
G. J. Chaitin

Algorithmic Information Theory

Abstract: This paper reviews algorithmic information theory, which is an attempt to apply information-theoretic and probabilistic
ideas to recursive function theory. Typical concerns in this approach are, for example, the number of bits of information required to
specify an algorithm, or the probability that a program whose bits are chosen by coin flipping produces a given output. During the past
few years the definitions of algorithmic information theory have been reformulated. The basic features of the new formalism are pre-
sented here and certain results of R. M . Solovay are reported.

Historical introduction
To our knowledge, the first publication of the ideas of
algorithmic information theory was the description of
R. J . Solomonoff’s ideas given in 1962 by M. L. Minsky
in his paper, “Problems of formulation for artificial intelli-
gence” [11 :

“Consider a slightly different form of inductive infer-
ence problem. Suppose that we are given a very long
‘data’ sequence of symbols; the problem is to make a
prediction about the future of the sequence. This is a
problem familiar in discussion concerning ‘inductive
probability.’ The problem is refreshed a little, perhaps,
by introducing the modern notion of universal computer
and its associated language of instruction formulas. An
instruction sequence will be considered acceptable if it
causes the computer to produce a sequence, perhaps
infinite, that begins with the given finite ‘data’ sequence.
Each acceptable instruction sequence thus makes a pre-
diction, and Occam’s razor would choose the simplest
such sequence and advocate its prediction. (More gener-
ally, one could weight the different predictions by
weights associated with the simplicities of the
instructions.) If the simplicity function is just the length
of the instruction, we are then trying to find a minimal
description, i.e., an optimally efficient encoding of the
data sequence.

“Such an induction method could be of interest only if
one could show some significant invariance with respect
to choice of defining universal machine. There is no such
invariance for a fixed pair of data strings. For one could
design a machine which would yield the entire first string
with a very small input, and the second string only for
some very complex input. On the brighter side, one can
see that in a sense the induced structure on the space of
data strings has some invariance in an ‘in the large’ or

350 ‘almost everywhere’ sense. Given two different univer-

sal machines, the induced structures cannot be desper-
ately different. We appeal to the ‘translation theorem’
whereby an arbitrary instruction formula for one ma-
chine may be converted into an equivalent instruction
formula for the other machine by the addition of a con-
stant prefix text. This text instructs the second machine
to simulate the behavior of the first machine in operating
on the remainder of the input text. Then for data strings
much larger than this translation text (and its inverse)
the choice between the two machines cannot greatly
affect the induced structure. It would be interesting to
see if these intuitive notions could be profitably formal-
ized.

“Even if this theory can be worked out, it is likely that
it will present overwhelming computational difficulties in
application. The recognition problem for minimal descrip-
tions is, in general, unsolvable, and a practical induction
machine will have to use heuristic methods. [In this
connection it would be interesting to write a program to
play R. Abbott’s inductive card game [21 .] ”

Algorithmic information theory originated in the inde-
pendent work of Solomonoff (see [1, 3 -61 1 , of A. N.
Kolmogorov and P. Martin-Lof (see [7 - 141), and of
G. J. Chaitin (see [15- 261). Whereas Solomonoff
weighted together all the programs for a given result into
a probability measure, Kolmogorov and Chaitin concen-
trated their attention on the size of the smallest program.
Recently it has been realized by Chaitin and indepen-
dently by L. A. Levin that if programs are stipulated to
be self-delimiting, these two differing approaches be-
come essentially equivalent. This paper attempts to cast
into a unified scheme the recent work in this area by
Chaitin [23, 241 and by R. M. Solovay [27, 281. The
reader may also find it interesting to examine the parallel
efforts of Levin (see [29 - 351) . There has been a sub-

G. J . CHAITlN IBM J . RES. DEVELOP.

stantial amount of other work in this general area, often
involving variants of the definitions deemed more suit-
able for particular applications (see, e.g., [36-47]).

Algorithmic information theory of finite computations
~ 3 1

Definitions
Let us start by considering a class of Turing machines
with the following characteristics. Each Turing machine
has three tapes: a program tape, a work tape, and an
output tape. There is a scanning head on each of the
three tapes. The program tape is read-only and each of
its squares contains a 0 or a 1. It may be shifted in only
one direction. The work tape may be shifted in either
direction and may be read and erased, and each of its
squares contains a blank, a 0, or a 1. The work tape is
initially blank. The output tape may be shifted in only
one direction. Its squares are initially blank, may have a
0, a 1, or a comma written on them, and cannot be re-
written. Each Turing machine of this type has a finite
number n of states, and is defined by an n X 3 table,
which gives the action to be performed and the next
state as a function of the current state and the contents
of the square of the work tape that is currently being
scanned. The first state in this table is by convention the
initial state. There are eleven possible actions: halt, shift
work tape left/right, write blank/O/l on work tape,
read square of program tape currently being scanned and
copy onto square of work tape currently being scanned
and then shift program tape, write O / 1 /comma on out-
put tape and then shift output tape, and consult oracle.
The oracle is included for the purpose of defining rela-
tive concepts. I t enables the Turing machine to choose
between two possible state transitions, depending on
whether or not the binary string currently being scanned
on the work tape is in a certain set, which for now we
shall take to be the null set.

From each Turing machine M of this type we define a
probability P, an entropy H , and a complexity I . P(s) is
the probability that M eventually halts with the string s
written on its output tape if each square of the program
tape is filled with a 0 or a 1 by a separate toss of an un-
biased coin. By “string” we shall always mean a finite
binary string. From the probability P (s) we obtain the
entropy H (s) by taking the negative base-two logarithm,
i.e., H (s) is -log,P(s). A string p is said to be a pro-
gram if when it is written on M s program tape and M
starts computing scanning the first bit of p, then M even-
tually halts after reading all of p and without reading any
other squares of the tape. A program p is said to b e a
minimal program if no other program makes M produce
the same output and has a smaller size. And finally the
complexity I (s) is defined to be the least n such that for

JULY 1977

some contents of its program tape M eventually halts
with s written on the output tape after reading precisely
n squares of the program tape; i.e., I(s) is the size of a
minimal program for s. To summarize, P is the probabili-
ty that M calculates s given a random program, H is
-log,P, and I is the minimum number of bits required to
specify an algorithm for M to calculate s.

