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Multidimensional  Bin  Packing  Algorithms 

Abstract: A comparative study is made of algorithms  for a general  multidimensional  problem involving the packing of k-part objects 
in k compartments in a large supply of bins. The goal is to pack the  objects using a minimum number of bins. The  properties  and limita- 
tions of the algorithms are  discussed, including k-dimensional analogs of some popular  one-dimensional  algorithms.  An  application of 
the algorithms is the design of computer  networks. 

Introduction 
Consider a  collection of k-part objects,  each  part of every 
object having size  between 0 and 1, and  a large supply of 
bins, each divided  into k compartments and each com- 
partment with capacity 1. The bin packing  problem is to 
pack the objects into  as few bins as possible with each 
part of every  object going into the  correct  compartment 
in a bin. The one-dimensional  version of this  problem 
(Le., k = 1) has  been  studied  thoroughly [ 1 - 51 ; it has 
applications in operations  research [ 6 - 91, computer 
operating system design,  and  memory  allocation [ 1, 21. 
Little is known about  the general k-dimensional problem, 
which has applications to  computer network  design [ 101. 
To formalize our problem, we begin by introducing  some 
notation. 

Dejnition a)  For k 1 1 ,  let 0' = { (a , ,  . . ., a k )  I all i ,  0 5 
ai 5 l} ; b) Let n = { 1, .  . ., n}  ; and c)  Given a  function 
u:n + 8 ,  and  a  partition 2 = {S,, . . ., S,} of n, we say 
that 2 is u-admissible if for all j E m, 2 jEs; u ( i )  E 0". 

Remark Observe  that admissible  partitions correspond 
to bin packings, where the k-part objects  are  represented 
by elements of 0". Thus, any bin packing  algorithm yields 
some admissible partition, and we infer properties of the 
algorithm  from properties of the corresponding  partition. 
In this paper we are  interested in analyzing all "reason- 
able"  algorithms. One natural  criterion for  reasonable 
algorithms is that they produce "irreducible" partitions, 
a concept which we define now. 

Dejinition Let u:n -+ 0' be a  function  and 2 = { S , ,  . . ., 
S,} be  a  partition of n. a) We say that 2 is u-irreducible 
if Y is u-admissible, and for all i ,  j E m, i # j implies 

b) We let % ( u )  be the  set of all u-irreducible partitions. 
c )  We let opt(u) = min { I - Y I z  E v(u)} .  

Clearly, opt(u) gives  the  smallest  number of bins into 
which the list of vectors u( l ) ,  . . ., u ( n )  can be packed, 
since any  optimal  partition  must  be  irreducible. 

For  every fixed integer k 1 1, it is not  hard to  show  that 
the following formulation of the bin packing  problem is 
NP-complete in the  sense of Cook [6] and Karp [ 141. 

Let  the input be a  function u:n + Ok and a  positive 
integer I ,  and  then  try to  determine if there  exists a 
u-admissible partition .Y of size 1. 

Hence,  another natural  criterion for reasonable bin 
packing  algorithms is that  each  has its running time 
bounded by some polynomial of the input  length. In this 
paper, by a reasonable bin packing algorithm, we mean 
that 1) it produces u-irreducible partitions  and 2) it 
possesses polynomially bounded  running  times. We 
will show  that  constraint 1 )  implies for all 8 E % ( u )  
IL?l/opt(u) 5 k + 1 .  Furthermore, for each k 1 1  and 
6 > 0, we can find an n ,  u ,  and L? E % ( u )  such  that 1 2 1 /  
opt(u) 1 ( k  + 1 - 6 ) ;  Le., k + 1 is a sharp  upper bound 
(independent of n )  on  the ratio IL?l/opt(u).  It  thus 
follows that any reasonable algorithm will do no worse 
than ( k  + I )  times the optimal  packing in terms of the 
number of bins used. On  the  other  hand,  since  whether 
all NP-complete problems have polynomial-time- 
bounded  solutions is still an  open  question  at  the  present 
time, we are not  able to  show any  lower  bound on  the 
ratio 1 2 ' 1  /opt(  v) . However, we show  that if NP-com- 
plete  problems do not have polynomial-time-bounded 
solutions,  a  most likely result, 2) implies that all reason- 
able heuristic  algorithms will produce in the worst case 
at least 50 percent more than  the optimal number of 
bins. 

