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Queuing Networks with  Population Size Constraints 

Abstract: The  class of queuing  networks with multiple  routing subchains is extended to include  mechanisms of state-dependent lost 
arrivals  and  triggered  arrivals. A sufficient condition is found, involving the loss and trigger functions, for the  equilibrium network  state 
probability  distribution to  have  the  product  form:  the known class of queuing networks with a product form  solution is thus enlarged. 
Such queuing networks  are useful  models for systems with  various  population size  constraints.  Potential applications to modeling 
computer communication systems with storage  and flow control  constraints are indicated. 

Introduction 
Networks of queues  are important  models of multipro- 
gramming computer  systems  and computer-communica- 
tion networks.  Jackson [ 11 studied  queuing networks 
with  exponential servers  and showed that  the equilibrium 
network  state probability  distribution  has aproductform. 
The  class of queuing networks with a product form  solu- 
tion has recently  been extended by Baskett,  Chandy, 
Muntz  and  Palacios  [2]  to include different classes of 
customers and  general service time distributions  for  cer- 
tain service disciplines. In  their model, customers travel 
through  a network of four  types of service  stations  and 
may change  class membership while making a  transition 
from  one  service  station  to  another.  The underlying 
Markov chain of station and class  transitions is assumed 
to be decomposable  into K ergodic subchains  (to be 
referred to  as routing subchains) . They considered  net- 
works with open, closed and mixed routing subchains. 
Either  one of two kinds of population  size constraints 
can  be defined: a)  the number of customers in each 
routing subchain is constrained  (unconstrained)  inde- 
pendently of other routing  subchain  population sizes, or 
b )  the total  number of customers in the  network is 
constrained  (unconstrained). 

Let S denote  the  network  state.  In  state S, we define 
n,(S) to be the  customer population  size in the kth 
routing subchain and N ( S )  to be the  total  number of 
customers in the  network.  Jackson [ 13 first introduced 
mechanisms of lost and  triggered  arrivals as a function of 
N ( S )  . In  this  paper [ 3, 41, we consider mechanisms of 
lost  and triggered arrivals as a function of the  vector 
n(S) = ( n , ( S ) ,  n,(S), ..., n,(S)), which will be re- 
ferred  to  as  the  population vector in state s. Depending 
upon n( S) , arrivals to  the  network  from  external Poisson 
streams may be  lost (lost arrivals) ; also, upon the  de- 
parture of a customer from the  network, a new customer 
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(triggered  arrivals).  Such  state-dependent  lost  and 
triggered arrivals give rise to  much  more general  popula- 
tion size constraints  than  a) and b) above. TO motivate 
consideration of such  more general constraints,  we give 
the following examples of models of computer communi- 
cation systems with  population  size constraints which 
are beyond the  scope of the  class of queuing networks 
studied by Baskett et al. [ 21. We  shall later  come  back  to 
these  examples  and  show  that  they can  be represented  as 
special cases of queuing networks with state-dependent 
lost and triggered arrivals. 

Example I 
Consider a  queuing network model of a single store-and- 
forward  node within a packet switching network [ 5, 61. 
Packets received by the node are  routed  to  one of K out- 
put  channels. Let n,(S) denote  the  number of packets  at 
channel k in state S of the node  model. Suppose  the node 
has a  total of B buffers for  the  storage of packets being 
forwarded and  the following buffer management scheme 
is adopted [ 7, 81. The pool of B buffers is shared by all 
output  channels.  However,  the  number of buffers that 
can  be allocated to  channel k cannot  exceed B ,  where 
B, < B.  Under this scheme, feasible states of the node 
model must  satisfy the  constraints 

K 

2 n k ( S )  5 B 
k = l  

and 

Example 2 
A closed  queuing network model has often been  used  to 
model time-sharing computer  systems with a fixed degree 
of multiprogramming [ 91. However, in an  actual  system 
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with  a fixed number of units, B ,  of main memory,  the  de- 
gree of multiprogramming fluctuates  depending on  the 
storage  requirements of the  jobs residing in main memory. 
Suppose  that K classes of jobs  can be  distinguished such 
that a job in the kth class  requires mk, 1 5 k 5 K ,  units of 
main memory. Let n k ( S )  denote  the  number of class k 
jobs residing in main memory in state S of the  system 
model. In this case, feasible states of the  system model 
must  satisfy the  constraint 

x mknk(S)  5 N .  
ti 

k=1 

Note  that  the  degree of multiprogramming is equal  to 
zE=, n k ( S ) .  