It is important to note that blanks are not allowed on
the program tape, which is imagined to be entirely filled
with 0’s and 1’s. Thus programs are not followed by
endmarker blanks. This forces them to be self-delimit-
ing; a program must indicate within itself what size it
has. Thus no program can be a prefix of another one,
and the programs for M form what is known as a prefix-
free set or an instantaneous code. This has two very
important effects: It enables a natural probability distri-
bution to be defined on the set of programs, and it makes
it possible for programs to be built up from subroutines
by concatenation. Both of these desirable features are
lost if blanks are used as program endmarkers. This
occurs because there is no natural probability distribu-
tion on programs with endmarkers; one, of course,
makes all programs of the same size equiprobable, but it
is also necessary to specify in some arbitrary manner the
probability of each particular size. Moreover, if two sub-
routines with blanks as endmarkers are concatenated, it
is necessary to include additional information indicating
where the first one ends and the second begins.

Here is an example of a specific Turing machine M of
the above type. M counts the number n of 0’s up to the
first 1 it encounters on its program tape, then transcribes
the next n bits of the program tape onto the output tape,
and finally halts. So M outputs s iff it finds length(s) 0’s
followed by a 1 followed by s on its program tape. Thus
P (s) = exp,(-2 length(s) - l) , H (s) = 2 length(s) + 1,
and Z(s) = 2 length(s) + 1. Here exp,(x) is the base-two
exponential function 2”. Clearly this is a very special-
purpose computer which embodies a very limited class
of algorithms and yields uninteresting functions P , H ,
and I .

On the other hand it is easy to see that there are “gen-
eral-purpose’’ Turing machines that maximize P and
minimize H and I ; in fact, consider those universal Tur-
ing machines which will simulate an arbitrary Turing
machine if a suitable prefix indicating the machine to
simulate is added to its programs. Such Turing machines
yield essentially the same P , H , and I . We therefore
pick, somewhat arbitrarily, a particular one of these, U ,
and the definitive definition of P, H , and I is given in
terms of it. The universal Turing machine U works as
follows. If U finds i 0’s followed by a 1 on its program
tape, it simulates the computation that the ith Turing
machine of the above type performs upon reading the
remainder of the program tape. By the ith Turing ma- 35 1

ALGORITHMIC INFORMATION THEORY

chine 'we mean the one that comes ith in a list of all pos-
sible defining tables in which the tables are ordered by
size (i.e., number of states) and lexicographically among
those of the same size. With this choice of Turing ma-
chine, P , H , and I can be dignified with the following ti-
tles: P (s) is the algorithmic probability of s, H (s) is the
ulgorithrnic entropy of s, and Z(s) is the ulgorithmic in&w-
mution of s. Following Solomonoff [3] , P (s) and H (s)
may also be called the a priori probability and entropy
of s. Z(s) may also be termed the descriptive, program-
size, or information-theoretic complexity of s. And since
P is maximal and H and I are minimal, the above choice
of special-purpose Turing machine shows that P (s) 1
exp,(-2 length(s) - O (l)) , H (s) 5 2 length(.s) +
O (1) , and I (s) 5 2 length(s) + O (1) .

We have defined P (s) , H (s), and I (s) for individual
strings s. It is also convenient to consider computations
which produce finite sequences of strings. These are
separated by commas on the output tape. One thus de-
fines the joint probability P (s , , . . ., s,), the joint entropy
H (s,,. . ., sn) , and the joint complexity I (sl,. . ., x,) of an
n-tuple s,, . . ., s,. Finally one defines the conditional
probability P(t , , . . ., tmlsl,. . ., s,) of the m-tuple t,, . . ., t ,
given the n-tuple st , . .*, s, to be the quotient of the joint
probability of the n-tuple and the m-tuple divided by
the joint probability of the n-tuple. In particular P (t l s) is
defined to be P (s , t) / P (s) . And of course the conditional
entropy is defined to be the negative base-two logarithm
of the conditional probability. Thus by definition H (s , t)
= H (s) + H (t i s) . Finally, in order to extend the above
definitions to tuples whose members may either be
strings or natural numbers, we identify the natural num-
ber n with its binary representation.

Basic relationships
We now review some basic properties of these concepts.
The relation

H (s , t) = H (t , s) + O (1)

states that the probability of computing the pair s, t is
essentially the same as the probability of computing the
pair t , s. This is true because there is a prefix that con-
verts any program for one of these pairs into a program
for the other one. The inequality

H (s) 5 H (s , t) + 0 (1)

states that the probability of computing s is not less than
the probability of computing the pair s, t . This is true
because a program for s can be obtained from any pro-
gram for the pair s, t by adding a fixed prefix to it. The
inequality

H (s , t) 5 H (s) + H (t) +0(I)

352 states that the probability of computing the pair s, t is

G. .I. CHAITIN

not less than the product of the probabilities of comput-
ing s and t , and follows from the fact that programs are
self-delimiting and can be concatenated. The inequality

O(1) 5 H (t l s) 5 H (t) + O(1)

is merely a restatement of the previous two properties.
However, in view of the direct relationship between
conditional entropy and relative complexity indicated
below, this inequality also states that being told some-
thing by an oracle cannot make it more difficult to obtain
t . The relationship between entropy and complexity is

H (s) = I (s) + O (1) ,

i.e., the probability of computing s is essentially the
same as 1 /exp, (the size of a minimal program for s) .
This implies that a significant fraction of the probability
of computing s is contributed by its minimal programs,
and that there are few minimal or near-minimal programs
for a given result. The relationship between conditional
entropy and relative complexity is

H (t l s) = I , (t) + O(1) .

