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Algorithmic Information Theory 

Abstract: This  paper reviews  algorithmic  information theory, which is an  attempt  to apply  information-theoretic and probabilistic 
ideas to  recursive function theory. Typical concerns in this  approach  are,  for example, the  number of bits of  information  required to 
specify an algorithm, or  the probability  that a program whose  bits  are  chosen by coin flipping produces a given output.  During  the  past 
few  years  the definitions of  algorithmic  information theory  have been  reformulated. The basic features of the new  formalism are pre- 
sented  here  and  certain  results of R. M .  Solovay are  reported. 

Historical introduction 
To our knowledge, the first publication of the ideas of 
algorithmic  information theory was the description of 
R. J .  Solomonoff’s ideas  given in 1962 by M. L. Minsky 
in his paper,  “Problems of formulation for artificial intelli- 
gence” [ 11 : 

“Consider a slightly different  form of inductive  infer- 
ence problem. Suppose  that  we  are given  a  very long 
‘data’ sequence of symbols;  the problem is to make  a 
prediction about  the  future of the  sequence.  This is a 
problem familiar in discussion  concerning  ‘inductive 
probability.’ The problem is refreshed  a  little, perhaps, 
by introducing the  modern notion of universal computer 
and its associated language of instruction  formulas. An 
instruction sequence will be  considered acceptable if it 
causes  the  computer  to  produce a sequence,  perhaps 
infinite, that begins with the given finite ‘data’ sequence. 
Each  acceptable instruction sequence  thus  makes a  pre- 
diction, and Occam’s razor would choose  the simplest 
such  sequence and advocate  its prediction. (More gener- 
ally, one could weight the different  predictions by 
weights associated with the simplicities of the 
instructions.) If the simplicity function is just  the length 
of the instruction, we are  then trying to find a minimal 
description, i.e., an optimally efficient encoding of the 
data  sequence. 

“Such an induction  method  could  be of interest only if 
one could show  some significant invariance  with respect 
to choice of defining universal  machine. There is no  such 
invariance for a fixed pair of data strings. For one could 
design a machine  which would yield the  entire first string 
with a very small input, and  the second  string  only for 
some very  complex  input. On  the brighter  side, one  can 
see  that in a sense  the induced structure  on  the  space of 
data strings has  some invariance in an ‘in the large’ or 

350 ‘almost everywhere’  sense.  Given  two different  univer- 

sal  machines, the induced structures  cannot  be  desper- 
ately  different.  We appeal  to  the ‘translation  theorem’ 
whereby  an  arbitrary instruction  formula for  one ma- 
chine may be  converted into an equivalent instruction 
formula  for  the  other machine by the addition of a  con- 
stant prefix text.  This  text  instructs  the second  machine 
to simulate the  behavior of the first machine in operating 
on  the remainder of the input text.  Then  for  data strings 
much  larger than this  translation text  (and  its  inverse) 
the  choice  between  the  two machines cannot greatly 
affect the induced structure.  It would be interesting to 
see if these intuitive  notions  could be profitably formal- 
ized. 

“Even if this theory  can be  worked out, it is likely that 
it will present overwhelming computational difficulties in 
application. The recognition  problem for minimal descrip- 
tions  is, in general,  unsolvable, and a practical  induction 
machine will have  to  use heuristic methods. [In this 
connection it would be interesting to write  a  program to 
play R. Abbott’s  inductive card  game [ 21 .] ” 

Algorithmic  information theory originated in the inde- 
pendent work of Solomonoff (see [ 1, 3 -61 1 ,  of A. N. 
Kolmogorov  and P. Martin-Lof (see  [7 - 141 ), and of 
G. J.  Chaitin (see [ 15-  261).  Whereas Solomonoff 
weighted together all the programs for a given result into 
a  probability measure, Kolmogorov and Chaitin concen- 
trated  their  attention  on  the size of the smallest  program. 
Recently it has  been  realized by Chaitin and indepen- 
dently by L. A.  Levin  that if programs are stipulated to 
be self-delimiting, these  two differing approaches be- 
come essentially  equivalent. This  paper  attempts  to  cast 
into a unified scheme  the  recent  work in this area by 
Chaitin [23, 241 and by R. M.  Solovay [27, 281. The 
reader may also find  it interesting to examine the parallel 
efforts of Levin (see [ 29 - 351 ) . There  has been a sub- 
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stantial  amount of other work in this general area, often 
involving variants of the definitions deemed  more  suit- 
able for particular  applications (see, e.g., [ 36-47]). 

Algorithmic information theory of finite computations 
~ 3 1  

Definitions 
Let  us  start  by considering a class of Turing  machines 
with the following characteristics. Each Turing  machine 
has  three tapes:  a program tape, a work tape, and  an 
output tape. There is a scanning head on  each of the 
three  tapes.  The program tape is  read-only  and each of 
its squares  contains a 0 or a 1. It may be shifted in only 
one direction. The work tape may be shifted in either 
direction  and may be read  and erased, and each of its 
squares  contains a blank, a 0, or a 1. The  work  tape is 
initially blank. The  output  tape may be shifted in only 
one direction. Its  squares  are initially blank, may have a 
0, a 1, or a comma  written on them,  and cannot  be re- 
written. Each Turing  machine of this type  has a finite 
number  n of states, and  is defined by an n X 3 table, 
which gives the  action  to  be performed  and the next 
state  as a function of the  current  state  and  the  contents 
of the  square of the work tape  that is  currently being 
scanned. The first state in this  table  is by convention the 
initial state.  There are eleven  possible  actions:  halt, shift 
work  tape  left/right, write blank/O/l on work  tape, 
read  square of program tape currently being scanned and 
copy  onto  square of work tape currently being scanned 
and then shift program tape, write O /  1 /comma on out- 
put tape and then shift output  tape, and consult oracle. 
The  oracle is  included  for the  purpose of defining rela- 
tive  concepts. I t  enables the Turing  machine to  choose 
between two possible state transitions,  depending  on 
whether  or not the binary  string  currently being scanned 
on  the work tape is in a certain  set, which for now we 
shall take  to  be  the null set. 

