370

S. S. LAM

S. S. Lam

Queuing Networks with Population Size Constraints

Abstract: The class of queuing networks with multiple routing subchains is extended to include mechanisms of state-dependent lost
arrivals and triggered arrivals. A sufficient condition is found, involving the loss and trigger functions, for the equilibrium network state
probability distribution to have the product form; the known class of queuing networks with a product form solution is thus enlarged.
Such queuing networks are useful models for systems with various population size constraints. Potential applications to modeling
computer communication systems with storage and flow control constraints are indicated.

Introduction

Networks of queues are important models of multipro-
gramming computer systems and computer-communica-
tion networks. Jackson [1] studied queuing networks
with exponential servers and showed that the equilibrium
network state probability distribution has a product form.
The class of queuing networks with a product form solu-
tion has recently been extended by Baskett, Chandy,
Muntz and Palacios {2] to include different classes of
customers and general service time distributions for cer-
tain service disciplines. In their model, customers travel
through a network of four types of service stations and
may change class membership while making a transition
from one service station to another. The underlying
Markov chain of station and class transitions is assumed
to be decomposable into K ergodic subchains (to be
referred to as routing subchains). They considered net-
works with open, closed and mixed routing subchains.
Either one of two kinds of population size constraints
can be defined: a) the number of customers in each
routing subchain is constrained (unconstrained) inde-
pendently of other routing subchain population sizes, or
b) the total number of customers in the network is
constrained (unconstrained).

Let S denote the network state. In state §, we define
n,(S) to be the customer population size in the kth
routing subchain and N(S) to be the total number of
customers in the network. Jackson [1] first introduced
mechanisms of lost and triggered arrivals as a function of
N(S). In this paper [3, 4], we consider mechanisms of
lost and triggered arrivals as a function of the vector
n(S) = (n,(8), ny(S), -+ nk(S)), which will be re-
ferred to as the population vector in state S. Depending
upon n(S), arrivals to the network from external Poisson
streams may be lost (lost arrivals); also, upon the de-
parture of a customer from the network, a new customer
may be injected instantaneously into the network

(triggered arrivals). Such state-dependent lost and
triggered arrivals give rise to much more general popula-
tion size constraints than a) and b) above. To motivate
consideration of such more general constraints, we give
the following examples of models of computer communi-
cation systems with population size constraints which
are beyond the scope of the class of queuing networks
studied by Baskett et al. [ 2]. We shall later come back to
these examples and show that they can be represented as
special cases of queuing networks with state-dependent
lost and triggered arrivals.

Example 1

Consider a queuing network model of a single store-and-
forward node within a packet switching network [5, 6].
Packets received by the node are routed to one of K out-
put channels. Let n,(S) denote the number of packets at
channel % in state S of the node model. Suppose the node
has a total of B buffers for the storage of packets being
forwarded and the following buffer management scheme
is adopted [7, 8]. The pool of B buffers is shared by all
output channels. However, the number of buffers that
can be allocated to channel k& cannot exceed B, where
B, < B. Under this scheme, feasible states of the node
model must satisfy the constraints

K
> n(S)=B

k=1

and

n(S) < B,, k=12,K.

Example 2

A closed queuing network model has often been used to
model time-sharing computer systems with a fixed degree
of multiprogramming [9]. However, in an actual system
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with a fixed number of units, B, of main memory, the de-
gree of multiprogramming fluctuates depending on the
storage requirements of the jobs residing in main memory.
Suppose that K classes of jobs can be distinguished such
that a job in the kth class requires m,, 1 = k= K, units of
main memory. Let #,(S) denote the number of class &
jobs residing in main memory in state S of the system
model. In this case, feasible states of the system model
must satisfy the constraint

p
> mn(8) = N.
k=1

Note that the degree of multiprogramming is equal to

22;1 n(S).

