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Digital Technique for Generating Synthetic Aperture

Radar Images

Abstract: This paper describes a digital processing method applicable to a synthetic aperture radar, to be carried by the space shuttle or
by satellites. The method uses an earth-fixed coordinate system in which corrective procedures are invoked to compensate for errors
introduced by the satellite motion, earth curvature, and wavefront curvature. Among the compensations discussed are those of the co-
ordinate system, skewness, roll, pitch, yaw, earth rotation, and others. The application of a Fast Fourier Transform in the numerical

processing of the two-dimensional convolution is discussed in detail.

Introduction

Synthetic aperture radar (SAR) is a system capable of
high resolution. It is a relatively new development which
will soon join an array of other instruments in space, such
as high resolution scanners, for observation, mapping,
and imaging of the earth’s surface. The SAR is not only a
logical complement in the spectral domain to these scan-
ners; it has its own particular application because of its
all-weather capability.

In the space applications now being contemplated, a
fairly high resolution is required; many corrections not
needed in aircraft applications must be applied. For
example, the earth’s curvature must be considered, as
well as curvature of the wavefront. The latter becomes
particularly important when so-called multiple looks are
used to rid the image of a speckle effect {1]. In that case,
the size of the synthetic antenna might be increased
several times in accordance with the resolution require-
ments.

Furthermore, the high altitude at which satellites travel
will require the synthetic aperture radar to make image
corrections to compensate for undesirable spacecraft
motion [2, 3]. Even if no such motion is present, the
system must correct for the earth’s rotation.

The method followed here assumes a coordinate sys-
tem fixed to the earth’s surface. This leads to a treat-
ment of the problem in the time domain. If a coordinate
system had been chosen fixed to the radar, the problem
would have been formulated in the frequency domain.

This paper describes a possible digital data processing
method to obtain the high resolution required. After a
discussion of the limitations of conventional radar, the
principles of a synthetic aperture and chirp radar are
briefly explained. The equivalence of the time domain
formulation and the Doppler shift method is shown. A
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detailed derivation of the signal is given, and it is shown
that a two-dimensional convolution integral may be used
to obtain an approximation of the reflective properties
of the surface. This approximation gives rise to a cor-
rection for wavefront curvature. Furthermore, the multi-
ple look feature is formulated, and a method of correcting
the wavefront curvature is suggested. Spacecraft motion
corrections are given together with corrections for earth
curvature and rotation. Finally, an estimate is made of
the number of multiplications necessary for digital data
processing.

Limitations of conventional radar
The prime consideration of radar as a target position
measurement tool, as compared with other devices, lies
in its ability to make direct measurements of radial range
in terms of the round-trip time delay of the propagated
signal. However, when conventional radar is used as an
imaging device, its resolution is limited in both the
azimuthal and the radial (i.e., along-track and cross-
track, respectively) directions.

The limiting size of an object discernible on the ground
is given by Rayleigh’s expression [4],

5, A ’L—" (1)
where r is the distance to the object measured from the
antenna, L is a linear dimension of the antenna, and A is
the wavelength. For example, let r =200 km, A=0.23 m,
and L = 12 m, which is equivalent to a resolution of
4000 m. For improved resolution, it is necessary to in-
crease the size of the antenna.

Separation of two targets in a radial direction depends
on the length of the pulse. Radar receivers use filters that
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Figure 1 Synthetic aperture.

do not necessarily retain the shape of the pulse; rather,
they maximize the signal-to-noise ratio. If the pulse
duration is 7, the velocity of light being ¢ (3 X 10° km/s),
the radial resolution is given approximately by

~ CT
5, ~ . (2)
For a 1-us pulse, the radial resolution is 150 m. Since
both resolutions are unsatisfactory for imaging applica-
tions, a means for improving the resolution must be found

without increasing the physical size of the antenna.

Principles of synthetic aperture radar
The resolution deficiency of conventional radar systems
may be overcome by the following techniques:

Azimuthal resolution may be improved by artificially in-
creasing the length of the antenna. A simplified one-
dimensional representation of this process is shown in
Fig. 1. A satellite moves along the indicated line of
flight. When it reaches point Q,, the beam transmitted by
its antenna commences to illuminate point P. The re-
flected, or returned, signal continues to return from point
P until the vehicle reaches point Q,. By properly filtering
the signal recorded between points Q, and Q,, the reflec-
tive properties of P can be determined with a resolution
corresponding to that produced by an antenna of length

M= Q,Q,.

Radial resolution may be enhanced by a technique known
as pulse chirping, in which conventional radar pulses are
transmitted in rectangular pulse trains, with a sinusoidal
signal. Pulse chirping [5] is accomplished by frequency
modulation of the signal in the rectangular pulse, where
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each instantaneous frequency determines a particular
part of the puilse. Usually linear frequency modulation
is used and the pulse duration is increased somewhat.
Thus,

f —
fsz + < : fb) ty

T

where f indicates frequency, 7 is the pulse width and ¢
denotes time. The indices b and e refer to the beginning
and end of the pulse, respectively.

Upon reception, the pulse is fed through a delay filter,
where the frequency f is delayed according to

d=d0+(fj;;_ffi> T.

The instantaneous frequency f,, at the beginning of the
pulse, is received first. However, it is delayed so that the
end of the pulse, which arrives later from the same
ground point, will coincide with the beginning of the
pulse. This is true for each intermediate frequency, as is
shown by the expression for the delay. The energy in the
received pulse becomes concentrated, therefore, at the
moment the instantaneous frequency f, arrives (apart
from a constant delay d,).

The process described corresponds mathematically to
a convolution, as is shown later. The ideal process can
be approximated only because of the finite bandwidth of
the receiver. If a resolution 3, is required, it can be seen
from Fig. 2 that

T

_1
=35

Substitution into Eq. (2) gives

The increased resolution of the synthetic aperture is
described mathematically in the same way as that ob-
tained with the modulated chirp pulse in the radial di-
rection. However, the frequency sweep in the former is
due to Doppler shifting caused by the relative radial
velocity of the spacecraft with respect to the individual
ground elements. There are two different ways of
describing the SAR that are completely equivalent. The
first method uses the Doppler shifts, while the second
method uses the difference in delay between trans-
mission and reception of the wavelets. The latter method
is used here.

The difference between the two methods is that in the
Doppler description, the coordinate system moves with
the spacecraft, while in the second method the coordinate
system is fixed to the ground. That they are equivalent
can be seen from Fig. 3, which shows the basic derivation
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of the Doppler effect. Suppose the spacecraft S located
at point (x, y) is moving with velocity v. A reflector at
point (x', y') reflects the wave transmitted from S. If the
distance SA is r and the wave transmitted from S is given
by coswt, then the received signal can be described by

x (x'y') cos {w[t—- 2rlx i’ y—) )] + ¢}, (4)
where x is a reflection coefficient. This is true in both
coordinate systems because of the invariance of c.

