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Digital Technique  for Generating Synthetic  Aperture 
Radar  Images 

Abstract: This paper describes a digital processing  method  applicable to a synthetic  aperture  radar,  to  be carried by the  space  shuttle or 
by satellites. The  method uses an earth-fixed coordinate  system in which corrective  procedures  are invoked to  compensate  for  errors 
introduced by the satellite  motion, earth  curvature,  and wavefront curvature. Among the  compensations  discussed  are  those of the co- 
ordinate  system,  skewness, roll, pitch,  yaw, earth  rotation,  and  others.  The application of a Fast  Fourier  Transform in the numerical 
processing of the two-dimensional  convolution is discussed in detail. 

Introduction 
Synthetic  aperture  radar  (SAR) is a system  capable of 
high resolution. I t  is a  relatively new development which 
will soon  join  an  array of other  instruments in space,  such 
as high resolution scanners,  for  observation, mapping, 
and imaging of the earth‘s surface.  The  SAR is not  only  a 
logical complement in the  spectral domain to  these  scan- 
ners;  it  has its own particular  application because of its 
all-weather  capability. 

In  the  space applications now being contemplated, a 
fairly high resolution is required; many corrections not 
needed in aircraft  applications must  be applied. For 
example,  the earth’s curvature must  be considered,  as 
well as  curvature of the wavefront. The  latter  becomes 
particularly important when  so-called  multiple  looks are 
used to rid the image of a speckle effect [ 1 1. In  that  case, 
the size of the  synthetic  antenna might be  increased 
several times in accordance with the resolution  require- 
ments. 

Furthermore,  the high altitude at which  satellites  travel 
will require  the  synthetic  aperture  radar  to make image 
corrections  to  compensate  for undesirable spacecraft 
motion [2, 31. Even if no  such motion is present,  the 
system must correct  for  the earth’s rotation. 

The method  followed here  assumes a coordinate sys- 
tem fixed to  the earth’s surface.  This  leads  to a treat- 
ment of the problem  in the time  domain. If a coordinate 
system had been  chosen fixed to  the  radar,  the problem 
would have  been formulated  in the  frequency domain. 

This  paper  describes a  possible digital data processing 
method to  obtain  the high resolution  required. After a 
discussion of the limitations of conventional radar,  the 
principles of a synthetic  aperture and  chirp radar  are 
briefly explained. The equivalence of the time  domain 
formulation and  the  Doppler shift  method is  shown. A 

detailed derivation of the signal is given, and it is  shown 
that a  two-dimensional  convolution  integral may be used 
to obtain an approximation of the reflective properties 
of the surface. This approximation gives rise to a cor- 
rection for wavefront curvature.  Furthermore,  the multi- 
ple  look feature is formulated,  and a  method of correcting 
the wavefront curvature is suggested. Spacecraft motion 
corrections  are given together with corrections  for  earth 
curvature and rotation. Finally, an  estimate is made of 
the number of multiplications necessary  for digital data 
processing. 

Limitations of conventional radar 
The prime  consideration of radar as a target  position 
measurement tool, as  compared with other  devices, lies 
in its ability to  make  direct  measurements of radial  range 
in terms of the round-trip  time  delay of the propagated 
signal. However, when  conventional radar  is used as  an 
imaging device,  its  resolution is limited in both  the 
azimuthal and  the radial  (i.e.,  along-track  and cross- 
track,  respectively) directions. 

The limiting size of an  object discernible on  the ground 
is given by Rayleigh’s expression [4], 

where r is the  distance  to  the object  measured from  the 
antenna, L is a  linear  dimension of the  antenna,  and A is 
the wavelength. For example,  let r = 200 km, A = 0.23 m, 
and L = 12 m, which is equivalent to a resolution of 
4000 m. For improved  resolution, it is necessary  to in- 
crease  the size of the  antenna. 

Separation of two  targets in a radial  direction depends 
on  the length of the pulse. Radar  receivers  use filters that 
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Figure 1 Synthetic aperture. 

do not  necessarily  retain the  shape of the pulse; rather, 
they maximize the signal-to-noise  ratio.  If the pulse 
duration is T ,  the velocity of light being c (3  x 1 O 5  km / s ) ,  
the radial  resolution is given approximately by 

For a 1 - p s  pulse, the radial  resolution is 150 m. Since 
both resolutions are unsatisfactory for imaging applica- 
tions,  a  means for improving the resolution  must  be  found 
without  increasing the physical size of the  antenna. 

Principles of synthetic aperture  radar 
The resolution deficiency of conventional  radar  systems 
may be overcome by the following techniques: 

Azimuthal  resolution may be  improved by artificially in- 
creasing the length of the  antenna. A simplified one- 
dimensional representation of this process is shown in 
Fig. 1. A satellite  moves along the indicated line of 
flight. When it reaches point Ql, the beam transmitted by 
its antenna  commences to illuminate point  P. The re- 
flected, or  returned, signal continues  to  return from  point 
P until the vehicle reaches point Q,. By properly filtering 
the signal recorded  between points Q, and Q,, the reflec- 
tive properties of P can be  determined with a  resolution 
corresponding  to  that produced by an antenna of length - 
M = Q,Q,. 
Radiul  resolution may be  enhanced by a technique known 
as pulse  chirping, in which  conventional radar pulses are 
transmitted in rectangular  pulse trains, with a sinusoidal 
signal. Pulse  chirping [5] is accomplished by frequency 

41 6 modulation of the signal in the rectangular  pulse, where 
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each  instantaneous  frequency  determines a particular 
part of the pulse.  Usually  linear frequency modulation 
is used  and the pulse duration  is increased somewhat. 
Thus, 

where f indicates frequency, r is the pulse  width and t 
denotes time. The indices  b  and  e  refer to  the beginning 
and  end of the pulse,  respectively. 

Upon  reception,  the pulse is fed through a delay filter, 
where  the  frequency f is delayed according  to 

d = do + (5) r. 

The  instantaneous  frequency f b ,  at  the beginning of the 
pulse, is received first. However,  it is delayed so that  the 
end of the pulse,  which arrives  later from the  same 
ground  point, will coincide with the beginning of the 
pulse. This is true  for  each  intermediate  frequency,  as is 
shown  by the  expression  for  the delay. The energy  in the 
received  pulse becomes  concentrated,  therefore,  at  the 
moment the  instantaneous  frequency f e  amves  (apart 
from  a constant delay d o ) .  

The  process  described  corresponds mathematically to 
a convolution, as is shown later. The ideal process can 
be  approximated only because of the finite bandwidth of 
the receiver. If a  resolution 6, is required, it can be seen 
from Fig. 2 that 

Substitution into  Eq. (2) gives 

A j E  -. C 

26, 

The increased  resolution of the  synthetic  aperture is 
described mathematically in the  same way as  that  ob- 
tained with the modulated  chirp pulse in the radial  di- 
rection. However,  the  frequency  sweep in the  former is 
due  to  Doppler shifting caused by the relative  radial 
velocity of the  spacecraft with respect  to  the individual 
ground elements.  There  are  two different ways of 
describing the SAR that  are completely  equivalent. The 
first method uses  the  Doppler  shifts, while the  second 
method uses  the difference in delay between trans- 
mission and reception of the  wavelets.  The  latter method 
is used  here. 

The difference between  the  two  methods  is  that in the 
Doppler  description,  the  coordinate  system moves  with 
the  spacecraft, while in the  second method the  coordinate 
system is fixed to  the ground. That  they  are equivalent 
can be  seen  from Fig. 3 ,  which shows  the basic derivation 
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of the  Doppler effect. Suppose  the  spacecraft S located 
at point (x ,  y )  is moving with  velocity u.  A reflector at 
point (x), y ' )  reflects the wave transmitted  from S. If  the 
distance is r and  the wave transmitted  from S is given 
by coswt,  then  the received signal can be described by 

2 r ( x  - x',  y - y ' )  
C 

where x is a reflection coefficient. This is true in both 
coordinate  systems  because of the invariance of c .  

