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Zero  Order  and  Nonzero  Order  Decision  Rules in 
Medical Diagnosis 

Abstract: In searching  for  the  optimal  solution to the medical  diagnostic  problem, it seems  useful  to  distinguish  between  different 
possible  decision  rules (strategies). Two different classes of decision rules are considered: nonzero order  decision  rules and constant or 
zero  order  decision  rules.  For each class, solution  methods  as  well as heuristic  approaches to finding the optimal member of the  class 
are  discussed. As an exercise, the diagnosis of a hematologic  disease  belonging to the group  macrocytic anemia is considered. 

Introduction 
Decision rules [ 1 - 71 arise,  for example, in the study of 
statistical  games and in the  context of various  multistage 
stochastic programming models.  A  decision  rule may be 
defined as a  vector-valued  function that maps  a  random 
variable  into a decision.  According to a nonzero  order 
decision  rule in a multistage stochastic programming 
model, the values of the decision  variables are based 
upon values of random variables that  are  observed during 
the time horizon;  the values of the decision  variables for 
stage t are specified as explicit  functions of the  outcomes 
of the random  variables for  the  stages . j  = 1 , .  . ., t - 1 .  A 
special subclass of the general  class of nonzero  order 
rules is formed by the so-called constant  or  zero  order 
decision  rules.  According to a zero  order rule the values 
of  all decision  variables have  to be  determined at  the 
inception of the time  horizon. Thus,  the main difference 
between  the  two is that according to  the  nonzero  order 
decision rule the  exact value of a  decision  variable with 
respect  to  stage t can only be computed  after  the  out- 
comes of all random  variables  concerning the preceding 
t - 1 stages  have  been  observed; according to  the  zero 
order  one  the value of the decision  variable is known 
exactly  at  time t = 0, the inception of the period of 
planning. 

If the  search  for  the optimal  decision  rule is restricted 
to a  subclass of the  nonzero  order decision rules,  the 
overall  optimal  decision rule might not  be found. In some 
cases,  the restricted  problem may have  no feasible solu- 
tion at all. There may be good reasons  to  restrict  the 
search  to  the  zero  order rules,  however. For  example, in 
multiperiod regional planning problems,  a  solution  that 
specifies the level of execution of a  decision  variable of 
some  stage t ,  t > 1 ,  conditional  upon the  outcomes of the 
random  variables of preceding stages, generally has no 
practical meaning, because  preparations for  execution 
on  that level have  to  be  made  at  the inception of the 
time  horizon. 

The medical diagnostic  problem for  the physician 
consists globally of two  phases: 

I .  The  development of a  diagnosis  from  a  given set of 
clinical signs (the  set of observed  test  outcomes). 

2 .  The  determination of an  appropriate  sequence of 
diagnostic tests  to perform on the patient in order  to 
collect further information, if needed. 

The  development of the  experimental  computer program 
HEME illustrates the use of computer technology to  assist 
in the diagnostic  activity [ 8, 91. The program accepts  as 
input  information about a  patient (the  set of observed 
test  outcomes)  and provides as  output an ordered list of 
suggested  diagnoses, an analysis of the logic behind these 
diagnoses, and a list of tests relevant to  these diagnoses 
and  not  yet  performed. 

Solving the second phase of the medical diagnostic 
problem is a prerequisite for  the  development of such  a 
program. This  phase  can  be  seen  to fit in the  class of 
stochastic programming problems or,  more precisely, in 
the  class of multistage stochastic programming models. 
In a  number of respects it differs fundamentally from  the 
models that  are usually dealt with in the  literature, how- 
ever.  In most stochastic models the decision  variables are 
continuous,  and it is supposed  that  their values do  not 
affect the probability  distribution of the random  variables. 
However,  the decision  variables of the model for solving 
the second phase of the medical diagnostic  problem are 
zero-one  variables by nature, representing yes  or no 
decisions such  as:  “whether  or not to perform some  test” 
and  “whether  or not  some  disease is definitely being 
diagnosed,”  and their values  clearly affect the prob- 
ability distribution of the random  variables (possible  test 
outcomes). 

This paper  aims at interpreting nonzero  order and zero 
order decision  rules within the special context of solving 
the second phase of the medical  diagnostic  problem. In 449 
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Table 1 Notation. 

Meaning 

set of possible diseases 
set of available tests 
ith  disease 
j th  test 
4th possible outcome of T, 
observed  outcome of 4th test of a test 
sequence performed on patient 
conditional  probability of obtaining ejq if 
patient  has  di 
probability that patient  has di  after e,, . . ., en 
have been observed. 
a priori  probability that patient has di 
vector of updated probabilities of diseases 
after e,, . . ., en have been observed 
loss matrix, in which  element I ,  in ith row 
and j t h  column denotes  costs (loss) of 
diagnosing  di when patient  actually has dj 
ith  row  of L 
vector consisting of elements p(e,,Jd,), 
’ .  ., P(ejJd,) 
costs of performing T, 
waiting time  for outcome of Tj 
execution  time of Tj 
total  processing  time of T, 
expected  costs of “best” terminal  decision 
(diagnosis)  after e,, . . ., e n  have been 
observed 
probability of obtaining ejq given that 
e,, . . ., e,, have  been observed 
number of different diseases 
number of different tests available 
number of  possible outcomes of T, 

considering  a  particular (ordered)  test  sequence, a phy- 
sician  should weigh the  expected value of the  test  results 
against the  costs of the tests. On  the  one hand he  seeks  to 
minimize the  consequences of possible  misdiagnosis, 
while on  the  other hand he aims at keeping the number 
of costly  diagnostic tests  as low as possible. In searching 
for  the optimal  solution to this  problem,  different  starting 
points are possible,  generally  leading to different solu- 
tions [ 10- 141. Such different  starting  points can be 
interpreted  as different decision  rules within the  frame- 
work of stochastic programming. 

For  both  nonzero and zero  order decision  rules, al- 
gorithms to  determine  the optimal member  are  discussed, 

450 as well as heuristic approaches  to find a good suboptimal 

solution. An experimental computer program imple- 
menting the algorithms to  determine  the optimal nonzero 
and the optimal zero  order rules has  been written in APL 
and tested  on a computer. An exercise is presented in 
which this  program is used for hematologic disease diag- 
noses  derived from HEME [ 81. In presenting the  exercise 
the practical  problems that  arise in specifying the loss for 
misdiagnosis  and the  costs of performing tests  are 
discussed. 

