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Zero Order and Nonzero Order Decision Rules in

Medical Diagnosis

Abstract: In searching for the optimal solution to the medical diagnostic problem, it seems useful to distinguish between different
possible decision rules (strategies). Two different classes of decision rules are considered: nonzero order decision rules and constant or
zero order decision rules. For each class, solution methods as well as heuristic approaches to finding the optimal member of the class
are discussed. As an exercise, the diagnosis of a hematologic disease belonging to the group macrocytic anemia is considered.

Introduction

Decision rules [1-7] arise, for example, in the study of
statistical games and in the context of various multistage
stochastic programming models. A decision rule may be
defined as a vector-valued function that maps a random
variable into a decision. According to a nonzero order
decision rule in a multistage stochastic programming
model, the values of the decision variables are based
upon values of random variables that are observed during
the time horizon; the values of the decision variables for
stage 1 are specified as explicit functions of the outcomes
of the random variables for the stages j=1,--r—1. A
special subclass of the general class of nonzero order
rules is formed by the so-called constant or zero order
decision rules. According to a zero order rule the values
of all decision variables have to be determined at the
inception of the time horizon. Thus, the main difference
between the two is that according to the nonzero order
decision rule the exact value of a decision variable with
respect to stage ¢ can only be computed after the out-
comes of all random variables concerning the preceding
t — 1 stages have been observed; according to the zero
order one the value of the decision variable is known
exactly at time ¢ = 0, the inception of the period of
planning.

If the search for the optimal decision rule is restricted
to a subclass of the nonzero order decision rules, the
overall optimal decision rule might not be found. In some
cases, the restricted problem may have no feasible solu-
tion at all. There may be good reasons to restrict the
search to the zero order rules, however. For example, in
multiperiod regional planning problems, a solution that
specifies the level of execution of a decision variable of
some stage ¢, t > 1, conditional upon the outcomes of the
random variables of preceding stages, generally has no
practical meaning, because preparations for execution
on that level have to be made at the inception of the
time horizon.
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The medical diagnostic problem for the physician
consists globally of two phases:

1. The development of a diagnosis from a given set of
clinical signs (the set of observed test outcomes).

2. The determination of an appropriate sequence of
diagnostic tests to perform on the patient in order to
collect further information, if needed.

The development of the experimental computer program
HEME illustrates the use of computer technology to assist
in the diagnostic activity [8, 9]. The program accepts as
input information about a patient (the set of observed
test outcomes) and provides as output an ordered list of
suggested diagnoses, an analysis of the logic behind these
diagnoses, and a list of tests relevant to these diagnoses
and not yet performed.

Solving the second phase of the medical diagnostic
problem is a prerequisite for the development of such a
program. This phase can be seen to fit in the class of
stochastic programming problems or, more precisely, in
the class of multistage stochastic programming models.
In a number of respects it differs fundamentally from the
models that are usually dealt with in the literature, how-
ever. In most stochastic models the decision variables are
continuous, and it is supposed that their values do not
affect the probability distribution of the random variables.
However, the decision variables of the model for solving
the second phase of the medical diagnostic problem are
zero-one variables by nature, representing yes or no
decisions such as: “whether or not to perform some test”
and “whether or not some disease is definitely being
diagnosed,” and their values clearly affect the prob-
ability distribution of the random variables (possible test
outcomes).

This paper aims at interpreting nonzero order and zero
order decision rules within the special context of solving
the second phase of the medical diagnostic problem. In
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Table 1 Notation.

Notation Meaning

D set of possible diseases

T set of available tests

d, ith disease

Tj Jjth test

€q gqth possible outcome of T;

e, observed outcome of gth test of a test
sequence performed on patient

plegld) conditional probability of obtaining ¢, if
patient has d,

p(dje, -~ e,) probability that patient has d, after e, - - ¢,
have been observed.

p(d) a priori probability that patient has d,

P(Dle, "~ e,) vector of updated probabilities of diseases
after e, - -, ¢, have been observed

L loss matrix, in which element /;; in ith row
and jth column denotes costs (loss) of
diagnosing d, when patient actually has d,

L, ith row of L

P(¢;,|D) vector consisting of elements p(e;ld,),
o pleld,)

¢ costs of performing T,

1 waiting time for outcome of T;

t execution time of T,

=1+ total processing time of T,

Cle, v e,) expected costs of “best” terminal decision
(diagnosis) after ¢, ---, ¢, have been
observed

p(ejq1e1,~ s e,) probability of obtaining ey given that
e, - e, have been observed

N number of different diseases

M number of different tests available

n(j) number of possible outcomes of T,

considering a particular (ordered) test sequence, a phy-
sician should weigh the expected value of the test results
against the costs of the tests. On the one hand he seeks to
minimize the consequences of possible misdiagnosis,
while on the other hand he aims at keeping the number
of costly diagnostic tests as low as possible. In searching
for the optimal solution to this problem, different starting
points are possible, generally leading to different solu-
tions [10~-14]. Such different starting points can be
interpreted as different decision rules within the frame-
work of stochastic programming.

