
H. J. Nussbaumer

Linear Filtering Technique for Computing Mersenne
and Fermat Number Transforms

Abstract: In this paper, the implementation of pseudo-Mersenne and Fermat Number Transforms is discussed. It is shown that some
pseudo-Mersenne Transforms can be computed efficiently by a linear filtering approach. This approach is extended to cover the case of
Fermat and pseudo-Fermat Number Transforms by using a special coding scheme for implementing arithmetic operations in a Fermat
number system.

Introduction
Mersenne and Fermat Number Transforms have been
introduced by Rader [11, Agarwal, and Burrus [2 , 31.
These transforms are potentially attractive for digital
filtering applications because they have the convolution
property and can be computed without multiplications.

In principle, such Number Theoretic Transforms
(NTT) could be implemented in the same way as Dis-
crete Fourier Transforms but with multiplications by
trigonometric functions replaced by multiplications by
powers of two, all operations being performed modulo a
Mersenne or Fermat number. When the transforms have
a composite number of terms, as is the case with Fermat
Number Transforms (FNT) or some pseudo-Mersenne
Transforms [4], various pipeline computing techniques
can be used [5-71.

In practice, however, direct transposition of Fast
Fourier Transform (FFT) architectures does not neces-
sarily lead to optimum implementations and the develop-
ment of special configurations for computing NTT seems
worth exploring. Along these lines, McClellan [8] has
proposed a new coding technique for simplifying the
implementation of Fermat Number Transforms. We have
also shown [9] that additional savings in the number of
multiplications required to compute complex convolu-
tions by way of FNT can be achieved by taking advan-
tage of the real number representation of in a
Fermat number system.

In this paper, we consider the implementation of
pseudo-Mersenne Transforms. We show that when the
number of terms is a perfect square, all but one of the
variable shift circuits normally required to compute the
transform are eliminated. We then extend these results
to cover the case of F N T and pseudo-Fermat Number
Transforms [101 implemented with modified carry-add
circuits and discuss the case of transforms having a

334 number of terms equal to a multiple of a perfect square.

Linear filtering computation of pseudo-Mersenne
Transforms
In a preceding paper [4], we have shown that pseudo-
Mersenne Transforms could be defined in a ring modulo
P2 by

A , = [< an Wn*)rnedp2 k = 0 , l;.., N - 1 , (1)

with {u,,} being the input integer sequence, and

p ' p . p = 2 9 - 1 ;
1 2 (2)

w = 2'. (3 1

Under certain conditions, this transform has the convolu-
tion property and therefore can be used to compute
convolutions. It has the advantage over the conventional
Mersenne Transform that q does not have to be a prime
and therefore that the number of transform terms
N = q / r can be composite. As p = p1 . p p , the pseudo-
Mersenne Transform can be computed modulo p in
one's complement arithmetic with only a last operation
modulo p p with

A , = ((i n=O a n w n k) r n o d p) r n o d p p . (4)

We have shown that many transforms having a highly
factorizable number of terms can be defined for which
p1 is small compared to p s so that the penalty in word
length increase incurred when operating modulo p in-
stead of modulo p p is only of the order of 20 percent.

Under these conditions, the use of these transforms is
attractive for digital filtering applications because the
number of operations required for evaluating the trans-
forms can be reduced by means of FFT-type algorithms
and the various operations consist only in additions and
multiplications by powers of two. One's complement

H. J. NUSSBAUMER IBM 1. RES. DEVELOP.

additions can be performed very simply with con-
ventional adders by folding the most significant carry
output into the least significant carry input. One's com-
plement multiplications by fixed powers of two reduce to
fixed circular shifts and therefore correspond merely to
permuting connecting wires in a hardware implementa-
tion. By contrast, multiplications by variable powers of
two require a multistage shift circuit which, although
much less expensive than a general multiplier, is still
relatively costly.