Notation  and assumptions in  analyzing  the  medical 
diagnostic problem 
The notation  used  throughout  this paper is presented 
in Table 1. In analyzing the medical  diagnostic problem, 
usually a number of rather  restrictive  assumptions  are 
supposed  to be valid. Often a list of all underlying as- 
sumptions is lacking, however, which sometimes  makes 
it difficult to  understand  further analysis  and to  evaluate 
the  degree of artificiality of the model  involved.  We 
therefore give an explicit survey of all assumptions  that 
are  supposed to be valid in further analysis. 

1. The  set D of possible diseases  is  known and  fixed, 

2. The  set T of available tests is known and fixed, and 
all tests  are different. Each  test is characterized by a 
number of possible outcomes. 

3. All tests remain  available for execution  during an 
unlimited time  period. 

4. The patient has  one and  only one of the  elements 
of D. 

5. Each pair of diseases differs in at  least  one  attribute 
(symptom),  the  presence  or  absence of which can 
be  revealed  by at  least  one of the available tests. 

6. The a priori  probability  distribution of the  diseases 
is known. 

7. Of each  test  the conditional  probability of obtaining 
some  outcome, given that  the patient has  some dis- 
ease, is known for  each of the possible diseases  and 
outcomes of the  test. 

8. For  each  ordered pair of diseases i and . j  the  costs 
of misdiagnosing disease j rather  than  disease i as 
existing in the patient are known. 

9. The total  processing  time of each  test (consisting of 
its  execution time  and the waiting time for its out- 
come) and the  associated  costs of its performance 
are fixed. 

10. The  outcome of a test can  be determined with 

and all diseases  are different. 

certainty. 
1 1. The probability of obtaining some  test  outcome given 

that  the patient has  some  disease is independent of 
the  sequence of tests already  performed on  the 
patient. 
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12. Both the  costs of misdiagnosis  and the  costs of per- 

13. Treatment of the  patient is started  after  some  disease 
forming tests  are given in the  same units. 

has been  diagnosed. 

Some of the  constraints  are  more  restrictive than others 
and have  further reaching theoretical  consequences as  a 
result. Assumption 11 deserves special attention.  It 
implies that  p(ejqldi, e,, . . ., e,) = p(ej,/di) holds for all 
j ,  q,  and i. This  means  that  no distinction has  to be made 
among sequences of the  same  tests but  performed in a 
different order.  In  the  next section we state  two prop- 
erties  that  are  based upon the validity of assumption 11. 
According to  assumptions 2 and 11 Bayes’ theorem  can 
be  applied  directly for updating the a  priori  probabilities 
of the  diseases  after  some  sequence of tests  has been 
performed and  the corresponding outcomes  have been 
observed. According to Bayes’ theorem,  the  updated 
probability of disease  di  after  the first test outcome e ,  has 
been observed  can be computed by 

However, had dl, .  . ., d, not  formed a set of mutually ex- 
clusive events  as required by assumption 4, p(e , )  would 
have  to  be  computed by 

i< k 

+ p(di, d,,  d,, e , )  - . . .+  p(d,;.., d,v, e , ) .  
i ,  k, z 

i<k<z 

Otherwise  the  computed value of p(dilel) will generally 
be an underestimation of the  true value. 

Let us now turn  to  the optimization  criterion. In most 
of the  literature  on sequential  decision making in medical 
diagnosis, the optimization criterion  consists of mini- 
mizing the total expected  costs - the so-called “E-model’’ 
in the  literature  on  stochastic programming [ 7 ] .  Of 
course,  other  criteria can  easily be imagined, reflecting 
other  attitudes of the decision maker  towards risk, e.g., 
minimization of the  expected value of the  variance of the 
total  costs.  According  to  that criterion the goal of the 
decision  maker is to minimize the risk of obtaining  ex- 
treme final results.  Furthermore, time-based criteria 
such  as minimization of the  expected  total time of ex- 
amination may be the objective.  Finally, one  can think 
of minimizing more than  one  criterion  at  the  same time. 
In  the main part of our analysis, the optimization  criterion 
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is the usual one of minimizing the  total  expected  costs. 
However, sometimes  mixtures of cost-based  and time- 
based criteria  are  discussed. 

Basic theory 
According to  assumptions 6, 7 ,  8, and 9, stated in the 
previous section,  the decision  maker is supplied  with all 
the  necessary  data  to  reach a  rational  decision. To con- 
struct a current view of the problem after some set of 
outcomes has  been obtained,  access  to  the a  priori 
probabilities of the  diseases,  as well as  to  the conditional 
probabilities of each of the possible test  outcomes given 
each of the  diseases, is a  prerequisite. Furthermore, 
one  requires  access  to  the  data of the  loss matrix without 
which it would be impossible to  evaluate  the  cost con- 
sequences of stopping further testing  and  diagnosing 
some disease  on  the basis of the accumulated information 
gathered  at  some stage of the decision making process. 
In a later  section, in discussing our test case,  the practical 
problems in specifying all these relevant data (especially 
of specifying cj, j = 1, . . ., M, and the  elements of L, all 
in the  same  units)  are emphasized. 

As  discussed earlier, the underlying assumptions imply 
that Bayes’ theorem  can be applied  directly to  update  the 
a  priori  probabilities of the  diseases  after  some  sequence 
of tests  has been  performed and  the corresponding out- 
comes  have been observed. Bayes’ rule has  been  dis- 
cussed rather extensively in most literature concerning 
the inference aspects of medical diagnosis,  and a number 
of motives are  advanced in favor of the  use of this rule in 
this  special context [ 10 - 141. Equation ( 1 ) can be easily , 
generalized for n findings in the following way. Let R 
denote the set of all possible permutations of n findings 
e, , .  . ., en. So, R consists of n! elements R , ,  R,,  . . ., R,,!, 
each element  representing  a different permutation of e l ,  

, en. Then  the following property can  be formulated. . . .  

Property I If assumption 11 is valid, then 

p(dilRj)  =p(d,lR,), V Rj, R, E R;  i =  l ; . . ,  N .  

Thus,  property 1 states  that  p(dilel, ..., e,) does not 
depend  on  the  order in which the  test  results e,; . ., e,  are 
obtained. 

From  property 1 and from the  observation  that  the 
probability of obtaining  some test  outcome ejq is com- 
pletely determined by the  current,  updated probability 
distribution of the  diseases  and  the conditional  prob- 
abilities p (  ejqldi), i = 1,. . ., N ,  the  next  property follows 
directly. 