(Modification of the signal due  to chirping is not con- 
sidered in this discussion.) The delay caused by a  wave 
traveling with velocity c over a distance of 2r equals 
2 r / c .  The 4 symbol represents  the  phase shift caused by 
reflection. Transformation  to  the  spacecraft  coordinates 
is accomplished by using the mapping x - x' = ut and 
substituting  this in Eq. (4) .  

By writing 

r = [ r i  + ( x  - = ( r i  + u2t2)t 
and substituting  this into  Eq. (4), one  obtains 

with 

The  instantaneous  frequency is defined as 

4 0' -. 
dt 

It  follows  from Eqs. (7 )  and (8) that 

" d4 2 0  u2t 2uw U t  -0" 

dt 
=a" 

c (r; + V 2 r " ) t  c ((+ U't2)t 
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Figure 2 Contracted pulse shape. 
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Figure 3 Effective Doppler velocity. 

which  indicates that  the  apparent  frequency is changed by 
an  amount equal to 

Am = - - sin 7. 

This is just  the  Doppler shift due  to  the relative radial 
velocity, which indicates that  the two  methods are 
equivalent. 

This  Doppler shift is twice that of the usual Dop- 
pler  shift because it assumes a receiver  approach- 
ing a source.  This gives  rise to a signal proportional to 
coso[t - ( r / c ) ] ,  while the  active  radar shift is derived 
from  cos w [ t - ( 2 r /   c )  1. Finally, the relativistic  correction 
factor [ 1 - ( u / c ) ' ] - +  is neglected. The  coordinate  sys- 

( 2 3  (9b) 

tem used in the following pages is the  one fixed to  the 
ground. Occasionally, however,  reference is made to  the 
Doppler point of view. 

Transmitted and  received signals 
The  transmitted signal is sinusoidal and is represented 
by cos4  where 4 is a  function of time. In this case,  the 
frequency is chosen to be a linear  function of time as 
shown in Fig. 4. 

During the transmission of a  pulse of duration T( s) , the 
frequency is linearly modulated and  can be represented 
by 

w = wo + at ( 10) 

and 

j T + t , Z   t 5 j T + t o + T ,  

where j is a  positive integer, 0 5 j ,  and to is the time at 
which the first pulse occurs. 

Subsequently,  the  frequency  returns  to the value wo, 
remaining there  for  the remainder of the period T .  That is, 
after  one full period, the  phase  becomes 
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Figure 4 Chirp frequency as a function of time. 

= 4, + o,T + 4aT2, (11) 

where +,, is the  phase  at  the beginning of the  frequency 
sweep. 

At  the beginning of the  nth pulse, the  phase is 

+ = +, + w , ( n  - l ) T  + t ( n  - 1)(YT2, ( 1 2 )  

and at time t during the nth  receiving period,  the  phase is 

+, = +,+ o,t +<+na~', t 2 0. (13) 

The receiving  period is the time  during which the  fre- 
quency is constant, while transmission is suppressed.  At 
time t' during the rnth transmission  period, the  phase is 

~ , = + , + o , t ' + a ( r n - 1 ) Q T 2 + ~ ~ [ t "  ( m -  1)T]', 

t' ? 0. (14) 

Suppose  that a signal, transmitted during the rnth 
transmitting  period at time t ' ,  is received at time t during 
the nth receiving period. This signal is 

4x1 cos (4, + 4,) dx'dy', 

where I X I  dx'dy' is the fraction of the amplitude reflected 
per  elementary  area, +, is the  phase shift introduced  upon 
reflection, J is a constant  to be determined in a later 
section, and dx'dy' is the  elementary  area.  In  order  to 
register the phase of the signal, quadrature  detection may 
be  used [6].  In  the  quadrature  detector,  the signal is 
multiplied by cos+,,  as well as by sin+,. 

Upon multiplication by cos+,,  the signal amplitude 
per unit area becomes 

S" = 4x1 cos  cos (4z + +x) 

= f Jlxl [cos + 4' + 4,) + cos - +z - +,)I. 
The use of a low pass filter results in 

s: = 3JlXl cos - 4' - 4,) 

= 3~1x1 COS {o,(t - t ' )  - +a[t' - ( r n  - 1) TI' - +;I, 
( 1 5 )  

where 

+; = +x - f ( n  - m + 1 )(UT2. 

If 

x, = 1x1 cos 44, and 

x, = 1x1 sin +;, 
then 

ST = ~ J X ,  cos {w,(t - t ' )  - ta[t' - ( m  - 1) TI'} 

- AJX, sin {o,(t - t ' )  - b [ t '  - ( r n  - 1) TI'}. 
(16) 

Similary, if the signal is multiplied by sin +,, 
S: =4Jx, sin { w , ( t -  t ' )  - f a [ t ' -  ( r n -  1 ) T I 2 }  

+ ~ ~ ~ , c o s { o , ( t - r ~ )  - b [ t ' - ( m -  I)T]'}. 
(17) 

Furthermore if 

x = 1x1 exp i+; = x, + ix,, 

Eqs. ( 16)  and ( 17) can  be combined to give 

S*=&Jxexpi{w,( t - t ' )  -3a[ t ' - ( rn-  1) TI'} ,  (18) 

where 

s* = s; + is;. 
If the reflector is at a distance r from  the  transmitter, 
then 

t - r ' M - ,  2r 

or,  more precisely, 

( 2 0 )  
C 

Equation ( 2  1) takes  into  account  the displacement of the 
spacecraft  between transmitting and receiving  times. In 
Eq. ( 2  1) , u is the  spacecraft velocity, c is the velocity of 
light, x is the  spacecraft location at the time of reception, 
x' is the point on  the ground at which the  wave  is  re- 
flected,  and r is the distance  between  the  spacecraft  and 
the ground  point at  the time of reception.  The  Appendix 
shows  that  the difference between  Eqs. ( 2 0 )  and (21) is 
usually negligible. 

To recapitulate,  the received signal, at time t ,  with  a 
phase given  by Eq. ( 14), is mixed in quadrature witH the 
signal from  the  transmitter whose phase at that time 
is given  by Eq. ( 13).  After low-pass filtering, the  two 
resulting signals are  the  real and imaginary parts of 
Eq.  (18). 

If Eq. (20) is used,  Eq.  (18)  can  be written as 
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As each element dx’dy‘ in the  swath reflects such a signal, 
this signal must be integrated over  the ground area.  The 
total signal received is 

x { 2 k r - -  4y[ t - - -  2 ( m -  l ) T ] i ) d x ’ d y ’ ,  

with 

where h is the wavelength of the radio wave.  The left 
side of Eq.  (23)  has been  written as s(x, t )  to indicate 
that a signal s( t )  is received for  each x. Therefore, while 
s(x, t )  is a continuous signal in t ,  it is a  sampled signal as 
a  function of x. The sampling frequency is equal  to  the 
pulse repetition frequency. 

Before  evaluation of the amplitude factor J ,  the  phase 
factor in Eq.  (23)  can be rewritten  (see Fig. 5 )  in the 
form 

2kr = 2k[v; + (x - x ’ ) ~ ] +  = +(x - x’, Y ~ ) .  

Furthermore, if 

then t ,  is equal to  the delay  time for a reflector at a 
distance r .  

Substituting these  expressions  into  the exponential of 
Eq.  (23) gives 

X exp - i - [ t  - t,- ( m  - 1 ) T ] 2 d x ’ d y ’ .   ( 2 7 )  (5) 
Next  the  factor J is evaluated. 

Derivation  of  the  amplitude  factor 
It is assumed that  the desired  result is the scattering 
cross-section u (energy  per unit area). 

The amplitude factor  depends  on this  scattering cross- 
section u ( x ’ ,  y’) as well as  on transmitted  peak power 
p ( t ) ,  system amplification K ( t ) ,  antenna gain G, 
and  antenna  area A,. 