Under these conditions, rather than using conventional
FFT-type pipeline implementations [5 - 71 which re-
quire variable shift circuits, it would be desirable to
devise an approach using only fixed shift circuits. This
is partly possible by computing the transform as a
convolution.

Using the conventional chirp Z-transform algorithm
[111 with the substitution

we have

which, except for premultiplication of the input sequence
{ a n } by WnZi2 and postmultiplication by Wkzi2, reduces the
transform computation to a convolution of {b,= a , ~ ~ " ~ }
with the impulse response h, = W- . ,212

If W-i is chosen to be a power of two, a practical cir-
cuit for calculating the transform reduces to one multi-
plier by variable powers of two, WnZi2, followed by a
linear filter with tap values W-12iz, which are fixed powers
of two and a final multiplier by variable powers of two,
Wk21z. It can be seen therefore that all but two of the
multipliers by powers of two normally required to com-
pute the transform are eliminated.

When the number of transform terms N is a perfect
square, with

N = M ~ , (7)

it is possible to reduce the number of additions required
to compute the transform without increasing the number
of multiplications by variable powers of two by using the
technique proposed by Bluestein for discrete Fourier
Transforms [121, [131. The Z transform H(Z) of the
impulse response h, is

H (Z) = 2 w-%,,
2N-1

1=o

and with

l = u + M u u = O , l;", M - 1
u = o , l;.., 2" 1, (9)

F 77

2-2Mu

Figure 1 Recursive computation of a pseudo-Mersenne
Transform.

we have
"1 *(Z) = w-u2/2Z-u W-MuuW-u2Y2/2Z"u

2M-1

(10)
u=o u=o

or
M -1

H(Z) = (1 - P M Z) 2 w-u"2z-u

u=o 1 + w- z Mu -M 7

which shows that H (Z) may be realized by a bank of M
recursive filters. This approach is particularly interesting
in the case of the 25-point and 49-point real trans-
forms and 100-point and 196-point complex trans-
forms computed respectively modulo (225 - 1) / 3 1 and
(249 - 1) / 127. For the real transforms, we can take
& = -2, W = 4, and the transform circuit can be realized
as shown in Fig. 1. Because the multipliers by fixed pow-
ers of two reduce to a simple permutation of connecting
wires, the hardware count is limited to 2M one's com-
plement adders, M shift registers of M words, one shift
register of 2N words and two variable shift circuits.

In practice, pseudo-Mersenne Transforms are used
for implementing digital filters. For time-invariant filters,
the transform of the tap values will be precomputed and
stored in a memory and the postmultiplication in the
direct transform is redundant with the premultiplication
in the inverse transform, so that only one variable shift
circuit is required per transform [141.

We note also that with this configuration the duty
cycle is only 50 percent, as one block time is required
to load the recursive filters and one block time is re-
quired for output. Continuous operation would normally
require two identical circuits, each processing alternate
input blocks, with output available for successive time
intervals at alternate circuit outputs.

A much more attractive approach consists in taking
advantage of the fact that, during output of the circuit,
the recursive filter operation is reduced to recirculation
with multiplication by -W"'. Under these conditions,
the transform circuit can be modified as shown in Fig. 2,
by adding a bank of circuits for recirculation and multi-
plication by -W"'. Transfer from the recursive filters 335

JULY 1977 N U M B E R THEORETIC TRANSFORMS

L "I

Figure 2 High speed circuit for the recursive computation of pseudo-Mersenne Transforms.

to the recirculation circuits takes place at the end of each
block time, without any dead-band interval under control
of a switch SW. This circuit operates in a continuous
mode, successive input and output blocks being adjacent.

The input shift register, SR1, which serves to reset the
recursive filters, has a length reduced to N words instead
of 2N words in the conventional circuit. This shift
register could be eliminated and replaced by auxiliary
switches in the recursive filter loops, but in most cases,
this last approach will lead to a more complex implemen-
tation.