Property 2 If assumption 11 is valid, the probability of 
obtaining some  test  outcome ejs g {e,, . . ., e,} from  test 
Tj after having observed  the  test  results e,, . . ., e, does 
not depend  on  the  order in which those  results  have been 
obtained; 451 
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Table 2 Decision losses. 

pie jqIRj )  = p i e j q l R , ) ,  V Rj ,  R, E R .  

Let us now turn  to  the loss matrix L. The matrix (Table 
2 )  contains  the  data of the decision  losses. 

The  elements lii, i = 1 , .  . ., N ,  on  the main diagonal of L 
are all equal to 0, because no costs  are  associated with 
diagnosing a disease  that  the patient  actually has.  The 
elements / i j ,  i = 1 , .  . ., N ;  j = 1 , .  . ., N ;  i # j ,  correspond 
to  the loss of treating the patient in the wrong way and/or 
failing to  treat  the patient in the right way, if possible. In 
general, L will be  asymmetric.  The  expected  losses 
(costs) of diagnosing di  after e,, . .., e, have  been ob- 
served,  denoted by c(di, e,, . . ., en) ,  are found by com- 
puting 

cid,, e, , . .  ., en) = PiDle,; . ., en)&, ( 3 )  

where P(  Die,, . . ., e,) and Li are defined in Table 1 .  
Now  the  expected  costs of the "best"  terminal  de- 

cision,  given that e,, . . ., en have  been  observed, can  be 
defined. 

Dejinition The  expected  costs of the  best terminal 
decision (diagnosis)  after e,, . . ., e, have been observed, 
denoted by C(e , ,  . . ., en), are defined by 

C(e,; . . ,  e ) = min {c(d,, e,;", e , )} .  (4) 

In general the  disease diagnosed according  to  the  best 
terminal  decision will not be unique. 

12 , = l . . . ~  
1 %  

Nonzero  order  and  zero  order  decision  rules 
As discussed  earlier one  can think of the medical diag- 
nostic  problem as a specific multistage stochastic pro- 
gramming problem. If we  put  the problem in this  frame- 
work we can  distinguish more clearly between  the 
different  starting  points that  are possible in searching for 
an optimal  solution by considering them  as different 
decision  rules.  We now consider  the  interpretation of a 
nonzero  order and a zero  order decision  rule in the  con- 
text of the medical diagnostic  model. 

In a nonzero order decision  rule the kth stage decision 
is made conditional  upon the accumulated  information 
after performing the k - 1 preceding tests.  Thus, only 
with respect  to  the first decision of the  sequence  does 
there  exist  absolute  certainty  at  the inception  time to. 

In a zero  order rule absolute  certainty  about  the per- 
formance of all tests  exists  at  the inception  time t,, and 
there is no need to wait for  the  outcome of some  test 
before  performing the  next  one.  It is likely that  the deci- 
sion maker  (physician) is more  interested in a  solution 
of this type.  There is no restriction on  the  order in  which 
the  tests  have  to  be  executed,  and  the total  examination 
time will be much shorter  on  the  average.  Moreover  the 
preparation  for  the  execution of all tests of the  sequence 
can  be started  at  to.  Preparation may involve  readying 
the patient for  the  test, scheduling  needed  activities for 
the performance of the  test (e.g.,  reserving the operating 
room),  etc. 

In  the following sections a general  solution method as 
well as  heuristic  approaches  for finding the optimal  non- 
zero  order rule  and zero  order rule are  described. 

Determination of the optimal  nonzero order decision 

Usually  the sequential  decision making problem is 
represented by a  so-called  decision tree, consisting of a 
set of nodes  that  are  interconnected in space by a system 
of directed  curves  (branches).  Two  types of nodes can 
be distinguished:  decision nodes and urtijicial nodes. The 
decision  nodes correspond  to  points at which a number 
of test  results  have been observed  and  at which the 
decision has  to  be  made  whether  to  continue testing or 
to  stop testing and diagnose  a disease of which the  total 
expected  costs of misdiagnosis are minimal. Each of the 
branches emanating  from  some  decision node n, leads  to 
an artificial node  that  corresponds  to  the selection of 
some test Tj to perform. Each  sf  the  branches emanating 
from some artificial node leads  to a decision node  that 
corresponds  to  one of the possible outcomes of the  test 
involved. In Fig. 1 the decision tree  has been laid out for a 
small example of two  tests being available and  each of the 
two  tests having two different possible outcomes.  The 
artificial nodes are  marked by 0. 

In describing how to find the  optimal nonzero  order 
decision  rule, the following definitions and notations  are 
useful. 

Notation  The  set of decision  rules that spring from 
branching  from node n,, called the  descendants of  n,, is 
denoted by I(n,) . 

Definition Let  node n, be branched  from by selecting 
test Tj.  Then the  decision  nodes corresponding  to  the 
different possible outcomes of Tj are called the direct 
descendunts of  n, with respect  to  Tj. 

Notation  The  expected  costs of the optimal  decision rule 
of node n, are  denoted by F,. 

Notation Let n, correspond  to  the  observation of the  test 
results e , ,  . . ., en. Then p(d,l nk) , P( Dln,) , C(n,),  and 

rule 
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Definition Node n, is said to belong to level q of the 
decision tree if nk has been  reached after performing q 
tests. 

Let n, be any  node of the decision tree  that has been 
reached after performing r tests, e.g., T,, T,, . . ., T,, and 
corresponding  to  the  observation of the  test  results e,, 

rules of all descendants of  n, have already  been deter- 
mined. Given  the updated probability distribution 
P( Din,) at node n,, the probability of obtaining test 
result ejs after performing test Tj, j g { I ,  . . ., r } ,  can  be 
computed by 

. . .  , e,. Let us further  assume  that  the optimal  decision 

P(ejqln,) = p(d,ln,) . P(ejqId1) +. ‘ ‘ + p(d,ln,) 

. P (  ejql d,) ‘ ( 5 )  

Let  nk+,, n,+,,. . ., nlcfnu) be  the  direct  descendants of 
nk with respect  to  test Tj. As Fk+l ,   F ,+2 ,  . . ., F,+,Lcj) are 
already  known by assumption,  the  expected  costs  of 
continuing  testing with test Tj, denoted by C (Tj, n,), can 
be computed by 

n ( j  1 

C(Tj, n,) = cj + x p(ej,ln,)F,+q, (6) 
q= 1 

where cj denotes  the  costs of performing test Ti. The 
expected  costs of the best  terminal  decision at node n,, 
denoted by C(n,),  are found by 