From  each  Turing machine M of this type we define a 
probability P, an  entropy H ,  and a complexity I .  P(s )  is 
the probability that M eventually  halts  with the string s 
written on its output  tape if each  square of the program 
tape is filled with a 0 or a 1 by a separate  toss of an un- 
biased coin. By “string” we shall  always  mean a finite 
binary string. From  the probability P ( s )  we  obtain the 
entropy H (s) by taking  the  negative  base-two logarithm, 
i.e., H ( s )  is -log,P(s). A string p is said to be a pro- 
gram if when  it is written on M s  program tape  and M 
starts computing  scanning the first bit of p, then M even- 
tually  halts after reading all of p and  without reading any 
other  squares of the tape. A program p is said to b e a  
minimal program if no other program  makes M produce 
the  same  output  and  has a smaller  size. And finally the 
complexity I ( s )  is defined to  be  the least n such  that  for 
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some contents of its  program tape M eventually  halts 
with s written on  the  output  tape  after reading precisely 
n squares of the program tape; i.e., I(s) is the size of a 
minimal program for s. To summarize, P is the probabili- 
ty  that M calculates s given a  random program, H is 
-log,P, and I is the minimum number of bits  required to 
specify  an algorithm for M to calculate s. 

It is  important to note that blanks are  not allowed on 
the program tape, which is imagined to  be entirely filled 
with 0’s and 1’s. Thus programs are  not followed by 
endmarker blanks. This  forces them to  be self-delimit- 
ing;  a  program  must  indicate within itself what  size it 
has. Thus  no program can be a prefix of another  one, 
and the programs for M form  what  is  known as a prefix- 
free  set  or  an  instantaneous  code.  This  has  two very 
important effects: It enables  a  natural  probability  distri- 
bution to  be defined on  the  set of programs,  and it makes 
it possible for programs to  be built up from subroutines 
by concatenation. Both of these desirable features  are 
lost if blanks are used as program endmarkers.  This 
occurs  because  there is no natural  probability  distribu- 
tion on programs with endmarkers;  one, of course, 
makes all programs of the  same size equiprobable,  but  it 
is also necessary  to specify in some arbitrary manner the 
probability of each particular size. Moreover, if two  sub- 
routines  with  blanks as  endmarkers  are  concatenated, it 
is  necessary to include  additional  information indicating 
where the first one  ends and the second begins. 

Here is an example of a specific Turing machine M of 
the  above type. M counts  the number  n of 0’s up to  the 
first 1  it encounters  on its  program tape,  then  transcribes 
the next n bits of the program tape  onto  the  output  tape, 
and finally halts. So M outputs s iff it finds length(s) 0’s 
followed by a 1 followed by s on its  program  tape. Thus 
P ( s )  = exp,(-2 length(s) - l ) ,  H ( s )  = 2 length(s) + 1, 
and Z(s) = 2 length(s) + 1. Here  exp,(x) is the base-two 
exponential  function 2”. Clearly this is a very  special- 
purpose  computer which embodies a very limited class 
of algorithms  and yields uninteresting  functions P ,  H ,  
and I .  

On  the  other hand  it is easy  to  see  that  there  are “gen- 
eral-purpose’’ Turing  machines that maximize P and 
minimize H and I ;  in fact, consider those universal Tur- 
ing machines  which will simulate an arbitrary  Turing 
machine if a suitable prefix indicating the machine to 
simulate is added  to its programs. Such Turing  machines 
yield essentially the  same P ,  H ,  and I .  We therefore 
pick, somewhat  arbitrarily, a particular one of these, U ,  
and the definitive definition of P, H ,  and I is given in 
terms of it. The universal  Turing  machine U works  as 
follows. If U finds i 0’s followed by a 1 on its  program 
tape, it  simulates the computation that  the ith Turing 
machine of the  above  type performs upon reading the 
remainder of the program tape. By the ith  Turing ma- 35 1 
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chine 'we mean the one that  comes ith in a list of  all pos- 
sible defining tables in which the  tables  are  ordered by 
size  (i.e., number of states)  and lexicographically  among 
those of the  same size. With this  choice of Turing ma- 
chine, P ,  H ,  and I can  be dignified with the following ti- 
tles: P ( s )  is the algorithmic  probability of s, H ( s )  is the 
ulgorithrnic  entropy of s, and Z(s) is the ulgorithmic in&w- 
mution of s. Following Solomonoff [3] ,  P ( s )  and H ( s )  
may also  be called the a  priori  probability  and entropy 
of s. Z(s) may also  be  termed  the  descriptive, program- 
size,  or information-theoretic  complexity of s. And  since 
P is maximal and H and I are minimal, the  above  choice 
of special-purpose  Turing  machine shows  that P ( s )  1 
exp,(-2 length(s) - O (  l ) ) ,  H ( s )  5 2 length(.s) + 
O (  1 ) ,  and I ( s )  5 2 length(s) + O (  1) .  