(Modification of the signal due to chirping is not con-
sidered in this discussion.) The delay caused by a wave
traveling with velocity ¢ over a distance of 2r equals
2 r/c. The ¢ symbol represents the phase shift caused by
reflection. Transformation to the spacecraft coordinates
is accomplished by using the mapping x — x’ = vt and
substituting this in Eq. (4).

By writing

r= [ri-{» (x—x’)z]%= (rf)-l-thZ)% (5)

and substituting this into Eq. (4), one obtains

cos {w[t —% (rf) + vztz)%] + ¢>} = COS s, (6)
with

. 2 2 2 231
w—wt—z(ro%-vt)z + ¢. (7)
The instantaneous frequency is defined as

,_
W = (8)

1t follows from Egs. (7) and (8) that

dy 2w vt 2vw vt
e

2 zzl:w
dt c (r,tvr)?

1
c (r?) + UZIZ)2

=w— (_2@) sin 7, (9a)

which indicates that the apparent frequency is changed by
an amount equal to

Aw= ~(2—';‘£> sin . (9b)

This is just the Doppler shift due to the relative radial
velocity, which indicates that the two methods are
equivalent.

This Doppler shift is twice that of the usual Dop-
pler shift because it assumes a receiver approach-
ing a source. This gives rise to a signal proportional to
cosw[t — (r/c)], while the active radar shift is derived
from cosw[7— (2r/c)]. Finally, the relativistic correction

factor [1 — (v/c)?] Iis neglected. The coordinate sys-
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tem used in the following pages is the one fixed to the
ground. Occasionally, however, reference is made to the
Doppler point of view.

Transmitted and received signals
The transmitted signal is sinusoidal and is represented
by cos¢ where ¢ is a function of time. In this case, the
frequency is chosen to be a linear function of time as
shown in Fig. 4.

During the transmission of a pulse of duration 7(s), the
frequency is linearly modulated and can be represented
by

w=aw,+ at (10)
and
JT+1,<t<jT+1,+,

where j is a positive integer, 0 = j, and ¢, is the time at
which the first pulse occurs.

Subsequently, the frequency returns to the value o
remaining there for the remainder of the period 7. That is,
after one full period, the phase becomes
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Figure 4 Chirp frequency as a function of time.

d>=(b0-+-f7 (o + at)dt + o, (T —17)

= ¢, + o, T + }ar’, (11)

where ¢, is the phase at the beginning of the frequency
sweep.
At the beginning of the nth pulse, the phase is

d>=(b0+w0(n-—l)T+%(n—l)a7'2, (12)
and at time ¢ during the nth receiving period, the phase is
&, = ¢+ w,t +4nat’, t=0. (13)

The receiving period is the time during which the fre-
quency is constant, while transmission is suppressed. At
time ¢’ during the mth transmission period, the phase is

b, = b, T wyt’' +3(m— Dar® +talt' — (m— 1)T]%
t' = 0. (14)

Suppose that a signal, transmitted during the mth
transmitting period at time ', is received at time ¢ during
the nth receiving period. This signal is

Jx| cos (b, + ) dx'dy’,

where |x|dx'dy’ is the fraction of the amplitude reflected
per elementary area, ¢, is the phase shift introduced upon
reflection, J is a constant to be determined in a later
section, and dx'dy’ is the elementary area. In order to
register the phase of the signal, quadrature detection may
be used [6]. In the quadrature detector, the signal is
multiplied by cos¢,, as well as by siné,.

Upon multiplication by cos¢,, the signal amplitude
per unit area becomes

§* =J|x| cos ¢, cos (¢, + &,)

=4 J|x|[cos (¢, + &, + &,) + cos (¢, —d,— b,)].
The use of a low pass filter results in
S =4JIX| cos (b, — by — by)

=3J]x| cos {w,(t— 1) —4alt' — (m— D T]* — ¢}},
(15)
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where
oy=¢,—tn—m+ Do’
If
X. = |x| cos ¢,, and
X, =Xl sin ¢},
then
£ =1Jx, cos {w)(t — ') —talr' — (m~ 1) T]*
—4Jx, sin {w (1t — t') — 3a[t' —~ (m— ) T17%}.

(16)
Similary, if the signal is muitiplied by sin ¢,,
S¥ =4Jx, sin {w,(t— 1) —$alt’' — (m— 1)T]*}
+3Jx, cos {w,(t ~ ") —dalt' — (m— 1) T1%}.
(17)

Furthermore if

X =|x| exp idy = x. + ix,

Eqgs. (16) and (17) can be combined to give

S* =4Jx exp f{w,(t— ') —4alt' — (m—1) T1*}, (18)
where

S*=S8F+1iSF (19)

If the reflector is at a distance r from the transmitter,
then

i (20)
C

or, more precisely,

o e

Equation (21) takes into account the displacement of the
spacecraft between transmitting and receiving times. In
Eq. (21), v is the spacecraft velocity, c¢ is the velocity of
light, x is the spacecraft location at the time of reception,
x' is the point on the ground at which the wave is re-
flected, and r is the distance between the spacecraft and
the ground point at the time of reception. The Appendix
shows that the difference between Eqgs. (20) and (21) is
usually negligible.

To recapitulate, the received signal, at time ¢, with a
phase giveri by Eq. (14), is mixed in quadrature witH the
signal from the transmitter whose phase at that time
is given by Eq. (13). After low-pass filtering, the two
resulting signals are the real and imaginary parts of
Eq. (18).

If Eq. (20) is used, Eq. (18) can be written as

2

s’(t)=%expi{22w°—%[t*¥~(m—-l)T]}. (22)
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As each element dx'dy’ in the swath reflects such a signal,
this signal must be integrated over the ground area. The
total signal received is

+ o0 +wJ
s(x,t)=f f -%expi

_al, _2r N
x{zkr 2[1 ~— (m 1)T”dxdy,

(23)

w, 27

k= ? = _)\‘, (24)
where A is the wavelength of the radio wave. The left
side of Eq. (23) has been written as s(x, #) to indicate
that a signal s(1) is received for each x. Therefore, while
s(x, t) is a continuous signal in 1, it is a sampled signal as
a function of x. The sampling frequency is equal to the
pulse repetition frequency.

Before evaluation of the amplitude factor J, the phase
factor in Eq. (23) can be rewritten (see Fig. 5) in the
form

2kr=2k[~A + (x— x)' P =d(x—x, 7). (25)
Furthermore, if
Ty, (26)

then 7, is equal to the delay time for a reflector at a
distance r.

Substituting these expressions into the exponential of
Eq. (23) gives

to fre J
s(x, 1) =j f EX exp ip(x — x', ry)

~o0

X exp — i<%>[t — 11— (m— 1)T)%dx'dy’. (27)

Next the factor J is evaluated.

e Derivation of the amplitude factor
It is assumed that the desired result is the scattering
cross-section o (energy per unit area).

The amplitude factor depends on this scattering cross-
section o(x’', ¥') as well as on transmitted peak power
P(t), system amplification K(t), antenna gain G,
and antenna area A4 ,.