~ Outline of this paper
An outline of the balance of this paper is given here. In
the next section, the class of queuing networks con-
sidered in [2] is defined. This class of networks will be
denoted by ./". Mechanisms of state-dependent lost and
triggered arrivals and the associated loss and trigger func-
tions which define the state dependency are next intro-
duced. The class of networks in .#* with the addition of
the loss and trigger mechanisms will be denoted by /™.
A theorem is presented which gives a sufficient condition,
involving the loss and trigger functions, for the equilib-
rium network state probability distribution to have the
product form. The known class of queuing networks with
a product form solution is thus enlarged. It is then shown
that evaluation of the normalization constant for this new
class of networks can be accomplished by considering a
single queuing network with multiple closed subchains.
Numerical solution for the normalization constant can
thus utilize the convolutional method of Reiser and
Kobayashi [ 10]. Finally, potential applications to model-
ing computer communication systems are discussed.
Proof of the theorem is based upon the technique of
local balance equations described by Chandy [11]. In
Appendix A, the notation needed to describe the net-
work state and the balance equations is defined. It is
shown that the complete set of local balance equations
can be classified into four kinds and represented by four
general equations. Based upon the notation and de-
finitions introduced in Appendix A, a proof of the theo-
rem is given in Appendix B.

Definition of queuing networks in .4

There is a finite number M of service stations and a finite
number R of different classes of customers. A customer
who completes service at station / in class r will next
require service at station j in class s with a fixed proba-
bility p,. . The routing matrix P = [p ] can be con-
sidered as deﬁmng a Markov chain with states indexed by
the pairs (i, r). This Markov chain is assumed to be de-
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composable into K ergodic subchains (routing sub-
chains). Let E, E,, -+, E, denote the sets of (i, r) in
these subchains. If n,. denotes the number of class r
customers at station { in network state S, then by our
earlier definitions

m(S§)= Y n, k=1,2,--+, K,
(irEE,

and
p

N($) =3 n(S).
k=1

Four types of service stations are considered:

1. First-come-first-served service discipline, one or more
servers (FCFS);

2. Processor-sharing service discipline, a single server
(PS);

3. No queuing, arbitrarily many servers (IS);

4. Last-come-first-served preemptive resume service
discipline, a single server (LCFS).

In an FCFS service station, all customers have the
same exponential service time distribution with a service
rate u(j) dependent on the number j of customers at the
service station. In PS, IS or LCFS service stations, each
class of customers may have its own general service time
distribution which has a rational Laplace transform. For
the sake of clarity, several other forms of state-dependent
service rates [2] are not considered for the moment.

Customers arrive from external sources according to
one of two possible types of state-dependent arrival
processes:

1. Customers arrive from a single Poisson stream with
state-dependent rate A(N(S)). An arrival enters
station i for service in class » with a fixed probability

2. Corresponding to the K routing subchains, there are
K Poisson arrival streams with state-dependent rates
A (n,(8)), 1= k= K. An arrival from the kth Poisson
stream enters station i for service in class r with a
fixed probability g, ;

Yy a,=1 for all k.
(irVEE,

State-dependent lost and triggered arrivals

Without any loss of generality we shall assume that for a
Type 1 arrival process A(m) is positive for m = 0 and for
a Type 2 arrival process A, (m) is positive for m = 0 and
k=1, 2, -+, K. Also, the service rate of any service
station is positive whenever there is a customer waiting
for service. Define

Y= (¥ Yy 5 Vg)
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Figure 1 A graphical representation of the loss and trigger
functions.

and let Y be the set of K-tuples {y|y, nonnegative
integers}.

Two sets of functions L,(-) and 7,,(-), 1 = k= K, are
now introduced which map the space Y into the set
{0, 1}. Here L, () is defined to be the loss function for the
kth routing subchain such that in network state S, an ex-
ternal arrival from the kth Poisson stream is accepted if
L,(n(S)) =1;itis lost if L,(n(S)) = 0. Here T, () is de-
fined to be the rrigger function for the kth routing sub-
chain such that in network state S, the departure of a
customer from the ith routing subchain triggers the im-
mediate injection of an external arrival into the kth
subchain if T, (n(S)) = 0; there is no triggered arrival if
T,(n(S)) = 1. A class r customer completing service at
station i leaves the network with probability
1= 2 pir; Js?