Here Z , (t) denotes the complexity of t relative to a set
having a single element which is a minimal program for
s. In other words,

I (s , t) = I (s) + Z,(t) + O (1) .

This relation states that one obtains what is essentially a
minimal program for the pair s , t by concatenating the
following two subroutines:

a minimal program for s
a minimal program for calculating t using an oracle for
the set consisting of a minimal program for s.

Algorithmic rundonmess
Consider an arbitrary string s of length n. From the fact
that H (n) + H (s l n) = H (n , s) = H (s) + O (I) , it is cask
to show that H (s) 5 n + H (n) + O (1) , and that less t h u
e x p , (n - k + O (l)) o f t h e s o f l e n g t h n s a t i s f y H (s) < n
+ H (n) - k . It follows that for most s of length n, H (s)
is approximately equal to n + H (n). These are the most
complex strings of length n, the ones which are most
difficult to specify, the ones with highest entropy, and
they are said to be the algorithmically random strings of
length n. Thus a typical string s of length n will have H (s)
close to n + H (n) , whereas if s has pattern or can be
distinguished in some fashion, then it can be compressed
or coded into a program that is considerably smaller.
That H (s) is usually n + H (n) can be thought of as fol-
lows: In order to specify a typical string s of length n, it
is necessary first to specify its size n, which requires H (a)
bits, and it is necessary then to specify each of the n
bits in s, which requires n more bits and brings the total

IBM J . RES. UEVELOP.

to n + H (n) . In probabilistic terms this can be stated as
follows: the sum of the probabilities of all the strings of
length n is essentially equal to P (n) , and most strings s
of length n have probability P (s) essentially equal to
P (n) / 2”. On the other hand, one of the strings of length n
that is least random and that has most pattern is the
string consisting entirely of 0’s. It is easy to see that this
string has entropy H (n) + O (1) and probability essen-
tially equal to P (n) , which is another way of saying that
almost all the information in it is in its length. Here is an
example in the middle: If p is a minimal program of size
n, then it is easy to see that H (p) = n + O (1) and P (p)
is essentially 2-“. Finally it should be pointed out that
since H (s) = H (n) + H (s l n) + 0 (1) if s is of length n,
the above definition of randomness is equivalent to say-
ing that the most random strings of length n have H (s i n)
close to n, while the least random ones have H (s l n)
close to 0.

Later we shall show that even though most strings are
algorithmically random, i.e., have nearly as much entro-
py as possible, an inherent limitation of formal axiomatic
theories is that a lower bound n on the entropy of a spe-
cific string can be established only if n is less than the
entropy of the axioms of the formal theory. In other
words, it is possible to prove that a specific object is of
complexity greater than n only if n is less than the com-
plexity of the axioms being employed in the demon-
stration. These statements may be considered to be an
information-theoretic version of Godel’s famous in-
completeness theorem.

Now let us turn from finite random strings to infinite
ones, or equivalently, by invoking the correspondence
between a real number and its dyadic expansion, to ran-
dom reals. Consider an infinite string X obtained by flip-
ping an unbiased coin, or equivalently a real x uniformly
distributed in the unit interval. From the preceding con-
siderations and the Borel-Cantelli lemma it is easy to see
that with probability one there is a c such that H (X n) >
n - c for all n, where X n denotes the first n bits of X ,
that is, the first n bits of the dyadic expansion of x. We
take this property to be our definition of an algorithmi-
cally random infinite string X or real x.

Algorithmic randomness is a clear-cut property for
infinite strings, but in the case of finite strings it is a mat-
ter of degree. If a cutoff were to be chosen, however, it
would be well to place it at about the point at which
H (s) is equal to length (s) . Then an infinite random string
could be defined to be one for which all initial segments
are finite random strings, within a certain tolerance.

Now consider the real number R defined as the halting
probability of the universal Turing mac,hine U that we
used to define P, H, and I ; i.e., R is the probability that
U eventually halts if each square of its program tape is
filled with a 0 or a 1 by a separate toss of an unbiased

JULY 1977

coin. Then it is not difficult to see that 0 is in fact an
algorithmically random real, because if one were given
the first n bits of the dyadic expansion of R, then one
could use this to tell whether each program for U of size
less than n ever halts or not. In other words, when writ-
ten in binary the probability of halting R is a random or
incompressible infinite string. Thus the basic theorem of
recursive function theory that the halting problem is
unsolvable corresponds in algorithmic information the-
ory to the theorem that the probability of halting is algo-
rithmically random if the program is chosen by coin flip-
ping.

This concludes our review of the most basic facts re-
garding the probability, entropy, and complexity of finite
objects, namely strings and tuples of strings. Before pre-
senting some of Solovay’s remarkable results regarding
these concepts, and in particular regarding (4 we would
like to review the most important facts which are known
regarding the probability, entropy, and complexity of
infinite objects, namely recursively enumerable sets of
strings.

Algorithmic information theory of infinite
computations [24]
In order to define the probability, entropy, and complex-
ity of r.e. (recursively enumerable) sets of strings it is
necessary to consider unending computations performed
on our standard universal Turing machine U . A compu-
tation is said to produce an r.e. set of strings A if all the
members of A and only members of A are eventually
written on the output tape, each followed by a comma. It
is important that U not be required to halt if A is finite.
The members of the set A may be written in arbitrary
order, and duplications are ignored. A technical point: If
there are only finitely many strings written on the output
tape, and the last one is infinite or is not followed by a
comma, then it is considered to be an “unfinished” string
and is also ignored. Note that since computations may
be endless, it is now possible for a semi-infinite portion
of the program tape to be read.