For both nonzero and zero order decision rules, al-
gorithms to determine the optimal member are discussed,
as well as heuristic approaches to find a good suboptimal

solution. An experimental computer program imple-
menting the algorithms to determine the optimal nonzero
and the optimal zero order rules has been written in APL
and tested on a computer. An exercise is presented in
which this program is used for hematologic disease diag-
noses derived from HEME [8]. In presenting the exercise
the practical problems that arise in specifying the loss for
misdiagnosis and the costs of performing tests are
discussed.

Notation and assumptions in analyzing the medical
diagnostic problem

The notation used throughout this paper is presented
in Table 1. [n analyzing the medical diagnostic problem,
usually a number of rather restrictive assumptions are
supposed to be valid. Often a list of all underlying as-
sumptions is lacking, however, which sometimes makes
it difficult to understand further analysis and to evaluate
the degree of artificiality of the model involved. We
therefore give an explicit survey of all assumptions that
are supposed to be valid in further analysis.

1. The set D of possible diseases is known and fixed,
and all diseases are different.

2. The set T of available tests is known and fixed, and
all tests are different. Each test is characterized by a
number of possible outcomes.

3. All tests remain available for execution during an
unlimited time period.

4. The patient has one and only one of the elements
of D.

5. Each pair of diseases differs in at least one attribute
(symptom), the presence or absence of which can
be revealed by at least one of the available tests.

6. The a priori probability distribution of the diseases
is known.

7. Of each test the conditional probability of obtaining
some outcome, given that the patient has some dis-
ease, is known for each of the possible diseases and
outcomes of the test.

8. For each ordered pair of diseases / and j the costs
of misdiagnosing disease j rather than disease i as
existing in the patient are known.

9. The total processing time of each test (consisting of
its execution time and the waiting time for its out-
come) and the associated costs of its performance
are fixed.

10. The outcome of a test can be determined with
certainty.

11. The probability of obtaining some test outcome given
that the patient has some disease is independent of
the sequence of tests already performed on the
patient.
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12. Both the costs of misdiagnosis and the costs of per-
forming tests are given in the same units.

13. Treatment of the patient is started after some disease
has been diagnosed.

Some of the constraints are more restrictive than others
and have further reaching theoretical consequences as a
result. Assumption 11 deserves special attention. It
implies that p(equdi, e, e,) = pleg,ld,) holds for all
Jj, g, and {. This means that no distinction has to be made
among sequences of the same tests but performed in a
different order. In the next section we state two prop-
erties that are based upon the validity of assumption 11.
According to assumptions 2 and 11 Bayes’ theorem can
be applied directly for updating the a priori probabilities
of the diseases after some sequence of tests has been
performed and the corresponding outcomes have been
observed. According to Bayes’ theorem, the updated
probability of disease d, after the first test outcome e, has
been observed can be computed by

p(d;, e,)
dle) =—F——
p(dile,) e
_ p(d;) - pleld)
p(d,) - pleld,) +---+p(d,) - ple,ldy)
(1
However, had d,," - -, d, not formed a set of mutually ex-

clusive events as required by assumption 4, p(e,) would
have to be computed by

N
ple,) =3 p(d,e) =3 p(d,d,, e)

i=1 ik
i<k
+ 2 [)(d,-, dk’ dz7 91) = +p(dl, t dN’ 31)-
ik
s

Otherwise the computed value of p(d,|e,) will generally
be an underestimation of the true value.

Let us now turn to the optimization criterion. In most
of the literature on sequential decision making in medical
diagnosis, the optimization criterion consists of mini-
mizing the total expected costs —the so-called “E-model”
in the literature on stochastic programming [7]. Of
course, other criteria can easily be imagined, reflecting
other attitudes of the decision maker towards risk, e.g.,
minimization of the expected value of the variance of the
total costs. According to that criterion the goal of the
decision maker is to minimize the risk of obtaining ex-
treme final results. Furthermore, time-based criteria
such as minimization of the expected total time of ex-
amination may be the objective. Finally, one can think
of minimizing more than one criterion at the same time.
In the main part of our analysis, the optimization criterion
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is the usual one of minimizing the total expected costs.
However, sometimes mixtures of cost-based and time-
based criteria are discussed.

Basic theory
According to assumptions 6, 7, 8, and 9, stated in the
previous section, the decision maker is supplied with all
the necessary data to reach a rational decision. To con-
struct a current view of the problem after some set of
outcomes has been obtained, access to the a priori
probabilities of the diseases, as well as to the conditional
probabilities of each of the possible test outcomes given
each of the diseases, is a prerequisite. Furthermore,
one requires access to the data of the loss matrix without
which it would be impossible to evaluate the cost con-
sequences of stopping further testing and diagnosing
some disease on the basis of the accumulated information
gathered at some stage of the decision making process.
In a later section, in discussing our test case, the practical
problems in specifying all these relevant data (especially
of specifying ¢;, j =1, M, and the elements of L, all
in the same units) are emphasized.

As discussed earlier, the underlying assumptions imply
that Bayes’ theorem can be applied directly to update the
a priori probabilities of the diseases after some sequence
of tests has been performed and the corresponding out-
comes have been observed. Bayes’ rule has been dis-
cussed rather extensively in most literature concerning
the inference aspects of medical diagnosis, and a number
of motives are advanced in favor of the use of this rule in
this special context [ 10-14]. Equation (1) can be easily
generalized for n findings in the following way. Let R
denote the set of all possible permutations of » findings
-, e,. So, R consists of n! elements R, R,, "+ R,

e .-
1’ nl
each element representing a different permutation of e,,

-+, ¢,. Then the following property can be formulated.
Property I If assumption 11 is valid, then
p(d,|R)) = p(di|R,),

Thus, property 1 states that p(d,le,, -, e,) does not
depend on the order in which the test results ¢, - -, e, are
obtained.