(J.S)EE,
where (i, r)€E,. However, if T, (n(S)) = 0, a new cus-
tomer is instantaneously injected into the network and it
joins station j in class s with probability @i (J, S)EE,.

Specification of the loss and trigger functions com-
pletes the definition of a queuing network in 4.

State space decomposition and representation

It is known that if the Laplace transform of a given ser-
vice time distribution is a rational function, the distribu-
tion can be represented by a series of exponential stages
[2, 12]. Consequently, by introducing an appropriate
(discrete) state space, the queuing network behavior can

be characterized by a birth-death process (a continuous
time Markov chain not to be confused with the Markov
chain defined by the routing matrix P). The equilibrium
probability distribution P(S), if it exists, is determined by
a system of linear equations, also known as balance
equations, namely

P(S)[rate of flow out of §] =

Z P(S’)[rate of flow from §' to S]
Sey for all S€.%, (1)

where . is the set of feasible states for the network under
consideration, determined by the specific service dis-
ciplines, service time distributions, and routing prob-
abilities as well as by the loss and trigger functions.

Now % can be decomposed into disjoint subsets of
feasible states in the following manner. Let

F(y) O {SEZIn(S) =y}.
Thus,
F=\UZy.

YEY

Two kinds of state transitions can be distinguished. The
first kind is between adjacent states within the same sub-
set #(y). The second kind is between a state in #(y) and
an adjacent state in a neighboring subset #(y + 1) or
& (y—1,) where 1, is defined to be the unit K-vector with
its kth component equal to 1 and all other components
equal to zero. The latter kind of transition corresponds
to arrivals into or departures from the network and is
controlled by the loss and trigger functions.

In Fig. 1, a graphical representation of the loss and
trigger functions is shown for a network with two routing
subchains (K = 2). The subset #(y) of feasible states is
represented by a dot at point y; L, (y) =1 is represented
by an arrow from y to y +1,.. The arrow signifies a positive
rate of flow from the states #(y) into the states #(y+1,).
The absence of an arrow implies that the function has the
value zero at y. Similarly, T,(y) =1 is represented by an
arrow from y to y — 1. The absence of an arrow implies
that T,(y) = 0.

By using the above graphical representation, networks
in ./ with open, closed and mixed routing subchains [2]
are illustrated in Figs. 2(a), 2(b) and 2(c) for K = 2.

Jackson [1] first introduced state-dependent lost and
triggered arrivals as a function of the total number N (S)
of customers in an exponential-server network. His
ideas can be extended in a straightforward manner to
define networks in .#° with the total population size
N(S) constrained between an upper bound and a
lower bound [Fig. 2(d) if a Type 1 arrival process is
assumed] or with individual routing subchain population
sizes constrained between upper and lower bounds [ Fig.
2(e) if a Type 2 arrival process is assumed]. All net-
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Figure 2 Queuing networks in .4 with different population size constraints.

works shown in Fig. 2 are thus within .#", which is known
to possess a product form solution {2].

Introduction of state-dependent lost and triggered
arrivals as a function of n(S) defines the extended class of
networks 4°* with arbitrary population size constraints.
As an example, one such network with K = 2 is shown
in Fig. 3. Since arbitrary loss and trigger functions are
allowed, it is possible for the set of feasible states to be
decomposable into two or more closed sets [13]. In
Fig. 3, three closed sets are illustrated, namely

gy =\U (y);
yevV

gy = £@4);
yEV'

Fvn =\J 7y,
&

together with some transient states. We are primarily
interested in the equilibrium probability distribution, as-
suming a known initial network state. Thus, without any
loss of interesting generality we can consider an ir-
reducible Markov chain defined on a single closed set.
We shall let #(V) denote the set of feasible states
of the irreducible Markov chain where V is the cor-
responding set of feasible population vectors.