The definitions of the probability P (A), the entropy
H (A), and the complexity I (A) of an r.e. set of strings A
may now be given. P (A) is the probability that U pro-
duces the output set A if each square of its program tape
is filled with a 0 or a 1 by a separate toss of an unbiased
coin. H (A) is the negative base-two logarithm of P (A) .
And I (A) is the size in bits of a minimal program that
produces the output set A , i.e., / (A) is the least n such
that there is a program tape contents that makes U un-
dertake a computation in the course of which it reads
precisely n squares of the program tape and produces
the set of strings A. In order to define the joint and con-
ditional probability and entropy we need a mechanism
for encoding two r.e. sets A and B into a single set A j o in 353

ALGORITHMIC INFORMATION THEORY

354

B. T o obtain A join B one prefixes each string in A with
a 0 and each string in B with a 1 and takes the union of
the two resulting sets. Enumerating A join B is equiva-
lent to simultaneously enumerating A and B . So the joint
probability P (A , B) is P (A join B) , the joint entropy
H (A , B) is H (A join B) , and the joint complexity I (A , B)
is Z(A join B) . These definitions can obviously be ex-
tended to more than two r.e. sets, but it is unnecessary to
do so here. Lastly, the conditional probability P(BIA) of
B givenA is the quotient of P (A , B) divided by P (A) , and
the conditional entropy H (B I A) is the negative base-two
logarithm of P (B 1 A) . Thus by definition H (A , B) = H (A)

As before, one obtains the following basic inequali-
+ H (B 1 A) .

ties:

H(‘4 ,B) = H (B , A) + O(1),

H (A) i H (A , B) + O(1) ,

H (A , B) = H (B , A) + O(I) ,

O (1) 5 H (B 1 A) 5 H (B) + O (I) ,

I (A , B) 5 Z (A) + I (B) + O(1).

In order to demonstrate the third and the fifth of these
relations one imagines two unending computations to be
occurring simultaneously. Then one interleaves the bits
of the two programs in the order in which they are read.
Putting a fixed size prefix in front of this, one obtains a
single program for performing both computations simul-
taneously whose size is 0 (1) plus the sum of the sizes
of the original programs.

So far things look much as they did for individual
strings. But the relationship between entropy and com-
plexity turns out to be more complicated for r.e. sets
than it was in the case of individual strings. Obviously
the entropy H (A) is always less than or equal to the
complexity I @) , because of the probability contributed
by each minimal program for A :

H (A) 5 Z(A) .

But how about bounds on Z(A) in terms of H (A) ? First
of all, it is easy to see that if A is a singleton set whose
only member is the string s, then H (A) = H (s) + O (1)
and I (A 1 = Z(s) + 0 (1). Thus the theory of the algo-
rithmic information of individual strings is contained in
the theory of the algorithmic information of r.e. sets as
the special case of sets having a single element:

For singleton A , I (A) = H (A) + O (I) .

There is also a close but not an exact relationship be-
tween H and I in the case of sets consisting of initial
segments of the set of natural numbers (recall we identi-
fy the natural number n with its binary representation).

G . J. CHAITIN

Let us use the adjective “initial” for any set consisting
of all natural numbers less than a given one:

For initial A , I (A) = H (A) + O(logH(A)).

Moreover, it is possible to show that there are in-
finitely many initial sets A for which Z(A) > H (A) +
O(logH(A)). This is the greatest known discrepancy
between I and H for r.e. sets. It is demonstrated by
showing that occasionally the number of initial sets A
with H (A) < n is appreciably greater than the number
of initial sets A with Z(A) < n. On the other hand, with
the aid of a crucial game-theoretic lemma of D. A. Martin,
Solovay [28] has shown that

I (A) i 3 H (A) + O(logH(A)).

These are the best results currently known regarding the
relationship between the entropy and the complexity of
an r.e. set; clearly much remains to be done. Further-
more, what is the relationship between the conditional
entropy and the relative complexity of r.e. sets? And
how many minimal or near-minimal programs for an r.e.
set are there?

We would now like to mention some other results
concerning these concepts. Solovay has shown that:

There are exp,(n - H (n) + O(1)) singleton sets A with H (A) < n,

There are exP,(n- H (n) + O(1)) singleton setsA with [(A) < n.

We have extended Solovay’s result as follows:

There are exp,(n - H ‘ (n) + O (1)) finite sets A with H (A) < n,

There are exp,(n- H (L ,) + O (l o g H (L ,))) sets A with [(A) < n,

There are exp,(n - H ’ (L ,) + O (l o g H ’ (L J)) sets A with H (A) < n.

Here L, is the set of natural numbers less than n, and H‘
is the entropy relative to the halting problem; if U is
provided with an oracle for the halting problem instead
of one for the null set, then the probability, entropy, and
complexity measures one obtains are P’ , H ’ , and I ’ in-
stead of P , H , and I . Two final results:

Z’(A, the complement ofA) 5 H (A) + O(1);

the probability that the complement of an r.e. set has
cardinality n is essentially equal to the probability that a
set r.e. in the halting problem has cardinality n.

More advanced results [27]
The previous sections outline the basic features of the
new formalism for algorithmic information theory ob-
tained by stipulating that programs be self-delimiting in-
stead of having endmarker blanks. Error terms in the
basic relations which were logarithmic in the previous
approach [9] are now of the order of unity.

In the previous approach the complexity of n is usu-
ally log, n + 0 (1) , there is an information-theoretic char-

IBM J. RES. DEVELOP.

acterization of recursive infinite strings [25, 261, and
much is known about complexity oscillations in random
infinite strings [141. The corresponding properties in the
new approach have been elucidated by Solovay in an
unpublished paper [27]. We present some of his results
here. For related work by Solovay, see the publications
[28, 48, 491.

Recursive bounds on H (n)
Following [23, p. 3371, let us consider recursive upper
and lower bounds on H (n) . Let f be an unbounded re-
cursive function, and consider the series C exp,(-f(n))
summed over all natural numbers n. If this infinite series
converges, then H (n) < f (n) + O (1) for all n. And if it
diverges, then the inequalities H (n) > f (n) and H (n) <
f (n) each hold for infinitely many n. Thus, for example,
foranyE>O,H (n) <logn+loglogn+(l+E)logloglogn
+ 0 (1) for all n, and H (n) > logn + loglogn + loglog-
logn for infinitely many n, where all logarithms are base
two. See [50] for the results on convergence used to
prove this.

