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Linear  Filtering  Technique  for  Computing  Mersenne 
and  Fermat  Number  Transforms 

Abstract: In this paper,  the implementation of pseudo-Mersenne  and  Fermat  Number  Transforms  is  discussed.  It  is  shown  that  some 
pseudo-Mersenne  Transforms  can  be  computed efficiently by a linear filtering approach.  This  approach is extended  to  cover  the  case of 
Fermat  and  pseudo-Fermat  Number  Transforms by using a  special  coding scheme  for implementing arithmetic  operations in a Fermat 
number  system. 

Introduction 
Mersenne and Fermat  Number  Transforms have  been 
introduced by Rader [ 11, Agarwal,  and Burrus [ 2 ,  31. 
These transforms  are potentially attractive  for digital 
filtering applications  because  they  have  the  convolution 
property and can be computed  without multiplications. 

In principle, such  Number  Theoretic  Transforms 
(NTT) could be implemented in the same way as  Dis- 
crete  Fourier  Transforms but with multiplications by 
trigonometric  functions  replaced by multiplications by 
powers of two, all operations being performed  modulo a 
Mersenne  or  Fermat number.  When the transforms have 
a composite  number of terms,  as is  the case with Fermat 
Number  Transforms (FNT) or  some  pseudo-Mersenne 
Transforms [4], various pipeline computing  techniques 
can  be used [5-71. 

In practice,  however, direct transposition of Fast 
Fourier  Transform (FFT) architectures  does  not neces- 
sarily  lead to optimum  implementations  and  the  develop- 
ment of special configurations for computing NTT seems 
worth exploring. Along these lines,  McClellan [8] has 
proposed a new coding technique for simplifying the 
implementation of Fermat  Number  Transforms. We have 
also  shown [9] that additional savings in the number of 
multiplications required to compute  complex convolu- 
tions by way of FNT can be achieved by taking advan- 
tage of the  real number representation of in a 
Fermat number system. 

In this paper, we consider the  implementation of 
pseudo-Mersenne  Transforms. We show  that when the 
number of terms is a  perfect square, all but  one of the 
variable  shift  circuits normally required to  compute the 
transform are eliminated. We then extend  these results 
to  cover the case of F N T  and pseudo-Fermat  Number 
Transforms [ 101 implemented with modified carry-add 
circuits  and  discuss the  case of transforms having a 

334 number of terms  equal to a multiple of a perfect  square. 

Linear filtering computation of pseudo-Mersenne 
Transforms 
In a preceding  paper [4], we have shown that pseudo- 
Mersenne  Transforms could be defined in a ring modulo 
P2 by 

A , =  [< an Wn*)rnedp2 k = 0 ,  l;.., N -  1 ,  (1) 

with {u,,} being the  input  integer sequence, and 

p ' p  . p  = 2 9 - 1 ;  
1 2  ( 2 )  

w = 2'. (3  1 

Under certain  conditions,  this  transform has the  convolu- 
tion property and  therefore can  be used to  compute 
convolutions. It  has  the advantage over the  conventional 
Mersenne  Transform  that q does  not  have  to  be a prime 
and  therefore that the  number of transform  terms 
N = q / r  can  be composite. As p = p1 . p p ,  the  pseudo- 
Mersenne  Transform  can be computed  modulo p in 
one's  complement  arithmetic with only a last operation 
modulo p p  with 

A ,  = ((i n=O a n  w n k ) r n o d p ) r n o d p p .  ( 4) 

We  have shown that many  transforms having a highly 
factorizable  number of terms  can  be defined for which 
p1 is small compared to p s  so that the  penalty in word 
length  increase  incurred when operating modulo p in- 
stead of modulo p p  is only of the  order of 20 percent. 

Under  these conditions, the use of these  transforms is 
attractive for digital filtering applications because the 
number of operations  required for evaluating the trans- 
forms can  be  reduced by means of FFT-type algorithms 
and the various  operations  consist  only in additions and 
multiplications by powers of two. One's complement 
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additions  can be  performed very simply with  con- 
ventional adders  by folding the  most significant carry 
output  into  the  least significant carry input.  One's  com- 
plement multiplications  by fixed powers of two  reduce  to 
fixed circular shifts and  therefore  correspond merely to 
permuting  connecting  wires  in a hardware implementa- 
tion. By contrast, multiplications  by  variable powers of 
two  require a multistage  shift  circuit  which,  although 
much  less  expensive than a general  multiplier, is still 
relatively  costly. 