From property 1 and from the observation that the
probability of obtaining some test outcome ¢;, is com-
pletely determined by the current, updated probability
distribution of the diseases and the conditional prob-
abilities p(e;,|d;), i=1,- - N, the next property follows
directly.

VR,R,ERi=1,"N.

Property 2 If assumption 11 is valid, the probability of
obtaining some test outcome e, & {e,, ", e,} from test
T, after having observed the test results e,,- - -, e, does
not depend on the order in which those results have been
obtained;
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Table 2 Decision losses.

Diagnosis [ actual disease d, - d,
4y Lyt lhy
d,

p(ejq|Rj) =p(ejq|Rk), VR, R, ER.

Let us now turn to the loss matrix L. The matrix (Table
2) contains the data of the decision losses.

The elements /,;, i =1,- -+, N, on the main diagonal of L
are all equal to 0, because no costs are associated with
diagnosing a disease that the patient actually has. The
elements ll.]., i=1,--N;j=1,---, N;i#j, correspond
to the loss of treating the patient in the wrong way and /or
failing to treat the patient in the right way, if possible. In
general, L will be asymmetric. The expected losses
(costs) of diagnosing d, after ¢, -, ¢, have been ob-
served, denoted by c(d,, ¢,,- - e,), are found by com-
puting

c(d,, e, e,) =P(Dle,  e,)L, (3)

where P(Dle,, - -, ¢,) and L, are defined in Table 1.
Now the expected costs of the “best” terminal de-

cision, given that e,,- -, ¢, have been observed, can be
defined.

Definition The expected costs of the best terminal
decision (diagnosis) after e ,- - -, ¢, have been observed,
denoted by C(e,," "+, ¢,), are defined by

Cley ne,) = min {c(dy e, et (4)

In general the disease diagnosed according to the best
terminal decision will not be unique.

Nonzero order and zero order decision rules

As discussed earlier one can think of the medical diag-
nostic problem as a specific multistage stochastic pro-
gramming problem. If we put the problem in this frame-
work we can distinguish more clearly between the
different starting points that are possible in searching for
an optimal solution by considering them as different
decision rules. We now consider the interpretation of a
nonzero order and a zero order decision rule in the con-
text of the medical diagnostic model.

In a nonzero order decision rule the kth stage decision
is made conditional upon the accumulated information
after performing the & — 1 preceding tests. Thus, only
with respect to the first decision of the sequence does
there exist absolute certainty at the inception time ¢,

In a zero order rule absolute certainty about the per-
formance of all tests exists at the inception time ¢, and
there is no need to wait for the outcome of some test
before performing the next one. It is likely that the deci-
sion maker (physician) is more interested in a solution
of this type. There is no restriction on the order in which
the tests have to be executed, and the total examination
time will be much shorter on the average. Moreover the
preparation for the execution of all tests of the sequence
can be started at ;. Preparation may involve readying
the patient for the test, scheduling needed activities for
the performance of the test (e.g., reserving the operating
room), etc.

In the following sections a general solution method as
well as heuristic approaches for finding the optimal non-
zero order rule and zero order rule are described.

s Determination of the optimal nonzero order decision

rule
Usually the sequential decision making problem is
represented by a so-called decision tree, consisting of a
set of nodes that are interconnected in space by a system
of directed curves (branches). Two types of nodes can
be distinguished: decision nodes and artificial nodes. The
decision nodes correspond to points at which a number
of test results have been observed and at which the
decision has to be made whether to continue testing or
to stop testing and diagnose a disease of which the total
expected costs of misdiagnosis are minimal. Each of the
branches emanating from some decision node n, leads to
an artificial node that corresponds to the selection of
some test T, to perform. Each of the branches emanating
from some artificial node leads to a decision node that
corresponds to one of the possible outcomes of the test
involved. In Fig. 1 the decision tree has been laid out for a
small example of two tests being available and each of the
two tests having two different possible outcomes. The
artificial nodes are marked by 6.

In describing how to find the optimal nonzero order
decision rule, the following definitions and notations are
useful.

Notation The set of decision rules that spring from
branching from node n,, called the descendants of n,, is
denoted by 1(n,).

Definition Let node n, be branched from by selecting
test T,. Then the decision nodes corresponding to the
different possible outcomes of T; are called the direct
descendants of n, with respect to T;.

Notation The expected costs of the optimal decision rule
of node n, are denoted by F,.

Notation Let n, correspond to the observation of the test
results ¢, -, e,. Then p(d,n,), P(D|n,), C(n,), and
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p(e;n,) correspond to p(dje,, -~ e,), P(Dle, - e,),
C(e,, "+ e,),and p(ejq| e, e,), respectively.

Definition Node n, is said to belong to level g of the
decision tree if n, has been reached after performing g
tests.