Solovay has obtained the following results regarding
recursive upper bounds on H , i.e., recursive h such that
H (n) < h (n) for all n. First he shows that there is a
recursive upper bound on H which is almost correct
infinitely often, i.e., IH(n) - h (n) l < c for infinitely
many values of n. In fact, the lim sup of the fraction of
values of i less than n such that h (i) I H (i) - h (i) I < c is
greater than 0. However, he also shows that the values
of n for which IH(n) - h (n) 1 < c must in a certain sense
be quite sparse. In fact, he establishes that if h is any
recursive upper bound on H then there cannot exist a
tolerance c and a recursive function f such that there are
always at least n different natural numbers i less than
f (n) at which h (i) is within c of H(i) . I t follows that the
lim inf of the fraction of values of i less than n such that
I H (i) - h(i) l < c is zero.

The basic idea behind his construction of h is to
choose f s o that C exp, (-f(n)) converges “as slowly” as
possible. As a byproduct he obtains a recursive conver-
gent series of rational numbers Ea, such that if Zb, is
any recursive convergent series of rational numbers,
then lim sup a,/ b, is greater than zero.

Nonrecursive injinite strings with simple initial seg-

At the high-order end of the complexity scale for infinite
strings are the random strings, and the recursive strings
are at the low order end. Is anything else there? More
formally, let X be an infinite binary string, and let X , be
the first n bits of X . If X is recursive, then we have
H (X ,) = H (n) + O(1) . What about the converse, i.e.,
what can be said about X given only that H (X ,) = H (n) +
O(l) ? Obviously H(X,) = H(n,X,) + O (1) = H (n) +

ments

H(X, ln) + O (1) . So H(X,) = H (n) + O (1) iff H(X,ln)
= 0 (1) . Then using a relativized version of the proof in
[37, pp. 525- 5261, one can show that X is recursive in
the halting problem. Moreover, by using a priority argu-
ment Solovay is actually able to construct a nonrecur-
s iveXthatsat isf iesH(X,)=H(n)fO(l) .

Equivalent dejinitions of an algorithmically random

Pick a recursive enumeration 0,, O,, 0,, . . . of all open
intervals with rational endpoints. A sequence of open
sets U,, U, , U,, . . . is said to be simultaneously r.e. if
there is a recursive function h such that U , is the union
of those Oi whose index i is of the form h (n , j) , for some
natural number j . Consider a real number x in the unit
interval. We say that x has the Solovay randomness prop-
erty if the following holds. Let U,, U, , U, , ’ . . be any
simultaneously r.e. sequence of open sets such that the
sum of the usual Lebesgue measure of the U , converges.
Then x is in only finitely many of the U,. We say that x
has the Chaitin randomness property if there is a c such
that H (X,) > n - c for all n, where X , is the string con-
sisting of the first n bits of the dyadic expansion of x.
Solovay has shown that these randomness properties are
equivalent to each other, and that they are also equiva-
lent to Martin-Lof’s definition [101 of randomness.

real

The entropy of initial segments of algorithmically
random and of R-like reals

Consider a random real x. By the definition of random-
ness, H (X ,) > n + 0 (1) . On the other hand, for any
infinite string X , random or not, we have H (X ,) 5 n +
H (n) + 0 (1) . Solovay shows that t he above bounds are
each sometimes sharp. More precisely, consider a ran-
dom X and a recursive functionfsuch that Z exp, (-f(n))
diverges (e.g., f (n) = integer part of log,n). Then there
are infinitely many natural numbers n such that H(X,)
2 n + f (n) . And consider an unbounded monotone
increasing recursive function g (e.g., g (n) = integer part
of loglog n) . There are infinitely many natural numbers n
such that it is simultaneously the case that H (X ,) 5 n +
g (n) and H (n) 2 f (n) .

Solovay has obtained much more precise results along
these lines about R and a class of reals which he calls
“R-like.” A real number is said to be an r.e. real if the
set of all rational numbers less than it is an r.e. subset of
the rational numbers. Roughly speaking, an r.e. real x is
R-like if for any r.e. real y one can get in an effective man-
ner a good approximation to y from any good ap-
proximation to x, and the quality of the approximation to
y is at most 0 (1) binary digits worse than the quality of
the approximation to x. The formal definition of R-like is
as follows. The real x is said to dominate the real y if 355

ALGORITHMIC INFORMATION THEORY JULY 1977

there is a partial recursive function f and a constant c
with the property that if q is any rational number that is
less than x, then f (q) is defined and is a rational number
that is less than y and satisfies the inequality CIX - q1 2
/ y - f (q) 1 . And a real number is said to be R-like if it is
an r.e. real that dominates all r.e. reals. Solovay proves
that R is in fact 0-like, and that if x and y are 0-like,
then H (X,) = H (Y,) + 0 (1) , where X, and Y , are the
first n bits in the dyadic expansions of x and y. It is an
immediate corollary that if x is R-like then H (X ,) =
H(RJ + 0(1), and that all a-like reals are algorithmi-
cally random. Moreover Solovay shows that the algo-
rithmic probability P (s) of any string s is always an R-
like real.

In order to state Solovay’s results contrasting the
behavior of H (0,) with that of H (X ,) for a typical real
number x, it is necessary to define two extremely slowly
growing monotone functions a and a’. a (n) = min H (j)
(j 2 n) , and a’ is defined in the same manner as a except
that H is replaced by H ‘ , the algorithmic entropy rela-
tive to the halting problem. It can be shown (see [29,
pp. 90-911) that a goes to infinity, but more slowly
than any monotone partial recursive function does.
More precisely, iff is an unbounded nondecreasing par-
tial recursive function, then a (n) is less than f (n) for
almost all n for whichf(n) is defined. Similarly a’ goes
to infinity, but more slowly than any monotone partial
function recursive in a does. More precisely, i f f is an
unbounded nondecreasing partial function recursive in
the halting problem, then a’ (n) is less than f (n) for al-
most all n for which f (n) is defined. In particular, a’ (n)
is less than a (a (n)) for almost all n.