We have defined P ( s ) ,  H (s), and I ( s )  for individual 
strings s. It  is  also  convenient  to  consider  computations 
which produce finite sequences of strings. These  are 
separated by commas  on  the  output  tape.  One  thus  de- 
fines the  joint probability P ( s , ,  . . ., s,), the  joint  entropy 
H (s,,. . ., sn) , and  the  joint complexity I (  sl,. . ., x,) of an 
n-tuple s,, . . ., s,. Finally one defines the conditional 
probability P(t , ,  . . ., tmlsl,. . ., s,) of the m-tuple t,, . . ., t ,  
given the n-tuple st , .  .*, s, to be the  quotient of the  joint 
probability of the n-tuple and  the m-tuple  divided by 
the  joint probability of the n-tuple. In particular P ( t l s )  is 
defined to be P ( s ,  t )  / P ( s )  . And of course  the conditional 
entropy  is defined to be the negative base-two logarithm 
of the conditional  probability. Thus by definition H ( s ,  t )  
= H ( s )  + H (  t i s ) .  Finally, in order  to  extend  the  above 
definitions to  tuples  whose  members may either  be 
strings or  natural  numbers,  we identify the  natural num- 
ber n with its binary representation. 

Basic relationships 
We now  review some basic properties of these  concepts. 
The relation 

H ( s , t )  = H ( t , s )  + O (  1 )  

states  that  the probability of computing the pair s, t is 
essentially the  same as the probability of computing the 
pair t ,  s. This  is  true  because  there is a prefix that con- 
verts  any program for  one of these pairs into a  program 
for  the  other  one.  The inequality 

H ( s )  5 H ( s , t )  + 0 ( 1 )  

states  that  the probability of computing s is not less  than 
the probability of computing the pair s, t .  This  is  true 
because a  program for s can  be obtained  from any  pro- 
gram for  the pair s, t by  adding  a fixed prefix to it.  The 
inequality 

H ( s ,  t )  5 H ( s )  + H ( t )  +0( I )  

352 states  that  the probability of computing the pair s, t is 
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not  less than  the  product of the probabilities of comput- 
ing s and t ,  and  follows  from the  fact  that programs are 
self-delimiting and can be concatenated.  The inequality 

O(1 )  5 H ( t l s )  5 H ( t )  + O(1)  

is merely a restatement of the  previous  two  properties. 
However, in view of the direct  relationship between 
conditional entropy  and relative  complexity  indicated 
below,  this  inequality  also states  that being told some- 
thing by an oracle cannot make it more difficult to obtain 
t .  The relationship between  entropy and  complexity is 

H ( s )  = I ( s )  + O ( 1 ) ,  

i.e., the probability of computing s is essentially the 
same  as 1 /exp,  (the size of a minimal program for s )  . 
This implies that a significant fraction of the probability 
of computing s is  contributed by its minimal programs, 
and that  there  are few minimal or near-minimal programs 
for a given  result. The relationship  between  conditional 
entropy and  relative  complexity is 

H ( t l s )  = I , ( t )  + O(1) .  

Here Z , ( t )  denotes  the complexity of t relative to a set 
having  a single element  which is a minimal program for 
s. In  other  words, 

I ( s , t )  = I ( s )  + Z,( t )  + O ( 1 ) .  

This relation states  that  one  obtains  what is essentially a 
minimal program for  the pair s ,  t by concatenating  the 
following two subroutines: 

a minimal program for s 
a minimal program for calculating t using an  oracle  for 
the  set consisting of a minimal program for s. 

Algorithmic rundonmess 
Consider  an  arbitrary string s of length n. From  the  fact 
that H ( n )  + H ( s l n )  = H ( n , s )  = H ( s )  + O (  I ) ,  it  is cask 
to show that H ( s )  5 n + H ( n )  + O (  1) ,  and that less t h u  
e x p , ( n - k + O ( l ) ) o f t h e s o f l e n g t h n s a t i s f y H ( s )  < n  
+ H ( n )  - k .  It follows that  for most s of length n, H ( s )  
is approximately equal  to n + H (n).  These  are  the most 
complex  strings of length n, the  ones which are most 
difficult to specify, the  ones with  highest entropy,  and 
they are said to be the algorithmically  random strings of 
length n. Thus a  typical  string s of length n will have H (s) 
close to n + H ( n ) ,  whereas if s has  pattern  or  can be 
distinguished in some  fashion,  then it can  be compressed 
or  coded  into a  program that is considerably  smaller. 
That H (s) is usually n + H ( n )  can be  thought of as fol- 
lows: In  order  to specify a typical  string s of length n, it 
is necessary first to specify its size n, which requires H ( a )  
bits, and it is necessary then to specify each of the n 
bits in s, which requires n more  bits and brings the  total 
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to n + H ( n ) .  In probabilistic terms this can be stated  as 
follows: the sum of the probabilities of all the strings of 
length n is essentially equal  to P ( n ) ,  and most  strings s 
of length n have probability P (s)  essentially equal  to 
P ( n )  / 2”. On  the  other hand, one of the strings of length n 
that is least  random  and  that  has most pattern is the 
string  consisting  entirely of 0’s. It  is  easy  to  see  that this 
string has  entropy H ( n )  + O (  1)  and  probability essen- 
tially equal  to P ( n ) ,  which is another way of saying that 
almost all the information in it is in its  length. Here is an 
example in the middle: If p is a minimal program of size 
n, then it is easy  to  see  that H ( p )  = n + O (  1 )  and P ( p )  
is essentially 2-“. Finally it should be pointed out  that 
since H ( s )  = H ( n )  + H ( s l n )  + 0 ( 1 )  if s is of length n, 
the  above definition of randomness is equivalent to say- 
ing that  the most  random  strings of length n have H ( s i n )  
close to n, while the least random  ones  have H ( s l n )  
close to 0. 