Under  these conditions, rather  than using conventional 
FFT-type pipeline  implementations [ 5 - 71 which  re- 
quire variable  shift circuits, it would be desirable  to 
devise  an  approach using only fixed shift circuits. This 
is partly possible  by  computing the transform as a 
convolution. 

Using the  conventional  chirp  Z-transform algorithm 
[ 111 with the  substitution 

we  have 

which, except  for premultiplication of the input sequence 
{ a n }  by WnZi2 and  postmultiplication by Wkzi2, reduces  the 
transform  computation to a  convolution of {b,= a , ~ ~ " ~ }  
with the impulse response h, = W- . ,212 

If W-i  is chosen  to be a power of two, a practical  cir- 
cuit  for calculating the  transform  reduces to one multi- 
plier by variable powers of two, WnZi2,  followed by a 
linear filter with tap values W-12iz,  which are fixed powers 
of two and a final multiplier by variable powers of two, 
Wk21z. It  can be seen  therefore  that all but two of the 
multipliers  by powers of two normally  required to com- 
pute  the transform are eliminated. 

When  the  number of transform  terms N is a perfect 
square, with 

N = M ~ ,  (7)  

it is possible to  reduce  the  number of additions  required 
to compute  the  transform  without increasing the number 
of multiplications  by  variable powers of two by using the 
technique  proposed by  Bluestein  for discrete  Fourier 
Transforms [ 121, [ 131. The Z transform H(Z) of the 
impulse response h, is 

H ( Z )  = 2 w-%,, 
2N-1 

1=o 

and with 

l = u + M u  u = O ,  l;", M -  1 
u = o ,  l;.., 2" 1, (9) 
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2-2Mu 

Figure 1 Recursive  computation of a pseudo-Mersenne 
Transform. 

we  have 
"1 *(Z) = w-u2/2Z-u W-MuuW-u2Y2/2Z"u 

2M-1 

(10) 
u=o u=o 

or 
M -1 

H(Z)  = ( 1  - P M Z )  2 w-u"2z-u 

u=o 1 + w- z Mu -M 7 

which  shows that H ( Z )  may be realized  by  a  bank of M 
recursive filters. This  approach is particularly  interesting 
in the  case of the 25-point  and  49-point  real trans- 
forms  and 100-point and 196-point  complex trans- 
forms  computed respectively  modulo (225 - 1) / 3 1 and 
(249 - 1 )  / 127. For  the real transforms, we can take 
& = -2, W = 4, and  the transform  circuit can  be realized 
as  shown in Fig. 1. Because  the multipliers by fixed pow- 
ers of two  reduce  to a simple permutation of connecting 
wires,  the  hardware  count  is limited to 2M one's com- 
plement adders, M shift registers of M words,  one shift 
register of 2N  words and two variable shift circuits. 

In practice, pseudo-Mersenne  Transforms are used 
for implementing digital filters. For time-invariant  filters, 
the transform of the  tap values will be  precomputed  and 
stored in a memory  and the postmultiplication  in the 
direct  transform  is  redundant  with  the premultiplication 
in the inverse  transform, so that only one variable  shift 
circuit is required  per  transform [ 141. 

We note also  that with this  configuration the  duty 
cycle is only 50 percent,  as  one block time is required 
to load the  recursive filters and one block  time is re- 
quired  for output.  Continuous  operation would normally 
require  two identical circuits,  each processing alternate 
input  blocks,  with output available for  successive time 
intervals  at  alternate circuit outputs. 