Outline of this paper 
An outline of the  balance of this paper is given here. In 
the  next  section,  the class of queuing networks con- 
sidered in [ 2 ]  is defined. This  class of networks will be 
denoted by Jf. Mechanisms of state-dependent lost and 
triggered  arrivals and  the associated loss and trigger func- 
tions  which define the  state  dependency  are  next  intro- 
duced.  The class of networks in A’” with the addition of 
the loss and trigger mechanisms will be denoted by N*. 
A theorem is presented which gives  a sufficient condition, 
involving the loss and trigger functions,  for  the equilib- 
rium network state probability  distribution to  have  the 
product  form.  The known class of queuing networks with 
a product form solution is thus enlarged.  It is then  shown 
that evaluation of the normalization constant  for this new 
class of networks  can be  accomplished by considering  a 
single queuing network with multiple closed  subchains. 
Numerical solution for  the normalization constant can 
thus utilize the convolutional  method of Reiser and 
Kobayashi [ lo]. Finally,  potential  applications to model- 
ing computer communication systems are discussed. 

Proof of the theorem is based  upon the  technique of 
local balance equations described by Chandy [ 111. In 
Appendix  A, the  notation  needed to  describe  the net- 
work  state and the balance equations is defined.  It is 
shown  that the complete  set of local balance equations 
can  be classified into  four kinds and  represented by four 
general equations. Based  upon the notation and  de- 
finitions introduced in Appendix A, a proof of the  theo- 
rem is given in Appendix B. 

Definition of queuing networks in A’” 
There is a finite number M of service  stations  and a finite 
number R of different classes of customers. A customer 
who  completes  service  at  station i in class r will next 
require service  at  station j in class s with a fixed proba- 
bility p. , . The routing  matrix P = can be con- 
sidered2; defining a Markov  chain with states indexed by 
the pairs (i, r ) .  This  Markov  chain  is  assumed  to be de- 
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composable  into K ergodic subchains (routing  sub- 
chains).  Let E, ,  E,, . . ., E, denote  the  sets of ( i ,  Y) in 
these  subchains. If ni, denotes  the  number of class r 
customers  at  station i in network state S, then by our 
earlier definitions 

and 
ti 

N ( S )  = x n k ( S )  
k = l  

Four  types of service  stations  are  considered: 
1 .  First-come-first-served service discipline, one  or more 

2 .  Processor-sharing service discipline,  a single server 

3. No queuing,  arbitrarily many servers (IS) ; 
4. Last-come-first-served  preemptive  resume service 

servers (FCFS)  ; 

(PSI ; 

discipline,  a single server  (LCFS) . 
In an FCFS service station, all customers  have  the 

same exponential  service  time  distribution with a service 
rate p ( j )  dependent  on  the  numberj of customers  at  the 
service  station.  In  PS, IS or  LCFS  service  stations,  each 
class of customers may have  its own  general  service  time 
distribution  which  has a rational Laplace transform. For 
the  sake of clarity, several  other  forms of state-dependent 
service  rates [ 21 are not  considered for  the moment. 

Customers  arrive from external  sources according to 
one of two possible types of state-dependent arrival 
processes: 

1 .  Customers  arrive from  a single Poisson stream with 
state-dependent  rate A ( N ( S )  ). An arrival enters 
station i for  service in class r with a fixed probability 
qi, ; 
M K  x 9i, = 1. 

i = l  r=l 

2. Corresponding  to  the K routing subchains,  there  are 
K Poisson  arrival streams with state-dependent  rates 
Ak(  nk( S )  ) , 1 5 k 5 K .  An arrival  from the kth Poisson 
stream  enters station i for  service in class Y with  a 
fixed probability qir; 

x qir = 1 for all k. 
( i , r )€Ek 

State-dependent lost and triggered  arrivals 
Without  any loss of generality we shall assume  that  for a 
Type 1 arrival process h(  m) is positive for m 1 0 and for 
a Type 2  arrival process Ak(m) is positive for m 1 0 and 
k = 1, 2, . . ., K .  Also,  the service rate of any  service 
station is positive whenever  there is a customer waiting 
for service.  Define 
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Io  I Subchain I population size 

Figure 1 A graphical representation of the loss and  trigger 
functions. 

and let Y be  the  set of K-tuples {yly, nonnegative 
integers}. 