Later we shall show  that  even though most  strings are 
algorithmically random, i.e., have nearly as much entro- 
py as possible, an inherent limitation of formal  axiomatic 
theories is that a lower bound n on  the  entropy of a  spe- 
cific string can  be established only if n is less than  the 
entropy of the  axioms of the formal theory.  In  other 
words, it is possible to prove that a specific object is of 
complexity greater than n only if n is less than the  com- 
plexity of the  axioms being employed in the demon- 
stration.  These  statements may be  considered to  be an 
information-theoretic  version of Godel’s  famous in- 
completeness theorem. 

Now let us turn  from finite random strings to infinite 
ones,  or equivalently,  by invoking the  correspondence 
between a real number and its dyadic  expansion,  to ran- 
dom reals. Consider  an infinite string X obtained by flip- 
ping an unbiased  coin, or equivalently  a real x uniformly 
distributed in the unit  interval. From  the preceding  con- 
siderations and the Borel-Cantelli lemma it is easy  to  see 
that with probability one there is a c such  that H ( X n )  > 
n - c for all n, where X n  denotes  the first n bits of X ,  
that is, the first n bits of the  dyadic  expansion of x. We 
take this property to  be our definition of an algorithmi- 
cally random infinite string X or real x. 

Algorithmic randomness is a clear-cut  property  for 
infinite strings, but in the case of finite strings it is a mat- 
ter of degree.  If  a cutoff were to be chosen,  however, it 
would be well to place it at  about  the point at which 
H (s) is equal to length (s) . Then an infinite random  string 
could be defined to be one  for which all initial segments 
are finite random strings, within a  certain tolerance. 

Now  consider  the real number R defined as the halting 
probability of the universal  Turing mac,hine U that we 
used to define P, H,  and I ;  i.e., R is the probability that 
U eventually  halts if each square of its  program tape is 
filled with  a 0 or a 1 by a separate  toss of an unbiased 
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coin. Then it is not difficult to see that 0 is in fact  an 
algorithmically random real, because if one  were given 
the first n bits of the dyadic expansion of R, then one 
could use this to tell whether  each program  for U of size 
less  than n ever halts or  not.  In  other  words, when  writ- 
ten in binary the probability of halting R is a  random or 
incompressible infinite string. Thus  the basic theorem of 
recursive function theory  that  the halting problem is 
unsolvable corresponds in algorithmic information the- 
ory  to  the  theorem  that the  probability of halting is algo- 
rithmically random if the program is chosen by coin flip- 
ping. 

This  concludes  our review of the most  basic facts  re- 
garding the probability, entropy, and complexity of finite 
objects, namely strings  and  tuples of strings. Before pre- 
senting  some of Solovay’s  remarkable results regarding 
these  concepts, and in particular  regarding (4 we would 
like to review the most important  facts which are known 
regarding the probability, entropy, and  complexity of 
infinite objects, namely recursively enumerable  sets  of 
strings. 

Algorithmic information  theory of infinite 
computations [24] 
In  order  to define the probability, entropy, and  complex- 
ity of r.e.  (recursively  enumerable)  sets of strings it is 
necessary  to  consider unending computations performed 
on  our  standard universal Turing machine U .  A compu- 
tation is said to  produce  an r.e. set of strings A if all the 
members of A and only members of A are eventually 
written on  the  output  tape,  each followed by a comma. It 
is important  that U not  be  required to halt if A is finite. 
The members of the  set A may be written in arbitrary 
order, and  duplications are ignored. A technical  point: If 
there  are only finitely many  strings  written on  the  output 
tape, and the  last  one is infinite or is not followed by a 
comma, then it is considered to be an “unfinished”  string 
and is also ignored. Note  that since computations may 
be  endless, it is now  possible for a semi-infinite portion 
of the program tape  to be read. 

The definitions of the probability P ( A  ), the  entropy 
H ( A  ), and  the complexity I ( A  ) of an r.e. set of strings A 
may now be given. P ( A )  is the probability that U pro- 
duces  the  output  set A if each  square of its program tape 
is filled with a 0 or a 1 by a separate  toss of an unbiased 
coin. H ( A  ) is the negative base-two logarithm of P ( A  ) . 
And I ( A )  is the size in bits of a minimal program that 
produces  the  output  set A ,  i.e., / ( A )  is the  least n such 
that  there is a  program tape  contents  that makes U un- 
dertake a computation in the  course of which it reads 
precisely n squares of the program tape and produces 
the  set of strings A.  In  order  to define the  joint and con- 
ditional  probability and  entropy we need  a  mechanism 
for encoding two  r.e.  sets A and B into a single set A j o in  353 
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B.  T o  obtain A join B one prefixes each string in A with 
a 0 and each string in B with a 1 and takes the union of 
the two resulting sets. Enumerating A join B is  equiva- 
lent to simultaneously  enumerating A and B .  So the joint 
probability P ( A ,  B )  is P ( A  join B ) ,  the joint entropy 
H ( A , B )  is H ( A  join B ) ,  and the joint  complexity I ( A , B )  
is Z(A join B )  . These definitions can obviously be  ex- 
tended  to  more  than  two r.e. sets, but  it is unnecessary to 
do so here. Lastly, the  conditional probability P(BIA)  of 
B givenA is the  quotient of P ( A ,  B )  divided by P ( A ) ,  and 
the conditional entropy H ( B I A )  is the negative base-two 
logarithm of P ( B 1 A ) .  Thus by definition H ( A , B )  = H ( A )  

As before, one obtains the following basic inequali- 
+ H ( B 1 A ) .  

ties: 

H(‘4 ,B)  = H ( B , A )  + O(1),  

H ( A )  i H ( A , B )  + O(1) ,  

H ( A ,  B )  = H ( B , A )  + O( I ) ,  

O (  1 )  5 H ( B 1 A )  5 H ( B )  + O (  I ) ,  

I ( A , B )  5 Z ( A )  + I ( B )  + O(1).  