The antenna gain in the direction of the element (x', y')
is also a function of the direction of the normal n to the
antenna and the angle of rotation ) (see Fig. 5) and can
be represented by G = G(x — x’, y—y', H,n, Q). The
variables H, n, Q) are added because they must be used
to correct for the unwanted effects of spacecraft motion.

From the radar equation (see [7]), the power received
back at the antenna from one square meter is
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P(t) A Go
= ——(—4‘}——}%52—- cos’® 6, cos 6,, (28)

where P(1) is the peak power of the pulse emitted at
time ¢. Lambertian scattering [4] is assumed here;
it accounts for cos’@,, which contributes to cos’d,.
The remaining cos‘6 occurs because the distance
r = H/cos#, appears as r* in the radar equation {7].
The variables H, 6, and 6, are all functions of the space-
craft position (x, y) as well as of the coordinates of the
element (x'y’).
From Fig. 5 we see that

cos 6, = H[H* + (x —x)* + (y — y)*] 2. (29)

The value of cos#, can be obtained from the given
direction of n. This direction is indicated by x,, y,, the
coordinates of the point where n intersects the ground
plane, which are described by

x,=x+ Ax, and
y,=y+Aay,

where Ax, and Ay, are the changes with respect to air-
craft position. It should be pointed out that while x’, y’
are fixed to the ground, x, and y, move with the space-
craft. By appropriate choice of the origin of the co-
ordinate system, y is usually close to zero; however,
unwanted spacecraft motion may cause it to have a value
different from zero. To calculate values of cos#6,, we con-
sider the triangle PQR. Using the cosine rule and
assuming that Ax,, Ay, and H are given, one can write

(x—x' -{~A.xn)2 +(y—y +Ayn)2=Axi+Ayi
+ (x—x")+ (y—y')*+2H*— 2 cosé,

X {(AX + M) [(x— x)* + (v =) + H'1p,
(29a)
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from which cos 8, can be obtained. The important fact
is that cos 6, is a function of x’ — x and y’ — y only, and
not of x or x’, y or y’ by itself, or any other function of
these variables. Furthermore, cos 6, can be corrected
for slow, unwanted spacecraft motion.

Similarly, the gain is a function of x' — x, y' — vy,
and  only. The antenna gain is a function of two angles
and is assumed to be given in tabular form. One of these
angles can be 6, (see Fig. 5), while the other angle is €.
If the antenna rotates around the normal n, its pattern
rotates and the gain can be corrected for the unwanted
motion.

Since J in Eq. (27) is an amplitude factor while Eq.
(28) describes the power, the amplitude J of the returned
signal is given by

S _KOIPG=4) A,G)
2(2)iwH?
where K(7) is the system’s amplitude gain between the
antenna and the analog/digital (A/D) converter
(inclusive).
Furthermore, A is the delay 2r/ ¢, which may be several
times greater than the pulse repetition period. Also,

cos’d, (cos 6,)7, (30)

Ix| = ot. , (31)

Finally, the following change of variable is made:

NI

=211+ -yt (32)

For a given H and y of the spacecraft, a functionof y"is a
function of ¢. The H and y vary slowly and can be con-
sidered constant over fairly large x. By introducing ¢', it
follows from Eq. (32) that
!

,_ctdt' [ _11)2]‘7
dy =<LdC [: 4(C . (33)
By introducing Eqgs. (33) and (30) into Eq. (27), the
latter can be written as

2

o= [ 3o (-]

XJ(x—x',t') exp ip(x— x', ')

X exp—i% [t—t,— (m—1) Tdx'dr'. (34)

In this equation, x(x’, y') has been written as x(x', ')
to indicate that x can also be considered a function of ¢’
instead of y’; see Eq. (32). During a radial convolution,
however, H and y are to be considered constant and are
allowed to vary only when x varies.

Under certain conditions, Eq. (34) can be approxi-
mated and solved by a double convolution, as shown in
the next section. Since the function #'(x) varies only
because of unwanted spacecraft motion, it is assumed
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that tolerances on this motion are such that H and y can
indeed be assumed to be constant over the length of the
synthetic antenna. The main advantage of this double
convolution is that in the frequency domain the problem
is simplified to that of linear filtering.

Convolution approximation

Equation (34) can be written as a double convolution by
approximating ¢, with ¢’ + ¢ in the second exponential,
where € is a constant to be determined. Equation (34)
then becomes:

s(x, 1) =f i exp—ila/2)[t—t — (m— DT —e]’dr

—%

+x
Xf x(x ) JE(xe—x', 1)

o

X exp ip(x — x', t')dx’, (35)

with

=)=+

The solution for x is obtained by solving first for v(x, ¢')
from

+ oo
s(x, t) =f vix, t') exp— i%

—o0

X [t—t — (m—1)T —el’dr, (37)
This is a convolution integral. Its solution is
+oo0
u(x, t') =_a_f s(x, ) exp i(a/2)
2m)_,

x[t—t— (m— 1T —e}dr (38)

Then x(x', t') can be found from

vix, t') =J’ x(x, )y JJ(x—x',t")

—

X exp ip(x—x', t')dx’'. (39)

where J* has been written as J. This is also a convolution
integral, and it can be solved by using Fourier transforms.
The exponential that appears in Eq. (37) is called the
radial filtering function.

The solution of Eq. (37) as given by Eq. (38) is usually
not practical. In general, a smoothing and a system
response filter must be incorporated into the radial
filter [8]. Therefore, the analytic inversion of Eq. (37)
is not used here.

The accuracy of the convolution is considered in
another section, but before doing this, the “multiple
look” algorithms are derived.
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Multiple looks

Consider an antenna with a beam width such that its
synthetic antenna length is M (Fig. 6). The resolution
obtainable from such an antenna is shown by 8 =rA /M,
where r is the distance from the line of flight to the strip
of ground under consideration. To obtain this resolution
a segment of length M of the complex signal v(x) is
needed. This function v(x), convolved with a suitable
function #(x — x’), results in a function x(x'). The com-
plex signal v(x) is obtained from the convolution of the
received signal s(x).

As seen from Fig. 6, if a resolution & is required,
instead of using the whole length M for one look at
element E on the ground, it is possible to break up the
synthetic length M into, say, r subsections and look at
the element from different angles. In Fig. 6, M has been
divided into four pieces and E is looked at from four direc-
tions. Since each look uses an antenna of length M /4, the
resolution is now about 48. The data used for each look
are independent. (It is possible to obtain, for instance,
four looks with a resolution better than 48; however, the
data used for each look are no longer independent in
that case.) The signal received at point x by the space-
craft is v(x, y'), and may be considered to consist of
several parts. As shown in Fig. 7, v(x, y') consists of
four parts (v, reflected from ground section 1, v, reflected
from section 2, etc.); the problem to be solved is how to
separate v(x) into these four parts, v, (x, ¥'), v,(x, ¥'),
vg(x, ¥') and v,(x, y'), each part consisting of a different
look.