Two  sets of functions L,( .) and T , ( . ) ,  1 5 k 5  K ,  are 
now introduced which map the  space Y into the  set 
{ 0, 1 ) .  Here Lk( -) is defined to  be  the lossfunction for  the 
kth routing  subchain such  that in network state S, an ex- 
ternal  arrival from  the kth Poisson stream is accepted if 
L,(n(S)) = 1; it  is  lost if L,(n(S)) = 0. Here T , ( . )  is de- 
fined to be the trigger function for the kth routing  sub- 
chain such  that in network state S, the departure of a 
customer  from  the kth routing  subchain triggers the im- 
mediate  injection of an  external arrival into  the kth 
subchain if T,( n(S) ) = 0;  there is no triggered arrival if 
T,(n(S)) = 1. A class r customer completing  service at 
station i leaves  the network with probability 

1 - C 4 r ; j s  ’ 
(j,s)EE, 

where ( i ,   r )  65,. However, if Tk(  n(S) ) = 0, a new  cus- 
tomer is instantaneously  injected  into the network and it 
joins station j in class s with probability qj,, ( j ,  s)EE,. 

Specification of the loss  and trigger functions  com- 
pletes the definition of a queuing  network in X* .  

State  space decomposition and  representation 
It is known that if the Laplace  transform of a given ser- 
vice  time  distribution is a rational  function, the distribu- 
tion can be represented by a series of exponential  stages 
[ 2, 121. Consequently, by introducing an  appropriate 
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be characterized by a birth-death  process (a continuous 
time Markov chain not  to be confused with the Markov 
chain defined by the routing matrix P) . The equilibrium 
probability distribution P( S) , if it exists, is determined by 
a system of linear equations, also known as balance 
equations, namely 

P (  S) [rate of  flow out of S ]  = 

2 P ( S ’ )  [rate of flow from S’ to SI 
S’E Y for all S E Y ,  ( 1) 

where Y is the set of feasible states  for  the network under 
consideration,  determined by the specific service dis- 
ciplines, service  time  distributions,  and  routing  prob- 
abilities as well as by the loss and trigger functions. 

Now Y can  be decomposed into disjoint subsets of 
feasible states in the following manner. Let 

9 ( Y )  4 U€Yln (S)  = Y}. 

Y=UY(y) .  
Thus, 

YEY 

Two kinds of state transitions can be distinguished. The 
first kind is between  adjacent states within the  same sub- 
set Y ( y )  . The second kind is between a state in Y (  y) and 
an  adjacent state in a neighboring subset Y ( y  + 1,) or 
Y ( y  - 1,) where 1, is defined to  be  the unit  K-vector  with 
its kth component  equal to 1 and all other  components 
equal to  zero.  The  latter kind of transition corresponds 
to arrivals  into or departures from  the  network  and is 
controlled by the  loss and trigger functions. 

In  Fig. 1, a  graphical  representation of the loss  and 
trigger functions is shown for  a  network with two routing 
subchains (K  = 2).  The subset Y (  y) of feasible states is 
represented by a dot  at point y; L,(y) = 1 is represented 
by an  arrow  from y to y + 1,. The arrow signifies a positive 
rate of flow from the  states  Y(y) into the states Y ( y +  I,). 
The  absence of an arrow implies that  the function has the 
value zero  at y. Similarly, T,(y) = 1 is  represented by  an 
arrow from y to y - I,. The  absence of an arrow implies 
that T,(y) = 0. 

By using the  above graphical representation,  networks 
in N with open, closed  and mixed routing subchains [2] 
are illustrated in Figs. 2(a),  2(b) and 2(c)  for K = 2. 