Let n, be any node of the decision tree that has been

reached after performing r tests, e.g., T,, T,,- -+, T, and
corresponding to the observation of the test results e,,
-+, e,. Let us further assume that the optimal decision
rules of all descendants of n, have already been deter-
mined. Given the updated probability distribution
P(D|n,) at node n,, the probability of obtaining test
result ¢, after performing test T;, j & {1, r}, can be
computed by

p(ejq|nk) =p(djn,) - p(f’jq|d1) +- -+ p(dyn,)
. p(ejq|dN)- (5)

Let n,,,, N, Ny, be the direct descendants of
n, with respect to test T;. As F,,, Fy,, "5 Fp,y are
already known by assumption, the expected costs of
continuing testing with test Tj, denoted by C(Tj, n,),can
be computed by

n{j}

C‘(Tj, n) =c;+ > pleln)F, ., (6)
g=1

where ¢; denotes the costs of performing test T;. The
expected costs of the best terminal decision at node n,,
denoted by C(n,), are found by

C(n,) = min {P(Dln,L,}. )
Finally, the optimal decision rule of n, can be determined
by taking

min {C(l’lk), C(Tl, nk), C(Tza nk)a' Ty C(TMv Ilk}. (8)

At this point two observations can be made. First, the
expected costs of the optimal decision rule of all members
of I(n,) have to be computed before F, can be computed.
Secondly, the optimal decision rule at node n, can be
found independently of those of the nodes that do not
belong to I(n,). From this it follows that the optimal
decision rule of node n,, the ultimate goal, can be found
by a procedure of averaging out and folding back the
decision tree. To start with, the expected costs of the
optimal decision rule of all nodes that belong to level M
of the decision tree are determined. At these nodes there
is no other alternative than accepting the best terminal
decision. Next the expected costs of the optimal decision
rules of all nodes that belong to the (M — 1) tree level
are determined. The choice at each of these nodes is
restricted to two alternatives: “Proceed testing by per-
forming the test left,” and “‘stop testing and -accept the
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decision decision decision decision

Figure 1 Tree for example.

best terminal decision given the information gathered so
far.” By tracking further backwards in this way, we
finally find, at least theoretically, the optimal decision
rule of n,.

Notice that the optimal decision rule of n, generally
will have a rather complex structure, such as, ‘“Perform
as the first test T,; if the outcome e, is observed, then
stop further testing and diagnose disease d;; if e, is ob-
served, then perform T, as the next test,” and so on.
Nodes marked with the optimal decision rule “stop
further testing”” may occur at any level of the tree. They
explain why two test sequences (two decision rules),
which consist of the same tests but ordered in a different
way, may have different associated expected costs,
though the probability of obtaining some set of test out-
comes is the same for both sequences. This last observa-
tion is crucial and is illustrated by the following small
example.

We distinguish three diseases, d,, d,, d,, and two tests,
T, and T,. Each test has two possible different outcomes.
Further, the data in Table 3 are known. The resulting
decision tree has the shape shown in Fig. 1.

First, the function values £, F, F,, and F, of the nodes
on the lowest level of the tree can be computed.

F,= C(n) = min {P(Dle,, e,,) - L} =80, fori=3,

i=1,2,3

Fy= C’(nﬁ) = min {P(Dle,,, ¢,,) - L;} =259, fori=1,
i=1,2,3

F,=C(n,) = min {P(Dle,,.e,,) - L} = 80, fori=3,
i=1,2,3

F,=C(n) = min {P(Dle,,, e,,) - L} =259, fori=2.
i=1,2,3

Subsequently, the expected cost of the optimal decision
rules of the nodes on the first level of the tree can be
determined. To this purpose p(e,,le, ), ple,,le, ),
P(€2’11€1’2),[)((’2,2| 61,2)’p(61,1le2,1)’p(€1,2|62,1)’1’(@1,1'62,2)’
and p(e, ,le,,) have to be computed first. We find
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Table 3 Conditional probabilities, loss matrix, a priori prob-
abilities, and costs.

Conditional probabilities

disease [ test outcomes €, €, 5 €5
d, 0.95 0.05 0.05 0.95
d, 0.05 0.95 0.05 0.95
d, 0.50 0.50 0.80 0.20
Loss matrix
diagnosis [ actual disease d, d, d,
d, 0 500 1000
d, 500 0 1000
d, 2000 2000 0

A priori probabilities of diseases

disease a priori probability
d, 0.2
d, 0.2
d, 0.6

Costs associated with performing tests

test costs
T, 200
T, . _ 200

F = min {'H}i?s {P(Dle,,) - L}, ¢, + ple,,le,,) - Fy
i=1,2,

+ ple,,le, ) - Fgb = 369.5, whereas the optimal
decision rule of n, reads: *‘Perform test T,; if e, , is
observed, then diagnose d,; if e, , is observed, then
diagnose d,.”

F, = 80, whereas the optimal decision rule of n, reads:
“Stop further testing and diagnose disease d,.”

;= 369.5, whereas the optimal decision rule 3 of n,
reads: “Perform test T,; if ¢,, is observed, then
diagnose d; if e, , is observed, then diagnose d,.”

F,= 430, whereas the optimal decision rule of n, reads:
*“Stop further testing and diagnose d, or d,.”