We can now state Solovay’s results. Consider a real
number x uniformly distributed in the unit interval. With
probability one there is a c such that H (X ,) > n + H (n)
- c holds for infinitely many n. And with probability
one, H (X ,) > n + a (n) + O(loga(n)) . Whereas if x is
R-like, then the following occurs: H (X ,) < n + H (n) -
a (n) + 0 (loga(n)), and for infinitely many n we have
H (X J < n + a’(n) + 0 (log a’(n)) . This shows that the
complexity of initial segments of the dyadic expansions
of R-like reals is atypical. It is an open question whether
H(R,) - n tends to infinity; Solovay suspects that it does.

Algorithmic information theory and metamathe-
matics
There is something paradoxical about being able to
prove that a specific finite string is random; this is per-
haps captured in the following antinomies from the writ-
ings of M. Gardner [51] and B. Russell [521. In reading
them one should interpret “dull,” “uninteresting,” and
“indefinable” to mean “random,” and “interesting” and

356 “definable” to mean “nonrandom.”

G . J. CHAITIW

“[Natural] numbers can of course be interesting in a
variety of ways. The number 30 was interesting to
George Moore when he wrote his famous tribute to ‘the
woman of 30,’ the age at which he believed a married
woman was most fascinating. To a number theorist 30 is
more likely to be exciting because it is the largest integer
such that all smaller integers with which it has no com-
mon divisor are prime numbers. . . . The question arises:
Are there any uninteresting numbers? We can prove
that there are none by the following simple steps. If
there are dull numbers, we can then divide all numbers
into two sets-interesting and dull. In the set of dull
numbers there will be only one number that is the small-
est. Since it is the smallest uninteresting number it be-
comes, ipso facto, an interesting number. [Hence there
are no dull numbers!] ” [5 1 1.

“Among transfinite ordinals some can be defined,
while others cannot; for the total number of possible
definitions is X,, while the number of transfinite ordinals
exceeds KO. Hence there must be indefinable ordinals,
and among these there must be a least. But this is de-
fined as ‘the least indefinable ordinal,’ which is a contra-
diction” [52].

Here is our incompleteness theorem for formal axiom-
atic theories whose arithmetic consequences are true.
The setup is as follows: The axioms are a finite string,
the rules of inference are an algorithm for enumerating
the theorems given the axioms, and we fix the rules of
inference and vary the axioms. Within such a formal
theory a specific string cannot be proven to be of en-
tropy more than O (1) greater than the entropy of the ax-
ioms of the theory. Conversely, there are formal theories
whose axioms have entropy n + 0 (1) in which it is pos-
sible to establish all true propositions of the form
“H(specific string) 1 n.”

Proof Consider the enumeration of the theorems of the
formal axiomatic theory in order of the size of their
proofs. For each natural number k, let s* be the string in
the theorem of the form “ H (s) E n” with n greater than
H (axioms) + k which appears first in this enumeration.
On the one hand, if all theorems are true, then H (s *) >
H(axioms) + k. On the other hand, the above prescrip-
tion for calculating s* shows that H (s *) 5 H(axioms) +
H (k) + O(1). I t follows that k < H (k) + O(1). How-
ever, this inequality is false for all k 1 k*, where k* de-
pends only on the rules of inference. The apparent con-
tradiction is avoided only if s* does not exist for k = k*,
i.e., only if it is impossible to prove in the formal the-
ory that a specific string has H greater than H (axioms)
+ k * .

Proof of Converse The set T of all true propositions of
the form “ H (s) < k” is r.e. Choose a fixed enumeration
of T without repetitions, and for each natural number n

IBM J. RES. DEVELOP.

let s* be the string in the last proposition of the form
“ H (s) < n” in the enumeration. It is not difficult to see
that H (s * , n) = n + O(1). Let p be a minimal program
for the pair s*, n. Then p is the desired axiom, for H (p)
= n + 0 (1) and to obtain all true propositions of the
form “ H (s) 1 n” from p one enumerates T until all s
with H (s) < n have been discovered. All other s have
H (s) 3 n .

We developed this information-theoretic approach to
metamathematics before being in possession of the no-
tion of self-delimiting programs (see [20 - 221 and also
[531) ; the technical details are somewhat different when
programs have blanks as endmarkers. The conclusion to
be drawn from all this is that even though most strings
are random, we will never be able to explicitly exhibit a
string of reasonable size which demonstrably possesses
this property. A less pessimistic conclusion to be drawn
is that it is reasonable to measure the power of formal
axiomatic theories in information-theoretic terms. The
fact that in some sense one gets out of a formal theory
no more than one puts in should not be taken too seri-
ously: a formal theory is at its best when a great many
apparently independent theorems are shown to be
closely interrelated by reducing them to a handful of
axioms. In this sense a formal axiomatic theory is valu-
able for the same reason as a scientific theory; in both
cases information is being compressed, and one is also
concerned with the tradeoff between the degree of com-
pression and the length of proofs of interesting theorems
or the time required to compute predictions.

Algorithmic information theory and biology
Above we have pointed out a number of open problems.
In our opinion, however, the most important challenge is
to see if the ideas of algorithmic information theory can
contribute in some form or manner to theoretical mathe-
matical biology in the style of von Neumann [54], in
which genetic information is considered to be an ex-
tremely large and complicated program for constructing
organisms. We alluded briefly to this in a previous paper
[21], and discussed it at greater length in a publication
[191 of somewhat limited access.

Von Neumann wished to isolate the basic conceptual
problems of biology from the detailed physics and bio-
chemistry of life as we know it. The gist of his message
is that it should be possible to formulate mathematically
and to answer in a quite general setting such fundamen-
tal questions as “How is self-reproduction possible?”,
“What is an organism?”, “What is its degree of organi-
zation?”, and “How probable is evolution?’. He
achieved this for the first question; he showed that exact
self-reproduction of universal Turing machines is possi-
ble in a particular deterministic model universe.