For  the one-dimensional case, several  algorithms have 
been noted, namely, the first fit algorithm, the best fit 
algorithm, the first fit decreasing  algorithm and  the  best 
fit decreasing  algorithm [ 1 - 51. For  convenience, we 443 
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state  the k-dimensional versions of these algorithms. We 
have a  function u :  n + d" ,  and an infinite collection of 
bins S,,  S,, . . ., which at  stage 0 are all empty.  At  stage i, 
we place i in one of the bins  according to  one of the  four 
rules subsequently described.  (After  stage n ,  the non- 
empty bins yield a partition of n. We use S{ to indicate 
the  set of numbers in Si at  stage j . )  

First  Fit  Algorithm ( F F )  
At stage j ,  f o r j  3 1 ,  place j  in SA, where A is the least 
integer such  that u ( j )  + X E S , - '  u ( t )  E 8'. 

Best  Fit   Algorithm  (BF) 
At stage j ,  for j 1 1,  place j in SA, where A is the least 
integer  such that 

1. u ( j )  + XtEs:-# u ( t )  E Oh', and 
2 .  for all i, ~ ( j )  + u ( t )  E 8 implies that  the sum 

of the k components of X t E s ; - l  u ( t )  is not greater than 
the sum of the k components of ZtE"{-, u ( t )  . 

i 

First  Fit  Decreasing  Algorithms  (FFD,,  FFD,,  FFD,) 
We specify a  linear  quasi-order, 5, on d', and permute 
the domain of u so that i 5 j  implies that u ( j )  5 u(  i) . Then 
we apply the FF Algorithm. The following are a few 
quasi-orders  that we consider in this paper.  Let a, b E 13". 

Lexicographical  FFD  (FFD,) 
a 5 b iff a = h or  the first nonzero  component of b - a 
is positive. 
Maximum  Component   FFD  (FFD,)  
a 5 b iff the maximum component in b is not  less  than the 
maximum component of a .  
Max imum  Sum  FFD  (FFD, )  
a 5 b iff the sum of the  components of h is not less  than 
the sum of components of a. 

Best  Fit  Decreasing  Algorithms  (BFD,,  BFD,,  BFD,) 
We  proceed exactly  as with the  First  Fit  Decreasing 
Algorithms, but we apply the  BF  rather than the FF 
Algorithm whenever  appropriate. 

We show below that  for  each k and for  every 6 > 0, 
there  exists a  function u:n + O k ,  such  that all the algo- 
rithms above yield the  same partition, A(u),  and that 
I A( u )  I /opt( u)  2 ( k  - 6) . Thus,  these algorithms do little, 
if at all, better than  any reasonable algorithm, in the 
worst  case. 

Upper bound 
We use  the following conventions throughout  this 
paper. 

1 .  Given  two  sets, S and T ,  S - T denotes  the  set of all 

2. If S is the  empty  set, we arbitrarily set min S = max S= 
0. Otherwise, if S is a non-empty set of real numbers, 

elements in S and not in T .  
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then min S (max S) denotes  the least (greatest) 
element in S. 

3. If  u:n + fl", then for i E n, .j E k, uj(i) denotes  the 
jth  component of u ( i )  . 

4. We use E' (or simply E, if k is obvious)  to  denote  the 
vector in d'with all components  equal  to E. 

5. We  use I; (or simply I j  , if k is obvious)  to  denote  the 
vector in 0" with all components  zero,  except  for  the 
j t h  component, which is 1 .  

6. For all real numbers r ,  r r 1 denotes  the least  integer  i 
such  that i 3 r,  and LrJ denotes  the  greatest integer i 
such  that i 5  r. 