In solving the problem, y’ is kept constant at the
beginning, but is reintroduced as a variable in the final
results. The signal is separable because each section i of
the ground contributes to a different part of the spectrum
of v(x). The Doppler signal reflected from section 1 has
high positive frequencies, and the one from section 4 has
high negative frequencies. Sections 2 and 3 have medium
positive and negative frequencies, respectively. By find-
ing the spectrum of v(x) and dividing it into four parts,
the four looks can be separated.

As an example, look 1 is considered. The spectrum of
look 1 (see Fig. 7) is centered around a positive fre-
quency because the transmitted signal is shifted up in
frequency by reflections from all points of the ground in
section 1 (see Fig. 8). To obtain the reflection co-
efficient x, this signal v, must be convolved with

J(x—x") exp idp(x — x') & J(u) exp ik(uz/ry)
x exp ik(2r,),

where

M M
s xy—x =
2 X x' > 4 .
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Because of this center frequency, the sampling fre-
quency must be high. It is shown that by heterodyning
v,, the sampling frequency can be reduced, in this case,
by a factor of four.

As was shown in Eq. (39),

vix) = fm x(x") J(x—x') exp ik[ﬁx:—x’)z]dx’.
— Yy

The phase factor exp 2ikry has been incorporated into x.
This does not affect its modulus which is the quantity of
interest. 421
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Figure 9 Synthetic antenna for look 1.

Figure 10 Limited accuracy of the chirp method.

This equation can be written as

+ o0 2
v(x)=f x(x"y J(x—x") exp iﬁ(x—x’—3—M+3—M->
. r, 8 8

+oo k 2
=f—w x(x") J(x—x') exp 1;;<x—x _T>

X ex i£<3—Mx—3i4x'—2M2>dx’
P\ 4 64 )

The second term in the second exponential contributes
exp(3ikMx'/4r,) and produces only a phase shift in
x(x"). It can be included in x. Again only the modulus of
x and not its phase is of interest. The same is true for
the factor exp(—9ikM2/64ry). It is a constant phase
shift and is included in x.

The remaining factor exp(+3ikMx/ 4ry) can be re-
moved from under the integral sign and moved to the
left side. The resulting equation is
w,(x) = v(x) exp<ﬂM>

4ry

+o0 k 3 2
=f x(x')y J(x—x') exp ir—<x—x’——8— dx’.
e v (40)
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On the left of the integral is the signal v, heterodyned
down with a frequency 3Mk/ 4r,. On the right is the sum
of all the reflections from the ground. They can be re-
garded as a collection of Doppler waves with instan-
taneous frequency (2kv/ry)[x — x' — (3M/8)] (see
Fig. 9). It can be seen that if (x — x’) is kept between
M /2 and M /4, these frequencies are around zero and are
limited. The frequencies on the right side of Eq. (40) are
limited by limiting |x — x’ — (3M/8)| = (M/8); band
filtering and smoothing can therefore be accomplished by
a suitable filter g[x — x’ — (3M/8)] on the right, which is
essentially 0 for |[x —x' — (3M/8)| > (M/8), and 1 for
|lx — x" — (3M/8)| = (M/8). Equation (40) is then
modified to

—3ikMx
v(x) exp (T)

[0 s e e -2

X g(x—x’ —%M)dx’, (41a)

and similar expressions for the three other looks. They
are

vix) exp(————ikMx)
4r
Yy
+o0 . 2
= f X (x') J(x—x) [expi((x —x' = %) ]
. ry
X g(x~x’—%)dx’, (41b)
v(x) exp<ﬂkM)
4ry
—® . 2
=f x;(x") J(x— x')[expl-lf<x —x' + A—g) ]
Y ry
X g(x —x' + -Agi)dx’, and (41c¢)
v(x) ex <iM_X>
P 4ry
+x . 2
=f X, (x") J(x—x) [explr—k (x —x +BTM) ]
o y
2
x g(x —x %) dx. (41d)

In the numerical procedure heterodyning is accom-
plished by assigning lower frequencies to the different
parts of the spectrum. Before proceeding it is necessary
to consider the limitations of the convolution as described
in the previous sections.

o Accuracy of approximation
Replacing ¢, by ¢’ + & means using the approximation
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1 —xN?
[Hoz-i-(y—y')2+(x—x’)2]2Nry+£%, (42)
v

where
r,=[H+ (y—y)*]",
and (x — x')*/2r, is approximated by ec/2.

The value of Ar, = (x — x’)2/2ry varies from 0 to
M/ 8ru where M is the synthetic antenna length. With
no further correction, this quantity must be smaller than
the resolution (see Fig. 10). In the case of multiple looks,
the situation is worse, because the same condition holds
for each quarter of the synthetic antenna. Suppose a
four-look process is required. The radar is at a height H
and has a minimum side viewing angle a. The resolution
is 8; thus

2
Ar=SA-SD~ M
32ry

By eliminating M with the help of § = 4ry)\/ M, and
applying the constraint Ar < 8, one obtains
1
> (ALY, (44)
2 sin «

For example, if H = 2.40 X 10° m, §_,_ = 20°, and \ =
0.2 m, one achieves the resolution 8 > 35 m. Therefore,
it is necessary to correct for this effect due to wavefront
curvature, if a resolution better than 35 m is required. For
the shuttle radar, as well as another proposed radar, the
required resolution is about 25 m; in those cases, a
correction is required.

s Correction for wavefront curvature

The correction for wavefront curvature is made by
dividing the azimuthal swath into a number of sections
such that over each section the distance to the radar
does not change more than 3,.

First the swath width is divided, in the azimuthal
direction, into a number of sections, with several adjacent
sections constituting a look. The intention is to obtain
v,(x, t') from section 1, v,(x, ¢') from section 2, etc., and
then combine these contributions for the calculation of
x(x', ¥') by using the azimuthal convolution on each
section separately. The general equation was [see
Eq. (37)]

s(x, 1) =‘j i u (x, 1)

Xexp—i%[z—t’— (m—1)T—¢e] dr,

with v(x, t') replaced by v, to indicate that the solution v
depends on €. By denoting Fourier transforms with
capital letters, Eq. (37) can be solved by

S(x,n)=v, (x,n) H(n, €), (46)
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Figure 11 Sections with Ar < 25 m.

where n stands for the angular frequency, and by

H(n,e)=fw exp—i%[u—(m—l) T —¢]?

X exp(inu) du
= H(n) exp (ine), (47)
where H(n) is the transform for £ = 0.
By substituting Eq. (47) into Eq. (46) and applying
the inverse transform, we obtain

+oo

v lx, t') = f_ [exp(—ine)] ‘%(_Ix—(’f)—)—exp(—-int’)dn

=f . vi(x, n) exp[—in(t' +¢€)]dn

-

=v(x, t' +¢), (48)
where

_ Stx, n)
vix, n) = Hen)

It appears that y, can be obtained from v by inter-
polation, provided v is available for several different
values of ¢'. Since v is calculated for all ranges within
the swath, this interpolation can be performed as shown
in the following computational scheme.