A sufficient condition

Theorem For a queuing network in #*, if the Markov
chain defined on the set .#(V) of feasible states is
ergodic and if the loss and trigger functions satisfy the
condition

(A) For each k=1, 2,---, K, T,(y) = 1 if and only if
L. (y—1,) =1 forall pairsof yandy — 1, in V,

then the equilibrium network state probability distribu-
tion is given by the product form

M
P(S=(X,, X, X,)) = C d(S) [[£(X),

ses(V), (2)

JULY 1977

where X, represents the conditions at service station i in
network state S, the functions d(-) and f;(-) are given in
Appendix A, and the normalization constant C is given by

=3 3 P (3)

yEV SEF(y}

A proof of the theorem is given in Appendix B. With
our graphical representation of loss and trigger functions,
condition (A) in the above theorem means that neighbor-
ing points in ¥ must either be ‘““‘doubly connected” or not
connected at all. For instance, in Fig. 3, condition (A) is
satisfied for # (V). It is not satisfied for #(V’).

e State-dependent service rates

The product form given in Appendix A may be slightly
modified to apply to networks in 4" with several forms of
state-dependent service rates as shown by Baskett
et al. [2]. It can be easily shown that the above theorem
remains valid for such networks.

e Evaluation of the normalization constant
The normalization constant C in Eq. (3) may be com-
puted by first evaluating the sums

Figure 3 A queuing network in .#/* with general loss and
trigger functions.

Subchain 2 population size

Subchain ! population size
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Figure 4 Loss and trigger functions for a store-and-forward
node model.

1 M
CHE 2, A ver

Note that C(y) is by definition the normalization constant
of a network with closed subchains and can be determined
by the convolution method of Reiser and Kobayashi
[10]. A very useful observation here is that in the process
of evaluating C(y), all C(y’') where y, < y, for any
k=1,2, -, K, are also determined. Define

* A max

Y £ v Vi

and

YA Oh vk vE).

If C(y*) is computed by the convolution method, then
C can be evaluated from

1_ » d(s)
¢ & C(y)

where C(y), yEV, have been obtained in the computation
for C(y*).

Applications

e Models for store-and-forward nodes

Example 1 discussed in the Introduction is now re-
examined as a queuing network with state-dependent lost
arrivals. Specifically, suppose that K=2,B=35, B, =4
and B, =3, and the set of feasible states is given by Fig. 4.
Notice that condition (A) is satisfied for a product form
solution.

The particular buffer management scheme considered
in Example 1 and other buffer management schemes have
been analyzed using a queuing network model [7, 8].
Similar schemes have been implemented in practice [ 14].
Store-and-forward nodes employing such schemes can be
modeled as queuing networks with population size con-

straints. Applicability of the product form as a solution
can be verified by checking condition (A).

e Modeling of network flow control

In a store-and-forward network, flow control algorithms
are needed to prevent the network from being over-
whelmed by input sources as well as to prevent a single
user or a single user group from hoarding resources of
the network to the detriment of others. A two-level con-
trol scheme has also been analyzed using a queuing net-
work model [15]. At the first level a limit is placed on
the total number of messages in the network. At the
second level, disjoint groups of source-destination pairs
are defined and separate limits are placed on the number
of messages belonging to each group. Note that in the
context of routing subchains, such population size con-
straints are equivalent to those of Example 1. Applica-
bility of the product form as a solution for the queuing
network model is a simple consequence of the above
theorem.

e Models for multiprogramming computer systems
Multiprogramming computer systems discussed earlier
in Example 2 may be modeled by queuing networks in
A47*. For instance, if in Example 2, K =2, m,=1, m,=2
and N =5, the set of feasible states in Fig. 5 represents a
system with a varying degree of multiprogramming which
ranges from 2 to 5. In this model, it is assumed that there
is always at least one job in each of the two classes
waiting to be swapped into main memory as a triggered
arrival. In an actual system, these jobs must merely be
previously lost arrivals. Jobs are swapped into main
memory on two kinds of occasions, namely, a) at the
arrival time of a new job if its storage requirement is less
than the available main memory space at that time
(otherwise, it is “lost”) ; and b) at the departure time of a
job if the departure gives rise to more than two units of
available main memory space (an arrival is triggered).
We see from Fig. S that condition (A) is satisfied for a
product form solution.