The  antenna gain in the  direction of the element (x f ,  y ’ )  
is also a  function of the direction of the normal n to  the 
antenna and the angle of rotation R (see Fig. 5) and  can 
be  represented by G = G(x  - x‘, y - y ‘ ,  H ,  n, 0). The 
variables H ,  n, R are  added  because they  must  be  used 
to  correct  for  the unwanted  effects of spacecraft motion. 

From  the  radar equation (see [ 71 ) , the power received 
back at  the  antenna  from  one  square meter is 
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P ( t )  A, G u  
( 457-Hz) ‘ P,  = cos6 0, cos 8,, 

where P ( t )  is the peak power of the pulse  emitted at 
time t .  Lambertian scattering [4] is assumed  here; 
it accounts  for  c0s20,, which contributes  to c0s60,. 
The remaining c0s40  occurs  because  the  distance 
Y = H /cos0,  appears  as r4 in the  radar  equation [ 7 ] .  
The variables H ,  0, and 0, are all functions of the  space- 
craft position (x, y )  as well as of the  coordinates of the 
element ( x ‘ y ’ )  . 

From Fig. 5 we  see  that 

cos 0, = H [ H ’  + (x - x!)’ + ( y  - y t ) 2 ~ - f .  (29) 

The value of cos0,  can  be obtained  from the given 
direction of n. This direction is indicated by x,, y,, the 
coordinates of the point where n intersects  the ground 
plane,  which are  described by 

x, = x + Ax, and 

Y ,  = Y + AY,> 

where Ax, and Ay, are  the  changes with respect  to air- 
craft  position. It should  be  pointed out  that while x’, y’ 
are fixed to  the ground, x, and y ,  move  with the  space- 
craft. By appropriate  choice of the origin of the co- 
ordinate  system, y is usually close to  zero; however, 
unwanted spacecraft motion may cause it to have  a  value 
different from zero. To calculate  values of cos 0,’ we con- 
sider  the triangle PQR. Using the  cosine  rule and 
assuming that Ax,, Ay,, and H are given, one can  write 

(X  - X’ + Ax,)‘ + ( y  - y’ + Ay,), = Ax: + Ay: 

+ (X - + ( y  - y ’ ) ,  + 2H’ - 2 ~ 0 ~ 0 ,  
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from which cos 8, can  be obtained. The  important  fact 
is  that  cos 8, is a function of x' - x and y' - y only,  and 
not of x or X I ,  y or y' by  itself, or  any  other  function of 
these variables. Furthermore,  cos 0' can be corrected 
for  slow,  unwanted  spacecraft motion. 

Similarly, the gain is a  function of x' - x, y' - y ,  
and R only. The  antenna gain is a  function of two angles 
and  is  assumed  to  be given in tabular  form.  One of these 
angles can  be 8' (see Fig. 3 ,  while the  other angle is R. 
If the  antenna  rotates  around  the normal n, its  pattern 
rotates and the gain can  be  corrected  for  the  unwanted 
motion. 

Since J in Eq. ( 2 7 )  is  an amplitude factor while Eq. 
(28) describes  the  power,  the amplitude J of the  returned 
signal is given  by 

K ( t )  [ P ( t  - A)  A,G] )  
J =  

2 ( 2)3rrH2 
cos38, (cos e,)), (30) 

where K ( t )  is  the  system's amplitude gain between  the 
antenna  and  the  analogldigital (A/  D )  converter 
(inclusive). 

Furthermore, A is the  delay 2r /  c,  which may be several 
times greater  than  the pulse  repetition  period. Also, 

1 x 1  = d .  ( 3 1 )  

Finally,  the following change of variable is made: 

t' =; [ H z  + ( y  - y ' ) ' ] ; .  ( 3 2 )  

For a given H and y of the  spacecraft, a function of y' is a 
function of t ' .  The H and y vary slowly and  can  be  con- 
sidered constant  over fairly  large x. By introducing t ' ,  it 
follows from  Eq.  (32)  that 

2 

(33) 

By introducing Eqs.  (33)  and  (30)  into  Eq.  (27),  the 
latter can be  written  as 

X J ( x  - x', t ' )  exp @ ( x  - x' ,  t ' )  

X exp - i [ I  - tr  - (rn - 1) ~ l ' d x ' d t ' .  ( 3 4 )  

In this equation, ~ ( x ' ,  y ' )  has been written  as ~ ( x ' ,  t ' )  
to indicate that x can  also be  considered  a  function of t' 
instead of y ' ;  see  Eq.  (32). During  a  radial  convolution, 
however, H and y are  to  be  considered  constant  and  are 
allowed to  vary only when x varies. 

Under  certain conditions, Eq.  (34)  can  be approxi- 
mated and  solved by a double convolution, as  shown in 
the  next  section.  Since  the  function t ' ( x )  varies only 

420 because of unwanted spacecraft motion, it is assumed 

2 

that  tolerances  on this  motion are  such  that H and y can 
indeed  be assumed  to  be  constant  over  the length of the 
synthetic  antenna.  The main advantage of this double 
convolution is  that in the  frequency domain the problem 
is simplified to that of linear filtering. 

Convolution approximation 
Equation  (34)  can be written  as a double convolution by 
approximating t, with t' + c in the  second  exponential, 
where c is a constant  to be determined.  Equation  (34) 
then becomes: 

+m 

$ ( x ,  t )  = exp - i ( a / 2 )  [t  - t' - (rn - I ) T  - c]'dr' 
i ,  

+z 

X I-,, x ( x ' ,  t ' )  J *   ( x  - x', t ' )  

X exp $(x - x', t ' ) d x ' ,  (35) 

with 

The solution for x is obtained by solving first for u ( x ,  t ' )  
from 

This  is a convolution  integral. Its solution is 

$ ( x ,  t )  exp i ( a / 2 )  

x [ t - t t "  (rn- l ) T - c ] ' d t .  (38) 

Then ~ ( x ' ,  t ' )  can be found from 
+m 

u ( x ,  t ' )  = x ( x ' ,  t ' )  J ( x  - x' ,  t ' )  
I, 

X exp $ ( x  - x ' ,   t ' )dx ' .  (39) 

where J* has been written  as J .  This  is  also a convolution 
integral, and  it can  be  solved  by using Fourier  transforms. 
The exponential that  appears in Eq.  (37) is called the 
radial filtering function. 

The solution of Eq.  (37)  as given by Eq. ( 3 8 )  is usually 
not  practical. In general,  a  smoothing and a system 
response filter must be incorporated  into  the radial 
filter [ 8 ] .  Therefore,  the  analytic  inversion of Eq.  (37) 
is not used here. 

The  accuracy of the convolution is considered in 
another  section, but  before  doing this,  the "multiple 
look" algorithms are  derived. 
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Multiple looks 
Consider  an  antenna with a beam  width such  that  its 
synthetic  antenna length is M (Fig. 6) .  The resolution 
obtainable from  such  an  antenna is shown by 6 = rh / M ,  
where r is  the  distance from the line of flight to  the strip 
of ground under consideration. To obtain  this  resolution 
a  segment of length M of the complex signal u ( x )  is 
needed.  This function u ( x ) ,  convolved  with  a  suitable 
function h ( x  - x’ ), results in a function x (x‘  ). The com- 
plex signal u ( x )  is obtained from  the convolution of the 
received signal s(x) . 