In  order  to  demonstrate  the third and the fifth of these 
relations one imagines two unending computations to  be 
occurring  simultaneously. Then  one interleaves the bits 
of the  two  programs in the  order in which  they are read. 
Putting a fixed size prefix in front of this, one  obtains a 
single program  for performing both computations simul- 
taneously  whose  size is 0 ( 1) plus the sum of the sizes 
of the original programs. 

So far things look much as they did for individual 
strings. But the  relationship  between  entropy  and  com- 
plexity turns  out  to be more  complicated for r.e. sets 
than it was in the  case of individual strings.  Obviously 
the  entropy H ( A )  is  always less than or equal to  the 
complexity I @ ) ,  because of the probability  contributed 
by  each minimal program  for A : 

H ( A )  5 Z(A) .  

But how about  bounds on Z(A) in terms of H ( A ) ?  First 
of all, it  is easy  to  see  that if A is a singleton set  whose 
only  member  is  the string s, then H ( A )  = H (s)  + O (  1 )  
and I ( A  1 = Z(s)  + 0 ( 1).  Thus  the theory of the algo- 
rithmic  information of individual strings  is  contained in 
the theory of the algorithmic information of r.e. sets  as 
the special case of sets having a single element: 

For singleton A ,  I ( A )  = H ( A )  + O (  I ) .  

There is also a close but  not an exact relationship be- 
tween H and I in the case of sets consisting of initial 
segments of the set of natural  numbers  (recall we identi- 
fy the natural  number n with its  binary representation). 
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Let us use  the adjective “initial” for  any  set consisting 
of all natural numbers less  than a given one: 

For initial A ,  I ( A )  = H ( A )  + O(logH(A)).  

Moreover, it is possible  to  show that  there  are in- 
finitely many initial sets A for which Z(A) > H ( A )  + 
O(logH(A)).  This is the  greatest known  discrepancy 
between I and H for r.e. sets.  It is  demonstrated by 
showing that occasionally  the number of initial sets A 
with H ( A )  < n is appreciably greater than the number 
of initial sets A with Z(A) < n. On  the  other hand, with 
the aid of a  crucial  game-theoretic  lemma of D. A. Martin, 
Solovay [28] has shown that 

I ( A )  i 3 H ( A )  + O(logH(A)).  

These are the best results currently known regarding the 
relationship between  the entropy  and  the  complexity of 
an  r.e. set; clearly much remains to  be  done.  Further- 
more, what is the relationship  between the conditional 
entropy and the  relative  complexity of r.e. sets?  And 
how many minimal or near-minimal programs for an r.e. 
set  are  there? 

We would now like to mention  some other results 
concerning these concepts.  Solovay has shown that: 

There are exp,(n - H ( n )  + O(1)) singleton sets A with H ( A )  < n, 

There are exP,(n- H ( n )  + O(1) )  singleton setsA with [ ( A )  < n. 

We have extended Solovay’s result as follows: 

There are exp,(n - H ‘ ( n )  + O ( 1 ) )  finite sets A with H ( A )  < n, 

There are exp,(n- H ( L , )  + O ( l o g H ( L , ) ) )  sets A with [ ( A )  < n, 

There are exp,(n - H ’ ( L , )  + O ( l o g H ’ ( L J ) )  sets A with H ( A )  < n. 

Here L, is the  set of natural  numbers  less  than n, and H‘ 
is  the entropy relative to  the halting problem; if U is 
provided with an oracle  for  the halting problem  instead 
of one  for the null set, then  the  probability, entropy, and 
complexity  measures one obtains are P’ ,  H ’ ,  and I ’  in- 
stead of P ,  H ,  and I .  Two final results: 

Z’(A, the complement ofA) 5 H ( A )  + O(1);  

the probability that  the complement of an r.e. set  has 
cardinality n is essentially  equal to  the probability that a 
set r.e. in the halting problem has cardinality n. 

More advanced results [27] 
The previous sections outline the basic features of the 
new formalism for algorithmic information  theory  ob- 
tained by stipulating that programs be self-delimiting in- 
stead of having endmarker blanks. Error terms in the 
basic  relations  which  were  logarithmic in the  previous 
approach [9] are now of the  order of unity. 

In the previous approach  the complexity of n is usu- 
ally log, n + 0 ( 1 ) , there is  an  information-theoretic char- 
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acterization of recursive infinite strings [25, 261, and 
much is known about complexity  oscillations in random 
infinite strings [ 141. The  corresponding  properties in the 
new approach  have been  elucidated by Solovay in an 
unpublished paper [27]. We  present  some of his results 
here.  For related work by  Solovay, see  the publications 
[28,  48, 491. 