Conclusion

In this paper, we recognized that the traditional formu-
lation of open, closed and mixed networks of queues is
inadequate for modeling systems with various population
size constraints. Mechanisms of state-dependent lost and
triggered arrivals were introduced to model such con-
straints. A sufficient condition was found for the equilib-
rium network state probability distribution to have the
product form. Thus, the known class of queuing networks
with a product form solution has been extended. Po-
tential applications to modeling computer communica-
tion systems with storage and flow control constraints
were discussed.
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Appendix A

In this appendix, the notation needed to describe the net-
work state § and the balance equations is defined. The
product form of P(S) is given. It is shown that the set of
local balance equations can be differentiated into four
kinds so that the entire set can be represented by four
general equations.

* Network state description

A service time distribution having a rational Laplace
transform may be represented by a series of exponential
stages [2, 12]. Consider the service time distribution of a
class r customer at station i. Let u,, be the total number
of exponential stages. The time spent in the /th stage has
a negative exponential distribution with mean 1/ u,,,. The
probability that a customer completes service and leaves
after the Ith stage is 1 — q,,,, where a,, is the probability
that the customer goes on to the (/+ 1)th stage. (Note
that iy, = 0.) Define

Airl é 1

and
éH . 2=1= u,.

The network state § is represented by a vector (X,
X,, -, X,,) where X, represents the conditions prevailing
at station i. Let n; denote the number of customers at
station i. If station i is FCFS, then X, = (x;;, X, ',
X ) where x;; is the class of the customer who is jth
in FCFS order If station i is PS or IS, then X, = (v,,,
Ut Ugp), Where v, is a vector (my,,, My, mi”‘ir)
where m,, is the number of class r customers in the /th
exponential stage of service. Finally, if station i is LCFS,
then X, = ((r,, ), (ry, 1), (r,, [,)) where r; is the
class and l; is the stage of service of the jth customer
in LCFS order

We next define the following set of linear equations for
each routing subchain:

s = 2

(i, EE,

eirpir;js + qjs’ (J, S)EEk’ (Al )

where ¢, may be interpreted as the aggregate arrival rate
of class r customers to station i. If the network is closed
with respect to E,, then g, = 0 for any (j, s)EE, in
Eq. (A1). In this case, the ¢, are determined to within
a multiplicative constant for each subchain.
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Figure 5 Loss and trigger functions for a multiprogramming
system model.

e The product form
The product form of the equilibrium network state prob-
ability distribution is given by [2]
M

P(S= (X, X,,- -+ X)) = C d(S) [] £i(X),

i=1
where 1) C is a normalization constant; 2) f; is a function
that depends on the type of station i:

LX) =1] {ew, —1—} if station i is FCFS,

o ()

£(X) =n, HH{[ m]m"' L]

1 my
it if station i is PS,

irl

u.

Ry Miry 1
£(X) =H H{[ - ] '} if station i is IS,

irl*

n; 1
£ =T] {e A, } if station i is LCFS;
=1 l“’lr l
and 3) if the network is closed allowing no external ar-

rivals and departures, then d(S) = 1; otherwise,

N(S)-1

d(s) = H A(m) for a Type 1 arrival process,
m=0

or
K np($)-1

d(S) =[] II M(m) fora Type 2 arrival process.
k=1 m=0

e A classification of local balance equations

Recali that P(S) must satisfy the set of balance equations

in Eq. (1). It was observed by Chandy [11] that each

such balance equation, which he termed a global balance

equation, can be partitioned into a number of local

balance equations. A solution that satisfies each of the

local balance equations must also satisfy the sum of the

local balance equations, namely, the global balance

equation. 375
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In order to write down the balance equations, addi-
tional notation is needed.