As seen  from Fig. 6, if a resolution 6 is required, 
instead of using the whole length M for  one look at 
element E on  the ground, it is possible to  break up the 
synthetic length M into, say, r subsections and look at 
the element  from different angles. In Fig. 6, M has been 
divided  into four pieces  and E is looked at from four direc- 
tions. Since  each look  uses an  antenna of length M / 4 ,  the 
resolution is now about 46. The  data used for  each look 
are  independent. ( I t  is possible to  obtain,  for  instance, 
four  looks with a resolution better  than 46; however, the 
data  used  for  each look are  no longer independent in 
that  case.)  The signal received at point x by the  space- 
craft is u ( x ,  y ’ ) ,  and may be considered to  consist of 
several  parts. As shown in  Fig. 7,  u ( x ,  y ’ )  consists of 
four  parts ( u1 reflected from ground  section 1, u2 reflected 
from  section 2 ,  etc.) ; the problem to be  solved is how to 
separate u ( x )  into  these  four  parts, u , ( x ,  y ’ ) ,  u , (x ,  y ’ ) ,  
u , (x ,  y ‘ )  and u,(x, y ’ ) ,  each  part consisting of a different 
look. 

In solving the problem, y ’  is  kept  constant  at  the 
beginning, but is reintroduced  as a variable in the final 
results. The signal is separable  because  each  section i of 

of u ( x ) .  The  Doppler signal reflected from  section 1 has 
high positive frequencies,  and  the  one from  section 4 has 
high negative frequencies.  Sections 2 and 3 have medium 
positive  and  negative  frequencies,  respectively. By find- 
ing the  spectrum of u ( x )  and dividing it into four  parts, 

As an example,  look 1 is considered.  The  spectrum of 
look 1 (see Fig. 7)  is centered  around a positive fre- 
quency  because  the  transmitted signal is shifted  up in 
frequency by  reflections  from all points of the ground in 
section 1 (see Fig. 8 ) .  To obtain  the reflection co- 

I 

1 

i 

i 

i the ground contributes  to a different part of the  spectrum 

6 the four looks  can be separated. 

L efficient x ,  this signal u, must  be  convolved  with 

1 
where 

- “ > x - x ! > - .  M 
2 4 
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Figure 6 Four-look  processing. 
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Figure 7 Spectrum of u (x). 
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Figure 8 Four ground sections viewed. 

Because of this center  frequency,  the sampling fre- 
quency must be high. I t  is  shown  that by  heterodyning 
u l ,  the sampling frequency  can be reduced, in this case, 
by a factor of four. 

As  was shown in E q .  (39), 

The  phase  factor  exp 2ikr, has been incorporated  into x .  
This does not affect its  modulus  which is the  quantity of 
interest. 
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Figure 10 Limited accuracy of the chirp method. 

This equation can be written as 

~ ( x ‘ )   J ( x  - x’)  exp 

The second  term in the second  exponential contributes 
exp(3ikMx’/4ry) and produces only a phase shift in 
~ ( x ‘ ) .  It  can  be included in x. Again only the modulus of 
x and  not its phase  is of interest. The  same is true for 
the  factor  exp(-9ikMZ/64ry).  It is a constant  phase 
shift and is included in x. 

The remaining factor  exp(+3ikMx/4ry)  can be re- 
moved from under the  integral sign and moved to  the 
left side. The resulting equation is 

w,(x) = u(x)  exp ____ 
(-3:yMx) 

~ ( x ’ )  J (x - x’) exp x - x’ - Y ’ d x ’ .  
+m 

8 
(40) 

LINDT 

On the left of the  integral is the signal u,  heterodyned 
down with a  frequency 3Mk/  4ry.  On the right is the sum 
of all the reflections from the  ground. They  can be re- 
garded as a collection of Doppler  waves with instan- 
taneous frequency (2ku/rv)[x - x‘ - (3M/8)]  (see 
Fig. 9) .   I t  can be seen that if (x - x‘) is  kept  between 
M / 2  and M/4, these frequencies are around zero and are 
limited. The frequencies  on  the right side of Eq. (40)  are 
limited by limiting Ix - x’ - (3M/8) /  5 ( M / 8 ) ;  band 
filtering and  smoothing can therefore be accomplished by 
a suitable filter g[x - x’ - (3M/8)]  on the right, which is 
essentially 0 for  [x - x’ - (3M/8)  I > ( M / 8 ) ,  and 1 for 
(x - x‘ - (3M/8)1 5 (M/8) .  Equation (40) is then 
modified to 

and similar expressions  for  the  three  other looks. They 
are 

X g(x - x’ - M)dx’, 8 (41b) 

u(x) exp(-) +ikMx 
4rv 

In  the numerical procedure  heterodyning  is  accom- 
plished by assigning lower  frequencies to the different 
parts of the spectrum. Before proceeding it is necessary 
to consider the limitations of the  convolution as described 
in the  previous  sections. 

Accuracy of approximation 
Replacing t, by t’ + E. means using the approximation 
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[H: + ( y  - y ' ) 2  + (x - x1)2~+  M ry + M, ( 4 2 )  

where 

rI/ = + ( y  - y f ) z ~ + ,  

and (x - ~ ' ) ~ / 2 r ~  is approximated by w / 2 .  
The value of Ary = (x - x!)'/ 2ry varies from 0 to 

M 2 / 8 r ,  where M is the  synthetic  antenna length. With 
no  further  correction, this  quantity  must  be  smaller  than 
the resolution (see Fig. 10). In  the  case of multiple looks, 
the situation is  worse,  because  the  same condition holds 
for  each  quarter of the  synthetic  antenna.  Suppose a 
four-look process  is  required.  The  radar is at a  height H 
and  has a minimum side viewing angle a. The resolution 
is 6; thus 

A r = S A - S D M - .  3 M 2  
32% 

2r, 

" 

By eliminating M with the help of 6 = 4r,A/M, and 
applying the  constraint Ar < 6, one obtains 

For  example, if H = 2.40 X lo5 m, Omin = 20°, and A = 
0.2 m, one  achieves  the resolution 6 > 3 5  m. Therefore, 
it is necessary  to  correct  for this  effect due  to wavefront 
curvature, if a resolution better  than 35 m is required. For 
the  shuttle  radar,  as well as another proposed radar,  the 
required  resolution is about 25 m; in those  cases, a 
correction is required. 

Correction .for wavefront  curvature 
The  correction  for wavefront curvature is made by 
dividing the azimuthal swath  into a number of sections 
such  that  over  each section the  distance  to  the  radar 
does not  change more  than 6,. 

First  the  swath width is divided, in the azimuthal 
direction,  into a number of sections, with several  adjacent 
sections constituting a look. The intention is to obtain 
u,(x, t ' )  from section 1, u,(x, t ' )  from section 2,  etc., and 
then  combine these contributions for  the calculation of 
~(x', y ' )  by using the azimuthal  convolution on  each 
section separately.  The general equation was [see 
Eq. (3711 

+m 

s(x, t )  = j" Uf (x, t ' )  

x e x p - ; i [ t - t l -  ( m -  1 )  T - E : I ' ~ ~ ' ,  
2 

with u ( x ,  t ' )  replaced  by uE to indicate that  the solution u 
depends  on E .  By denoting Fourier  transforms with 
capital letters,  Eq. ( 3 7 )  can  be  solved by 

S(x, n )  = us (x, n )  H ( n ,  E:), ( 4 6 )  

X 

Figure 11 Sections with Ar < 25 m. 

where n stands  for  the angular frequency, and by 

H ( ~ , E )  = e x p - i - [ u -  ( m -  1)  T - E ] ~  
+m 

ff 

I, 2 

X exp ( inu) du 

= H ( n )  exp ( i n e ) ,  ( 4 7 )  

where H ( n )  is the transform for E: = 0. 

the  inverse  transform,  we  obtain 
By substituting Eq. ( 4 7 )  into  Eq. ( 4 6 )  and applying 

where 

It  appears  that u, can be  obtained from u by  inter- 
polation,  provided u is available for  several different 
values of t ' .  Since u is calculated for all ranges within 
the  swath, this  interpolation can be  performed as shown 
in the following computational  scheme. 

