellis translation of Die Lehre von den
Tonempfindungen, originally published by Longmans &
Co., London, in 1859.)

477

COCHLEAR MODEL




478

A. INSELBERG

6.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.
22.
23.

24.

25.

26.

217.

28.

. L. C. Peterson and B. P. Bogert, ““A Dynamical Theory of

the Cochiea,” J. Acoust. Soc. Amer. 22,369 (1950).

O. F. Ranke, “Theory of Operation of the Cochlea: A Con-

tribution to the Hydrodynamics of the Cochlea,” J. Acoust.

Soc. Amer. 22,772 (1950).

. H. Fletcher, ““On the Dynamics of the Cochlea,” J. Acoust.
Soc. Amer. 23, 637 (1951).

. J. Zwislocki, “Review of Recent Mathematical Theories of
Cochlear Dynamics,” J. Acoust. Soc. Amer. 25,743 (1953).

. A. Inselberg and H. von Foerster, “A Mathematical Model
of the Basilar Membrane,” J. Math. Biosc. 7, 341 (1970).

. M. Lieberstein, “The Basilar Membrane as a Uniformly

Loaded Plate Clamped on Two Spiral Boundaries in a

Plane or on Two Helical-spiral Boundaries,” J. Math.

Biosc. 12,281 (1971).

M. Lesser and D. Berkley, “Fluid Mechanics of the Coch-

lea. Part 1, J. Fluid Mech. 51, 497 (1972).

C. Steele, “Behavior of the Basilar Membrane with Pure-

tone Excitation,” J. Acoust. Soc. Amer. 55, 148 (1974).

M. Viergever and J. Kalker, ‘“On the Adequacy of the Peter-

son-Bogert Model and on the Effects of Viscosity in

Cochlear Dynamics,” J. Eng. Math.8, 149 (1974).

P. Allaire, S. Raynor, and M. Billone, ‘“Cochlear Partition

Stiffness —a Composite Beam Model,” J. Acoust. Soc.

Amer. 55,1252 (1974).

. W. Siebert, “Ranke Revisited—A Simple Short-wave

Cochlear Model,” J. 4Acoust. Soc. Amer. 56, 599 (1974).

S. M. Novoselova, “The Basilar Membrane as an Elastic

Plate,” Sov. Phys. Acoust. 21, 56 (1975).

G. Zweig, R. Lipes, and J. Pierce, ““The Cochlear Compro-

mise,” J. Acoust. Soc. Amer.59, 975 (1976).

J. van Dijk, “On the Hydrodynamics of the Inner Ear,

Theoretical Part. A Mathematical Model,”” Acustica 35, 190

(1976).

A. Inselberg and R. Chadwick, “Mathematical Model of

the Cochlea, I: Formulation and Solution,” SIAM J. Appl.

Math. 30, 149 (1976).

R. Chadwick, A. Inselberg, and K. Johnson, “Mathemati-

cal Model of the Cochlea, II: Results and Conclusions,”

SIAM J. Appl. Math. 30, 164 (1976).

A. Inselberg, “Quasi-Three-Chambered Model of the

Cochlea,” to be submitted for publication.

A. Inselberg, “Cochlear Dynamics: The Evolution of a

Mathematical Model,” SIAM Rev., to be published.

M. R. Schroedder, “Models of Hearing,” Proc. IEEE 63,

1332 (1975).

G. von Békésy, Experiments in Hearing, McGraw-Hill

Book Co., Inc., New York, 1960. Figure 7 used by permis-

sion.

B. Johnstone and A. Boyle, “Basilar Membrane Vibration

Examined With the Mossbauer Technique,” Science 158,

389 (1967).

W. Rhode, “Observations of the Vibration of the Basilar

Membrane in Squirrel Monkeys Using the Mdossbauer

Technique,” J. Acoust. Soc. Amer. 49, 1218 (1971).

L. Kohlloffel, ““A Study of Basilar Membrane Vibrations, I,

11, 111, Acustica 27, 49 (1972).

C. R. Steele, A Possibility for Sub-Tectorial Membrane

Fluid Motion, Basic Mechanisms of Hearing, A. R.

Mgiller, ed., Academic Press, New York, 1973, p. 69.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.
39.

40.

W. H. Huggins and J. C. R. Licklider, ““‘Place Mechanisms
of Auditory Frequency Analysis,” J. Acoust. Soc. Amer.
23,290 (1951).

A. Inselberg and H. von Foerster, “‘Linear Property Fil-
ters,” #41 in Collected Works of the Biological Computer
Laboratory, University of Illinois, K. L. Wilson, ed., 1lli-
nois Blueprint Co., Peoria, 1976.

E. G. Wever, Theory of Hearing, John Wiley & Sons Inc.,
New York, 1949,

R. S. Chadwick, M. Israeli, and U. Levite, “Virtual Mass
and Damping Corrections to a One Dimensional Formula-
tion of Cochlear Mechanics with an Application to a Three
Chamber Model,” Israel J. Tech. 13, 168 (1975).

1. Friedman, Pathology of the Ear, Blackwell Scientific
Publications, Oxford, 1974.

B. Dimsdale, “On Multiconic Surfaces,” Technical Report
G320.2661, 1BM Scientific Center, Los Angeles, CA,
1974.

A. Inselberg, “Cubic Splines with Infinite Derivatives at
Some Knots,” IBM J. Res. Develop. 20, 430 (1976).
A. Inselberg, “The Determinant of a Class of Toeplitz-
Hessenberg Matrices Arising in Power Series,” J. Math.
Anal. Applic., to be published.

A. Inselberg, “Accelerating the Convergence of Taylor
Series,” to be submitted for publication.

GRAPHPAK, No. SB21-0412-0, IBM Corporation, Data
Processing Division, White Plains, NY, 1972.

Progress Report 1974, Ear Research Institute, Los An-
geles, p. 14.

R. Finley, “Mathematical Treatment of an Inner Ear Dis-
ease,” (internal journal, Harvey Mudd College, Pomona,
CA) Interface 4,20 (1976). The program described in this
paper was used in a study by Harvey Mudd College stu-
dents led by R. Finley under the supervision of Professor
C. Coleman. With data obtained from the Ear Research
Institute of Los Angeles, the model was used to determine
if some of the hearing loss due to cochlear otosclerosis
could be attributed to distortions in the cochlear geometry.
It was found that the otosclerotic distortions occur in a por-
tion of the cochlea where the maximum a (x) is particu-
larly sensitive to shape variations. To properly investigate
cochlear otoscelerosis, however, it was felt that the model
must also accommodate variations in the shape of the basi-
lar membrane. In fact, the necessary modifications for
doing this have been initiated by this group. The results of
this study suggest a surgical procedure for reversing some
of the hearing loss due to cochlear otosclerosis.

Received February 28, 1977

The author is located at the IBM Los Angeles Scientific
Center, 9045 Lincoln Boulevard, Los Angeles, Califor-
nia 90045.

IBM J. RES. DEVELOP.