Let § A (X, X. X,)and S A (X, X,,- -+ X,,) be
two adjacent network states. The following notation is
defined:

o The state § = S[X”] is the same as S except for )~(
which is (r, x5, X, * " x;,,) Where station i is FCFS.

e The state S =S [X 1 is tfle same as S except for X
which is (x] L x]’nrl) where station j is FCFS
and s = xjnj.

o The state § = S[X},] is the same as § except for

i. m,,, which is equal to m,,, + 1 where station i is
PS or IS;
il. 5(1 which is ((r, ), (r,, 1), (ry, L), -
where station i is LCFS.
o The state S = S[Xj_,s] is the same as S except for
i. my, which is equal to m,, — 1 where station j is
PS or IS;
ii. X which is ((r,, ), (rg, 1), " (r", [,)) where
statlonj is LCFS and (s, [} = (r,, I ) '

« A combination of the above notations (for example,
S[X; . X;'1) will have the same combined interpreta-
tion. For the special case § = S[X Y X;'], where
station j is LCFS and (s, /) & (r, 1)), S is the same as .S
except for X; whichis ((r,, [, = 1), (r,, 1), (rn,l ))

e The rate of flow o,(X,) due to a class r customer
leaving the Ith stage of service at station i is defined to

s (s 1))

be
i, Dt i station i is PS;
n;
ii. mym,, if station iis IS;
ii, if station i is LCFS.

Similarly, the rate of flow o,(X}") is defined to be

i (mirl + l)l‘l‘irl

if station i is PS;
n+1 ’
if station i is IS;

if station i is LCFS.

il (my, + Dy,
iti, ,

Let I, be the index set of FCFS service stations and
1, be the index set of PS, IS and LCFS service stations.
The set of local balance equations can be grouped into
the following four categories.

1) Local balance equations of the first kind equate the

rate of flow out of a feasible state S due to a customer

leaving a FCFS station to the rate of flow into S due to a

customer entering the same station. Consider, for in-

stance, a network in .#". Local balance equations of the
376 first kind for S€.% and jE€ I, are given by
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P(S)Hp(n) =3 {2 P(SIX]", X D, (n,+ Dp

r=1 i€l

ir;js

-3 S IPSIXY, X )0, (X2

i€l, 1=1
X (1 - airl)pir‘,js]}
+ RaP(SLY; D). (A2)
where s = x;, m state S,
)\(N(S) — 1) for a Type 1 arrival process;

A= A (n,(S) — 1) for a Type 2 arrival process,
and (j, s) €E,.

Note that if n; in state S is zero, both sides of the above
local balance equation are equal to zero.

2) Local balance equations of the second kind equate
the rate of flow out of a feasible state S due to a class s
customer leaving the first stage of service at a PS, IS, or
LCEFS station to the rate of flow into § due to a class s
customer entering the first stage of service at the same
station. Consider, for instance, a network in ./". Local
balance equations of the second kind for S€% and jEI,
are given by
R

=3 {2 P(SIXT, X' D py(n, + Dpy.

r=1 “i€l,

P($)0,(X,)

+3 2 [P(SLX;, X Do (X))

i€l, 1=1

X (1 - airl)pir;js]}
+ Xq;,P(S[X;]), (A3)

where X is as defined above.

3) Local balance equations of the third kind equate the
rate of flow out of a feasible state S due to a class s
customer leaving the /th stage of service at a PS, IS or
LCFS station to the rate of flow into S due to a class s
customer entering the /th stage of service at the same
station, where [ = 2. Consider, for instance, a network in
A", Local balance equations of the third kind for S€7,
JEI, and 2 = | = u, are given by

P(S)o,(X;) P(S[X et ])O'(X D, - (Ad)
4) Local balance equations of the fourth kind equal the
rate of flow out of a feasible state S due to the arrival of a
customer from an external source into a routing subchain
to the rate of flow into S due to a customer departing
from the same routing subchain. Consider, for instance, a
network in 4. Local balance equations of the fourth kind

for S€% and k=1, 2, -, K are given by
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P(HX Sd,= 3 [P(S[X?T])#i(”ﬁl)
(ir)€E, (.r)EE,
el

X(l_ > pir;js)]
(.5)EE,

v s =3 )
(i,NEE, UEE,
iel,
% $ PSLG Do, (1= a,) |- (A5)

=1

where
A(N(S)) for a Type 1 arrival process;
B A (n,(S)) for a Type 2 arrival process.
Appendix B

s Proof of theorem

The theorem is proved by showing that the product form
given in Appendix A satisfies the four kinds of local
balance equations for all feasible states in (V).