JULY 1977

357

ALGORITHMIC INFORMATION THEORY

There is such an enormous difference between dead
and organized living matter that it must be possible to
give a quantitative structural characterization of this
difference, i.e., of degree of organization. One possibility
[191 is to characterize an organism as a highly interde-
pendent region, one for which the complexity of the
whole is much less than the sum of the complexities of
its parts. C. H. Bennett [55] has suggested another ap-
proach based on the the notion of “logical depth.” A
structure is deep “if it is superficially random but subtly
redundant, in other words, if almost all its algorithmic
probability is contributed by slow-running programs. A
string’s logical depth should reflect the amount of com-
putational work required to expose its buried redun-
dancy.” It is Bennett’s thesis that “a priori the most prob-
able explanation of ‘organized information’ such as the
sequence of bases in a naturally occurring D N A mole-
cule is that it is the product of an extremely long evolu-
tionary process.” For related work by Bennett, see
[561.

This, then, is the fundamental problem of theoretical
biology that we hope the ideas of algorithmic informa-
tion theory may help to solve: to set up a nondeterminis-
tic model universe, to formally define what it means for
a region of space-time in that universe to be an organism
and what is its degree of organization, and to rigorously
demonstrate that, starting from simple initial conditions,
organisms will appear and evolve in degree of organiza-
tion in a reasonable amount of time and with high proba-
bility.

Acknowledgments
The quotation by M. L. Minsky in the first section is
reprinted with the kind permission of the publisher
American Mathematical Society from Mathematical
Problems in the Biological Sciences, Proceedings of
Symposia in Applied Mathematics X I V , pp. 42-43,
copyright @ 1962. We are grateful to R. M. Solovay for
permitting us to include several of his unpublished re-
sults in the section entitled “More advanced results.”
The quotation by M. Gardner in the section on algo-
rithmic information theory and metamathematics is re-
printed with his kind permission, and the quotation by
B. Russell in that section is reprinted with permission of
the Johns Hopkins University Press. We are grateful to
C . H. Bennett for permitting us to present his notion of
logical depth in print for the first time in the section on
algorithmic information theory and biology.

References
1. M. L. Minsky, “Problems of Formulation for Artificial In-

telligence,” Mathematical Problems in the Biological Sci-
ences, Proceedings of Symposia in Applied Mathematics
X I V , R. E. Bellman, ed., American Mathematical Society,
Providence, RI, 1962, p. 35.

2. M. Gardner, “An Inductive Card Game,” Sci. Amer. 200,
No. 6, 160 (1959).

3. R. J. Solomonoff, “A Formal Theory of Inductive Infer-
ence,” Info. Control 7, 1 , 224 (1964).

4. D. G. Willis, “Computational Complexity and Probability
Constructions,” J . ACM 17,241 (1970).

5. T. M. Cover, “Universal Gambling Schemes and the Com-
plexity Measures of Kolmogorov and Chaitin,” Statistics
Department Report 12, Stanford University, CA, October,
1974.

6. R. J. Solomonoff, “Complexity Based Induction Systems:
Comparisons and Convergence Theorems,” Report RR-
329, Rockford Research, Cambridge, MA, August, 1976.

7. A. N. Kolmogorov, “On Tables of Random Numbers,”
Sankhyd A25, 369 (1963).

8. A. N. Kolmogorov, “Three Approaches to the Quantitative
Definition of Information,” Prob. Info. Transmission 1,
No. 1 , 1 (1965).

9. A. N. Kolmogorov, “Logical Basis for Information Theory
and Probability Theory,” IEEE Trans. Info. Theor. IT-14,
662 (1968).

10. P. Martin-Lof, “The Definition of Random Sequences,”
Info. Control 9,602 (1966).

1 1 . P. Martin-Lof, “Algorithms and Randomness,” Intl. Stat.
Rev. 37,265 (1969).

12. P. Martin-Lof, “The Literature on von Mises’ Kollektivs
Revisited,” Theoria 35, Part 1, 12 (1969).

13. P. Martin-Lof, “On the Notion of Randomness,” Intuition-
ism and Proof Theory, A. Kino, J. Myhill, and R. E. Ves-
ley, eds., North-Holland Publishing Co., Amsterdam, 1970,

14. P. Martin-Lof, “Complexity Oscillations in Infinite Binary
Sequences,” Z . Wahrscheinlichk. uerwand. Geb. 19, 225
(1971).

15. G. J. Chaitin, “On the Length of Programs for Computing
Finite Binary Sequences,” J . ACM 13,547 (1966).

16. G. J. Chaitin, “On the Length of Programs for Computing
Finite Binary Sequences: Statistical Considerations,” J .
ACM 16, 145 (1969).

17. G. J. Chaitin, “On the Simplicity and Speed of Programs
for Computing Infinite Sets of Natural Numbers,” J . ACM
16,407 (1969).

18. G. J. Chaitin, “On the Difficulty of Computations,” IEEE
Trans. Info. Theor. IT-16,5 (1970).

19. G. J. Chaitin, “To a Mathematical Definition of ‘Life,”’
ACM SICACT News 4,12 (1970).

20. G. J. Chaitin, “Information-theoretic Limitations of Formal
Systems,” J . ACM 21,403 (1974).

2 1 . G. J. Chaitin, “Information-theoretic Computational Com-
plexity,” IEEE Trans. Info. Theor. IT-20, 10 (1974).

22. G. J. Chaitin, “Randomness and Mathematical Proof,” Sci.
Amer. 232, No. 5 , 47 (1975). (Also published in the Jap-
anese and Italian editions of Sci. Amer.)

23. G. J. Chaitin, “A Theory of Program Size Formally Identi-
cal to Information Theory,” J . ACM 22, 329 (1975).

24. G. J. Chaitin, “Algorithmic Entropy of Sets,” Comput. &
Math. Appls. 2, 233 (1976).

25. G. J. Chaitin, “Information-theoretic Characterizations of
Recursive Infinite Strings,” Theoret. Comput. Sci. 2, 45
(1976).