Besides F|, F,, F,, and F,, we need to know p(e, ),
ple,,), ple, ), ple,,), and C(ny) in order to determine
the optimal decision rule of n,. We have

C(n) = min {P(D) - L} =700 fori=1, 2, and

i=1,2,3

ple,,) = ple,,) =ple,,) =ple,,) =05.
Consequently,

C(T,n) =c,+ple,) F,+ple,) - F,=569.5, and
C(T, ny) = ¢, +ple,,) - F,+ ple,,) - F,=455.

The optimal decision rule of n, follows from determining
min {C(n,), C(T,, n)), C(T, ny)},

and turns out to be performing T, as the first test. The
complete decision rule of n, reads: “Perform T, as the
first test; stop further testing if the outcome e, is ob-
served, and diagnose dg; if e,, is observed, then stop
further testing and diagnose d, or d,.”

Let us look in somewhat more detail at the solution
arrived at. If T, is selected as the first test to perform,
there exists absolute certainty that no further test has to
be performed. However, if T, is selected as the first test,
T, always has to be performed as the next one, regardless
of the outcome of T,. If no decision nodes with optimal
decision rule: “Stop further testing” occurred in the tree
except at those nodes at the lowest level, then both deci-
sion rules at node n: “Start with T,”” and “Start with T,”
would have had the same associated expected costs.

This simple example illustrates clearly that different
ordered sequences of the same tests may involve differ-
ent expected costs. One of the main reasons for this is
that the discrimination power of a test (the ability of a test
to rule out and/ or to support strongly the presence of a
number of diseases) generally differs, even strongly
differs, from node to node as each node corresponds to
accumulated information of a different type. Some tests
may be quite well suited for separating the members of
some specific subset of diseases, and therefore per-
forming such a test only makes sense at that stage of the
decision making process where the probability of the
presence of that subset is sufficiently high. Other tests
may be much more suitable to distinguish between differ-
ent groups of diseases but have no specific discrimination
power to single out some particular disease. Also, the
costs of misdiagnosis and the costs associated with the
performance of each of the tests clearly play an important
role.

Heuristic approaches for finding the optimal nonzero
order decision rule
If the number of available tests is very large and/or
there are a number of tests with a large number of rele-
vant outcomes, the general solution method, as described
in the last section, becomes very time consuming, if not
practically impossible to execute. In this case one has to
resort to heuristic solution methods that yield good sub-
optimal solutions but not necessarily optimal ones.
One general way to limit the growth of the decision
tree is to put extra restrictions on the solution to the
problem by, for example, requiring that the total ex-
pected time for examination of the patient should not ex-
ceed some specified level. Then the search for the optimal
nonzero order rule remains restricted to the class of
rules that can be applied when the total expected exam-
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ination time is less than the given upper bound. Another
general method is to restrict the depth of the analysis at
each node of the tree. For example, Gorry and Barnett
consider a depth of analysis of one at each node [10].
However, this approach generally gives rise to decision
rules according to which further testing is stopped pre-
maturely, as the function values of the direct descendants
of some node n, are systematically overestimated by
setting them equal to the expected costs of the best
terminal action at the node. The optimal decision rule for
the example of Gorry and Barnett is to start by per-
forming test T, if a depth of analysis of one at each node is
considered, whereas the optimal decision rule with an
unrestricted depth of analysis would be to start with
test T,.

We now discuss briefly two possible strategies to select
a restricted number of tests out of the set of candidates
that are available to branch from some node n,. Let D;
be a subset of D with the following properties:

1. The outcome of test T, is characteristic for cach
member d € D;. This means that one of the possible

outcomes ¢;,, -, €, of T; will occur with a prob-
ability greater than some user specified level vy if d
is true. Thus d € D; implies: There exists some r such
that p(e |d) > v,

2. The outcome of T; is not in the same way character-
istic for all elements of D;.

If y is chosen close to 1, D; will generally consist of a
relatively small number of elements. We denote the com-
plement of D; in D by D and the set of indices of all
elements that belong to D by I The conditional prob-
ability that D is true, glven the information gathered at
node n,, can be computed by

p([_)j|nk) ZE p(di|l’1k). (9)
iel,

Now, order the candidate tests to branch from n, in the

sequence T, " Ty such that

p(Dr(l)) §‘[7(D7_(2)) = 'ép(]_)r("))

holds. One of the following two strategies may be applied
to restrict the number of tests to branch from node n,:

1. Branch from n, by means of the first g tests T,
Ty )
2. Determine g* such that p(D,) = 8, where 8 is some
user specified level. Branch from n, by means of the

first g* tests T,;,," " T (gn-

The philosophy of both strategies is to restrict branch-
ing from n,, to those tests that are expected to yield the
most useful information at that stage of the sequential
decision making process. (If the probability of I_)j with
respect to test T; is large, relatively less valuable informa-
tion is likely to be obtained by performing T; at that stage

of the sequential decision making process.)
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Zero order decision rules
As discussed previously the decision maker can choose
between searching for a nonzero order decision rule and
searching for a zero order decision rule; in addition mix-
tures of both strategies can well be imagined. Obviously
the expected costs of the optimal zero order rule or any
mixture of a zero order rule and a nonzero order one are
higher than or equal to the expected costs of the proper
optimal nonzero order rule, since the first one can be
considered as a particular case of the second one. We
now discuss how, at least theoretically, the optimal zero
order rule can be found.