Consider a feasible network state SE¥(y) where yisa
feasible population vector in V.

We first note that local balance equations of the third
kind are not affected by the loss and trigger functions.
They are still given by Eq. (A4) and are thus satisfied by
the product form as a solution.

Consider local balance equations of the first and second
kinds and focus upon class s customers at station
J» (J, s)EE,. With loss and trigger functions which satisfy
condition (A), there are three possible cases:

Case 1 y—1, is not in V and y, > 0, which imply that
T.(y) = 0. (If y, = 0, then the local balance equations
given below reduce to the trivial case of 0 =0.)

Local balance equations of the first kind are given by

P(S)u(n)= {P(S[X:T’X;s])“f(ni+l)
iel,
(i,r)EE,

X [p ir;j.s'+ (l - E pir;ml)qjs]}
(mt)EE,

+ 2 {[pir:jx+ (1 - 2 pir:ml)qjs]
i€l, (m1)EE,
(i,r)EE,

xS P(SLX, X,T"‘])a,(X,.*,’)(l—ai,,)},
=1 (B])

where s = x;, in state S. Local balance equations of the
. J .
second kind are given by
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P(S)o(X,)= 3 {P(S[X;r, X Dpaa(ng + 1)

iel,
(i.r)EE,
X I:p ir;js+ (1 - E P;r;m,>qjs}}
(m,t)EE,
+ 2 {I:pir;jx+ (1 - E pir;m)‘]jg]
i€l, (m,1)EE,,
(i,r)EE,

x 3 P(SLXT, X, Do, (X} (1 —am)}-
=1 (B2)

After substituting the product form in Appendix A for

P(S), P(S[X;", X;']), P(S[X}, X;°1), P(S[X,", X;]1)

and P(S[X;’, X;]) into the above equations, dividing

throughout by P(S) and rearranging, it is sufficient to

show

s — 2 eir[pir;js+<1_ 2 pir;mt)qjs]' (B3)
(ir)EE, (m)EE,

We proceed by considering the right-hand side (RHS) of
Eq. (B3).

RHS = 2 eirpir;js

(i,r)€E,
+ q]'s[ E € — Z 2 eirpir;mt]
(i,r)EEk (i,r)EE, (mt)EE,
= 2 Py
Gi,r)EE,
+ qjs E [emt - 2 eirpir;mt:l
(m1)EE, (ir)€E,
= 2 €iPirjs T s E D
(i.r)EE, (m,1)EE,
= 2 eirpir;js + qjs
(i,r)EE,

=e;,= left-hand side of Eq. (B3).

In the above derivation we have made use of Eq. (Al)
which defines the {e, }.

Case2y—1, isin V, T, (y) =0and L, (y—1,) =0. In this
case, local balance equations of the first and second kinds
are again given by Eqgs. (B1) and (B2), respectively, and
are thus each satisfied by the product form as a solution.

Case3y—1 isinV, T, (y)=1and L, (y—1)=1.Inthis
case, local balance equations of the first and second kinds
are given by Egs. (A2) and (A3), respectively, and are
thus satisfied by the product form as a solution.

Finally, consider local balance equations of the fourth
kind and focus upon the kth subchain. There are again
three possible cases:
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Case I y+1, is notin I which implies that L, (y) = 0. The
local balance equation for the kth subchain reduces to the
trivial case of 0 = 0.

Case 2y+ 1, isinV,L(y)=1and T, (y+1)=1.1n
this case, local balance equations of the fourth kind are
given by Eq. (AS) and are thus satisfied by the product
form as a solution.

Case3y+ 1 isinV, L (y)=0and T,(y+1,) =0. The
local balance equation for the kth subchain reduces to the
trivial case of 0 = 0.
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