Recursive  bounds on H ( n )  
Following [23, p. 3371, let us consider  recursive  upper 
and lower  bounds  on H (n) . Let f be an unbounded re- 
cursive function, and consider the series C exp,(-f(n) ) 
summed over all natural numbers n. If  this infinite series 
converges,  then H ( n )  < f ( n )  + O (  1 ) for all n. And if it 
diverges,  then the inequalities H ( n )  > f ( n )  and H ( n )  < 
f ( n )  each hold for infinitely many n. Thus,  for  example, 
foranyE>O,H ( n )  <logn+loglogn+(l+E)logloglogn 
+ 0 ( 1 ) for all n, and H ( n )  > logn + loglogn + loglog- 
logn  for infinitely many n, where all logarithms are  base 
two. See [50] for  the  results  on  convergence  used  to 
prove this. 

Solovay has  obtained  the following results regarding 
recursive  upper  bounds  on H ,  i.e., recursive h such  that 
H ( n )  < h ( n )  for all n. First  he shows that  there is a 
recursive  upper  bound  on H which is almost  correct 
infinitely often, i.e., IH(n )  - h ( n ) l  < c for infinitely 
many values of n. In fact, the lim sup of the  fraction of 
values of i less than n such  that h ( i )  I H ( i )  - h ( i )  I < c is 
greater  than 0. However,  he  also  shows  that  the values 
of n for which IH(n )  - h ( n )  1 < c must in a certain  sense 
be  quite  sparse.  In  fact,  he establishes that if h is any 
recursive  upper bound on H then  there  cannot  exist a 
tolerance c and a recursive function f such  that  there  are 
always at least n different natural  numbers i less than 
f ( n )  at which h ( i )  is within c of H( i ) .   I t  follows that  the 
lim  inf  of the fraction of values of i less than n such  that 
I H ( i )  - h( i ) l  < c is zero. 

The basic idea behind  his construction of h is to 
choose f s o  that C exp, (-f( n )  ) converges  “as slowly” as 
possible. As a byproduct  he  obtains a recursive  conver- 
gent  series of rational numbers Ea, such  that if Zb, is 
any  recursive convergent series of rational numbers, 
then lim sup a,/ b, is  greater  than  zero. 

Nonrecursive injinite strings  with  simple initial seg- 

At  the high-order end of the complexity scale  for infinite 
strings are  the  random strings, and  the  recursive strings 
are  at  the low order  end. Is anything  else there?  More 
formally, let X be  an infinite binary  string,  and let X ,  be 
the first n bits of X .  If X is recursive, then we have 
H ( X , )  = H ( n )  + O( 1 ) .  What about  the  converse, i.e., 
what can be  said about X given only that H (  X , )  = H ( n )  + 
O( l ) ?  Obviously H(X,)  = H(n,X,) + O (  1 )  = H ( n )  + 

ments 

H(X, ln)  + O (  1 ) .  So H(X, )  = H ( n )  + O (  1 )  iff H(X,ln) 
= 0 ( 1 ) . Then using a relativized  version of the proof in 
[37, pp. 525- 5261, one  can  show  that X is recursive in 
the halting problem. Moreover, by using a priority  argu- 
ment  Solovay is actually able  to  construct a nonrecur- 
s iveXthatsat isf iesH(X,)=H(n)fO(l) .  

Equivalent dejinitions of an  algorithmically  random 

Pick a recursive  enumeration 0,, O,, 0,, . . . of all open 
intervals with  rational endpoints. A sequence of open 
sets U,,   U, ,  U,, . . . is said to be simultaneously r.e. if 
there is a recursive function h such  that U ,  is the union 
of those Oi whose index i is of the  form h ( n , j )  , for  some 
natural number j .  Consider a  real number x in the unit 
interval. We say  that x has  the Solovay randomness prop- 
erty if the following holds. Let U,,   U, ,  U, ,  ’ . . be  any 
simultaneously  r.e. sequence of open  sets  such  that  the 
sum of the usual Lebesgue  measure of the U ,  converges. 
Then x is in  only finitely many of the U,. We say  that x 
has  the Chaitin randomness  property if there is a c such 
that H (X, )  > n - c for all n, where X ,  is the string  con- 
sisting of the first n bits of the dyadic expansion of x. 
Solovay has  shown  that  these  randomness  properties  are 
equivalent to  each  other,  and  that they are  also  equiva- 
lent  to  Martin-Lof’s definition [ 101 of randomness. 

real 

The  entropy of initial segments of algorithmically 
random and of R-like reals 

Consider a random  real x. By the definition of random- 
ness, H ( X , )  > n + 0 ( 1 ) .  On  the  other  hand,  for  any 
infinite string X ,  random or not, we have H ( X , )  5 n + 
H ( n  ) + 0 ( 1 ) . Solovay shows  that t he  above  bounds  are 
each  sometimes  sharp.  More precisely, consider a ran- 
dom X and a recursive  functionfsuch  that Z exp, (-f(n) ) 
diverges (e.g., f ( n )  = integer  part of log,n).  Then  there 
are infinitely many natural numbers n such  that H(X, )  
2 n + f (n) . And  consider  an  unbounded  monotone 
increasing recursive function g (e.g., g ( n )  = integer part 
of loglog n )  . There  are infinitely many natural  numbers n 
such  that it is simultaneously the  case  that H (X , )  5 n + 
g ( n )  and H ( n )  2 f (n) .  