C(n,) = min {P(Dln,)Li}. (7) 

Finally, the optimal  decision rule of nk can be determined 
by taking 

min {C(n,), C(T,, E,) ,  C‘(T,, n,);.., C(T,, n,}. (8) 

At this  point  two observations  can be  made. First,  the 
expected  costs of the optimal decision rule of all members 
of I ( n,) have  to be computed before F ,  can be computed. 
Secondly,  the optimal  decision  rule at node  nk  can  be 
found  independently of those of the nodes that  do not 
belong to  I(n,).  From this it follows that the  optimal 
decision rule of node  no, the ultimate goal, can be  found 
by a procedure of averaging out and folding back the 
decision tree. To  start with, the  expected  costs of the 
optimal  decision rule of all nodes that belong to level M 
of the decision tree  are  determined. At  these nodes  there 
is no other  alternative than  accepting the  best terminal 
decision. Next  the  expected  costs of the optimal  decision 
rules of all nodes that belong to  the ( M  - 1) tree level 
are  determined.  The choice at  each of these nodes is 
restricted to  two  alternatives:  “Proceed testing by per- 
forming the  test left,” and “stop testing  and accept  the 

r = l ; . . , N  

Terminatc 

decision dec~sion decision decision 

Figure 1 Tree for example. 

best terminal decision  given the information  gathered so 
far.” By tracking further  backwards in this way,  we 
finally find, at least  theoretically, the optimal  decision 
rule of no. 

Notice  that  the optimal  decision  rule of no generally 
will have a rather complex structure,  such  as,  “Perform 
as  the first test Ti; if the  outcome ei, is observed, then 
stop  further testing and diagnose disease  dj; if ei2 is ob- 
served, then  perform T, as  the  next  test,” and so on. 
Nodes marked with the optimal  decision  rule “stop 
further testing” may occur  at  any level of the  tree.  They 
explain why two  test  sequences  (two decision rules), 
which consist of the  same  tests but ordered in a different 
way, may have different  associated expected  costs, 
though the probability of obtaining  some set of test  out- 
comes is the  same  for both sequences.  This last observa- 
tion is crucial  and is illustrated by the following small 
example. 

We  distinguish three  diseases,  dl, d,,  d,, and two  tests, 
T, and T,. Each test  has  two possible  different outcomes. 
Further,  the  data in Table 3 are known. The resulting 
decision tree has the  shape  shown in Fig. 1. 

First,  the function  values F,, F,, F,, and F ,  of the nodes 
on  the lowest level of the  tree can  be computed. 

F ,  = c(n,)  = min {P(Dle,,, ,  e,,]) . Li} = 80, f o r i =  3, 

F ,  = C(n,) = min {P( Dl e,,,, e,,,) . Li} = 259,  for i = 1 ,  

F ,  = c (n , )  = min {P(Dle,,,, e,,,) . Li}  = 80, for i =  3, 

F, = C(n,) = min { P( Dl el,,, e,,,) . Li} = 259,  for i = 2. 

Subsequently,  the  expected  cost of the optimal  decision 
rules of the  nodes on the first level of the  tree can  be 
determined. To this purpose p(e,,,I e,,,),  p(e,,,l e l , , ) ,  

and p(r,,,le,,,) have to be computed first.  We  find 

i=1,2,3 

i=1,2,3 

i=1,2,3 

i=1,2,3 

P~~2,1l~1,2~’P~~2,21~1,2~’P~~1,11~,,1~~~~~l,zl~~,,~~P~~l,ll~,,,~~ 
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Table 3 Conditional  probabilities, loss matrix, a priori  prob- 
abilities,  and costs. 

Conditional  probabilities 

diseaseltest  outcomes e , ,  e ,  2 e ,  1 e*, 2 

dl 0.95 0.05 0.05 0.95 
d2 0.05 0.95 0.05 0.95 
d, 0.50 0.50 0.80 0.20 

Loss matrix 
_ _ _ _ _ ~ ~  

diagnosislactual  disease dl  d* d3 

dl 0 500 1000 
d2 500 0 1000 
d3 2000 2000 0 

A priori  probabilities of diseases 

disease a priori  probubility 
____. 

_ _ _ _ _ ~  

dl 0.2 
d, 0.2 
d3 0.6 

Costs  associated  with  performing  tests 

test  costs 

TI 200 
T, 200 

F , =  min { min {P(DIe,,,) . LJ, c, + p(e,,llel,l) . F ,  
i=1,2,3 + p(e,,,lel,,) . F6} = 369.5, whereas  the optimal 

decision rule of n1 reads:  “Perform  test T,; if e, , ,  is 
observed,  then diagnose d,;  if is  observed,  then 
diagnose dl.” 

F ,  = 80, whereas  the optimal  decision rule of nz  reads: 
“Stop  further testing  and  diagnose disease d,.” 

F ,  = 369.5,  whereas the optimal  decision  rule 3 of n, 
reads: “Perform  test T,; if e2,, is observed,  then 
diagnose d,; if is observed, then  diagnose d,.” 

F ,  = 430, whereas  the optimal  decision  rule of n, reads: 
“Stop  further testing  and  diagnose dl or d,.” 

Besides F,, F,, F,, and F,, we need to know p (  el,,),  
p(e, , ,) ,  p(e,,,),  p ( e , , , ) ,  and  C(no) in order  to  determine 
the optimal  decision rule of no. We have 

C(no) = min {P(D) . Li} = 700 for i = 1 ,  2, and 
i=1,2,3 

~ ( e , , , )  = p ( e , , , )  = ~ ( e , , , )  = ~ ( e , , , )  = 0.5 . 

Consequently, 

C(Tl, no) = c,  +p(e , , , )  . F ,  +p(el, ,)  . F,= 569.5, and 

C(T,, no) = c, +p(e,,,) . F ,  + p(e,,,) . F , =  455. 

The or :termining 

and turns  out  to be  performing T, as  the first test.  The 
complete decision  rule of no reads:  “Perform T, as  the 
first test;  stop  further testing if the  outcome e,,, is ob- 
served, and  diagnose d,; if e,,, is observed,  then  stop 
further testing  and  diagnose dl  or d,.” 