Jackson [ 13 first introduced  state-dependent  lost and 
triggered arrivals as a function of the total  number N ( S )  
of customers in an exponential-server  network.  His 
ideas can be extended in a straightforward  manner to 
define networks in N with the total  population  size 
N ( S )  constrained  between an  upper bound  and  a 
lower bound [Fig.  2(d) if a Type 1 arrival process is 
assumed] or with individual routing  subchain  population 
sizes  constrained  between upper and  lower  bounds [Fig. 
2 (  e) if a Type 2  arrival process is assumed]. All net- 
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Figure 2 Queuing networks in -4f with  different population size constraints. 

works shown in Fig. 2 are  thus within A’”, which is known 
to  possess a product  form solution [ 21. 

Introduction of state-dependent  lost and triggered 
arrivals as a  function of n(S) defines the  extended  class of 
networks N* with arbitrary population  size constraints. 
As  an example, one  such  network with K = 2 is shown 
in Fig. 3. Since  arbitrary loss and trigger functions are 
allowed, it is possible for  the  set of feasible states  to be 
decomposable  into  two  or  more closed sets [ 131. In 
Fig. 3, three closed sets  are illustrated, namely 

Y ( V )  = u Y(YY, ; 

Y ( V )  = u, Y(Y) ; 

Y ( V ” )  =U.V(y) ,  

YE” 

YEV 

y€V” 

together with some  transient  states. We are primarily 
interested in the equilibrium probability  distribution, as- 
suming a known initial network  state.  Thus,  without any 
loss of interesting  generality we  can  consider  an ir- 
reducible Markov chain defined on a single closed set. 
We shall let Y (  V )  denote  the  set of feasible states 
of the irreducible Markov chain where V is the  cor- 
responding set of feasible  population vectors. 

A sufficient  condition 

Theorem For a queuing network in N*,  if the  Markov 
chain defined on  the  set 9’( V )  of feasible states is 
ergodic and if the loss and trigger functions  satisfy the 
condition 

(A)  For  each k = 1 ,  2, . . ., K ,  T , ( y )  = 1 if and  only if 
L,(y - 1,) = 1 for all pairs of y and y - I, in V ,  

then the equilibrium network  state probability  distribu- 
tion is given by the  product  form 

P ( S  = (Xl, X,, . . ., X,) 1 = C d ( S )  n & ( X i ) ,  
M 

i= l  

S E Y ( V ) ,  ( 2 )  

where X i  represents  the conditions at  service  station i in 
network  state S, the  functions d ( . )  and&( .) are given in 
Appendix A, and  the normalization constant C is given by 

A  proof of the  theorem is given in Appendix B. With 
our graphical representation of loss and trigger  functions, 
condition (A) in the  above  theorem  means  that neighbor- 
ing points in V must either be  “doubly connected”  or  not 
connected  at all. For instance, in Fig. 3, condition (A) is 
satisfied for 9( V )  . It is not satisfied for Y (  V’) . 

8 State-dependent  service  rates 
The  product  form given in Appendix A may be slightly 
modified to  apply  to  networks in N with several  forms of 
state-dependent  service  rates  as  shown by Baskett 
et al. [ 21. It  can be  easily shown  that  the  above  theorem 
remains valid for  such  networks. 

Evaluation of the normalization  constant 
The normalization constant C in Eq. (3) may be  com- 
puted by first evaluating the  sums 

Figure 3 A queuing network in M* with general loss and 
trigger functions. 
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straints. Applicability of the  product  form  as a solution 
can  be verified by  checking condition (A) .  

I Subchain 1 population size 

Figure 4 Loss and  trigger functions for a store-and-forward 
node  model. 

M 

Note  that C(y) is by definition the normalization constant 
of a network with  closed subchains  and  can  be  determined 
by the convolution  method of Reiser and  Kobayashi 
[ 101, A  very  useful observation  here is that in the  process 
of evaluating C ( y ) ,  all C(y’)  where y ;  < y k  for  any 
k = 1 ,  2 , .  . ., K ,  are  also  determined. Define 

Y z  4 Y k  
YEV 

and 

Y* 4 ( Y T ,  Y , * , . . . ,  Y ; ) .  