Define the optimal test sequences of length » as that
sequence of r different tests for which the total expected
costs are minimal. The total number of different test

sequences of length r, denoted by M(r), equals <Ar/[>

Let us denote the possible different test sequences of
length r by S(I1, r), -, S(M(r), r). Further, denote the
set of indices of the tests that form part of S(k, r) by
[(k, r). Then the number of possible different combina-
tions of test outcomes after the r tests of S(k, r) have
been performed, denoted by g(k, r), is

gk, ry="11 n@. (10)
iel(k,r)

Each combination of test outcomes can be represented
as one of the terminal nodes of a decision tree, say n,,
Ny, % Dy . According to property 2, p(n;), the prob-
ability of reaching node n,, does not depend on the order
in which the r tests are performed, and the same holds
for P(D|n,). (See property 1.) The expected costs of the
best terminal action at node i, denoted by C‘(ni), can be
computed by

C(n;) = min_{P(D|n,) - L;}.
JV N

The total expected costs implied by S(k, r), including
not only the costs of performing the tests but also the
expected costs of making incorrect diagnoses, denoted
by C(S(k, r)), can be computed successively by
qik,r

C(S(k, 1)) 2 “Cm) + 3 ¢, (11)
i=1 i€l (k,r)

where ¢, denotes the costs of performing T,.

To find the optimal test sequence of length r, and the
costs associated with that sequence, determine j* such
that

C(S(*, ) = min {C(SU, M)} (12)

Then S(j*, r) is the optimal test sequence of length r,
and C(S(j*, r)) are the costs associated with that optimal
sequence. Let C(S(j*, 0)) denote the expected costs of
the best terminal action given the a priori probability
distribution of the diseases. Then the optimal zero order
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Table 4 Diseases of the macrocytic anemia group.

No. Disease
1 pernicious anemia
2 gastrectomy syndrome
3 intestinal disorders
4 competitive parasite
5 poor nutrition
6 impaired absorption
7 pregnancy
8 hyperactive hematopoiesis
9 skin and neoplastic diseases
10 folic acid antagonists
11 vitamin C
12 not B, or F.A.
13 juvenile P.A.

decision rule is found by determining r* such that

C(S(j*, r*)) = min {C(S(*, r))}. (13)
r=0,1; M

As with the optimal nonzero order rule, the algorithm
to find the optimal zero order rule is computationally
infeasible if the number of available tests is too large
and/or the number of possible outcomes of a number of
tests is too large. It is then necessary to resort to heuristic
methods to find satisfactory suboptimal solutions. One
method is to put a restriction on the total examination
time of the patient. This implies that time consuming
tests will only occur in test sequences of relatively short
length. In addition, use can be made of the a priori knowl-
edge that a combination of mutually “conflicting” test
outcomes is not very likely to be obtained. According to
this philosophy the probability of reaching some node n,,
corresponding to a combination of conflicting test out-
comes, is supposed to be such a small number that the
support of its term p(n,) - C(ni) in (11) can be neglected.
Thus C‘(ni) only has to be computed for a restricted num-
ber of terminal nodes of the tree.

Experiments in hematologic disease diagnosis
The algorithms to determine the optimal nonzero and
zero order decision rules described earlier have been
programmed in APL and tested on a computer. To
exercise the program on a real-life case, the diagnosis
of a hematologic disease, belonging to the group macro-
cytic anemia, was considered. In the HEME program
macrocytic anemia is one of the 13 subgroups in which
the group of hematologic diseases may be partitioned.
The group consists of the 13 different diseases listed in
Table 4. Possibly 25 tests deserve consideration to gather
information about what member of the macrocytic
anemia group exists in the patient.

In determining the optimal nonzero order and zero
order rule, only the last ten tests listed in Table 5 are of

interest. The costs associated with each of the first 15
tests can be made equal to 0, and as a consequence there
is no problem of choice concerning the performance of
these tests in order to collect further information about
the patient’s physical condition. In practical applications
the updated probability distribution of the diseases after
having observed the outcomes of the first 15 tests may
therefore be taken as the a priori probability distribution
of the diseases to start the analysis. In the example that
we have worked out, the nonupdated a priori probability
distribution as specified in HEME is taken as the starting
point.

In estimating the costs of performing each of the last
10 tests in Table 5, the following main cost components
were distinguished and estimated separately.

1. The (technical) costs of performance of the test,

2. The costs of possible morbidity and mortality to the
patient,

3. The costs of time in the hospital,

4. The costs of days out of the patient’s life.

The total costs of performing the tests were obtained by
adding up the cost of its main components. The costs of
1) can be considered as mainly independent of the
patient involved. In estimating these costs normal
charges for laboratory fees, etc., were taken.

The costs of 2), 3), and 4) obviously depend on the
particular patient. The age, sex, and physical condition
of the patient generally determine the possible morbidity
and mortality of the test to the patient and the expected
time of his stay in the hospital as a consequence of per-
forming the test. Both the costs charged by the hospital
and the costs of days out of the patient’s life are deter-
mined by the length of this time. In estimating the costs
of 2), 3), and 4), the average patient has been taken as a
starting point. In most cases a further partition of the
main components into subcomponents in determining the
costs was applied.

In specifying the costs of misdiagnosing disease j
when the patient has disease i, i # j, for each pair of dis-
eases i and j, the cost consequences of the answers to the
following questions have been estimated:

1. Is there a treatment available that can cure or sub-
stantially improve the condition of the patient if the
correct diagnosis is made?