A much more  attractive  approach  consists in taking 
advantage of the  fact  that, during output of the circuit, 
the  recursive filter operation is reduced  to recirculation 
with  multiplication  by -W"'. Under  these conditions, 
the  transform  circuit  can be modified as  shown in Fig. 2, 
by adding a bank of circuits  for recirculation and multi- 
plication by -W"'. Transfer from the  recursive filters 335 
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Figure 2 High speed  circuit for the  recursive computation of pseudo-Mersenne  Transforms. 

to  the recirculation circuits  takes  place at the  end of each 
block  time, without any dead-band interval under control 
of a switch SW. This circuit operates in a continuous 
mode,  successive  input  and  output blocks being adjacent. 

The  input shift  register, SR1, which serves  to  reset  the 
recursive filters, has a length  reduced to N words instead 
of 2N words in the  conventional circuit. This shift 
register  could be eliminated  and  replaced  by  auxiliary 
switches in the  recursive filter loops,  but in most cases, 
this last approach will lead to a more  complex implemen- 
tation. 

It  can  be  seen  that  the implementation of an N-term 
pseudo-Mersenne  Transform with the Fig. 2 configura- 
tion will require 2M adders,  one variable  shift  circuit 
and 3N words of storage.  Under  the  same  conditions, a 
conventional pipeline approach would require 2M - 2 
adders and between M and 2M variable  shift circuits 
depending on  the particular  implementation [ 151. 

Linear  filtering  computation of Fermat  Number 
Transforms 
We  have so far  seen  that  for  pseudo-Mersenne  Trans- 
forms having a number of terms which is a perfect  square, 
it is possible to devise an efficient implementation  which 
requires  about  as many  additions as with an  FFT-type 
algorithm but allows  a  nearly complete elimination of 
variable  shift  circuits. The efficiency of the  proposed 
implementation is essentially due  to  the  fact  that, in one's 
complement arithmetic,  the  cost of multiplying by fixed 
powers of two  is negligible. 

Fermat  Number  Transforms (FNT)  are evaluated 
modulo 2' + I .  In  such  number  systems,  arithmetic 
circuits  are not simple so that  the proposed approach 

336 would not seem attractive for FNT. McClellan, however, 

has  shown [8] that if the input signal words  are  coded in 
such a way that individual bits correspond  to *I instead 
of 0 or 1 ,  arithmetic  operations in a Fermat  number  sys- 
tem can  be implemented in a manner  that is similar to 
one's  complement  arithmetic. A similar technique  has 
been  proposed very recently  by  Leibowitz [ 161 and 
brought to  the  attention of the  author by one of the 
referees.  We  have derived  independently a different  and 
slightly simpler  coding scheme  that  achieves a simi- 
lar  result  and which we describe here. In a Fermat 
number  system modulo p = 2' + 1, the various  input 
words a ,  can  be  represented by 

a ,  = x aaiY + a,,,2' a,,i = 0 or 1 
9- 1 

a,  = x, if x, 1 0; 

a ,  = x, + 29 + 1 if x, < 0. 

Instead of computing the F N T  modulo p directly on  the 
input sequence {a,}, we first convert this sequence  into 
a new sequence {b,} with 

or with 

a, = x a,,i21 

b ,  = 2, + I + an,929. (15) 

9-1 
= 0 if a,,i = 1 

= 1 if = 0, (14) 
i =O 
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The coded  samples can  thus be  obtained  very simply by 
taking the complement of the q less significant bits of a, 
and  adding 1 in a q + 1-bit binary adder  to  the word 

The transform or  the convolution is computed  on  the 
sequence {b,}, and the final result is obtained by a de- 
coding operation according to Eqs. ( 13)  or ( 15 ). The 
condition u,  = 0 corresponds  to b, = 2'. This condition 
will be  depicted by a flag bit b , ,  in the q + 1-bit words 
representing b,. In all other  cases, h, can be  represented 

(I, + a,,q2q. 

by 
P- 1 

b, = h,,i2'. 116) 
i = O  

To obtain  the representation of the  negative of a,, one 
can  do  as follows. If b,,' = 1 ,  then a, = 0 and one  can skip 
the operation. Otherwise, taking the complement h, of b, 
yields h,[ = 2' - 1 - h,, and with Eq. ( 13) and 2" = -1, 

h, = 2' + u,, (17) 

which shows  that  the negative of a  number is obtained 
as in one's  complement  arithmetic by inverting the q low- 
order bits except when h,.q = 1 .  