Suppose  the ground swath is divided in the azi- 
muthal  direction into J strips, as  shown in Fig. 11, 
where J = 16. For  each section an cj is chosen  to  ap- 
proximate (x - x')'/ ryc for thejth strip; i.e., 

( 4 9 )  
423 
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Figure 12 Spectra for interpolation. 

which corresponds to the  value  at  the  center point of each 
strip.  In  that  case, IArl 5 10 m for  each of the 16 sec- 
tions, (The values H = 794 km, 6 = 25 m, a = 20°, and 
four  looks  have  been  bsed,  corresponding to the  values of 
a proposed  radar.) 

Next,  the signal of each of the 16 looks is isolated by 
using the difference in Doppler shift  from the different 
ground sections.  Each  strip  corresponds  to a band in the 
Doppler  spectrum. 

The following computational scheme is adopted, with 
J = 16. 

1. Compute u ( x ,  t ’ )  with a radial  convolution for a 
number of radii at least  equal  to  the  number of points 
required for  the azimuthal  convolution. 

2. Obtain  the azimuthal spectrum u(1, t ’ )  in the usual 

3 .  The  spectra of several previous u(1, t ’ )  are kept in 
memory so that u is available for,  say,  four different 
t’ (see Fig. 1 2 ) .  

4 .  The  spectrum is divided  into 16 sections. If u(  1, t ’ )  is 
obtained  in, say, 16 384 points,  each  section  must 
have 1024 frequencies. 

5 .  To obtain  the first section of the first  look, the first 
sections of the  four  spectra  are  interpolated  to obtain 
u(1, t‘ + E ~ ) ,  where E ,  is obtained using Eq. ( 4 9 ) .  
Figure 12 indicates roughly where  the cj are  on  the 
time  scale. 

6. The values of I are reassigned the  proper values  in 
the total spectrum of the first look. In  the  case  under 
consideration,  the first look consists of 4096 fre- 
quencies.  The assigned frequencies  are 4095 2 I 2 
3072. The  spectrum is zero  everywhere  else. 

7 .  This  spectrum  is used for  the  spectrum of the left 
side of Eq. (41a), and similarly for  the  spectrum 
of the kernel 

manner. 

where only the high frequency  part (one-fourth of 
the  spectrum)  needs  to be  used. 

8.  Items 5 ,  6 ,  and 7 are  repeated  for  sections 2, 3 ,  h d  
4, using E ~ ,  E~ and E,, respectively,  to interpolate the 
spectra.  Furthermore,  the  proper values of 1 are 

W. J.  VAN DE LIND? 

assigned to  the  spectra  and  the  appropriate  part of 
the  spectrum of the kernel is used. 

9 .  The  four solutions of x so obtained are  added, and 
the resulting x is the first-look solution. 

10. The  same is done  for looks 2,   3 ,  and 4 .  

The method just  described is applicable if the  Fast 
Fourier  Transform (FFT)  method  is used to perform the 
convolution [ 9 ] .  Because  the  four  sections of each look 
have  the  proper  frequencies,  the four-look  resolution 
is retained. 

If each of the 1024 frequencies  for a section is as- 
signed to  be  around 0, the resulting  resolution would be 
the  ode obtained  with 16 independent  looks, with  loss 
in resolution of a factor of 16. This might be desirable as 
a  possible  option. 

Finally,  there  is  no  reason  to divide the  antenna  into 
16 equal  pieces,  as  was  done  here  to simplify the argu- 
ment. On  the  contrary,  it is advantageous  to  divide  the 
antenna  into unequal parts, with the smallest sections 
on  the  outside and the largest ones in the  center,  where 
the  cortection will be negligible. For example, the eight 
sections dividing M / 2  can  be, starting at  the  end,  four 
sections  each M /  32 long, two  sections  each M /  16 long, 
and finally two  sections  each M / 8  long. 

Correction for spacecraft motion 
Calculations of ~ ( x ’ ,  y’)  are performed in a right-hand 
coordinate  system  that is fixed to  the ground. The x axis 
is defined as  the line in which the ground  plane is inter- 
sected by the plane  formed  by the velocity vector of the 
spacecraft  and  the normal to  the  antenna opening. The 
y axis is perpendicular to  the x axis.  In this section, we 
discuss  the  corrections needed to  compensate  for  the 
errors  introduced by the motion of the  spacecraft  and  the 
rotation of the  earth.  In  the  next  section,  corrections to 
compensate  for  the  curvature of the  earth  are  considered. 

Corrections  are of three differetlt types: a )  correction 
of the  exponential  factors in Eq. ( 3 5 )  ; b)  correction of 
J ( x  - x’, t ‘ )  in Eq. ( 3 5 ) ;  and c )  correction of the  co- 
ordinate  system. 

Exponentials 
From  Eq. ( 2 5 )  we know that 

exp i+ M exp i k -  exp 2ikr,, and 

ry  = [H’ + ( y  - y‘ )‘I+. 
Suppose ry  is a function of t (or x )  due  to  spacecraft 
motion or noncircular orbit.  In  that  case,  the  exponential 

rY 

ar, aH ar,  ay 
exp 2ikr, = exp 2ik At + -- At +. . . . 

ay at 1 
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When considering a particular synthetic  antenna length, 
r y ( 0 )  represents  the value of ry  when  the  spacecraft is 
in the  center of the  (synthetic)  antenna.  The  two  other 
terms  are  due  to  changes in H and y as a  function of time 
and will vary  with x = ut, where u is the velocity of the 
spacecraft.  They  have  the  form  exp 2ikalx where 

If the vertical  velocity is due  to  eccentricity of the 
orbit,  the maximum  allowable eccentricity  can be  cal- 
culated. The vertical  velocity in an elliptic orbit is [ 101 

Here uH and uy are  the unwanted  velocities  in  directions 
H and y ,  respectively. 

The  factor  exp 2ikx(u,H) / [ u r y ( 0 ) ]  causes a  shift 
in the  frequencies,  as  can be seen by moving it to  the left 
side of Eqs. ( 4 1 ) ,  and  thereby  introduces a heterodyning 
frequency  that can vary as  a  function of time if uH varies 
with time. The numerical procedure is not affected 
(except  for  the assignment of frequencies).  The  factor 
exp -2ik( 2uy /  u )  [ ( y  - y ' )  / ry (  0 ) ]  equals  one  because 

This follows from  the way in which the  coordinate 
system is defined; i.e., the x axis is defined as parallel to 
the velocity vector  and must  be  redefined constantly 
due  to  earth  rotation.  Subsequent  terms in the  series of 
Eq.  (50) must be small. (The  term is of the  order of 
i kAH2/r ;  if AH M 25 m, k = 2 x 10" m, and r = 2.5 x 
lo5 m,  this  term equals lo-'.) 

Next  the  factor  exp ik[ (x - x ' ) ' / r y ]  must be  con- 
sidered.  As before, 

uy = 0. 

Since 

the condition 

must be satisfied, and  the  same is true  for  the  second  term 
for all expected  spacecraft motion. For a typical radar 
A = 0.20 m, after assuming [x - x'I 5 5  km, while ry  M 

250 km; and if 

2.rr (Ly AH << n-, 
0 .2  250 

then AH << 250 m. Since the 5 km are  covered in roughly 
0.5 s ,  the velocity  must be kept well within 500 m/s .  

where K represents  eccentricity, p = 4.01 X 1014m3s?, 
and rp = 6580 km and is the radius vector  from  the  center 
of the  earth  to  the satellite (perigee  distance). 

The maximum  radial  velocity is then 

Suppose  that V,,,,,= 7.8 m/s<<  500  m/ s ;  then K < 0.001. 

Amplitude  factor 
The value of J as given in Eq.  (36) must be  corrected  for 
slow  variations in H and y .  It  is assumed that J does not 
change  much over  the length of the  synthetic  antenna so 
that in Eq.  (39) J changes only when x changes. We have 
to  consider,  however,  that  the amplitude factor J does 
change slowly from  convolution to convolution. 

8 Ground  coordinate  system 
The ground coordinate  system  is defined as follows. At 
time t = 0,  a  plane through  the velocity vector of the 
radar-carrying  satellite intersects  the horizontal  ground 
plane in a line parallel to  the x axis. The x axis itself is 
the  intersection if the plane is inclined an angle (90 - a,) 
with the ground  plane, where a, is the side viewing angle. 