2. Does the treatment given now, as a consequence of the
wrong diagnosis, do serious damage to the patient?

3. If the right treatment is delayed or the harmful treat-
ment is administered, is the effect reversible?

The estimations of the costs of performing the tests
and those resulting from misdiagnosis, in dollar units,
are specified in Table 5 and Table 6, respectively. The
relevant conditional probabilities were derived from
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Table 5 Relevant tests in determining the optimal strategy.

No. Test Number of Outcomes Costs
1 x-ray small intestine 4 600
2 biopsy intestine blunted villi 2 900
3 response to B, or liver extract 2 2000
4 response to folic acid 2 2000
5 response to pyridoxine 2 2000
6 Schilling test 4 950
7 serum acid phosphatase 2 50
8 serum vitamin B,, 3 50
9 achlohydria after histamine 2 200
10 malabsorption (by serum carotene 2 50
or xylose test)
Table 6 Decision losses.
Disease Disease existing in the patient

diagnosed 1 2 3 4 5 6 9 10 11 12 13
1 0 0 10000 10000 1000 10000 10000 10000 10000 50000 10000 1000 0
2 0 0 10000 1000 10000 10000 10000 10000 50000 10000 1000 0 0
3 0 0 0 10000 1000 10000 19000 10000 10000 S0000 10000 1000 0
4 2000 2000 10000 0 10000 10000 10000 10000 10000 50000 10000 10000 2000
5 10000 10000 10000 10000 0 1000 0 1000 1000 50000 1000 1000 10000
6 50000 50000 50000 50000 1000 0 0 1000 1000 50000 1000 1000 50000
7 100000 100000 100000 10000 1000 1000 0 1000 1000 50000 1000 1000 100000
8 50000 50000 50000 S0000 1000 1000 0 0 1000 50000 1000 1000 50000
9 50000 50000 50000 50000 1000 1000 0 10000 0 50000 1000 1000 50000
10 50000 50000 50000 50000 1000 1000 1000 10000 10000 0 1000 1000 50000
11 25000 25000 25000 25000 1000 1000 0 1000 1000 50000 0 1000 25000
12 100000 100000 100000 100000 10000 10000 10000 10000 10000 50000 10000 0 100000
13 0 0 10000 10000 1000 10000 10000 10000 10000 50000 10000 1000 0

HEME and are shown in Table 7. Finally, Table 8 shows
the a priori probability distribution of the diseases that
was taken as the starting point in our analysis.

In Fig. 2, a part of the optimal nonzero order rule
reached has been laid out. The optimal zero order strate-
gies for groups (sets of tests of fixed length) are given in
Table 9 for lengths 1 through 10. As can be derived from
Table 9, the overall optimal zero order rule is to perform
the tests T, T,, and T, in an arbitrary sequence.

As mentioned before, the computer program to deter-
mine the optimal nonzero order and zero order decision
rules has been written in APL. To find the optimal
decision rules the program was run for about 160
minutes of CPU time. However, since APL is an inter-
pretive language, the program, rewritten in another
language, e.g., PL/I, may be expected to run about 15 or
20 times faster.

Discussion of assumptions

Previously we gave a survey of the underlying assump-
tions in our analysis. We now consider briefly the
consequences of dropping or easing these assumptions.
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Assumptions 1 and 2 The first two assumptions are
normally met in real life situations and therefore need
no further comment.

Assumption 3 If assumption 3 is not satisfied, only a
restricted number of all possible test sequences may be
feasible. Let, for example, some test T, be available
only during the time interval [7,, 7,,,], and let us assume
that the performance of the first test starts at + = 0 and
that each test of the sequence is performed immediately
after the outcome of the preceding one has been ob-
served. Then T_ is only allowed to be performed as the
rth test of a nonzero order decision rule if

r—1
< < —
T = 2 L=Thy 1
j=1

holds, where ¢, stands for the performance time of T, .
Test T, is only allowed to be performed as the rth test in
a zero order decision rule if

r
’

,
<Z << pu—
=N LS T

i=1
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Figure 2 Tree for diagnostic problem.

On the one hand, computations become more compli-
cated because the execution times of the tests have to be
taken into consideration; on the other hand, a number of
possible sequences of tests need not be considered at all.

Assumption 4 If assumption 4 does not hold, then the
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various diseases do not necessarily form a set of mutually
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T T Stop

3 Stop

3

Diagnose Diagnose

d, d,

exclusive events. As a consequence Bayes’ formula, to
compute the updated probabilities of the diseases after
some set of findings has been observed, has to be cor-
rected as was shown earlier [see Eq. (2)]. To restrict
computation time the higher order product terms in
Eq. (2) may be neglected. Further analysis remains
unaffected.
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Table 7 Conditional probabilities.