Lemma I [ 1 3 ]  For  every function f :m + { v i r  1 O}, 
there  exists a  function g : m  + {O, &, l }  such  that,  for all 
i, j E m. The  statement f ( i )  + f ( . j )  1 1 implies that 
g ( i )  + g ( j )  1 1, and 22, g ( i )  5 Z 2 , f ( i ) .  

Proof Let 

U f =  { f ( i ) l i E  m andf(i) g io,+, 111, 

L f =  { i i f ( i )  E U,andf(i) > +}, 

Sf= {ilf(i) E U,andf(i) < i}, 

V,= {ili E Lfandf(i)  + min { f ( j ) I j E  Sf} 1 l } ,  

max  {f(i)li E (L,- Vf)} if L f #  V,, 

otherwise, 
a,= {, - 

and 

W f =  {iii E Sf and a,+f( i )  < l } .  

The proof proceeds by induction on  the size of U,, 
If I U,l = 0, by setting g = J; the lemma is trivially true. 
Let us suppose  that  the lemma is  true  whenever I Ufl 5 p ,  
and assume then I Ufl = p + 1 .  We now consider  three 
cases. 

Case  I I W,l = 0. We first observe  that, by definition of 
W,, IW,l = 0 implies Sf = 0. Consider  the function 
g:m + { 0, 3, l }  such  that,  for all i E m, 

i f f ( ; )  g U,, 

iff(i) E U, andf(i) > 1 ;  
g ( i )  = f i )  iff(i) E U,andf(i) < 1 ,  and 

g certainly has  the required property.  The lemma 
follows. 

Case 2 I V,l 5 I Wfl # 0. Consider  the function f '  :m + 

{ rl r 1 0} such  that,  for all i E m, 

f (  i) if i E Vf U W,, 
if i E Vf, and 
if i~ Wf. 
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Notice  that  the size of the  set U p  = { , f ’ ( i )  Ii E m and 
j” (i)  g {O, 3, 1 } } is no  greater than p .  By induction 
hypothesis,  there  exists a function g :  m -+ {O,;, 1 )  such 
that,  for all i, j E m, f ‘ ( i )  + f ‘ ( j )  1 1 implies g (  i) + 
g( , j )  1 1 and X:=, g(i) 5 X;:,,f‘(i). By the  construction of 
f ‘ ,  for all i, j E  m,f(i) + f ( j )  1 I impliesf‘(i) + f ‘ ( j )  11 
and X:, f ‘ (  i) 5 X:, f (  i) . The lemma  follows. 

C U S ~  3 I V,l > I Wf I # 0. Consider  the function f “  : m .+= 

{ r l r  1 0) such  that,  for all i E m, 

1 f ( i )  if i V,U w,, 
f ” ( i )  = a, if i E V,, and 

1 - a, if i E W,. 

Notice  that  the size of the  set Uf ,, = { f ” (  i) I i E m and 
f’”(i) g (0, +, I}} is no  greater than p .  By induction 
hypothesis,  there  exists  a function g :  m + { 0, B, 1 } such 
that,  for all i, j E m, f”(i) + f ” ( j )  1 1 implies g(i) + 
g ( j )  1 1 and XI”,, g(i) 5 X E , f ” ( i ) .  By the  construction of 
f ” ,  for aII i , j ~  m,f(i) + f ( j )  1 1 impliesf”(i) + f ” ( j )  2 1 
and XI“,, f ” (  i) 5 X:, f ( i )  . The lemma  follows. 0 

Definition a) A functionf:m -+ 8‘ is called,fina/, if for all 
i,j E m there  exists p E k such  thatfp(i) + f , ( j )  1 1 .  b)  
For rn, k 1 I ,  we use 9 ( m ,  k )  to  denote  the  set of all final 
functions f :m + 8’. c)  For rn, k 1 1 ,  we use p(m, k )  to 
denote min{max {XI”,,fj(i)ljE k}IfE 9 ( m ,  k ) } .  