If C(y*) is computed by the convolution method,  then 
C can be evaluated  from 

- = E  1 do 
yEV C(Y) 

where C(y)  , yEV, have  been obtained in the  computation 
for C(y*). 

Applications 
Models  for  store-and-forward  nodes 

Example 1 discussed in the  Introduction is now  re- 
examined as a  queuing network with state-dependent  lost 
arrivals. Specifically, suppose  that K = 2, B = 5,  B ,  = 4 
and B,  = 3, and  the  set of feasible states is given  by  Fig. 4. 
Notice  that condition (A) is satisfied for a product  form 
solution. 

The particular buffer management scheme  considered 
in Example 1 and  other buffer management schemes  have 
been  analyzed using a  queuing network model [7, 81. 
Similar schemes  have  been implemented  in practice [ 141. 
Store-and-forward nodes employing such  schemes  can be 
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* Modeling of networkflow control 
In a  store-and-forward network, flow control algorithms 
are needed to  prevent  the  network  from being over- 
whelmed  by  input sources  as well as  to  prevent a single 
user or a single user group from hoarding resources of 
the  network to the  detriment of others. A two-level con- 
trol scheme  has also  been  analyzed using a  queuing  net- 
work model [ 151. At  the first level a limit is placed on 
the  total  number of messages in the network. At  the 
second level,  disjoint  groups of source-destination pairs 
are defined and  separate limits are placed on  the number 
of messages belonging to  each  group.  Note  that in the 
context of routing subchains,  such population  size  con- 
straints  are equivalent to  those of Example 1 .  Applica- 
bility of the  product  form  as a solution  for the queuing 
network model is a simple consequence of the  above 
theorem. 

Models  for multiprogramming computer  systems 
Multiprogramming computer  systems discussed  earlier 
in Example 2 may be modeled by queuing networks in 
N*. For instance, if in Example 2 ,  K = 2 ,  m, = 1 ,  m2 = 2 
and N = 5 ,  the  set of feasible states in Fig. 5 represents a 
system with a varying debree of multiprogramming which 
ranges  from 2 to 5. In this  model, it is assumed  that  there 
is always at least  one  job in each of the  two  classes 
waiting to  be  swapped  into main memory as a triggered 
arrival. In  an  actual  system,  these  jobs must  merely be 
previously  lost  arrivals. Jobs  are  swapped  into main 
memory on  two kinds of occasions, namely, a) at  the 
arrival  time of a new job if its  storage  requirement is less 
than  the available main memory space  at  that time 
(otherwise,  it is “lost”) ; and  b)  at  the  departure time of a 
job if the  departure gives rise to  more  than  two units of 
available main memory  space  (an  arrival is triggered). 
We  see  from Fig. 5 that condition (A) is satisfied for a 
product  form solution. 

Conclusion 
In this paper, we recognized that  the traditional  formu- 
lation of open, closed and mixed networks of queues is 
inadequate  for modeling systems with  various  population 
size constraints.  Mechanisms of state-dependent  lost  and 
triggered  arrivals were introduced to model such con- 
straints. A sufficient condition was  found  for  the equilib- 
rium network  state probability  distribution to  have  the 
product  form.  Thus,  the known class of queuing networks 
with a product  form solution has  been  extended. Po- 
tential applications to modeling computer communica- 
tion systems with storage  and flow control  constraints 
were  discussed. 
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Appendix A 
In this appendix,  the notation  needed to  describe  the net- 
work  state S and  the  balance  equations is defined. The 
product  form of P ( S )  is given. It is shown  that  the  set of 
local balance  equations can be differentiated into  four 
kinds so that  the  entire  set can  be represented by four 
general equations. 