Addition of two numbers a,  and (1, can  also be per- 
formed  very  easily in the  transposed  system. If b, and b, 
are  the coded  values of a, and a, and if c, is the sum of 
h, and b,, we have 

a- 1 

c, = c,,i2i + (.,,,2' c , , ~  = 0 or 1 (18) 
i = O  

and 

(. = 2Q4' - un - u/ .  (19) n 

The coded value d, corresponding to a, + ( I I  is defined by 

d, = 2' - a,  - a,. (20) 

We have,  therefore, 
n- 1 

which shows  that, in the transposed  system, addition 
can be performed with ordinary  adders in a way similar 
to  one's complement  arithmetic  but with higher order 
carry fed back  after complementation into  the less 
significant carry input line of the  adder. If either  one  or 
both of the  operands  are  zero,  as  depicted by b, ,= 1 or 
b,,' = 1 ,  propagation of the complemented fold over  carry 
is inhibited. An inhibition circuit  must also  be imple- 
mented to  prevent spurious  oscillations caused by the 
feedback of complemented carries when d, = 2' - 1 .  

It can be  seen easily, from the rules of addition, that 
multiplications by 2' correspond, in the transposed sys- 
tem,  to  an r-bit rotation  around  the q-bit  word with 

Figure 3 Multiply-by-two  circuit in transposed  Fermat  number 
system. 

complementation of the overflow bits. When the flag bit 
is "one," depicting the condition u ,  = 0, inversion of the 
overflow bits is inhibited. Under  these conditions, multi- 
plications by fixed powers of two can  be  implemented 
very  simply, as shown in Fig. 3 in the  case of a multipli- 
cation-by-2 circuit. 

The  approach  discussed in the  preceding  section can 
therefore be applied to  FNT with almost  the same 
efficiency as for pseudo-Mersenne  Transforms. A par- 
ticularly interesting case  corresponds  to  the 64-point 
transform  evaluated  modulo 2" + I .  When the number 
of terms is a multiple of four,  as is the case with FNT,  
such  that N = M' and with some  complex  pseudo- 
Mersenne  Transforms, additional  savings  can be achieved 
in the transform  implementation. This  relates  to  the  fact 
that, when a digital filter is evaluated via NTT's,  the input 
sequence must be divided into blocks  and each block 
must be padded  with  a  suitable  number of zeros in order 
to prevent folding and aliasing [ 171. In  the  case of 
Mersenne and Fermat  Number  Transforms where  the 
maximum transform length is limited, the blocks are 
usually such that  about half the samples are  zero. 

In  the following, we consider  the  case  corresponding 
to blocks half  filled with zeros, with .a, # 0 for 0 f n < 
N / 2 a n d r r n = 0 f o r N / 2 5 n < N - 1 . I f t h e t r a n s f o r m i s  
evaluated by means of a  conventional pipeline technique, 
the  fact  that half the input terms  are  zero  results only in 
the elimination of the  additions in the first transform 
stage and therefore  does  not bring significant computa- 
tional savings. By contrast, if N = M2 and the transform 
is calculated with the  recursive filtering circuit of Fig. 2, 
a factor of about  two improvement  in  computing effi- 
ciency  can be obtained. This is due  to  the  fact  that actual 
computation proceeds in two  steps: during the first step, 
for 0 5 n < N / 2 ,  the N / 2  nonzero  input samples a, are 
entered  into  the  recursive filters while recursive  computa- 
tion proceeds.  During  the second step,  for N / 2  5 n < 
N - 1 ,  the input  samples are  zero and the  recursive 337 
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1 
Figure 4 Fast direct  transform  circuit  for M even. 

computation reduces  to a  recirculation  with fixed multi- 
plication by W-UM. The  duration of these recirculations 
is N / 2 ,  corresponding  to M / 2  multiplications  by W-'". 