Solovay has obtained much more precise  results along 
these lines about R and a class of reals which he calls 
“R-like.” A  real number  is said to  be  an r.e. real if the 
set of all rational numbers  less  than  it is an r.e. subset of 
the rational numbers. Roughly speaking, an r.e. real x is 
R-like if for any r.e. real y one  can  get in an effective man- 
ner a good approximation to y from  any good ap- 
proximation to x, and the quality of the approximation to 
y is at  most 0 ( 1 ) binary  digits worse  than  the quality of 
the approximation to x. The formal definition of R-like is 
as follows. The  real x is said to dominate the real y if 355 

ALGORITHMIC INFORMATION THEORY JULY 1977 



there is a  partial  recursive  function f and a constant c 
with  the property  that if q is any rational  number  that is 
less  than x, then f (  q )  is defined and is a rational number 
that is less  than y and satisfies the inequality CIX  - q1 2 
/ y  - f ( q )  1 .  And a real  number  is said to be R-like if it is 
an r.e.  real that dominates all r.e. reals.  Solovay proves 
that R is in fact 0-like, and that if x and y are  0-like, 
then H (  X,) = H (Y,)  + 0 ( 1 ) , where X, and Y ,  are  the 
first n bits in the dyadic  expansions of x and y. It is an 
immediate  corollary that if x is  R-like  then H ( X , )  = 
H(RJ + 0( 1 ), and that all a-like reals are algorithmi- 
cally random. Moreover Solovay  shows that  the algo- 
rithmic probability P ( s )  of any string s is always  an R- 
like real. 

In  order to state Solovay’s results  contrasting the 
behavior of H (0,) with that of H ( X , )  for  a typical real 
number x, it is necessary to define two extremely slowly 
growing monotone  functions a and a’. a ( n )  = min H ( j )  
( j  2 n ) ,  and a’ is defined in the  same manner as a except 
that H is replaced by H ‘ ,  the algorithmic entropy rela- 
tive to the halting problem. It  can be shown (see  [29, 
pp. 90-911)  that a goes to infinity, but  more slowly 
than any  monotone  partial recursive function does. 
More precisely, iff is an unbounded  nondecreasing  par- 
tial recursive function,  then a ( n )  is less than f ( n )  for 
almost all n for  whichf(n) is defined. Similarly a’ goes 
to infinity, but more slowly than any  monotone  partial 
function  recursive in a does.  More precisely, i f f  is an 
unbounded  nondecreasing  partial  function  recursive in 
the halting problem,  then a’ ( n )  is less  than f ( n )  for al- 
most all n for which f ( n )  is defined. In particular, a’ ( n )  
is less  than a ( a ( n ) )  for almost all n. 

We  can now state Solovay’s results. Consider a real 
number x uniformly distributed in the  unit  interval.  With 
probability one  there is a c such that H ( X , )  > n + H ( n )  
- c holds for infinitely many n. And  with  probability 
one, H ( X , )  > n + a ( n )  + O(loga(n)) .  Whereas if x is 
R-like, then the following occurs: H ( X , )  < n + H ( n )  - 
a ( n )  + 0 (loga(n) ), and for infinitely many n we have 
H (  X J  < n + a’( n)  + 0 (log a’( n )  ) . This shows that  the 
complexity of initial segments of the dyadic  expansions 
of R-like  reals is atypical. It is an open question  whether 
H(R,) - n tends  to infinity; Solovay suspects  that it does. 

Algorithmic information theory and  metamathe- 
matics 
There is something paradoxical about being able to 
prove  that a specific finite string is random; this  is  per- 
haps  captured in the following antinomies  from  the writ- 
ings of M.  Gardner  [51] and B. Russell [521. In reading 
them one should interpret “dull,”  “uninteresting,” and 
“indefinable” to mean  “random,”  and  “interesting”  and 

356 “definable” to mean  “nonrandom.” 
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“[Natural]  numbers  can of course  be interesting in a 
variety of ways. The  number 30 was  interesting to 
George  Moore when he  wrote his famous tribute  to ‘the 
woman of 30,’ the age at which he believed a married 
woman was  most  fascinating. To a number theorist 30 is 
more likely to  be exciting because it is the largest  integer 
such  that all smaller integers with which  it has  no  com- 
mon divisor are prime  numbers. . . . The question  arises: 
Are  there  any uninteresting  numbers? We can  prove 
that  there  are none by the following simple steps. If 
there  are dull numbers,  we can  then divide all numbers 
into two  sets-interesting and dull. In  the  set of dull 
numbers there will be only one number that is the small- 
est. Since it  is the smallest  uninteresting  number  it  be- 
comes, ipso facto, an  interesting  number. [Hence  there 
are no dull numbers!] ” [ 5 1 1. 

“Among transfinite ordinals  some can  be defined, 
while others  cannot; for the total number of possible 
definitions is X,, while the number of transfinite ordinals 
exceeds KO. Hence  there must be indefinable ordinals, 
and among these there  must be a least. But this is de- 
fined as ‘the least indefinable ordinal,’ which  is a contra- 
diction” [52]. 

Here is our incompleteness  theorem  for formal axiom- 
atic  theories  whose  arithmetic consequences  are  true. 
The  setup is as follows: The axioms are a finite string, 
the rules of inference are  an algorithm for  enumerating 
the  theorems given the axioms, and  we fix the rules of 
inference  and  vary the axioms. Within such a formal 
theory a specific string cannot  be proven to  be of en- 
tropy  more  than O (  1)  greater than the entropy of the  ax- 
ioms of the  theory.  Conversely,  there  are formal theories 
whose  axioms  have  entropy n + 0 ( 1 ) in which  it is pos- 
sible to establish all true propositions of the  form 
“H(specific  string) 1 n.” 