Let us look in somewhat  more detail at  the solution 
arrived at. If T, is selected  as  the first test  to perform, 
there  exists  absolute  certainty  that  no  further  test has to 
be performed.  However, if T, is  selected as the first test, 
T, always  has  to be performed as  the  next  one, regardless 
of the  outcome of T,. If no decision  nodes  with  optimal 
decision  rule: “Stop  further testing” occurred in the  tree 
except  at  those nodes at  the lowest  level,  then both  deci- 
sion  rules at  node no: “Start with T1” and  “Start with T,” 
would have had the  same  associated  expected  costs. 

This simple  example  illustrates  clearly that different 
ordered  sequences of the  same  tests may involve differ- 
ent  expected  costs.  One of the main reasons  for this is 
that the discrimination  power of a test  (the ability of a test 
to  rule  out  and/or  to  support strongly the  presence of a 
number of diseases) generally differs, even strongly 
differs, from node to node as  each  node  corresponds  to 
accumulated information of a different type.  Some  tests 
may be  quite well suited for  separating  the  members of 
some specific subset of diseases, and therefore per- 
forming such a test only makes  sense  at  that  stage of the 
decision making process  where  the probability of the 
presence of that subset is sufficiently high. Other  tests 
may be  much  more  suitable to distinguish  between differ- 
ent  groups of diseases but have  no specific discrimination 
power  to single out  some particular disease.  Also,  the 
costs of misdiagnosis and the  costs associated  with the 
performance of each of the tests clearly play an  important 
role. 

Heuristic  approaches for finding the  optimal  nonzero 
order  decision rule 
If the  number of available tests  is very large and/or 
there  are a  number of tests with a large number of rele- 
vant outcomes,  the general  solution method,  as  described 
in the  last section,  becomes  very  time  consuming, if not 
practically  impossible to  execute.  In this case  one  has to 
resort  to heuristic  solution methods  that yield good sub- 
optimal  solutions but not  necessarily  optimal ones. 

One general way to limit the growth of the decision 
tree is to put extra  restrictions  on  the solution to  the 
problem by,  for  example, requiring that  the  total  ex- 
pected time for examination of the patient  should  not ex- 
ceed  some specified level. Then  the  search  for  the optimal 
nonzero  order rule  remains  restricted to  the  class of 
rules that can be applied  when the total expected  exam- 
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ination  time is less  than  the given upper  bound.  Another 
general method is to  restrict  the  depth of the analysis at 
each  node of the  tree.  For  example,  Gorry and  Barnett 
consider a depth of analysis of one  at  each node [ 101. 
However, this approach generally  gives  rise to decision 
rules  according to which further testing is stopped  pre- 
maturely, as  the function  values of the  direct  descendants 
of some  node n, are systematically overestimated by 
setting  them equal  to the expected  costs of the best 
terminal  action  at the node. The optimal  decision  rule for 
the  example of Gorry and  Barnett is to  start by per- 
forming test T, if a depth of analysis of one  at each  node is 
considered,  whereas  the optimal  decision rule with an 
unrestricted  depth of analysis would be to  start with 
test T,. 

We now discuss briefly two possible  strategies to select 
a restricted number of tests  out of the  set of candidates 
that  are available to branch  from  some  node n,. Let Dj 
be a subset of D with the following properties: 

1. The  outcome of test Tj is characteristic  for  each 
member  d E Dj. This  means  that  one of the possible 
outcomes ejl, . . ., ejnul of Tj will occur with a  prob- 
ability greater  than some user specified level y if d 
is true.  Thus d E Dj implies: There  exists some r such 
that  p(rjrld) > y .  

2. The  outcome of Tj is not in the  same way character- 
istic for all elements of Dj. 

If y is chosen  close  to 1, Dj will generally consist of a 
relatively small number of elements. We denote the com- 
plement of Dj in D by Dj and the  set of indices of all 
elements  that belong to Dj by Ij. The conditional  prob- 
ability that Dj is true, given the information  gathered  at 
node n,, can be computed by 

p(Djlnk) = p(d,ln,). ( 9 )  

Now,  order  the  candidate  tests  to branch  from n, in the 
sequence T,(,,, . . ., Tr(n) such  that 

' €5  

P ( D r J  5 P ( D r ( 2 ) )  5 .  . ' 5 P m . ( J  

holds. One of the following two strategies may be applied 
to  restrict the number of tests  to branch  from  node  nk: 

1. Branch  from n, by means of the first q tests Tr(l), 

2. Determme q* such  that p (  D q * )  5 /3, where /3 is some 
user specified level. Branch from nk by means of the 
first q* tests T,(,,, . . ., TrC4*). 

The philosophy of both strategies is to  restrict  branch- 
ing from n, to  those  tests  that  are  expected  to yield the 
most useful information at  that stage of the sequential 
decision making process.  (If  the probability of Dj  with 
respect  to  test Tj is large, relatively less  valuable  informa- 
tion is likely to be  obtained by performing Tj at  that stage 
of the  sequential decision making process.) 

' . .) Tr(q): 
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Zero  order  decision  rules 
As discussed  previously the decision  maker  can choose 
between  searching for a nonzero  order decision rule and 
searching for a zero  order decision rule; in addition mix- 
tures of both strategies can well be imagined. Obviously 
the  expected  costs of the optimal zero  order rule or any 
mixture of a zero  order rule and  a nonzero  order  one  are 
higher than or equal to the expected  costs of the  proper 
optimal nonzero  order rule,  since  the first one can be 
considered as a  particular case of the second one. We 
now discuss how,  at  least  theoretically, the optimal zero 
order rule can be found. 

Define the  optimal test  sequences of length r as  that 
sequence of r different tests  for which the total expected 
costs  are minimal. The total  number of different test 

sequences of length r ,  denoted by M ( r ) ,  equals . 
Let us denote  the possible different test  sequences of 
length r by S ( 1 ,  r )  , . . ., S ( M  ( r )  , r )  . Further,  denote  the 
set of indices of the  tests  that form part of S ( k ,  r )  by 
I ( k ,  r ) .  Then  the number of possible  different  combina- 
tions of test  outcomes  after  the r tests of S ( k ,  r )  have 
been  performed, denoted by q ( k ,  r ) ,  is 

q ( k ,  r )  = n n( i ) .  (10) 

Each  combination of test  outcomes can be represented 
as  one of the terminal nodes of a decision tree, say nl, 
n2, . . ., nq(k,r). According to  property 2 ,  p(ni),  the prob- 
ability of reaching  node  ni, does not depend on the  order 
in which the r tests  are performed,  and the  same holds 
for P( Dini).  (See  property 1 .) The  expected  costs of the 
best terminal action at node i, denoted by C(n,) ,  can  be 
computed by 

C(n,)  = ,  J = l . .  min . N {P(Dlni) . Lj}. 