Suppose the ground swath is divided in the azi-
muthal direction into J strips, as shown in Fig. 11,
where J = 16. For each section an g, is chosen to ap-
proximate (x —~ x')*/r,c for the jth strip; i.e.,

[ ) MT
sj_ryc[(zj+ 1) 32], (49)
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Figure 12 Spectra for interpolation.

which corresponds to the value at the center point of each
strip. In that case, |Ar] = 10 m for each of the 16 sec-
tions. (The values H = 794 km, § = 25 m, a = 20°, and
four looks have been used, corresponding to the values of
a proposed radar.)

Next, the signal of each of the 16 looks is isoldted by
using the difference in Doppler shift from the different
ground sections. Each strip corresponds to a band in the
Doppler spectrum.

The following computational scheme is adopted, with
J =16,

1. Compute v(x, t') with a radial convolution for a
number of radii at least equal to the number of points
required for the azimuthal convolution.

2. Obtain the azimuthal spectrum v(/, t') in the usual
manner.

3. The spectra of several previous v(/, ') are kept in
memory so that v is available for, say, four different
t' (see Fig. 12).

4. The spectrum is divided into 16 sections. If v(/, ') is
obtained in, say, 16384 points, each section must
have 1024 frequencies.

5. To obtain the first section of the first look, the first
sections of the four spectra dre interpolated to obtain
v(l, t' +¢,), where ¢, is obtained using Eq. (49).
Figure 12 indicates roughly where the g; are on the
time scale.

6. The values of ! are reassigned the proper values in
the total spectrum of the first look. In the case under
consideration, the first look consists of 4096 fre-
quencies. The assigned frequencies are 4095 = [ =
3072. The spectrum is zero everywhere else.

7. This spectrum is used for the spectrum of the left
side of Eq. (41a), and similarly for the spectrum
of the kernel
JliexpK (x —x'— —3—M*>2] g <x —x' = 3—M—),

ry 8 8
where only the high frequency part (one-fourth of
the spectrum) needs to be used.

8. Items 5, 6, and 7 are repeated for sections 2, 3, {nd
4, using £, £, and £, respectively, to interpolate the
spectra. Furthermore, the proper values of [ are
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assigned to the spectra and the appropriate part of
the spectrum of the kernel is used.

9. The four solutions of x so obtained are added, and
the resulting x is the first-look solution.

10. The same is done for looks 2, 3, and 4.

The method just describéd is applicable if the Fast
Fourier Transform (FFT) method is used to perform the
convolution {9]. Because the four sections of each look
have the proper frequencies, the four-look resolution
is retained.

If each of the 1024 frequencies for a section is as-
signed to be around 0, the resulting resolution would be
the ore obtained with 16 independent looks, with loss
in resolution of a factor of 16. This might be desirable as
a possible option.

Finally, there is no reason to divide the antenna into
16 equal pieces, as was done here to simplify the argu-
ment. On the contrary, it is advantageous to divide the
antenna into unequal parts, with the smallest sections
on the outside and the largest ones in the center, where
the cortection will be negligible. For example, the eight
sections dividing M /2 can be, starting at the end, four
sections each M /32 long, two sections each M /16 long,
and finally two sections each M /8 long.

Correction for spacecraft motion
Calculations of x(x', y') are performed in a right-hand
coordinate system that is fixed to the ground. The x axis
is defined as the line in which the ground plane is inter-
sected by the plane formed by the velocity vector of the
spacecraft and the normal to the antenna opening. The
y axis is perpendicular to the x axis. In this section, we
discuss the corrections needed to compensate for the
errors introduced by the motion of the spacecraft and the
rotation of the earth. In the next section, corrections to
compensate for the curvature of the earth are considered.
Corrections are of three different types: a) correction
of the exponential factors in Eq. (35); b) correction of
J(x —x', t') in Eq. (35); and ¢) correction of the co-
ordinate system.

o Exponentials
From Eq. {25) we know that

_ )2
exp i R exp ikg%) exp 2ikr,, and
Y

-

r,=[H + (y—y')].

Suppose r, is a function of ¢ (or x) due to spacecraft

motion or noncircular orbit. In that case, the exponential
ar, oH ar, oy ]

exp 2ikr, = exp 2ik[ry(0) + 67-;; At + -afE At +---
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When considering a particular synthetic antenna length,
r,(0) represents the value of r, when the spacecraft is
in the center of the (synthetic) antenna. The two other
terms are due to changes in H and y as a function of time
and will vary with x = vz, where v is the velocity of the
spacecraft. They have the form exp 2ika,x where

v, H v,y - y'
v r,(0)°

TR0

Here v, and v, are the unwanted velocities in directions
H and y, respectively.

The factor exp Zikx(vHH)/[vry(O)] causes a shift
in the frequencies, as can be seen by moving it to the left
side of Egs. (41), and thereby introduces a heterodyning
frequency that can vary as a function of time if v, varies
with time. The numerical procedure is not affected
(except for the assignment of frequencies). The factor
exp —2ik(2v,/v)[(y — ¥')/r,(0)] equals one because
v,=0.

This follows from the way in which the coordinate
system is defined; i.e., the x axis is defined as parallel to
the velocity vector and must be redefined constantly
due to earth rotation. Subsequent terms in the series of
Eq. (50) must be small. (The term is of the order of
ikAH® /r; if AH ~2 25 m, k=2 X 10" m, and r = 2.5 X
10° m, this term equals 107%.)

Next the factor exp ik[(x — x’)z/ry] must be con-
sidered. As before,

(x—x)* {(X—X’)2 (x—x')*
jk-————— = exp ik +
exp i - exp i r.(0) ri(O)
o]
AH — e
><[rl,(O) o) 2
Since
H y—y
ry(O) < 1, and ry(O) < 1,

the condition

— )2
IAlfﬂ%}—)AH«w
y

must be satisfied, and the same is true for the second term
for all expected spacecraft motion. For a typical radar
A = 0.20 m, after assuming |x — x'| = 5 km, while r, &
250 km; and if

2 (—5‘-‘)2 AH << 7
0.2 \250 ’

then AH << 250 m. Since the 5 km are covered in roughly
0.5 s, the velocity must be kept well within 500 m/s.
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If the vertical velocity is due to eccentricity of the
orbit, the maximum allowable eccentricity can be cal-
culated. The vertical velocity in an elliptic orbit is [10}

1
_ [ o,
r_K[—r(1+K)] sin 6,
p
2

where « represents eccentricity, u = 4.01 X 10"m’s %,
and r,= 6580 km and is the radius vector from the center
of the earth to the satellite (perigee distance).