It can be seen that the implementation of an N-term
pseudo-Mersenne Transform with the Fig. 2 configura-
tion will require 2M adders, one variable shift circuit
and 3N words of storage. Under the same conditions, a
conventional pipeline approach would require 2M - 2
adders and between M and 2M variable shift circuits
depending on the particular implementation [151.

Linear filtering computation of Fermat Number
Transforms
We have so far seen that for pseudo-Mersenne Trans-
forms having a number of terms which is a perfect square,
it is possible to devise an efficient implementation which
requires about as many additions as with an FFT-type
algorithm but allows a nearly complete elimination of
variable shift circuits. The efficiency of the proposed
implementation is essentially due to the fact that, in one's
complement arithmetic, the cost of multiplying by fixed
powers of two is negligible.

Fermat Number Transforms (FNT) are evaluated
modulo 2' + I . In such number systems, arithmetic
circuits are not simple so that the proposed approach

336 would not seem attractive for FNT. McClellan, however,

has shown [8] that if the input signal words are coded in
such a way that individual bits correspond to *I instead
of 0 or 1 , arithmetic operations in a Fermat number sys-
tem can be implemented in a manner that is similar to
one's complement arithmetic. A similar technique has
been proposed very recently by Leibowitz [161 and
brought to the attention of the author by one of the
referees. We have derived independently a different and
slightly simpler coding scheme that achieves a simi-
lar result and which we describe here. In a Fermat
number system modulo p = 2' + 1, the various input
words a , can be represented by

a , = x aaiY + a,,,2' a,,i = 0 or 1
9- 1

a, = x, if x, 1 0;

a , = x, + 29 + 1 if x, < 0.

Instead of computing the F N T modulo p directly on the
input sequence {a,}, we first convert this sequence into
a new sequence {b,} with

or with

a, = x a,,i21

b , = 2, + I + an,929. (15)

9-1
= 0 if a,,i = 1

= 1 if = 0, (14)
i =O

H. J . NUSSBAUMER
I B M J. RES. DEVELOP.

The coded samples can thus be obtained very simply by
taking the complement of the q less significant bits of a,
and adding 1 in a q + 1-bit binary adder to the word

The transform or the convolution is computed on the
sequence {b,}, and the final result is obtained by a de-
coding operation according to Eqs. (13) or (15). The
condition u, = 0 corresponds to b, = 2'. This condition
will be depicted by a flag bit b , , in the q + 1-bit words
representing b,. In all other cases, h, can be represented

(I, + a,,q2q.

by
P- 1

b, = h,,i2'. 116)
i = O

To obtain the representation of the negative of a,, one
can do as follows. If b,,' = 1 , then a, = 0 and one can skip
the operation. Otherwise, taking the complement h, of b,
yields h,[= 2' - 1 - h,, and with Eq. (13) and 2" = -1,

h, = 2' + u,, (17)

which shows that the negative of a number is obtained
as in one's complement arithmetic by inverting the q low-
order bits except when h,.q = 1 .

Addition of two numbers a, and (1, can also be per-
formed very easily in the transposed system. If b, and b,
are the coded values of a, and a, and if c, is the sum of
h, and b,, we have

a- 1

c, = c,,i2i + (.,,,2' c , , ~ = 0 or 1 (18)
i = O

and

(. = 2Q4' - un - u/ . (19) n

The coded value d, corresponding to a, + (I I is defined by

d, = 2' - a, - a,. (20)

We have, therefore,
n- 1

which shows that, in the transposed system, addition
can be performed with ordinary adders in a way similar
to one's complement arithmetic but with higher order
carry fed back after complementation into the less
significant carry input line of the adder. If either one or
both of the operands are zero, as depicted by b, ,= 1 or
b,,' = 1 , propagation of the complemented fold over carry
is inhibited. An inhibition circuit must also be imple-
mented to prevent spurious oscillations caused by the
feedback of complemented carries when d, = 2' - 1 .