Diseases

Test
at tri;)):l tes 4 d, d, d, d; d, d, dy d, dyq d, d;, dyy

e 0.95 0.95 0.49 0.19 0.95 0.75 0.95 0.95 0.95 0.95 0.98 0.95 0.98

1,1
T €12 0.01 0.01 0.01 0.01 0.01 0.20 0.01 0.01 0.01 0.01 0.01 0.01 0.01
le 0.04 0.04 0.50 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.01 0.04 0.005

1,3
€, 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.005
T € 0.98 0.98 0.98 0.98 0.98 0.50 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Z e, 0.02 0.02 0.02 0.02 0.02 0.50 0.02 0.02 0.02 0.02 0.02 0.02 0.02
T. €1 0.00 0.00 0.00 0.00 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.00 0.00
2ey, 1.00 1.00 1.00 1.00 0.20 0.20 0.20 0.20 0.20 020 0.20 0.00 1.00
T € 0.30 0.30 0.30 0.30 0.00 0.00 0.00 0.00 0.00 0.00  0.00 1.00 0.30
‘e, 0.70 0.70 0.70 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.70
e 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00

T, 51
ey, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.10 0.00
€1 0.01 0.01 0.01 0.01 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.05
T. €2 0.99 0.99 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.70
¢ eg, 0.00 0.00 0.01 0.70 0.005  0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.20
e 0.00 0.00 0.97 0.28 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005-  0.05

64
T. €11 0.99 0.99 0.99 0.99 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0:70 - 0.99
T e, 0.01 0.01 0.01 0.01 0.90 0.90 0.90 0.90 0.90 090  0.90 0.30 0.01
€g, 0.99 0.99 0.99 0.99 0.02 0.02 0.02 0.02 0.02 0.02  0.02 0.30 0.99
Ty eg, 0.01 0.01 0.01 0.01 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.60 0.01
€3 0.001 0.001  0.001 0.001 0.30 0.30 0.30 0.30 0.30 030 030 0.10 0.001
T o1 0.001 0.001  0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80  0.80 0.80 0.50

o e, 0999 0999 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.50

9,2

T €101 0.05 0.05 0.10 0.05 0.05 0.99 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.95 0.95 0.90 0.95 0.95 0.01 0.95 0.95 0.95 0.95 0.95 0.95 0.95

10
€102

Assumption 5 If assumption 5 is not satisfied, two or
more diseases have to be taken together as an artificial
disease, and further analysis remains unaffected.

Assumptions 6, 7, 8, and 9 According to assumptions 6,
7, 8, and 9, the decision model is supplied with all the
necessary data to reach a rational decision. Without all
these data, the algorithms described have no practical
meaning.

Assumption 10 If assumption 10 is not satisfied, uncer-
tainties about test results or unreliable tests have to be
accommodated by the underlying model.

Assumption 11 If assumption 11 is not met, properties
1 and 2 generally will not hold. This means also that in
searching for the optimal zero order decision rule,
distinction has to be made between sequences of the
same tests ordered in a different way. Dropping assump-
tion 11, therefore, implies increasing computation time
to determine the optimal zero order rule. Note that the
number of computations that have to be carried out to
determine the optimal nonzero order decision rule does
not increase.

SEPTEMBER 1977

Assumption 12 If assumption 12 is not met, then there
exists no straightforward way to compare the costs of
further testing with those of ceasing further testing and
accepting the best diagnosis on the basis of the informa-
tion collected so far. The decision problem will then have
to be formulated in another way; e.g., search for the
decision rule (zero order or nonzero order) for which
total expected costs of misdiagnosis are minimal and
which satisfies the constraint that the expected total time
of performing tests is less than or equal to some specified
upper bound.

Assumption 13 In practice a physician often starts apply-
ing treatments to a patient long before he has taken a
final decision with respect to what disease the patient has.
The extent to which these treatments can also be con-
sidered to be tests makes no difference for our anélysis.
However, the patient’s condition is likely to change as a
consequence of each treatment, and it may be necessary
to specify the conditional probability of observing some
test outcome e, conditional upon the treatments (tests)
already performed on the patient. This implies dropping
assumption 11, the consequences of which have already
been discussed.
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Table 8 Disease a priori probabilities.

Disease A priori probability

0.44
0.01
0.03
0.01
0.01
0.35
0.05
0.015
0.01
0.01
0.005
0.05
0.01
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Table 9 Optimal zero order rules for test sequences of fixed
length.

Length Optimal rule Expected costs
1 T, 1099.400
2 T, T,y 892.845
3 T, Te Ty 752.854
4 T, Te, T, Ty, 899.724
5 T,T, T, T, T, 1417.450
6 T,TyT,T,T,T, 2308.053
7 T, T, T, T, T, T, T,, 3206.704
8 T,T,T,T,T,T,T,T, 5168.769
9 T,T,T, T, T, T, T, T, T, 7148.128
10 T,T, T, T, T, T, T, T, T, T, 9148.128
Summary

In this paper the search for a solution to the medical
diagnostic problem has been interpreted as a decision
rule in stochastic programming. Nonzero order decision
rules and zero order decision rules can be seen as pure
forms of two different search strategies. Also mixtures of
both strategies can well be imagined. The solution to the
problem is then: Perform, in an arbitrary order, a se-
quence of tests of length r, observe the r test outcomes,
and decide, conditional upon this information, either to
proceed with testing with some next sequence of tests,
once again in an arbitrary order, or to stop further testing
to accept the best terminal decision, and so on. In a pure
nonzero order rule each test sequence has a length 1.
Algorithms, quite similar to those discussed for finding
the optimal pure nonzero order rule and pure zero order
rule, may be applied to solve the mixed strategy case.
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