26. G. J. Chaitin, “Program Size, Oracles, and the Jump Oper-
ation,’’ Osaka J . Math., to be published in Vol. 14, No. 1 ,
1977.

27. R. M. Solovay, “Draft of a paper . . . on Chaitin’s work
. . . done for the most part during the period of Sept. -Dec.
1974,” unpublished manuscript, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, May, 1975.

28. R. M. Solovay, “On Random R. E. Sets,” Proceedings of
the Third Latin American Symposium on Mathematical
Logic, Campinas, Brazil, July, 1976. To be published.

29. A. K. Zvonkin and L. A. Levin, “The Complexity of Finite
Objects and the Development of the Concepts of Inforrna-

p. 73.

3513

tion and Randomness by Means of the Theory of Algo-
rithms,” Russ. Math. Suru. 25, No. 6, 83 (1970).

30. L. A. Levin, “On the Notion of a Random Sequence,” So-
viet Math. Dokl. 14, 1413 (1973).

3 1 . P. Gat, “On the Symmetry of Algorithmic Information,”
Soviet Math. Dokl. 15, 1477 (1974). “Corrections,” Soviet
Math. Dokl. 15, No. 6, v (1974).

32. L. A. Levin, “Laws of Information Conservation (Non-
growth) and Aspects of the Foundation of Probability
Theory,” Prob. Info. Transmission 10,206 (1974).

33. L. A. Levin, “Uniform Tests of Randomness,” Soviet
Math. Dokl. 17, 337 (1976).

34. L. A. Levin, “Various Measures of Complexity for Finite
Objects (Axiomatic Description) ,” Soviet Math. Dokl. 17,
522 (1976).

35. L. A. Levin, “On the Principle of Conservation of Informa-
tion in Intuitionistic Mathematics,” Soviet Math. Dokl. 17,
601 (1976).

36. D. E. Knuth, Seminumerical Algorithms. The Art of Com-
puter Programming, Volume 2, Addison-Wesley Publishing
Co., Inc., Reading, MA, 1969. See Ch. 2, “Random Num-
bers,” p. 1 .

37. D. W. Loveland, “A Variant of the Kolmogorov Concept
of Complexity,” Info. Control 15,510 (1969).

38. T. L. Fine, Theories of Probability-An Examination of
Foundations, Academic Press, Inc., New York, 1973. See
Ch. V, “Computational Complexity, Random Sequences,
and Probability,” p. 1 18.

39. J. T. Schwartz, O n Programming: An Interim Report on
the SETL Project. Installment I : Generalities, Lecture
Notes, Courant Institute of Mathematical Sciences, New
York University, 1973. See Item 1 , “On the Sources of
Difficulty in Programming,” p. 1 , and Item 2, “A Second
General Reflection on Programming,” p. 12.

40. T. Kamae, “On Kolmogorov’s Complexity and Informa-
tion,’’ OsakaJ. Math. 10, 305 (1973).

41. C. P. Schnorr, “Process Complexity and Effective Random
Tests,” J . Comput. Syst. Sci. 7, 376 (1973).

42. M. E. Hellman, “The Information Theoretic Approach to
Cryptography,” Information Systems Laboratory, Center
for Systems Research, Stanford University, April, 1974.

43. W. L. Gewirtz, “Investigations in the Theory of Descrip-
tive Complexity,” Courant Computer Science Report 5 ,
Courant Institute of Mathematical Sciences, New York
University, October, 1974.

44. R. P. Daley, “Minimal-program Complexity of Pseudo-
recursive and Pseudo-random Sequences,’’ Math. Syst.
Theor. 9,83 (1975).

45. R. P. Daley, “Noncomplex Sequences: Characterizations
and Examples,” J . Symbol. Logic 41, 626 (1976).

46. J. Gruska, “Descriptional Complexity (of Languages) -A
Short Survey,” Mathematical Foundations of Computer
Science 1976, A. Mazurkiewicz, ed., Lecture Notes in
Computer Science 45, Springer-Verlag, Berlin, 1976, p. 65.

47. J. Ziv, “Coding Theorems for Individual Sequences,” un-
dated manuscript, Bell Laboratories, Murray Hill, NJ.

48. R. M. Solovay, “A Model of Set-theory in which Every Set
of Reals is Lebesgue Measurable,” Ann. Math. 92, 1
(1970).

49. R. Solovay and V. Strassen, “A Fast Monte-Carlo Test
for Primality,” SIAM J . Comput. 6, 84 (1977).

50. G. H. Hardy, A Course of Pure Mathematics, Tenth edi-
tion, Cambridge University Press, London, 1952. See
Section 2 18, “Logarithmic Tests of Convergence for Series
and Integrals,” p. 417.

51. M. Gardner, “A Collection of Tantalizing Fallacies of
Mathematics,” Sci. Amer. 198, No. 1,92 (1958) .

52. B. Russell, “Mathematical Logic as Based on the Theory of
Types,” From Frege to Godel: A Source Book in Mathe-
matical Logic, 1879-1931, J. van Heijenoort, ed., Harvard
University Press, Cambridge, MA, 1967, p. 153; reprinted
from Amer. J . Math. 30, 222 (1908).

G. J. CHAITIN IBM J. RES. DEVELOP.

53. M. Levin, “Mathematical Logic for Computer Scientists,” Received February 2, 1977; revised March 9, 1977
M I T Project M A C T R - 1 3 1 , June, 1974, pp. 145, 153.

54. J . von Neumann, Theory of Self-reproducing Automata,
University of Illinois Press, Urbana, 1966; edited and
completed by A. W. Burks.

55. C. H. Bennett, “On the Thermodynamics of Computation,”
undated manuscript, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY.

56. C. H. Bennett, “Logical Reversibility of Computation,” The author is located at the IBM Thomas J . Watson
IBM J . Res . Deve lop . 17,525 (1973). Research Center, Yorktown Heights, New York 10598.

JULY 1977

359

ALGORITHMIC INFORMATION THEORY