Network  state description 
A service time  distribution having a rational Laplace 
transform may be  represented by a series of exponential 
stages [ 2 ,  121. Consider  the  service time  distribution of a 
class r customer  at station i. Let uir be the  total number 
of exponential stages.  The time spent in the Ith stage has 
a negative  exponential  distribution with mean 1 / p i r l .  The 
probability that a customer  completes  service  and leaves 
after  the lth stage is 1 - air/, where airl is the probability 
that  the  customer goes on  to  the ( I  + 1) th  stage.  (Note 
that a.  = 0.) Define 

'"ir 

and 

1-1  

Airl 4 fl airj, 2 5 1 I uir. 
j = I  

The  network  state S is  represented by a vector (Xl, 
X,; . ., X,) where X i  represents  the conditions prevailing 
at  station i .  Let ni denote  the  number of customers  at 
station i. If station i is  FCFS,  then X i  = (xil, xi , , .  . ., 
x i n i ) ,  where x i j  is  the  class of the  customer  who is jth 
in FCFS order. If station i is PS or IS, then X i  = ( u i l ,  
u i 2 , .  . ., u i R ) ,  where uir is a vector ( mirl,  mir2; . ., miruir) 
where mirl is the  number of class r customers in the Ith 
exponential stage of service. Finally, if station i is LCFS, 
then X i  = ( ( r,, I , ) ,  ( r2, I , ) ,  . . ., ( rni, l,,.) ) where rj is the 
class  and 4 is the  stage of service of the  jth  customer 
in LCFS  order. 

We next define the following set of linear equations  for 
each routing  subchain: 

where ei, may be interpreted as  the aggregate  arrival rate 
of class r customers  to station i. If the  network is closed 
with respect  to E,, then qjs = 0 for any ( j ,  s ) E E ,  in 
Eq. ( A  1 ) .  In this case,  the ei, are  determined  to within 
a  multiplicative constant  for  each subchain. 

Subchain 1 population size 

Figure 5 Loss and trigger functions for a multiprogramming 
system  model. 

The product  form 
The  product  form of the equilibrium network  state prob- 
ability distribution is given by [2] 

P ( S  = ( X l ,  X , , .  . ., X,) 1 = C 4 s )  n & ( X i ) ,  
M 

i=l 

where 1 )  C is a normalization constant; 2) & is a  function 
that  depends  on  the  type of station i :  

if station i is FCFS, 

if station i is  LCFS; 

and 3) if the network is closed allowing no  external  ar- 
rivals and  departures, then d( S) = 1 ; otherwise, 

4 s )  = fl A(m) for a Type 1 arrival process, 
N(S)-1 

m=o 

or 

d(S)  = n A,(m) for a Type 2 arrival process. 
K nk(S)-l 

k=1 m=O 

A  classifcation of local  balance equations 
Recall  that P (  S) must  satisfy the  set of balance  equations 
in Eq. ( 1).  It  was  observed by Chandy [ 1 1 3  that  each 
such balance equation, which he  termed a global balance 
equation,  can be  partitioned into a number of local 
balance equations. A solution that satisfies each of the 
local  balance equations  must  also satisfy the  sum of the 
local  balance equations, namely, the global balance 
equation. 375 
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In  order to write  down  the balance equations, addi- 

Let S a - (Xl, X, ,  . . ., X , )  and 4 - (X1, Xz,. . ., X,) be 
two  adjacent  network  states.  The following notation is 
defined: 

The  state s = S[Xt']  is the  same  as S except  for 8, 
which is ( r ,  x i l ,  x i 2 , .  . ., x i n )  where  station i is  FCFS. 
The  state s = S [ X y s ]  is the  same  as S except  for kj 
which is (xjl, xj,, . . ., xj,nj-l) where  station j is FCFS 
and s = xjnj. 

tional  notation is needed. 

The  state = S[XLr] is  the  same  as S except  for 
i. mirf which is equal  to mirl + 1 where  station i is 

ii. 4 which is ( ( r ,  I ) ,  (rl, I , ) ,  (r, ,  l , ) ,  . . ., (mi, 1.)) 
PS or IS; 

where  station i is LCFS. 
The  state s = S [ X i s ]  is  the  same  as S except  for 
i. mjSf  which is equal to mjsf - 1 where  station j is 

ii. Xj which is ( (r , ,  I , ) ,  (r, ,  1,) , . . ., (mi, lni)  1 where 

A combination of the  above  notations  (for  example, 
S [ X i r ,  X;'] ) will have  the  same combined interpreta- 
tion. For  the special case s = S[X;-;-,, X i ' ] ,  where 
station j is  LCFS  and (s, 1) 4 ( rl, 11) , S is the  same  as S 
except  for zj which is ( (rl, 1, - l ) ,  ( r z ,  1,) ; . 1, (rn.,  Inj) 1.  
The  rate of flow u r ( X i f )  due  to a class r cuitomer 
leaving the lth stage of service at station i is defined to 
be 

PS or IS; 

station j is LCFS  and (s, I )  = (rl, I , ) .  