Rc3rnark Given a function u : n  -+ 8‘ and a u-irreducible 
partition, Y = {SI , .  . ., S m } ,  the  functionflm + 8” given 
by , f ( i )  = X h E S , v ( h )  is final. Observe  that rn 1 opt(u) 1 
max{8~=,u j ( i )   I jEk}=max{X2, j j ( i )   I j€k}Ip( rn ,k) .  
Hence,  lZl/opt(u) 5 I T l / p ( r n ,  k )  5 m / p ( r n ,  k ) .  We 
will calculate the  exact value of p(m,  k )  and  use it to 
prove  that lZl/opt(u) 5 ( k  + I )  for all Z E g ( u ) .  

Lc.rnma 2 For  every final function u : m + 8 ,  there  exists 
a final function u :m + {O, 3, 1 }” such that a )  for all j E k, 
X:, u j ( i )  5 X i = ,  u j ( i ) ;  and b) either  the size of the  set 
S, = {ili E m and u j ( i )  = 1 for somejE  k} is not less  than 
rn - 1, or  there  exists a j ,  E k  such  that, for all i E m - 

rn 

s,, u.  ( i )  = ;. 
3 0  

Proof For  every final function u : m - 8’, by Lemma I ,  
there  exists a final function ut  :m + ( 0 ,  t ,  1 }” such  that 
X:, vi (i) 5 s:Ll u j (  i) for all ,j  E k. Let S,, = { il i E m and 
vi ( i )  = 1 for some j E k}. The proof of this  lemma  pro- 
ceeds by induction on the size of m -  s,,. If Im- S,,I 5 1 ,  
then by setting u = u ’ ,  the lemma is trivially true.  Suppose 
the lemma is true  whenever / m  - S,,I 5 1. Assume then 
Im - S,,I = 1 + 1. If there exists a j ,  E k such  that,  for all 
i E m - S,, ,  u!  ( i )  = 3, then, by setting u = u’, the lemma 
is trivially true.  Otherwise,  consider the following two 
cases: 

Case I there  exists i,, i, E m - SU,,j l ,  j ,  E k with i, # i, 
and j ,  # j ,  such  that u,’ (i t)  = u,’ (i,) = + and ui2(il) = 

3 0  
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u.’ (i,) =+. Consider  the function w:m + (0, f, 11’‘ such 
that,  for all i E m, 
J P  

I u ’ ( i )  if i {i,, i,}, 

w( i) = I;, if i = i,, and 

I;, if i = i,. 

Notice  that  the size of the  set S ,  = {iiwj(i) = I for 
some i E m and j E k} is greater than the size of S,,. 
Hence, I m - S,I 5 I ,  and we apply the induction  hypoth- 
esis  and the  fact  that X;:, y ( i )  5 x:, u j ( i )  for all j E k. 

Case 2 For any  pair i,, i, E m - S,,, with i, # i,, there 
exists  a j ,  E k  such  that vi (i,) = vi (i,) = 3 and,  for all 
j E  k and j # j , ,  u,’(i,) + uj ( i , )  5 f. 

In this case,  there must exist an i, E m - S,, and j,, 
j ,  E k with j ,  # , j ,   # , j ,   # , j , ,  such  that vi (i,) = u’. (i,) = 

u!  ( i  ) = 0 and u!  (i,) = u!  (i,) = v! (i,) = u!  (i,) =+, since 
u’ is final. Consider  the function w:m + {O, 3, l }k  such 
that,  for all i E m, 

-12 

33 12  12 J:J 3 3  

I u’(i) if i {i,, i,, i,}, 

I;, if i = i,, 

I I;, if i = i,. 

By an argument similar to  that used in Case I ,  the 
lemma follows  from the induction hypothesis and the  fact 
that XI”,, w > ( i )  5 X;:, u,’ (i) ,  for all j E k. 0 

Theorem I For all m 1 2 and k 1 1, p ( m ,  k )  = 

Lrn/ ( k  + 1) J + / ( m ,  k ) ,  where 

i 0 i f m = O m o d ( k + l ) ,  
/ ( m ,  k )  = 1 if m = 1 mod ( k  + l ) ,  and 

1 otherwise. 