The maximum radial velocity is then

, [l 2
Tmax = K[rp(l + K)] ’
Suppose that V. =7.8m/s<< 500 m/s; then x < 0.001.

e Amplitude factor

The value of J as given in Eq. (36) must be corrected for
slow variations in H and y. It is assumed that J does not
change much over the length of the synthetic antenna so
that in Eq. (39) J changes only when x changes. We have
to consider, however, that the amplitude factor J does
change slowly from convolution to convolution.

* Ground coordinate system

The ground coordinate system is defined as follows. At
time ¢ = 0, a plane through the velocity vector of the
radar-carrying satellite intersects the horizontal ground
plane in a line parallel to the x axis. The x axis itself is
the intersection if the plane is inclined an angle (90 —«,)
with the ground plane, where «, is the side viewing angle.

The velocity vector is in a coordinate system fixed to
the earth. The origin is defined by erecting a normal to the
velocity vector in the plane containing the x axis. The
point at which this normal intersects the x axis is the
origin. The y axis is defined as the normal to the x axis
erected in the ground plane at the origin.

The ground reference grid is a set of points formed by
the intersection of sets of horizontal and vertical lines
at distance 8 from each other, parallel to the x and
y axis, with 8, as known, as the resolution.

In this earth-fixed coordinate system, the velocity
vector does not remain constant. This requires a periodic
redefinition of the coordinate system, as well as certain
corrections between redefinitions. Changes in position,
velocity, and acceleration of the radar antenna with
respect to its position and velocity vector at time ¢t = 0
are assumed to be known in the coordinate system just
defined. The changes may be directly measured and
registered on a magnetic tape together with the timing
signal and received signal. For example, if a pulse is
transmitted at time ¢t = 0, the position of the radar
(antenna feed) is given by the height H and the side
viewing angle .

425

SYNTHETIC APERTURE RADAR




426

.\

Figure 13 Skewness due to spacecraft motion.

Ushuttie

Figure 14 Coordinate system at the equator.

The sample points of v(x, t') on the ground vary with
x due to changes in H and y, because sampling occurs a
fixed time after the transmission of the pulse. At time
t = 0, the sampling points are

HZ

Aty +nAr): O F R
B ]—<T_ o

1
2
70 =[S ). G
where ), = 2H,/c cosa,, and the integer n < SW/28
while At is the sampling time.
For the nth point,

¥u(x,) =y,(0) + Ay, — [Hy/y,(0)] AH,, (51b)

where Ay, and AH_, are the changes in y and H of the
spacecraft at the time of transmission of the mth pulse
(or halfway between receiving and transmitting). The
sampling of v(x) occurs at the location

X, =x(1=0)+ 3Ax,, (52a)
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with

Ax,=v,,, A,  Ax,=0. (52b)

The sampling points in the x direction are the x co-
ordinates of the spacecraft midway between receiving
and transmitting of a pulse. If higher accuracy is required,
skewness of the grid must be taken into account.

Skewness

In Fig. 13, the swath is shown, indicating the delineation
of the area from which the signal is received. The swath
length is SW, and displacement of the spacecraft during
reception is given by

_(2SWsina) v
—

Ax (52)
For SW = 100 km, , = 40°, and v = 7800 m/s, Ax =
3.5 m.

This is taken into account in the interpolation in the
x direction by assuming that the signal v(x) arrives from

2AH + (- y))
T U,
c

X=x (53)
with x, the x coordinate at which the pulse was trans-
mitted. The effect of the antenna pattern is negligible.

Roll, pitch and yaw

The amplitude factor J is directly affected by roll, pitch
and yaw. As indicated before, J depends on the direction
of the normal to the antenna, the angle (Q, etc. The signal
v(x, y') to be convolved in the azimuthal direction may
have shifted to higher frequencies because the forward-
looking angle has increased; however, the frequency re-
turn of an element for which x — x' = 0 is still zero, in-
dependent of the beam locus (assuming v, = 0).

One final effect may occur if, as generally happens, the
antenna feed is not in the center of the mass. In that case,
rotational motion causes changes in x, y and A that must
be taken into account.

Two corrections remain, i.e., those for earth rotation
and earth curvature. Earth rotation necessitates a
periodic redefinition of the coordinate system. If a
continuous swath is required, certain problems involving
translation from one set of grid points to another must be
solved.

One particular problem connected with earth rotation
is that at the equator, the grid becomes so skewed that
edge effects become significant and too many points must
be dropped, thereby reducing the effective swath width.
This can be prevented by the method discussed in the
next section.

Correction for earth rotation
In order to correct for the rotation of the earth, the
antenna beam can be steered an angle ¢ forward. If
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v, and v, are measured in an inertial system, then
¢ = arctan(v,/v,). Corrections are therefore made by
redefinition of the coordinate system, for example, every
100 km. In that case the velocity in the y direction, in
the earth-fixed coordinate system, is zero; however,
since u, and v, vary, in general, with the position of the
spacecraft, the angle ¢ changes slowly and must be modi-
fied accordingly. Figure 14 shows a radar in polar orbit
at the time it crosses the equator. Also shown is the
direction of the coordinate system at that moment.

Correction for earth curvature

The orthogonal coordinates used to describe the syn-
thetic aperture radar on a spherical earth are a set of
longitude and latitude circles as shown in Fig. 15.

The coordinates of a point Q are the arcs { = ¢, —
§pand {, =¢ — ,» With respect to the nadir point N with
coordinates £, and £,. The signal can be written with the
same approximation as before:

s = [ [ e, &) de, &,
x exp i{2kp —dalt— 1t — (m—1) T]*}, (54)

where the integration is performed over sufficiently large
arcs.
The distance p (See Fig. 15) is given by

p=[(H+ry,~r,cos B cos y)*

+ (r, sin B)% + (r, cos B sin y)°]?, (55)
where
B=(&—¢€)/ry (56)
and
y=(&,— &) /r,cos B. (57)

In the same way that r = [ri + (x— x’)z]% was ex-
pressed as a power series, p in Eq. (55) can be expanded
in a power series in (£, — £.). The coefficients are func-
tions of r, the distance in the z — y plane between the
radar and the ), arc.

The correction for curvature consists therefore of
three parts:

1. The kernel in the azimuthal convolution is changed to
the one resulting from the expansion of Eq. (55).

2. By setting ¢, — £2.= 0, Egs. (55) - (57), together with
Eqgs. (56) and (57), provide the transformation from
equally spaced time points (or equally spaced r points)
to the corresponding (¢, — &), analogous to Eq. (51).

3. Distances between points on the x arcs are y-de-
pendent. They are closer at greater distances.

In the following section, digital processing considerations
are described and the necessary number of multiplica-
tions is estimated.
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Figure 15 Curved coordinates of point Q.

Digital processing considerations

The numerical process that converts the signals s(x, t),
recetved from the ground, into a measure for the scat-
tering cross section o = |x|” of a ground element, consists
of six basic operations, performed in the following order:

1. Normalization;

2. Convolution in the radial (y’ or t’) direction [ solution
of Eq. (37)1];

. Interpolation in the y direction;

4. Interpolation in the x direction;

5. Convolution in the x direction [ solution of Eq. (39)];

and
6. Computation of the scattering cross section.