1. . - m i r l p w  if station i is PS; 
ni 

ii. mirlpirl if station i is IS; 

iii. pirf if station i is  LCFS. 

Similarly, the  rate of flow ur(XLr) is defined to  be 

1. 
. ( m i r l +  1)pirt if station i is PS; 

ii. (mtrf + l )p i r t  if station i is IS; 

iii. pirl if station i is  LCFS. 

Let I ,  be  the index set of FCFS service  stations  and 
I ,  be  the index set of PS, IS and  LCFS  service  stations. 
The  set of local balance  equations  can be grouped  into 
the following four categories; 

1) Local balance equations of the jirst kind equate  the 
rate of flow out of a  feasible state S due  to a customer 
leaving a FCFS station to the  rate of flow into S due to a 
customer entering the  same  station.  Consider,  for in- 
stance, a network in Jf. Local  balance  equations of the 

n,+ 1 
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P(S)pj(nj) = E {x P(S[X , I ' ,  x ~ ) p ~ ( n ,  + l)pir;js 
r=1 iEl, 

+ x 2 [ P ( S [ X L r ,  x;'])ur(x;3) 

I 
;€I, f =  1 

x ( 1  - %f)&j.J 

+ iqjsP(S[X;sJ 1, 
where s = xjnj in state S, 

1 X(N(S)  - 1 )  for a Type 1 arrival process; 

i = A,(n,(S) - 1) for a Type 2 arrival process, 
and ( j ,  s) €E,.  

Note  that if nj in state S is zero,  both sides of the  above 
local balance  equation  are  equal  to  zero. 

2 )  Local balance  equations of the second kind equate 
the  rate of flow out of a  feasible state S due  to a class s 
customer leaving the first stage of service  at a PS, IS, or 
LCFS station to  the  rate of flow into S due  to a  class s 
customer entering the first stage of service at  the  same 
station.  Consider,  for  instance, a network in ,Ap. Local 
balance  equations of the  second kind for SE.Y and jE12 
are given  by 

P(S)U,(XjI) = 5 {x P ( S [ X : ' ,  X J ) p i ( n i  + l)&;js 
r=1 E l ,  

+ x x [ P ( S [ X : ' ,  XJJ 1 Ur(XJ 
"ir 

IE l ,  1=1 

x (1 - a i r J ~ r ; j s l  I 
+ iq j s~(S[X,r , s1  1,  

where is as defined above. 

3 )  Local  balance  equations of the third kind equate  the 
rate of flow out of a feasible state S due  to a class s 
customer leaving the  lth  stage of service  at a PS, IS or 
LCFS  station  to  the  rate of flow into S due  to a class s 
customer entering the  lth  stage of service at  the  same 
station,  where 1 P 2 .  Consider,  for  instance, a network in 
Jf. Local  balance  equations of the third kind for S E Y ,  
jE12 and 2 5 15 ujs are given by 

P ( S )  a,(xjl) = P(s [x~:~- , ,  X;:] U,(X;S-,) ajs,l-l. (A41 

4) Local balance  equations of the fourth kind equal the 
rate of  flow out of a feasible state S due  to  the arrival of a 
customer  from  an  external  source  into a routing  subchain 
to  the  rate of flow into S due  to a customer  departing 
from  the  same routing  subchain. Consider,  for  instance, a 
network in JV. Local balance equations of the  fourth kind 
for S E Y  and k = 1 ,  2 , .  . ., K are given  by 
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where 

A ( N  (S j ) for a Type 1 arrival process; 

A,( n,(S) ) for a Type 2 arrival process. 