Proyf By Lemma 2, it follows that  there  exists  a fi- 
nal function u :m -+ (0 ,  3, l}’ such  that a) max{XI”,, 
u j ( i ) I j  E k} = p(m,  k ) ,  and b )  either  the size of the  set 
S ,  = {iluj(i) = I for some i E m and j E k} is no less  than 
m - 1 or  there  exists a,j, E k  such  that,  for all i E m - S,, 
u.  (i) = i. Let m = a(k + 1 )  + /3 where a, /3 are integers 
such  that a 1 0 and k 1 /3 1 0. Notice  that,  since m 2 2 ,  
we  have a + /3 1 1 .  Furthermore, a + /3 = 1 implies /3 = 0. 
Let us first prove  that p(m, k )  1 L r n /  ( k  + 1 )  1 + I (  m, k )  . 
Consider  the following two  cases. 

3 0 

Case I lS,l 2 m - 1 .  In this case, we have 

i = l  
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if p = 0, and ’ 1; + 1  otherwise. 

On  the  other  hand, 

L m / ( k +  l ) J + l ( m , k )  = a + I ( m , k )  

1 CY if /3 = 0, 

= a + $  i f p = l , a n d  

(Y + 1 otherwise. 

Obviously, p ( m ,  k )  1 Lm/ ( k +  1) J +l(m,  k )  in  this case. 

CUSP 2 I SUI 5 m - 2 and  there exists;, E k such  that,  for 
all i E m - S,, u.  (i) = +. 

Consider  the  set T = { i lu. ( i )  > O}. If 1 TI 1 2a + 
21( m, k )  , then 

30 

p ( m ,  k )  = max uj(i)l.;E k 

30  

i‘“ i = l  1 
1 

u j p  

m 

i = l  

1) X IT1 

1 a + l (m,  k )  

= L m / ( k + l ) J + l ( m , k ) .  

If, however, I TI 5 2a + 21( m, k )  - 1 ,  then k # 1. 
Otherwise we have I SUI 5 m - 2 and I TI 5 2a + 21( m, k )  - 
1 = m - 1. The  sizes of S, and T imply that u is not final. 
Notice  that 

p ( m ,  k )  = max uj(i)  Ij E k i m  i = l  I 
{ m  i = l  I 2 max u j ( i )  Ij E k - { j O }  

2 urn- 1 ~ 1 ~ -  1)1 
m P  

(since 
u j ( i )  2 m - I T I )  

i = l  j=l,j#jO 

I r ( f f ( k  - 1) + p - 21(m, k )  + i ) / ( k  - 111 
= a + l  

1 Lm/ ( k  + 1) J + I (m,  k ) .  

Hence, in all cases p ( m ,  k )  2 Lm/ ( k  + 1) J + l (m,  k ) .  
We next show that p ( m ,  k )  5 Lm/ ( k  + 1) J + l (m ,  k ) ,  
and thus  complete  the proof of the  theorem.  For all 
m 1 2 and k 1 1, consider the function T : m + 8’ such  that 

+ x I ,  if i E 1 mod(k + 1)  or 2 mod(k + l ) ,  

if i = 0 mod(k + l ) ,  and 

if i E p mod(k + 1 )  and p 1 3.  

ND G. MARKOWSKY 

Obviously, T is final and X z l  ~ ~ ( i )  = max{2z1 ~ ~ ( i ) )  
j E k}. Notice  that ~ ~ ( i )  = Lm/ ( k  + 1) 1 + l (m,  k ) .  
The result now follows  from the definition of p ( m ,  k ) .  

0 

Theorem 2 If u:n -+ O P ( k  I 1)  and 2 E V ( u ) ,  then 
I2 l /op t (u)  5 ( k +  1).  

Proof We first observe  that if opt(u) = 1, 1 2 ’ 1  = 1 for 
all 2 E V ( u )  [in fact V ( u )  = {{n}}]. Clearly, the  theorem 
is true in  this case.  Hence, we may assume  opt(u) 1 2. 
From  the remark  preceding Lemma 2 ,  it follows that 
I2 l /op t (u)  5 (max{m/rp(m, k ) l l m  1 2 ,  k 1 I}).  
However,  for all m 1 2,  and k 1 1 ,  we  have m/  r p (  m, k )  1 
= m/TLm/ ( k  + 111 + l (m,  k ) l  = m / r m /  ( k  + 111 5 
m / [ m / ( k +  I ) ]  = k +  1. 0 

We  next show  that  the  upper bound  derived in Theo- 
rem 2 is sharp. 