!T) 

i € l ( h , r !  

. x  

The total expected  costs implied by S ( k ,  r ) ,  including 
not only the  costs of performing the  tests but also  the 
expected  costs of making incorrect  diagnoses,  denoted 
by c(S( X, r ) )  , can be computed successively by 

C ( S ( k ,  r ) )  = p(ni )  . C(n,) + x ci ,  ( 1   1 )  

where ci denotes  the  costs of performing Ti. 
To find the optimal test  sequence of length r ,  and the 

costs associated with that  sequence,  determine j *  such 
that 

C ( S ( j * ,  r ) )  = min { C ( S ( i ,  r ) ) } .  ( 1 2 )  

Then S ( j * ,  r )  is the optimal test  sequence of length r,  
and C( S ( j * ,  r )  ) are  the  costs associated with that optimal 
sequence.  Let C(  S ( j * ,  0 ) )  denote  the  expected  costs of 
the  best terminal action given the a  priori  probability 
distribution of the  diseases.  Then  the optimal zero  order 

q ( P , r )  

i = l  iEl ( k , r !  

1 
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Table 4 Diseases of the macrocytic anemia  group. 

No. Disease 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

pernicious anemia 
gastrectomy syndrome 
intestinal disorders 
competitive parasite 
poor nutrition 
impaired absorption 
pregnancy 
hyperactive hematopoiesis 
skin and  neoplastic diseases 
folic acid antagonists 
vitamin C 
not B,, or F.A. 
juvenile P.A. 

decision rule is found by determining Y* such  that 

As with the optimal nonzero  order rule, the algorithm 
to find the optimal zero  order rule is computationally 
infeasible if the  number of available tests is too large 
and/or the number of possible outcomes of a  number of 
tests is too large. It is then necessary  to  resort  to heuristic 
methods  to find  satisfactory  suboptimal  solutions. One 
method is to put  a  restriction on  the total  examination 
time of the patient. This implies that time  consuming 
tests will only occur in test  sequences of relatively short 
length. In addition, use  can be made of the a priori knowl- 
edge  that a  combination of mutually “conflicting” test 
outcomes  is not  very likely to be obtained. According to 
this philosophy the probability of reaching some node nt, 
corresponding to a combination of conflicting test  out- 
comes, is supposed  to be such a small number  that  the 
support of its  term p(n i )  . C(n,) in ( 1 1 )  can be  neglected. 
Thus  C(n,) only  has to  be  computed  for a restricted  num- 
ber of terminal  nodes of the  tree. 

Experiments in hematologic disease diagnosis 
The algorithms to  determine  the optimal nonzero and 
zero  order decision  rules  described  earlier have been 
programmed in APL and tested on a computer. To  
exercise  the program on a real-life case,  the diagnosis 
of a  hematologic disease, belonging to  the group  macro- 
cytic  anemia, was considered.  In  the HEME program 
macrocytic  anemia is one of the 13 subgroups in which 
the group of hematologic diseases may be  partitioned. 
The  group  consists of the 13 different diseases listed in 
Table 4. Possibly 25 tests  deserve consideration to  gather 
information about what member of the macrocytic 
anemia  group  exists in the  patient. 

In determining the optimal nonzero  order and zero 
order rule,  only the last  ten tests listed in Table 5 are of 

interest.  The  costs associated with each of the first 15 
tests can be made  equal to 0, and as a consequence  there 
is no problem of choice  concerning the performance of 
these  tests in order  to collect further information about 
the patient’s  physical  condition. In practical  applications 
the  updated probability  distribution of the  diseases  after 
having observed  the  outcomes of the first 15 tests may 
therefore be taken  as  the a priori probability  distribution 
of the  diseases  to  start  the analysis. In  the  example  that 
we have worked out,  the nonupdated  a  priori  probability 
distribution as specified in HEME is taken as the starting 
point. 

In estimating the  costs of performing each of the last 
I O  tests in Table 5, the following main cost  components 
were distinguished and estimated separately. 

1. The  (technical)  costs of performance of the  test, 
2 .  The  costs of possible  morbidity  and  mortality to  the 

3. The  costs of time in the hospital, 
4. The  costs of days  out of the patient’s life. 

The total costs of performing the  tests  were obtained by 
adding  up the  cost of its main components.  The  costs of 
1 )  can be  considered as mainly independent of the 
patient  involved. In estimating these  costs normal 
charges for  laboratory  fees,  etc.,  were  taken. 

The  costs of 2 ) ,  3 ) ,  and 4) obviously depend  on  the 
particular  patient. The age, sex, and  physical  condition 
of the patient  generally determine  the possible  morbidity 
and  mortality of the  test  to  the patient  and the  expected 
time of his stay in the hospital as a consequence of per- 
forming the  test. Both the  costs charged by the hospital 
and  the  costs of days  out of the patient’s life are  deter- 
mined by the length of this time. In estimating the  costs 
of 2 ) ,  3 ) ,  and 4 ) ,  the  average patient has been taken  as a 
starting  point. In most cases a further partition of the 
main components into subcomponents in determining the 
costs  was applied. 

In specifying the  costs of misdiagnosing disease j 
when the patient has  disease i, i # j ,  for  each pair of dis- 
eases i and j ,  the  cost  consequences of the  answers  to  the 
following questions  have been estimated: 

I .  Is  there a treatment available that  can  cure  or  sub- 
stantially  improve the condition of the patient if the 
correct diagnosis is made? 

2. Does  the  treatment given  now, as a consequence of the 
wrong  diagnosis, do serious damage  to  the  patient? 

3. .If the right treatment is delayed or  the harmful treat- 
ment  is  administered, is the effect reversible? 

The estimations of the  costs of performing the  tests 
and those resulting from misdiagnosis, in dollar  units, 
are specified in Table 5 and  Table 6, respectively. The 
relevant  conditional  probabilities were  derived  from 

patient, 
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Table 5 Relevant  tests in determining  the  optimal  strategy. 