Under  these conditions, the final output of the  re- 
cursive filters at time N is the  same  as  that available at 
time N / 2 ,  but multiplied by W-uM2'2 or by (-l)', as 

= "1. This  means  that  there is no need for actually 
carrying computations from  time N /  2 to  N, provided 
that  proper sign corrections  are  made  on  the filter out- 
puts  and  that,  for  about  the  same  amount of hardware, 
the  speed of computation can  be doubled. 

A  practical  circuit for computing direct  transforms  can 
be realized as  shown in Fig. 4. This circuit is very 
similar to  that  corresponding  to Fig. 2,  except  that  the 
recursive filters and recirculation circuits  are split into 
two  groups,  one  corresponding  to u even  and  one  cor- 
responding to u odd.  Such a  circuit  can  be  implemented 
with 2(M + 1) adders,  one variable-shift  circuit and 
3 N/ 2 words of storage. As  the  actual computation  time 
corresponds  only  to N / 2  input  samples,  the  number of 
additions  per output sample is reduced  to M + 1 as 

338 against 2M in the general case.  This  approach is applica- 

w-M2/2 

-L 

ble  only to  direct transforms. For  the  inverse  transform, 
all the  data values are  nonzero  and  the  computation must 
be performed with the circuit described in  Fig. 2 .  

Alternate configurations 
The  approaches  discussed in the preceding sections place 
some  restrictions  on transform  length. One limitation is 
that we must have N = M 2 .  Another and less obvious 
limitation stems  from  the  fact  that computing an  N-term 
transform with root W by means of a chirp Z-transform 
algorithm requires multiplications  by  powers of &. This 
reduces by  a factor of two  the maximum  length of NTT's 
that  can be computed  without multiplications. 

These limitations can  be partly  relieved  by  combining 
the  chirp  2-transform  technique with a partial FFT-type 
decomposition. 

Assuming for  instance a one-stage, radix  2  decomposi- 
tion  with  decimation in frequency  and  an  NTT, 

4 = (X a , W " k ) m o d ,  k = O ,  l;.., N -  1, (22) 

we  have 
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If N /  2 is a perfect square, with N /  2 = M2, the transform 
can  be  computed by a first stage with additions a,  +- a,+&,,,, 
followed by a  variable shift circuit for multiplication by 
Wn2 in the  case of A,, by W””” in the  case of A,k+l and 
followed by a bank of recursive circuits. I t  can  be  seen 
therefore  that  the multiplication required for  one-stage 
FFT decomposition has been  combined  with that re- 
quired for  the  chirp  Z-transform and that  the number of 
operations has  been  reduced to 2 M  + 1 additions  and one 
variable  shift per  output sample. In  the  case of complex 
transforms,  it may be advantageous  to  use a one-stage, 
radix 4 decomposition with transforms of length N = 4Me.  

The applicability of the  recursive filtering technique 
for computing N T T  can therefore be extended  to  trans- 
form lengths multiple of a perfect square  and  the  number 
of variable  shift circuits reduced to only one when 
N = M2, 2 M 2  or 4 M 2 .  This  covers many practical cases 
corresponding to  pseudo-Mersenne  Transforms defined 
modulo zz5 - 1 ,  227 - 1, 249 - 1 ,  pseudo-Fermat  Number 
Transforms defined modulo 2” + 1 ,  227 + 1 ,  Z4’ + 1 and 
Fermat  Number  Transforms. 

Concluding remarks 
In this paper we have considered  possible architectures 
for computing Number  Theoretic  Transforms. We have 
capitalized on  the low cost of multiplications by fixed 
powers of two  to  devise configurations that  are well 
adapted for  pseudo-Mersenne  Transforms having a 
number of terms which is a multiple of a  perfect square. 
We have  also  shown  that,  thanks  to a  special  coding 
scheme, this approach could be extended  to  cover  the 
case of Fermat  and  pseudo-Fermat  Number  Transforms. 
For Fermat  Number  Transforms,  the proposed tech- 
nique,  when  used with FFT-type  decompositions,  covers 
a wide range of possible  transform  lengths. In  the  case of 
FNT, however,  the proposed technique is somewhat 
suboptimal because  the computation is not fully factor- 
ized, and  the  number of multiplications by variable 
powers of two is reduced at the  expense of an  increased 
number of additions. 
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