Theorem 3 For  every integer k 1 1 and 6 > 0, there 
exists  an integer n and a  function u :n  + O k ,  such  that 
for  some Y E V ( u ) ,  I2 l /op t (u)  1 ( k +  1 - 6 ) .  

Proof Let L be a positive  integer  such that L 1 
[ ( k + 1 ) / 6 ] - 1 . L e t & = 1 / [ ( k + l ) L ] a n d n = 2 ( k + f ) L .  
Let u :n -+ 8‘ be given  by 

I $( 1 - & ) I l  if i 5 2L, 

( I - e ) I j  i f j L + 1 5 i 5  ( j + l ) L  
u ( i )  = 

(for 2 5 j 5  k ) ,  and 

E if (k + 1)L + 1 5 i. 

Let 2’ = {S,;  . ., S ( k + l ) L } ,  where Si = {i, ( k  + 1 )L  + i} for 
a l l i =  1,2;.. ,  ( k + l ) L . C l e a r l y , 2 E E ( u ) . L e t 2 ‘ =  
{Si; . ., S;,,}, where 

{2i-11,2i}U{jL+i12~j5k}, i f 1 5 i z L ,  

{ r l ( k +  1)L+ 1 5  tz  2 ( k +  I)L}, if i = L +  1. 
s; = 

Clearly, 2” E %‘(u),  and  ILZl/opt(u) 1 lUl/l2?’l 1 
( k t  l ) L / ( L +  1 )  I k +  1-6.  

Lower bound 
Let 2(d, u )  denote  the partition of n produced by a 
bin packing  algorithm d with respect  to a given func- 
tion u:n + Ok. If d is reasonable, then 2’(d, u )  is 
necessarily  u-irreducible. Theorem 2 then indicates that, 
for any  given u, the  ratio lU(d,  u )  I /opt( u )  is bounded 
above k + 1, a value independent of n. However,  unless 
N P  = P,  no’reasonable algorithm will do  very well, as 
indicated  by the following theorem. 

Theorem 4 If N P  # P,  then,  for any reasonable bin pack- 
ing algorithm &‘, there  exists a function u:n -+ OP such 
that I2’(d, u)l/opt(u) 2 3 / 2 .  
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Proof We shall show  that if there  exists  an algorithm d, 
such  that Y(d, u )  /opt(u) < 3 / 2  for all u : n  + 8 ,  then 
we can effectively design  a specific polynomial-time- 
bounded algorithm to solve one  NP-complete problem. 
The specific NP-complete problem we pick is the so- 
called partition  problem  which can be stated  as follows: 

Let  the  input  be a set of II nonnegative  integers 
Y = {xl, x,, . . ., xn}, and try to  determine  whether  there 
exists a  partition of Y into subsets U and V such  that 

To  determine  whether a given input  has such a prop- 
erty,  consider  the following polynomial-time-bounded 
algorithm: 

S tep  1 Check  to  see if any xi is greater  than +C,n=, xj, 
for i = 1, 2,. . ., n. If the  answer is positive, Y does 
not have  the property. Otherwise, go to  step 2. 

‘x,€ I/ ‘ j  ‘x,€ V x k .  

S tep  2 Evaluate  the function u :n + d ,  given by 

2x. 
u ( i )  = +, for all i E n. 

x xj 
j = 1  

S tep  3 Compute 2(d, u ) .  If I T ( & ,  u )  I = 2, then Y has 
the  property.  Otherwise Y does  not  have  the 
property. 