()

In addition to these operations, spacecraft motion
compensations are necessary. A simple diagram repre-
senting the interaction among parameters, data and
operations is shown in Fig. 16.

The signal s*(x, ) is a complex signal, sampled and
digitized in the x as well as the ¢ direction. It is assumed
that there are N resolution elements in the radial di-
rection, If the resolution is §,, the swath width willbe N§,.

e Calibration, normalization and sampling of the signal
The incoming signal s* (x, ¢) depends on the amplitude of
the transmitted pulse P(t), which is monitored and regis-
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Figure 16 Computational scheme.

tered on the raw flight tape. It is also proportional to the
gain of the receiver at time of reception (also registered).
Thus,

KO
K@)’

1
— ok P0 B
s(x, 1) = s*(x, 1) [P(t— A)]
where K(2) is the system’s amplification factor, or gain,
P(t— A) is the peak power of the pulse being received at
time 7, and P, and K are constants.

The power P in the pulse is monitored. The gain K is
varied and registered. Variation of K is desirable in order
to accommodate greatly varying conditions with a rela-
tively small word length. In other words, the low fre-
quencies in the signal are registered with the help of the
gain variations.

s Radial convolution
It is known from the sampling theorem [ 8] that the signal
s must be sampled every 28 sina,/c seconds if the
radial resolution is 6. If the pulse length is 7, the num-
ber of points in the radial filter equals

L TC
h; = m} . (58)
Each point has a weighting factor, which is given by a
complex number. Its value is exp [« i a/2(nA7 — €)7],
where n is an integer and 0 = n = (7,c)/ (23, sina,).

Equation (38) gives limits of integration from — to
+o. In reality, the pulse length equals 7, and the integra-
tion cannot be performed over an interval longer than 7,
However, it is possible to integrate over a shorter
interval, all other factors being the same. This results
in a reduced resolution, although, when combined with
a smoothing of the data, it reduces computation time and
may therefore be of interest. The computation time re-
duction can be demonstrated by noting that

'+
v(t') =f s(t) exp i% (r— ') ’dt
"
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can also be written as

t+T
v(t') exp i%‘ t? =f s(1) exp i% £ exp(— iatt') dt,
o

where the function [s(z) expi(a/2)7] is frequency
analyzed, and each frequency can be determined with an
accuracy 1/7,.

If the integration time is shorter than 7, say 7 < 7,, the
frequencies can be determined with, at most, an accuracy
= 1/7. Two adjacent ground elements, separated in
radial direction by a distance 8, sine,, are separated in
time by (see Fig. 17)

28, sin a,

Ar=—""—", (59)
C

and in frequency by

.
2a8, sin a

(60)

alAr =
c

If the frequency is accurate to 1/7, one can write

, .
2a8, sin o, _

1
’T’

c
from which

C

§ =—"> .
2a7 sin

r

by using

9

" 2ar, sin o

one can obtain
8 =52, (61)
T

In other words, the resolution decreases (8, increases) as
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7 decreases. Prefiltering decreases the number of neces-
sary sample points in direct proportion to 8.

The total number of points in the radial direction is
inversely proportional to 9, i.e.,

_SwW (62)

n
r r
87‘

where SW is the swath width.

A reduced number of points in the radial direction can
be obtained by limiting the receiver bandwidth and lower-
ing the A /D conversion rate. The reduction can also be
obtained by numerical smoothing, though part of the
advantage of a reduction in points will be lost in that case.
The number of points in the filter can be found as
follows: The sample points are separated in time by
Ar, as given by Eq. (59). The number of points in the
filter is n;, and can be obtained from Eq. (61) by writing

2
T cT cT
== ; = ; . 63a
' Ar 28] sina, 287,sinq, (63a)
Furthermore,
70,

=— =3 63b
"= 2 sin ad’ (63b)
From Eq. (63b) it is apparent that the number of points
in the filter can be reduced quadratically with the required
resolution.

o Number of arithmetic operations for the radial
convolution

Assume that the convolution is performed by using FFT
techniques [3], that the number of points in the filter
is n;, and that the total number of points in the radial
direction is N,. The number of points used in the FFT is
denoted by 7,, and the number of points in the filter n,
must be enlarged to n, by adding zeros to the data.

The convolution is performed by determining the
Fourier transform of s (x, ¢) in n, points, multiplying it by
the spectrum of the filter and transforming the result
back to the time domain. If the Fourier transform of the
filter is known, the total operation consists of two FFT
computations in s, points and n, multiplications. In-
creasing the number of points in the filter by adding
zeros does not change the shape of the spectrum, but it
does divide the spectral domain into smaller Ak, where
Ak is the spacing between adjacent wave numbers.

Also, by using the numerical Fourier transform, the
functions are made into periodic functions and the result
gives the correlation coefficient correctly in (n, — n,)
points only [9]. Sufficient overlap must therefore be
used to obtain correct values in all points lying on a
radius. The total number of convolutions for N, points
is therefore the nearest integer greater than or equal to
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Figure 17 Spatial distance translated into time difference.
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To obtain the total number of operations, the number
of operations per radius must be multiplied by the total
number of radii.

Finally, the number of complex multiplications, addi-
tions and subtractions of an FFT (with n, a power of
two) is given by #n, log, n,, where n_ is the number of
points and log, indicates the logarithm with base two.

Example

The following data are used to compute the total number
of multiplications in the radial convolution for an area
100 X 100 km.

SW = 100 km (swath width) ;
. =20 m (resolution);
p = 1750 (pulse rate);
7=17.5 us (pulse length);
a = 40°; and
v=7800 m/s.

From Eq. (58), we know that

no=— 2200

£ 28, sin ’
If we choose n, = 256 (> n,), a frame length of 100 km
gives 100.000 p/v = 22400 radii. {(The pulse rate ac-
commodates a four-look process.) The total number of
multiplications n_ is, for n, = 256, 429
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3000

n = ““+<M) X (8 X 256 + 256) X 22400

= 4.65 x 10° multiplications,

where the operator int, preceding a value indicates that
the nearest higher integer is substituted for the actual
value.

For n,= 512,

5000

0, = int+(m) X (9 X 512+ 512) x 22400

= 1.95 X 10° multiplications.
For n, = 1024,

. 5000
n, = 1nt+<1024_ 200) X (10 X 1024 + 1024) x 22400

= 1.77 X 10° multiplications.

For n, = 2048,

5000

n, = 1nt+<m> X (11 X 2048 + 2048) x 22400

= 1.66 x 10° multiplications.

For n, = 4096,

5000

0 = ‘“t+<ﬁ)_96——2—06) X (12 X 4096 + 4096) X 22400

= 2.39 X 10° multiplications.

It appears that n, = 2048 gives the minimum number
of multiplications. The choice of n, depends, however,
not only on the number of multiplications, but also on the
available hardware, on memory limitations, and to some
extent on the software being used.