The velocity vector is in a coordinate  system fixed to 
the  earth.  The origin is defined by erecting a normal to  the 
velocity vector in the plane  containing the x axis. The 
point at which this  normal intersects  the x axis is the 
origin. The y axis is defined as  the normal to  the x axis 
erected in the ground  plane at  the origin. 

The ground reference grid is a set of points  formed by 
the intersection of sets of horizontal and vertical  lines 
at  distance 6 from  each  other, parallel to  the x and 
y axis, with 6, as known, as  the resolution. 

In this  earth-fixed coordinate  system,  the velocity 
vector  does not  remain constant.  This  requires a  periodic 
redefinition of the  coordinate  system,  as well as  certain 
corrections  between redefinitions. Changes in position, 
velocity, and acceleration of the  radar  antenna with 
respect  to its  position and velocity vector  at time t = 0 
are assumed to be  known in the  coordinate  system  just 
defined. The  changes may be  directly  measured and 
registered on a magnetic tape  together with the timing 
signal and received signal. For example, if a pulse is 
transmitted  at time t = 0,  the position of the  radar 
(antenna  feed) is given by the height H ,  and  the side 
viewing angle a,,. 425 
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Figure 13 Skewness  due  to  spacecraft motion. 

Orbit Earth 

* 
Figure 14 Coordinate  system  at the equator. 

The sample points of u ( x ,  t ' )  on  the ground  vary  with 
x due  to  changes in H and y ,  because sampling occurs a 
fixed time after  the transmission of the pulse. At time 
t = 0, the sampling points are 

where t; = 2 H , / c   COS^,, and the integer n 5 =/ 26 
while At  is the sampling time. 

For  the nth  point, 

yh(xm)  = Y ~ ( O )  + Aym - [ H , / y h ( O ) l   A H m ,  (51b) 

where Aym and A H m  are  the  changes in y and H ,  of the 
spacecraft  at  the time of transmission of the mth  pulse 
(or halfway between receiving and  transmitting).  The 
sampling of u ( x )  occurs  at  the location 

426 = x' ( t  = 0)  + ZAx,, (52a) 
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with 

Axm = urn+; Atm, Ax, = 0. (52b) 

The sampling points in the x direction are  the x co- 
ordinates of the  spacecraft midway between receiving 
and  transmitting of a  pulse. If higher accuracy is required, 
skewness of the grid must be taken  into  account. 

Skewness 
In Fig. 13, the  swath is shown, indicating the delineation 
of the  area from  which the signal is received. The  swath 
length is S W ,  and  displacement of the  spacecraft during 
reception is given by 

(2SW sin a,) u 
Ax = ( 5 2 )  

For sw = 100 km, a, = 40", and u = 7800 m/ s, Ax = 

3.5 m. 
This is taken into account in the interpolation in the 

x direction by assuming that the signal u ( x )  arrives  from 

C 

2 [ H 2  + ( y  - y ' ) ' ] ;  
x = x , +  

C 
u, 

with x p  the x coordinate  at which the pulse was  trans- 
mitted. The effect of the  antenna  pattern is negligible. 

Roll, pitch and  yaw 
The amplitude factor J is directly affected by  roll,  pitch 
and yaw.  As indicated  before, J depends  on  the direction 
of the normal to  the  antenna,  the angle R, etc.  The signal 
u ( x ,  y ' )  to be  convolved in the azimuthal  direction may 
have  shifted to higher  frequencies because  the forward- 
looking angle has increased;  however,  the  frequency re- 
turn of an element for which x - x' = 0 is still zero, in- 
dependent of the beam  locus (assuming uH = 0) .  

One final effect may occur if, as generally happens,  the 
antenna feed is not in the  center of the  mass.  In  that  case, 
rotational  motion causes  changes in x, y and H that must 
be taken into account. 

Two  corrections remain,  i.e., those  for  earth rotation 
and earth  curvature.  Earth  rotation  necessitates a 
periodic redefinition of the  coordinate  system. If a 
continuous  swath is required,  certain problems involving 
translation  from  one  set of grid points to  another  must be 
solved. 

One particular  problem connected with earth  rotation 
is that  at  the  equator,  the grid becomes so skewed that 
edge  effects  become significant and  too many points must 
be dropped,  thereby reducing the effective swath width. 
This  can be prevented by the method discussed in the 
next section. 

Correction for earth rotation 
In  order  to  correct  for  the  rotation of the  earth,  the 
antenna beam can be steered  an angle I/I forward. If 
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u, and uy are measured  in an inertial system,  then 
$ = arctan(v,/u,).  Corrections  are  therefore  made by 
redefinition of the  coordinate  system,  for example, every 
100 km. In  that  case  the velocity in the y  direction,  in 
the earth-fixed coordinate  system, is zero;  however, 
since uy and u, vary, in general, with the position of the 
spacecraft,  the angle $ changes slowly and must be modi- 
fied accordingly. Figure 14 shows a radar in  polar orbit 
at  the time it crosses  the  equator. Also shown is the 
direction of the  coordinate  system  at  that moment. 

Correction for earth  curvature 
The orthogonal coordinates used to  describe  the syn- 
thetic  aperture  radar  on a  spherical earth  are a set of 
longitude and  latitude circles as  shown in Fig. 15. 

The  coordinates of a point Q are  the  arcs 5: = 5, - 
5; and 5; = 5, - t;, with respect  to  the nadir  point  N with 
coordinates 6, and 5,. The signal can be written with the 
same approximation as before: 

X exp i(2kp - J a [ t  - t’ - ( m  - 1 )  T I ’ } ,  (54) 

where  the integration is performed over sufficiently large 
arcs. 

The  distance p (See Fig. 15) is given  by 

p = [ ( H  + ro - ro cos p cos 7)’ 

+ ( ro  sin + ( ro  cos P sin y ) 2 ~ + ,  ( 5 5 )  

where 

P = (5; - 5,) / Y o ,  (56) 

and 

Y = (4; - / y o  cos P.  (57)  

In  the  same way that r = [(, + (x - x’)~]) was  ex- 
pressed  as a power  series, p in Eq. (55) can be expanded 
in a power series in (8, - 6;). The coefficients are func- 
tions of r, the distance in the z - y  plane between  the 
radar  and  the 5; arc. 

The  correction  for  curvature  consists  therefore of 
three  parts: 

1.  The kernel in the azimuthal  convolution is changed to 
the  one resulting from  the  expansion of Eq. ( 5 5 ) .  

2.  By setting 5, - 5: = 0, Eqs. (55) - (57),  together with 
Eqs. ( 5 6 )  and (57), provide the transformation from 
equally  spaced  time  points (or equally spaced r points) 
to  the  corresponding (5, - Si), analogous to  Eq. (5 1 ). 

3 .  Distances  between points on  the x arcs  are y-de- 
pendent.  They  are  closer  at  greater  distances. 

In  the following section, digital processing considerations 
are  described  and  the  necessary  number of multiplica- 
tions is estimated. 

Y 

X 

I 
circles 
Latitudc 

Figure 15 Curved coordinates of point Q. 

Digital processing considerations 
The numerical process  that  converts  the signals s(x, t ) ,  
received  from the  ground,  into a measure  for  the  scat- 
tering cross  section u = 1 x 1 ’  of a ground element,  consists 
of six basic operations, performed in the following order: 

1 .  Normalization; 
2.  Convolution  in the radial ( y ’  or t ’ )  direction  [solution 

of Eq. (37) 3 ; 
3 .  Interpolation in the y direction; 
4. Interpolation in the x direction; 
5 .  Convolution in the x direction [solution of Eq. (39) ]  ; 

6. Computation of the scattering cross  section. 
and 

In addition to  these  operations,  spacecraft motion 
compensations  are  necessary. A simple diagram  repre- 
senting the interaction  among parameters,  data  and 
operations is shown in Fig. 16. 