Appendix B 

Proof of theorem 
The  theorem is proved by showing that  the product form 
given in Appendix  A satisfies the four  kinds of local 
balance equations  for all feasible states in Y (  V ) .  

Consider a  feasible  network state SEY(y) where y is a 
feasible  population vector in V.  

We first note that local balance equations of the third 
kind are not affected by the loss and trigger functions. 
They  are still given by Eq. (A4)  and are  thus satisfied by 
the product  form as a solution. 

Consider local balance equations of the first and  second 
kinds and  focus  upon class s customers  at  station 
j ,  ( j ,  s) €E,.  With loss and trigger functions which  satisfy 
condition (A) ,  there  are  three possible cases: 

Case 1 y - 1, is not in V and y ,  > 0, which imply that 
T , ( y )  = 0. (If y ,  = 0, then the local balance equations 
given below  reduce to  the trivial case of 0 = 0.) 

Local balance equations of the first kind are given by 

P ( S ) p j ( n j )  = 2 P ( S [ X * ~ ' , x ~ ~ s ] ) C L ; ( n , +  1 )  
;El,  

( f , r l€Ek 

where s = xjnj in state S .  Local balance equations of the 
second kind are given by 

JULY 1977 

+ c { [pfr: j .s + (1 - 2 P ; r ; m ) q j s ]  
;E l ,  ( m , t ) E E ,  

( i , r )€E*  

x 5 P(S[X,t,',x,T:'])u,(x;') (1  - a i , 1 ) ] .  
1=1 

(B2)  

After substituting the  product form in Appendix  A for 

and P ( S [ X ; ' ,  X;;]) into  the  above  equations, dividing 
throughout by P ( S j  and rearranging, it is sufficient to 
show 

P ( S ) ,  P ( S [ X ; r ,  x;"), P(S[X,: ' ,  x;"), P ( S [ K ' ,  x;;]) 

We proceed by  considering the right-hand  side (RHS) of 
Eq. ( B 3 ) .  

RHS = e i r P i r ; j s  

( ; . r E E k  

+ q j . 1  2 e,, - 2 e i r P i r ; m t  
( i , r )€Ek  ( i , r )€Ek  (m,r )EE,  1 

- 
- 2 e i r p ; r ; ,  

( i , r E E k  

+ q j s  [emt - eirPi r ; rnt  1 
( m , t ) E E ,   ( i , r E E k  

x e i r P ; r : j s  + q j s   q m t  

( i ,r)€Ek  (m,tJ€E, 

= 2 e i r P ; r ; j s  + qjs  

(i ,r)EE* 

= ejs = left-hand  side of Eq. ( B 3 ) .  

In  the  above derivation we have made use of Eq.  (A 1 ) 
which  defines the {e,,}. 

Case 2 y - 1, is in V ,  T ,  (y )  = 0 and L,(y- 1,) = 0. In this 
case, local balance equations of the first  and second kinds 
are again given by Eqs. ( B  1) and ( B 2 ) ,  respectively,  and 
are  thus  each satisfied by the  product form as a  solution. 

Case3y-11 , i s inV,T, (y)=1andL,(y- l I , j=1 .1nthis  
case, local balance equations of the first and second  kinds 
are given by Eqs.  (A2)  and ( A 3 ) ,  respectively, and  are 
thus satisfied by the  product form as a  solution. 

Finally, consider local balance equations of the  fourth 
kind and focus  upon the kth subchain. There  are again 
three possible cases: 377 
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Case I y + 1, is not in V which implies that L, ( y )  = 0. The 
local balance equation for the kth subchain  reduces  to  the 
trivial case of 0 = 0. 

Case 2 y + 1, is in V ,  L , ( y )  = 1 and T, (y  + I,) = 1. In 
this case, local balance equations of the  fourth kind are 
given by Eq. (AS) and are  thus satisfied by the  product 
form  as a  solution. 

Case 3 y + 1, is in V ,  L , ( y )  = 0 and T,(y  + 1,) = 0. The 
local balance  equation  for  the kth  subchain reduces  to  the 
trivial case of 0 = 0. 
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