Proof Consider  the enumeration of the  theorems of the 
formal axiomatic  theory in order of the size of  their 
proofs. For  each natural number k,  let s* be  the string in 
the  theorem of the form “ H ( s )  E n” with n greater  than 
H (axioms) + k which appears first in this enumeration. 
On  the  one  hand, if all theorems are true, then H ( s * )  > 
H(axioms) + k.  On  the  other hand, the  above prescrip- 
tion for calculating s* shows that H ( s * )  5 H(axioms) + 
H ( k )  + O(1).   I t  follows that k < H ( k )  + O(1).  How- 
ever, this inequality is  false  for all k 1 k*,  where k* de- 
pends only on the rules of inference. The  apparent  con- 
tradiction  is  avoided  only if s* does  not exist for k = k*,  
i.e., only if it is impossible to  prove in the formal the- 
ory that a specific string  has H greater than H (axioms) 
+ k * .  

Proof of Converse The  set T of all true propositions of 
the form “ H  (s) < k” is  r.e. Choose a fixed enumeration 
of T without  repetitions,  and for  each natural number n 
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let s* be  the string in the  last proposition of the  form 
“ H ( s )  < n” in the  enumeration.  It is not difficult to see 
that H ( s * , n )  = n + O(1).   Let p be a minimal program 
for  the pair s*, n. Then p is the  desired  axiom,  for H ( p )  
= n + 0 ( 1 )  and  to  obtain all true propositions of the 
form “ H ( s )  1 n” from p one  enumerates T until all s 
with H ( s )  < n have been discovered. All other s have 
H ( s )  3 n .  

We  developed  this  information-theoretic approach  to 
metamathematics before being in possession of the no- 
tion of self-delimiting programs (see [ 20 - 221 and  also 
[ 531 ) ; the technical  details are  somewhat different when 
programs have blanks as  endmarkers.  The conclusion to 
be  drawn from all this is that  even though most strings 
are  random,  we will never  be  able  to explicitly  exhibit a 
string of reasonable  size which demonstrably  possesses 
this property. A  less  pessimistic  conclusion to be  drawn 
is  that  it is reasonable to measure  the  power of formal 
axiomatic theories in information-theoretic  terms. The 
fact  that in some  sense  one  gets  out of a formal theory 
no more  than one  puts in  should not  be  taken  too seri- 
ously: a formal theory is at  its  best  when a great many 
apparently  independent  theorems  are  shown  to  be 
closely interrelated by  reducing  them to a handful of 
axioms. In this sense a  formal  axiomatic theory is valu- 
able  for  the  same  reason  as a scientific theory; in both 
cases information is being compressed,  and  one is also 
concerned with the tradeoff between  the  degree of com- 
pression  and  the length of proofs of interesting theorems 
or the time  required to compute predictions. 

Algorithmic information theory and biology 
Above  we  have pointed out a number of open problems. 
In  our opinion, however,  the  most  important challenge is 
to  see if the  ideas of algorithmic  information theory  can 
contribute in some  form or manner  to  theoretical mathe- 
matical biology in the style of von Neumann [54], in 
which genetic  information is considered to be an ex- 
tremely  large and complicated  program for constructing 
organisms. We alluded briefly to this in a previous paper 
[21],  and discussed it at greater length in a publication 
[ 191 of somewhat limited access. 

Von Neumann wished to isolate the basic  conceptual 
problems of biology from  the detailed  physics and bio- 
chemistry of life as  we know it. The gist of his message 
is that it should be possible to formulate  mathematically 
and  to  answer in a quite general  setting such fundamen- 
tal questions  as  “How is self-reproduction  possible?”, 
“What is an  organism?”,  “What is its degree of organi- 
zation?”,  and  “How probable is evolution?’. He  
achieved  this for  the first question;  he  showed  that  exact 
self-reproduction of universal  Turing  machines is possi- 
ble in a particular  deterministic model universe. 
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There is such  an  enormous difference between  dead 
and organized living matter  that it must be  possible to 
give  a quantitative  structural  characterization of this 
difference, i.e., of degree of organization. One possibility 
[ 191 is to  characterize  an organism as a highly interde- 
pendent region, one  for which the complexity of the 
whole is much less  than  the  sum of the complexities of 
its parts. C. H. Bennett  [55]  has suggested another ap- 
proach  based  on  the  the notion of “logical depth.” A 
structure is deep “if it is superficially random  but subtly 
redundant, in other  words, if almost all its algorithmic 
probability is contributed by slow-running programs. A 
string’s logical depth should reflect the  amount of com- 
putational work required to  expose  its buried redun- 
dancy.” It  is Bennett’s thesis  that  “a priori the most prob- 
able explanation of ‘organized  information’ such  as  the 
sequence of bases in a  naturally  occurring D N A  mole- 
cule is  that it is the  product of an  extremely long evolu- 
tionary  process.” For related  work  by Bennett,  see 
[561. 

This,  then, is the fundamental  problem of theoretical 
biology that  we  hope  the  ideas of algorithmic  informa- 
tion theory may  help to solve: to  set up a nondeterminis- 
tic model universe,  to formally define what  it  means  for 
a region of space-time in that universe to  be  an organism 
and what is its  degree of organization, and  to rigorously 
demonstrate  that, starting  from  simple initial conditions, 
organisms will appear  and evolve in degree of organiza- 
tion in a reasonable  amount of time and  with high proba- 
bility. 
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