The signal s* (x, t )  is a  complex signal, sampled and 
digitized in the x as well as  the t direction. It is assumed 
that  there  are N resolution elements in the radial di- 
rection. If the resolution is a,, the  swath width will be N6,.  

Calibration,  normalization  and  sampling of the  signal 
The incoming signal s* (x, t )  depends  on  the amplitude of 
the  transmitted pulse P ( t ) ,  which is monitored and regis- 427 
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Figure 16 Computational  scheme. 

tered  on  the raw flight tape. It is also  proportional to  the 
gain of the  receiver at time of reception (also registered) . 
Thus, 

s(x, t )  = s*(x, t )  ~ - 
P ( t -  A)  K ( t )  ' 
[ po ]: Kn 

where K ( t )  is the system's amplification factor, or gain, 
P (  t - A) is the peak power of the pulse being received at 
time t ,  and Po and K n  are  constants. 

The  power P in the pulse is monitored. The gain K is 
varied  and  registered.  Variation of K is desirable in order 
to  accommodate greatly  varying  conditions  with  a rela- 
tively small word  length. In  other words, the low fre- 
quencies in the signal are registered  with the help of the 
gain variations. 

can also be  written  as 

u ( t ' )  exp i s  t r2  = s ( t )  exp i 'y t' exp (- iat t ' )  dt, 2 r T  2 

where  the function [ s ( t )  expi(a/2)t2] is frequency 
analyzed,  and each  frequency  can  be  determined with an 
accuracy 1 / T ~ .  

If the integration time is shorter  than T ~ ,  say T < T ~ ,  the 
frequencies  can  be  determined with, at most,  an  accuracy 

1 / ~ .  Two  adjacent ground elements,  separated in 
radial direction by a distance 6: sina,,  are  separated in 
time by (see Fig. 17) 

AT = 
26; sin a. 

3 
C 

Radial convolution 
It is known from  the sampling theorem [ 81 that  the signal 
s must  be  sampled every  2S,sinao/c  seconds if the 
radial  resolution is 6,. If the pulse length is T ~ ,  the num- 
ber of points in the radial filter equals 

nf = TOC 

26, sin ao' 

Each point has a weighting factor, which is given by a 
complex number.  Its value is exp [- i a / 2 ( n h ~  - e ) ' ] ,  
where n is  an integer and 0 5 n 5 ( T ~ c )  / ( 26,sinao). 

Equation (38) gives limits of integration from --co to 
-+. In reality, the pulse  length equals T,, and the integra- 
tion cannot be  performed over  an interval  longer than T ~ .  

However, it is possible to integrate over a shorter 
interval, all other  factors being the  same.  This  results 
in a reduced resolution,  although, when combined  with 
a  smoothing of the  data,  it  reduces  computation time and 
may therefore be of interest.  The  computation  time re- 
duction  can  be  demonstrated by noting that 
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and in frequency by 

2a6; sin a,, 
 AT = 

C 

If the  frequency is accurate to 1 / r ,  one  can  write 

2a6; sin a. - 1 - - 
C 7 '  

from which 

6, = 
C 

2aTO sin ai 

one  can  obtain 

6; = 6, A. 
7 

T 

In  other  words,  the resolution decreases  (6,increases)  as 
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T decreases. Prefiltering decreases  the number of neces- 
sary sample points in direct  proportion  to 6:. 

The total number of points in the radial  direction is 
inversely proportional  to 6, i.e., 

where sw is the  swath width. 

A reduced  number of points in the radial  direction can 
be  obtained by limiting the  receiver  bandwidth  and lower- 
ing the A / D  conversion  rate.  The reduction can  also be 
obtained by numerical  smoothing,  though part of the 
advantage of a reduction in points will be  lost in that  case. 
The  number of points in the filter can  be found as 
follows: The sample  points are  separated in time by 
AT, as given by Eq. (59). The number of points in the 
filter is n,, and can be  obtained  from Eq.  (61) by writing 

Furthermore, Figure 17 Spatial distance translated into time difference. 

From  Eq.  (63b) it is  apparent  that  the  number of points 
in the filter can  be reduced quadratically  with the required 
resolution. 

Number of arithmetic  operations for the radial 

Assume  that  the convolution is performed by using FFT 
techniques  [3],  that  the number of points in the filter 
is n,, and  that  the  total number of points in the radial 
direction is N,. The  number of points used in the FFT is 
denoted by n,, and  the number of points in the filter n, 
must  be  enlarged to n, by adding zeros  to  the  data. 

The convolution is performed by determining the 
Fourier transform of s ( x ,   t )  in n, points, multiplying it by 
the  spectrum of the filter and transforming the result 
back  to  the time  domain. If the  Fourier transform of the 
filter is known, the  total  operation  consists of two FFT 
computations in n, points and n, multiplications. In- 
creasing the  number of points in the filter by adding 
zeros  does not change  the  shape of the  spectrum, but it 
does divide the  spectral domain into smaller Ak, where 
Ak is the spacing between  adjacent  wave  numbers. 

Also, by using the numerical Fourier  transform,  the 
functions  are  made  into periodic functions  and  the result 
gives the correlation coefficient correctly in (n ,  - n,) 
points only [9]. Sufficient overlap must therefore be 
used  to  obtain  correct values in all points lying on a 
radius. The  total  number of convolutions for N ,  points 
is  therefore  the  nearest integer greater  than  or  equal  to 

convolution 

To obtain  the  total  number of operations,  the number 
of operations  per radius must be multiplied by the total 
number of radii. 

Finally,  the  number of complex multiplications, addi- 
tions  and subtractions of an FFT (with n, a power of 
two) is given by i n ,  log, n,, where n, is the number of 
points and log, indicates the logarithm  with base  two. 

Example 
The following data  are used to compute  the  total number 
of multiplications in the radial  convolution for  an  area 
100 x 100 km. 

SW = 100 km (swath width) ; 
~ 

6, = 20  m (resolution) ; 
p = 1750 (pulse  rate) ; 
T = 17.5 ps (pulse  length); 
a = 40"; and 
v = 7800 m/s. 

From  Eq. (581, we  know  that 

nf = = 200. 
ToC 

26, sin a0 

If we choose n, = 256(> n,), a frame  length of 100 km 
gives 100.000 p / v  = 22400 radii. (The pulse rate ac- 
commodates a four-look process.)  The  total number of 
multiplications n,  is, for n, = 256, 429 
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n ,  = int ( 5000 ) X ( 8  X 256 + 256) X 22400 
+ 256 - 200 

= 4.65 X lo9 multiplications, 

where  the  operator  int+ preceding a value  indicates that 
the  nearest higher  integer is substituted  for  the  actual 
value. 

For n, = 5 12, 

n,  = int, ( 5 1 ~ ~ ~ o o )  x ( 9  x 512 + 512) x 22400 

= 1.95 X lo9 multiplications. 

For n, = 1024, 

n,  = int, ( 1 0 ~ ~ 0 2 0 0 )  
X ( 10 X 1024 + 1024) X 22400 

= 1.77 X lo9 multiplications. 

For n, = 2048, 

( + 2048 - 200 n, = int 5000 ) X ( 1  1 X 2048 + 2048) X 22400 

= 1.66 X lo9 multiplications. 

For n, = 4096, 

n,  = int, ( 4 0 ~ ~ 0 2 0 0 )  
x ( 12 x 4096 + 4096) x 22400 

= 2.39 x 10’ multiplications. 

It appears  that n, = 2048 gives the minimum number 
of multiplications. The  choice of n, depends,  however, 
not only on  the  number of multiplications, but  also  on  the 
available hardware,  on memory  limitations, and  to  some 
extent  on  the  software being used. 

Furthermore,  there  is  about  an  equal  number of com- 
plex  additions, as well as complex subtractions.  The 
number of arithmetic  operations in the azimuthal  con- 
volution,  which will be calculated in the  next  section, 
must also  be considered. 