Notice  that 2:=1 u ( i )  = 2 and Y ( d ,  u )  is u-irreduc- 
ible, implying that lY(d, u)  I is either 2 or 3. Since 
I T ( & ,  u)l/opt(u) < 3/2 ,  so opt(u) = 2 if and only if 
lY(d, u ) /  = 2. 0 

Remark The lower  bound given here is a very loose  one. 
In  fact,  we  never  take  the  factor k into consideration. 
The  improvement on this lower bound is highly likely. 

Lower bounds for specific algorithms 
It  is worthwhile to  examine  the  performance of the 
k-dimensional analogs of some popular  one-dimensional 
bin packing  algorithms (FF, BF,  FFD,,  FFD,,  FFD,, 
BFD,,  BFD,, and BFD,).  We summarize the  results in 
the following theorem. 

Theorem 5 For any  integer k 1 I and  real  number 
6 > 0, there  exists an integer n and a  function u:n + Ok 
such  that all the FF,  BF,  FFD,,  FFD,,  FFD,,  BFD,, 
BFD, and BFD, algorithms will yield the  same partition 
A E V ( u ) ,  such  that IA//opt(u) 2 ( k  - 6 ) .  

Proof For  any integer k P 1 and  real number 6 > 0, the 
theorem is trivially true if 6 1 k or k = 1 .  If k > 6 and 
k > 1, let the integers M ,  N,,  N,; . 1, N ,  be chosen in such 
a way that ( k / 6 )  - 1 5 M < N ,  < N ,  <.  . . < N,, and let 
c 5 l / [ N , ( N ,  - l ) ( k  - l ) ] .  Furthermore,  set n = 

X:’, M N ,  and let Aj E 0‘ be the  vector whose j th compo- 
nent is equal to 1 / N j ,  while all the  other  components  are 
equal to c. Now define u’:n -+ 0” such  that, for all i E n, 
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u ( i )  = 

if 1 5  i 5  M N , ,  

if 1 + M N 1 5  i 5  M N ,  + MN,,  

j - 1  

if 1 + x M N h 5   i 5  x MN,,and 
j 

h=l h=l 

.. . 
if 1 + x M N h 5  i 5  x MN,. 

h=l  h=l 

It is easy to  see  that all the  FF,  BF,  FFD,,  FFD,, 
FFD,,  BFD,,  BFD, and BFD, algorithms will yield 
the  same partition, A = {Sl, S,, . . ., SkM} E V ( u ) ,  where 
forall j ,  1 5 j 5 k M , i f j = a M + / 3 w i t h O 5 a 5 k - l a n d  
0 5 p 5 M ,  then Sj = { ill + M N ,  + ( p  - 1) 
5 i 5 X;=, M N ,  + PN,,,}. Notice  that  the ( a  + 1)th 
component of Z jEs, u ( i )  is  equal  to 1 and all the  other 
components of Xi,s, u ( i )  are equal to c which is less 
than 1 by the selecfion of c. 

For  convenience, let 

vi,j = {pi 1 + .x M N ,  + (i - 1) ( N ~  - 1 
j-1 

h=l 

j-1 

5 p 5 ‘x M N ,  + i ( N j  - l ) } ,  
h=l 

where i E M and j  E k. Furthermore, fo r j  E k, let 

W j = { q l l  + x M N h + M ( N j -  I )  5 q 5  x MN,}. 
j - 1  j 

h=l h=l 

Consider  the partition P’ = [Si; .., Sg,, ] ,  where 

-I u vi,j i f i # M +  1,and 
j = 1  

si - 

u W j  i f i = M +  I .  

It is easy  to verify that P‘ E %‘( u)  . 
j = 1  

ObservethatlAl/opt(u)?IAl/IP’I=kM/(M+I)= 
k - ( k / M +  1 ) )  2 k - 6 .  0 

Remark.  We do not claim that  the  lower bound  in 
Theorem 5 is sharp.  In  fact, reasoning as in Theorem 4 
and using the  results in [ 1 - 51, it is not hard to show  that, 
for any 6 > 0, there  exists  some function u:n -+ eli, for 
which the FF algorithm produces a  partition A E %?( u )  , 
with lAl/opt(u) 1 k + (7 /10)  - 6 .  
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