No.  Test 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

x-ray  small  intestine 
biopsy intestine blunted villi 
response  to B,, or  liver extract 
response  to  folic  acid 
response  to  pyridoxine 
Schilling test 
serum  acid  phosphatase 
serum  vitamin B,, 
achlohydria  after  histamine 
malabsorption (by serum  carotene 
or  xylose test) 

Number o j  Outcomes 

4 
2 
2 
2 
2 
4 
2 
3 
2 
2 

~- 

costs 

600 
900 

2000 
2000 
2000 

950 
so 
50 

200 
50 

~ 

Table 6 Decision  losses. 

Disease  Disease  existing in the  patient 
diagnosed 1 2 3 4 5 6 7 8 9 I O  11 12 13 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0 
0 
0 

2 000 
10 000 
50000 

100 000 
50000 
50 000 
SO 000 
25 000 

1 00 000 
0 

0 
0 
0 

2 000 
10 000 
50000 

100 000 
50000 
50000 
50 000 
25 000 

1 00  000 
0 

10 000 
10000 

0 
10000 
10 000 
50 000 

100 000 
50000 
50 000 
50000 
25 000 

100 000 
10000 

I O  000 
1000 

10000 
0 

10 000 
50 000 
10000 
50000 
50000 
50 000 
25 000 

100 000 
10 000 

1000 
10000 
1000 

10 000 
0 

1000 
1000 
IO00 
1000 
1000 
1000 

10 000 
1000 

10000 
10 000 
10 000 
10000 

1 000 
0 

1000 
1 000 
1000 
1000 
1 000 

10 000 
10 000 

10000 
10000 
10 000 
10000 

0 
0 
0 
0 
0 

1 000 
0 

10 000 
I O  000 

10000 
10 000 
10 000 
10000 
1000 
1000 
1000 

0 
10 000 
10000 

1000 
10000 
10000 

10 000 
50000 
10000 
10000 

1 000 
1 000 
1 000 
1 000 

0 
10 000 

1 000 
10000 
10 000 

50000 
10 000 
soooo 
50 000 
50 000 
50 000 
50000 
50 000 
50000 

0 
50000 
50000 
50000 

IO000 
1000 

10 000 
10000 

1000 
1 000 
I 000 
1000 
1000 
1000 

0 
10000 
10000 

1 000 
0 

1 000 
10000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

0 
I 000 

0 
0 
0 

2 000 
10000 
50 000 

100000 
50 000 
50 000 
50 000 
25 000 

100 000 
0 

HEME and  are  shown in Table 7. Finally, Table 8 shows 
the a priori  probability  distribution of the  diseases  that 
was  taken as the starting  point in our analysis. 

In Fig. 2, a part of the optimal nonzero  order rule 
reached has been laid out.  The optimal zero  order  strate- 
gies for  groups  (sets of tests of fixed length)  are given in 
Table 9 for lengths 1 through 10. As can  be  derived  from 
Table 9, the overall  optimal zero  order rule is to perform 
the  tests T,, T,, and TI, in an  arbitrary  sequence. 

As mentioned before,  the  computer program to  deter- 
mine the optimal nonzero  order and zero  order decision 
rules has been  written in APL.  To find the optimal 
decision  rules the program was run for  about 160 
minutes of CPU time. However, since A P L  is an inter- 
pretive language, the program,  rewritten in another 
language, e.g., PLII, may be expected  to run about 15 or 
20 times faster. 

Discussion of assumptions 
Previously we gave a survey of the underlying assump- 
tions in our analysis. We now consider briefly the 
consequences of dropping or easing these assumptions. 

Assumptions I and 2 The first two  assumptions  are 
normally met in real life situations and  therefore need 
no further  comment. 

Assumption 3 If assumption 3 is not satisfied, only  a 
restricted  number of all possible test  sequences may be 
feasible. Let,  for  example, some test T, be available 
only during the time interval [ T ~ ,  T ~ + ~ ] ,  and let us assume 
that the  performance of the first test  starts  at t = 0 and 
that each test of the  sequence is performed  immediately 
after  the  outcome of the preceding one  has been  ob- 
served.  Then T, is only allowed to be  performed as  the 
rth test of a nonzero  order decision  rule if 

r-1 

Ti 5 tj 5 Ti+l - t* 
j = 1  

holds, where t, stands  for  the performance time of T,. 
Test T, is only allowed to be performed as  the rth test in 
a zero  order decision rule if 
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Figure 2 Tree for diagnostic problem. 

Diagnose Diagnose 

On  the  one  hand,  computations become  more compli- exclusive events. As a consequence Bayes' formula,  to 
cated  because  the  execution times of the  tests  have  to be compute  the  updated probabilities of the  diseases  after 
taken  into  consideration;  on  the  other  hand, a number of some set of findings has been observed,  has  to be cor- 
possible sequences of tests need  not  be considered at all. rected as was shown earlier [see  Eq. ( 2 ) ] .  To restrict 

computation time the higher order product terms in 
Assumption 4 If assumption 4 does not hold, then the Eq. ( 2 )  may be  neglected. Further analysis remains 
various diseases  do not  necessarily form a set of mutually unaffected. 
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Table 7 Conditional probabilities. 

dl 
~ 

0.95 
0.0 1 
0.04 
0.00 

0.98 
0.02 

0.00 
1 .oo 
0.30 
0.70 

1 .oo 
0.00 

0.01 
0.99 
0.00 
0.00 

0.99 
0.0 1 

0.99 
0.0 1 
0.001 

0.001 
0.999 

0.05 
0.95 

0.95 
0.01 
0.04 
0.00 

0.98 
0.02 

0.00 
1 .oo 
0.30 
0.70 

1 .OO 
0.00 

0.01 
0.99 
0.00 
0.00 

0.99 
0.01 

0.99 
0.01 
0.001 

0.00 1 
0.999 

0.05 
0.95 

0.49 
0.01 
0.50 
0.00 

0.98 
0.02 

0.00 
1 .OO 

0.30 
0.70 

1 .oo 
0.00 

0.01 
0.01 
0.01 
0.97 

0.99 
0.01 

0.99 
0.01 
0.001 

0.80 
0.20 

0.10 
0.90 

d4 
~ 

0.19 
0.01 
0.0s 
0.75 

0.98 
0.02 

0.00 
1 .oo 
0.30 
0.70 

I .00 
0.00 

0.0 1 
0.01 
0.70 
0.28 

0.99 
0.01 

0.99 
0.01 
0.001 

0.80 
0.20 

0.05 
0.95 

d5 

~ ." 