Convolution in the azimuthal  direction 
The convolution is given in Eq. (39) with 

The integration is usually  performed over a length 
smaller than  the effective  length of the  synthetic  antenna. 
This is accomplished by using a suitable  smoothing filter. 
Suppose a resolution of 6 = 25 m is required  with four 
independent looks. The  synthetic  antenna length is then 

M 
6 ’  

and  the  number of points in the azimuthal filter becomes 
M p  4rA 

n ; = T = x .  (64) 
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If vmax = 280 km, 
A = 0.2 m, 
u = 7800 m/s, 
6 = 25 m, 

Eq. (64) gives nE = 2000 points. 
The  antenna length M can be varied  by using a suitable 

filter length;  however,  the sampling frequency p is 
determined by the highest frequency in the signal,  which 
is determined in turn by the maximum synthetic  antenna 
length. This maximum  length is given by 

where it is assumed  that  the side lobes of the  antenna 
pattern  are sufficiently suppressed,  and  therefore  that 
the main lobe  has been broadened by ten  percent.  This 
causes  the 2.2 factor  and roughly corresponds  to,  say, 
the 30 dB points of the  assumed  antenna  pattern, in- 
cluding a 10 percent widening effect due  to side  lobe 
suppression. By using Eq. (9 ) ,  this  gives for  the maxi- 
mum frequency 

For u = 7800 m / s  and L = 10.5 m  this results in a 
sampling frequency larger  than 2Av = 3280 per  second 
for  each  component of the complex signal. 

The usual  assumption is that only the  center portion 
of the  synthetic  antenna  (between  the 3 dB points) needs 
to be taken into account.  This  results in a maximum 
sampling frequency of 1560 per  second.  In  some  cases 
this results in aliasing problems because  the azimuthal 
signal is sampled  before filtering. On  the  other  hand, 
because of the  antenna  pattern  and  the smoothing filter, 
the high frequencies  have  more  noise and are  less useful. 
The aliasing problem might be  serious in the  case of four- 
look  processing. The first and fourth  looks might be of 
limited use only. 

Returning  to  the azimuthal  convolution, suppose  that 
the FFT of the complex  function v ( x )  is obtained  over 
n, = 2048 points. The  spectrum  obtained is divided into 
four  bands of 512 frequencies  each. Similarly, the  spectra 
of the filters, as  shown in Eq. (64),  are  determined in 
2048/4 points. (Zeros  are added to obtain this number.) 

The  four  looks,  therefore,  require  one FFT of 2048 
points, four  FFT’s of 512 points and 1048 multiplica- 
tions. This  results in a total of N logN complex multi- 
plications where N is the number of points. Again the 
convolution  gives the  correct result in N - n, points 
so that  the  total  number of convolutions is given by 
int+[22400/ ( N  - n , ) ] .  

For a 2048-point FFT for 5000 different  radii, 
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n , =  int ( 22400 ) X (2048 X 11) X 5000 
+ 2048 - 1195 

= 3.38 X IO9 multiplications. 

For a  4096-point FFT, 

n, = int+ ( 4 0 $ ~ o ~ l  95) x (4096 x 12) x 5000 

= 1.96 X 10’ multiplications. 

For a  8192-point FFT, 

n,  = int, (81$:o:195) X (8192 X 13) X 5000 

= 2.13 X lo9 multiplications. 

The minimum is at 4096  points. 
The  total  number of cpmplex  multiplications in the 

convolution is the sum of the radial  and  azimuthal  con- 
volutions. This sum is (1.66 + 1.96) X lo9 = 3.62 X IO9 
complex  multiplications. To this  must  be added  the num- 
ber of multiplications  required to calculate the cor- 
rections, interpolations, etc. No estimate of this is 
attempted  here;  the  total  number,  however, is not  greatly 
increased. 

Summary 
The  synthetic  aperture  radar  system  that, according to 
existing  plans, will operate  aboard  the  space  shuttle and 
on  several satellites has been described.  Experience with 
this type of radar  has so far  been limited to applications 
in conventional  aircraft. Since the literature on this  sub- 
ject is rather  scarce,  and in most cases  the  subject is 
treated in the  frequency domain rather  than in the time 
domain,  this paper provides  a  new approach.  The much 
greater altitude at which the  shuttle  and satellites will 
operate  requires  corrections not  normally necessary in 
aircraft  applications, such  as  the  earth  curvature cor- 
rection that has  been described in the  paper. As seen,  the 
contemplated  space applications require images of fairly 
high quality  with high resolution,  necessitating the 
introduction of multiple looks, a technique in which a 
ground  element is looked at  from  several slightly different 
angles. As illustrated,  this requires a synthetic  antenna 
several times  longer than  the  one used in the simple one- 
look case. 

In this paper a  derivation of the  equation describing 
the signal  received  by the  radar  has been  given. The 
multiple look process  has been  formulated and a digital 
solution of the resulting equations  presented.  This 
solution  provides also the  necessary  correction  for  the 
wavefront  curvature.  Corrections  that  compensate  for 
spacecraft motion, other than the orbital  velocity, and 
for  the effects of earth  rotation  have  also been  con- 
sidered. 

I 
I 
I 
I 

X’ x 

A I T 

Figure A1 Spacecraft motion during  signal reception. 

The digital data processing requirements  have been 
estimated  and  the required  number of multiplications 
given to a reasonable approximation. The  Fast  Fourier 
Transform  has been  employed to  solve  the convolution 
integrals  occurring in the problem. 

One conclusion that  seems obvious is that,  to  prepare 
an image of an  area 100 X 100 km, 16 X lo9 real multi- 
plications are  required.  Therefore, real  time  processing, 
on a general  purpose  computer,  appears  to be pro- 
hibitive, if one  assumes  that it takes  about 13 seconds 
to gather the  data. Special array  processors, or a scheme 
offering similar specialized performance,  seem  to be 
required to  provide  the  necessary  turnaround time. 
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Appendix: Correction for spacecraft motion during 
wave travel time 
Since  the height at which the SAR flies is great,  the effect 
of the finite travel time of the electromagnetic wave, and 
the  subsequent displacement of the  spacecraft during 
this  time,  must  be  investigated. Let  the position of re- 
ception be x, the position of the reflector x‘ (Fig. A 1) .  If 
the wave is transmitted  at point T and  received  at  point R, 
total travel  time is ( r ,  + r2)  / c,  and the  displacement of the 
spacecraft is 

where f = v/c. 431 
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By using triangle ART and  the  fact that 

x - x’ 
T I  

cos p =-, (A21 

it follows that 

and 

2r2 2 f ( x  - x’)  
r1 + rp = ~ 

The  equation of importance is Eq. ( 2 5 ) ,  which now 
becomes 

1 - f‘+ 1-f’ . 

2 kr, 2fk ( x  - x’ ) 
k(r ,  + rz) = ~ 

1 - f ‘+ 1-f’ . 
The first change is that 2kr, is changed to 2kr.J ( 1 - f ’) , 
and can  therefore be corrected by  assuming the  wave 
number not to be k but k /  ( 1  - f z ) .  SincefE 3 x s-l, 
the  correction is an extremely small one (=lo-’) and 
can be  neglected. The  second  change is the additive term 
[ 2 f/ ( 1 - f ’) ] ( x  - x ’ )  ; when added in this exponential, 
it shifts all frequencies by an  amount 

2  fkv 
Am=-  1 - f’. 

This is a constant  term; it can be compensated  for nu- 
merically by changing the heterodyning frequency in the 
four-look  processing if necessary. 

With f M 3 X s-l, k = 2 ~ 1 0 . 2 ,  and u = 7800 m/s ,  

Am M 1 HZ, 

which usually can be  neglected. If necessary, it can be 
taken  into  account,  since  the only effect is a shifting of the 
frequency  spectrum. 
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