Furthermore, there is about an equal number of com-
plex additions, as well as complex subtractions. The
number of arithmetic operations in the azimuthal con-
volution, which will be calculated in the next section,
must also be considered.

s Convolution in the azimuthal direction
The convolution is given in Eq. (39) with

dlx—x', 1) = 2k[r; + (x— x’)z]%. (25)

The integration is usually performed over a length
smaller than the effective length of the synthetic antenna.
This is accomplished by using a suitable smoothing filter.
Suppose a resolution of § = 25 m is required with four
independent looks. The synthetic antenna length is then

4r\
M==2,
and the number of points in the azimuthal filter becomes
,_ _Mp 4n
= T e (64)
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If r .. =280 km,

max

A=0.2 m,
v="7800m/s,
8 =25m,

Eq. (64) gives n{ = 2000 points.

The antenna length M can be varied by using a suitable
filter length; however, the sampling frequency p is
determined by the highest frequency in the signal, which
is determined in turn by the maximum synthetic antenna
length. This maximum length is given by

2.2rA
M R
max L ?

where it is assumed that the side lobes of the antenna
pattern are sufficiently suppressed, and therefore that
the main lobe has been broadened by ten percent. This
causes the 2.2 factor and roughly corresponds to, say,
the 30 dB points of the assumed antenna pattern, in-
cluding a 10 percent widening effect due to side lobe
suppression. By using Eq. (9), this gives for the maxi-
mum frequency

v (2.2M 2.2v
A R - —ﬂ) R ——.
| V|max C( rmax L

For v = 7800 m/s and L = 10.5 m this results in a
sampling frequency larger than 2A» = 3280 per second
for each component of the complex signal.

The usuval assumption is that only the center portion
of the synthetic antenna (between the 3 dB points) needs
to be taken into account. This results in a maximum
sampling frequency of 1560 per second. In some cases
this results in aliasing problems because the azimuthal
signal is sampled before filtering. On the other hand,
because of the antenna pattern and the smoothing filter,
the high frequencies have more noise and are less useful.
The aliasing problem might be serious in the case of four-
look processing. The first and fourth looks might be of
limited use only.

Returning to the azimuthal convolution, suppose that
the FFT of the complex function v(x) is obtained over
n, = 2048 points. The spectrum obtained is divided into
four bands of 512 frequencies each. Similarly, the spectra
of the filters, as shown in Eq. (64), are determined in
2048 /4 points. (Zeros are added to obtain this number.)

The four looks, therefore, require one FFT of 2048
points, four FFT’s of 512 points and 1048 multiplica-
tions. This results in a total of N logN complex multi-
plications where N is the number of points. Again the
convolution gives the correct result in N — n,; points
so that the total number of convolutions is given by
int,[22400/ (N — n)].

For a 2048-point FFT for 5000 different radii,
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22400

n,= 1nt+(m) X (2048 x 11) x 5000

= 3.38 x 10° multiplications.
For a 4096-point FFT,

22400

n,= lnt+(m) X (4096 X 12) x 5000

= 1.96 x 10° multiplications.
For a 8192-point FFT,

22400

nazlnt+(m) X (8192 x 13) x 5000

= 2.13 x 10° multiplications.

The minimum is at 4096 points.

The total number of complex multiplications in the
convolution is the sum of the radial and azimuthal con-
volutions. This sum is (1.66 + 1.96) x 10° = 3.62 x 10’
complex multiplications. To this must be added the num-
ber of multiplications required to calculate the cor-
rections, interpolations, etc. No estimate of this is
attempted here; the total number, however, is not greatly
increased.

Summary

The synthetic aperture radar system that, according to
existing plans, will operate aboard the space shuttle and
on several satellites has been described. Experience with
this type of radar has so far been limited to applications
in conventional aircraft. Since the literature on this sub-
ject is rather scarce, and in most cases the subject is
treated in the frequency domain rather than in the time
domain, this paper provides a new approach. The much
greater altitude at which the shuttle and satellites will
operate requires corrections not normally necessary in
aircraft applications, such as the earth curvature cor-
rection that has been described in the paper. As seen, the
contemplated space applications require images of fairly
high quality with high resolution, necessitating the
introduction of multiple looks, a technique in which a
ground element is looked at from several slightly different
angles. As illustrated, this requires a synthetic antenna
several times longer than the one used in the simple one-
look case.

In this paper a derivation of the equation describing
the signal received by the radar has been given. The
multiple look process has been formulated and a digital
solution of the resulting equations presented. This
solution provides also the necessary correction for the
wavefront curvature. Corrections that compensate for
spacecraft motion, other than the orbital velocity, and
for the effects of earth rotation have also been con-
sidered.
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Figure Al Spacecraft motion during signal reception.

The digital data processing requirements have been
estimated and the required number of multiplications
given to a reasonable approximation. The Fast Fourier
Transform has been employed to solve the convolution
integrals occurring in the problem.

One conclusion that seems obvious is that, to prepare
an image of an area 100 x 100 km, 16 x 10° real multi-
plications are required. Therefore, real time processing,
on a general purpose computer, appears to be pro-
hibitive, if one assumes that it takes about 13 seconds
to gather the data. Special array processors, or a scheme
offering similar specialized performance, seem to be
required to provide the necessary turnaround time.
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Appendix: Correction for spacecraft motion during
wave travel time

Since the height at which the SAR flies is great, the effect
of the finite travel time of the electromagnetic wave, and
the subsequent displacement of the spacecraft during
this time, must be investigated. Let the position of re-
ception be x, the position of the reflector x’ (Fig. Al). If
the wave is transmitted at point T and received at point R,
total travel time is (7, +r,) / ¢, and the displacement of the
spacecraft is

RT— (r?jrz>v=ic)(rl+r2)=(r1+r2) fs (A1)

where f=1v/c.
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By using triangle ART and the fact that

cosB=x:x’, (A2)

1

it follows that

r= (%%)rz + (%)(x —x'),

and
2r 2f(x—x')
r1+r2=1_2f2+ 1—f2
The equation of importance is Eq. (25), which now
becomes

K4 1) = 12_kr}2+ 2fk1(i;2xf)

The first change is that 2r, is changed to 2kr,/ (1—f7),
and can therefore be corrected by assuming the wave
number not to be k but &/ (1 —£%). Since fA 3 X 107° 57,
the correction is an extremely small one (=107 and
can be neglected. The second change is the additive term
[2f/(1 = 51 (x — x'); when added in this exponential,
it shifts all frequencies by an amount

2fkv
Aw = 1 _fz.

This is a constant term; it can be compensated for nu-
merically by changing the heterodyning frequency in the
four-look processing if necessary.

With 2 3 x 107° s™', k=2a/0.2, and v = 7800 m/ s,

(A3)

(A4

Aw ~ 1 Hz,
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which usually can be neglected. If necessary, it can be
taken into account, since the only effect is a shifting of the
frequency spectrum.
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