0.95 
0.01 
0.04 
0.00 

0.98 
0.02 

0.80 
0.20 

0.00 
1 .00 

1 .oo 
0.00 

0.98 
0.0 1 
0.005 
0.005 

0.10 
0.90 

0.02 
0.68 
0.30 

0.80 
0.20 

0.05 
0.95 

Diseuses 

d6 4 

0.75 0.95 
0.20 0.01 
0.05 0.04 
0.00 0.00 

0.50 0.98 
0.50 0.02 

0.80 0.80 
0.20 0.20 

0.00 0.00 
1.00 1.00 

1.00 1.00 
0.00 0.00 

0.98 0.98 
0.01 0.01 
0.005 0.005 
0.005 0.005 

0.10 0.10 
0.90 0.90 

0.02 0.02 
0.68 0.68 
0.30 0.30 

0.80 0.80 
0.20 0.20 

0.99 0.05 
0.01 0.95 

d.9 
_____ 
0.95 
0.01 
0.04 
0.00 

0.98 
0.02 

0.80 
0.20 

0.00 
1 .OO 

1 .OO 
0.00 

0.98 
0.01 
0.005 
0.005 

0.10 
0.90 

0.02 
0.68 
0.30 

0.80 
0.20 

0.05 
0.95 

4 
~ 

0.95 
0.01 
0.04 
0.00 

0.98 
0.02 

0.80 
0.20 

0.00 
1 .00 

1 .oo 
0.00 

0.98 
0.01 
0.005 
0.005 

0. I O  
0.90 

0.02 
0.68 
0.30 

0.80 
0.20 

0.05 
0.95 

dl0  dl1 

0.95 0.98 
0.01 0.01 
0.04 0.01 
0.00 0.00 

0.98 0.98 
0.02 0.02 

0.80 0.80 
0.20 0.20 

0.00 0.00 
1.00 1.00 

1.00 1.00 
0.00 0.00 

0.98 0.98 
0.01 0.01 
0.005 0.005 
0.005 0.005 

0.10 0.10 
0.90 0.90 

0.02 0.02 
0.68 0.68 
0.30 0.30 

0.80 0.80 
0.20 0.20 

0.05 0.05 
0.95 0.95 

dl,  dl, 
"" 

0.95 0.98 
0.01 0.01 
0.04 0.005 
0.00 0.005 

0.98 0.98 
0.02 0.02 

1.00 0.00 
0.00 1.00 

1.00 0.30 
0.00 0.70 

0.90 1.00 
0.10 0.00 

0.98 0.05 
0.01 0.70 
0.005 0.20 
0.005 0.05 

0.70 0.99 
0.30 0.01 

0.30 0.99 
0.60 0.01 
0.10 0.001 

0.80 0.50 
0.20 0.50 

0.05 0.05 
0.95 0.95 

Assumption 5 If assumption 5 is not satisfied, two  or 
more  diseases  have  to be taken  together  as  an artificial 
disease,  and  further analysis  remains  unaffected. 

Assumptions 6, 7 ,  8, and 9 According to  assumptions 6, 
7,  8, and 9, the decision model is supplied with all the 
necessary  data  to reach  a  rational  decision.  Without all 
these  data,  the algorithms  described  have no practical 
meaning. 

Assumption 10 If assumption 10 is not  satisfied, uncer- 
tainties about  test results or unreliable tests have to be 
accommodated by the  underlying  model. 

Assumption 11 If assumption 1 1  is not met, properties 
1 and 2 generally will not hold. This means also  that in 
searching for  the optimal zero  order decision  rule, 
distinction  has to be made  between sequences of the 
same  tests  ordered in a different way.  Dropping  assump- 
tion 11, therefore, implies increasing  computation  time 
to  determine  the optimal zero  order rule. Note  that  the 
number of computations  that  have  to be  carried out  to 
determine  the optimal nonzero  order decision rule does 
not increase. 

Assumption 12 If assumption 12 is not met, then there 
exists  no straightforward way to  compare  the  costs of 
further testing  with those of ceasing further testing  and 
accepting the  best diagnosis on the basis of the informa- 
tion collected so far.  The decision  problem will then  have 
to be  formulated  in another  way; e.g., search  for  the 
decision rule (zero  order  or  nonzero  order) for which 
total expected  costs of misdiagnosis are minimal and 
which satisfies the  constraint  that  the  expected total  time 
of performing tests is less  than or  equal  to  some specified 
upper  bound. 
Assumption 13 In practice  a  physician  often starts apply- 
ing treatments  to a  patient long before he has taken a 
final decision with respect  to what disease  the patient has. 
The  extent  to which these  treatments  can also  be  con- 
sidered to be tests makes no difference for  our analysis. 
However,  the patient's  condition is likely to change as a 
consequence of each  treatment, and it may be necessary 
to specify the conditional probability of observing  some 
test  outcome ejq conditional  upon the  treatments  (tests) 
already  performed on  the patient. This implies dropping 
assumption 1 1, the  consequences of which have already 
been  discussed. 459 
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Table 8 Disease  a priori probabilities. B. J .  Flehinger, IBM Thomas J .  Watson  Research  Cen- 

Disease  A  priori  probability 

0.44 
0.01 
0.03 
0.01 
0.01 
0.35 
0.05 
0.015 
0.01 
0.01 
0.005 
0.05 
0.01 

Table 9 Optimal zero order rules for test sequences of fixed 
length. 

Length  Optimal  rule  Expected  costs 

Summary 
In this  paper  the  search  for a solution  to  the  medical 
diagnostic  problem  has  been  interpreted  as a decision 
rule in stochastic  programming.  Nonzero  order  decision 
rules  and  zero  order  decision  rules  can  be  seen  as  pure 
forms of two  different  search  strategies.  Also  mixtures  of 
both  strategies  can  well  be  imagined.  The  solution  to  the 
problem is then:  Perform,  in  an  arbitrary  order, a se- 
quence of tests of length r, observe  the r test  outcomes, 
and  decide,  conditional  upon  this  information,  either  to 
proceed  with  testing  with  some  next  sequence of tests, 
once  again  in  an  arbitrary  order,  or  to  stop  further  testing 
to  accept  the  best  terminal  decision,  and so on. In a pure 
nonzero  order  rule  each  test  sequence  has a length 1. 
Algorithms,  quite  similar  to  those  discussed  for  finding 
the  optimal  pure  nonzero  order  rule  and  pure  zero  order 
rule,  may  be  applied  to  solve  the  mixed  strategy  case. 
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