It can be seen easily, from the rules of addition, that
multiplications by 2' correspond, in the transposed sys-
tem, to an r-bit rotation around the q-bit word with

Figure 3 Multiply-by-two circuit in transposed Fermat number
system.

complementation of the overflow bits. When the flag bit
is "one," depicting the condition u , = 0, inversion of the
overflow bits is inhibited. Under these conditions, multi-
plications by fixed powers of two can be implemented
very simply, as shown in Fig. 3 in the case of a multipli-
cation-by-2 circuit.

The approach discussed in the preceding section can
therefore be applied to FNT with almost the same
efficiency as for pseudo-Mersenne Transforms. A par-
ticularly interesting case corresponds to the 64-point
transform evaluated modulo 2" + I . When the number
of terms is a multiple of four, as is the case with FNT,
such that N = M' and with some complex pseudo-
Mersenne Transforms, additional savings can be achieved
in the transform implementation. This relates to the fact
that, when a digital filter is evaluated via NTT's, the input
sequence must be divided into blocks and each block
must be padded with a suitable number of zeros in order
to prevent folding and aliasing [171. In the case of
Mersenne and Fermat Number Transforms where the
maximum transform length is limited, the blocks are
usually such that about half the samples are zero.

In the following, we consider the case corresponding
to blocks half filled with zeros, with .a, # 0 for 0 f n <
N / 2 a n d r r n = 0 f o r N / 2 5 n < N - 1 . I f t h e t r a n s f o r m i s
evaluated by means of a conventional pipeline technique,
the fact that half the input terms are zero results only in
the elimination of the additions in the first transform
stage and therefore does not bring significant computa-
tional savings. By contrast, if N = M2 and the transform
is calculated with the recursive filtering circuit of Fig. 2,
a factor of about two improvement in computing effi-
ciency can be obtained. This is due to the fact that actual
computation proceeds in two steps: during the first step,
for 0 5 n < N / 2 , the N / 2 nonzero input samples a, are
entered into the recursive filters while recursive computa-
tion proceeds. During the second step, for N / 2 5 n <
N - 1 , the input samples are zero and the recursive 337

NUMBER THEORETIC TRANSFORMS JU1.Y 1977

c

1
Figure 4 Fast direct transform circuit for M even.

computation reduces to a recirculation with fixed multi-
plication by W-UM. The duration of these recirculations
is N / 2 , corresponding to M / 2 multiplications by W-'".

Under these conditions, the final output of the re-
cursive filters at time N is the same as that available at
time N / 2 , but multiplied by W-uM2'2 or by (-l)', as

= "1. This means that there is no need for actually
carrying computations from time N / 2 to N, provided
that proper sign corrections are made on the filter out-
puts and that, for about the same amount of hardware,
the speed of computation can be doubled.

A practical circuit for computing direct transforms can
be realized as shown in Fig. 4. This circuit is very
similar to that corresponding to Fig. 2, except that the
recursive filters and recirculation circuits are split into
two groups, one corresponding to u even and one cor-
responding to u odd. Such a circuit can be implemented
with 2(M + 1) adders, one variable-shift circuit and
3 N/ 2 words of storage. As the actual computation time
corresponds only to N / 2 input samples, the number of
additions per output sample is reduced to M + 1 as

338 against 2M in the general case. This approach is applica-

w-M2/2

-L

ble only to direct transforms. For the inverse transform,
all the data values are nonzero and the computation must
be performed with the circuit described in Fig. 2 .

Alternate configurations
The approaches discussed in the preceding sections place
some restrictions on transform length. One limitation is
that we must have N = M 2 . Another and less obvious
limitation stems from the fact that computing an N-term
transform with root W by means of a chirp Z-transform
algorithm requires multiplications by powers of &. This
reduces by a factor of two the maximum length of NTT's
that can be computed without multiplications.

These limitations can be partly relieved by combining
the chirp 2-transform technique with a partial FFT-type
decomposition.

Assuming for instance a one-stage, radix 2 decomposi-
tion with decimation in frequency and an NTT,

4 = (X a , W " k) m o d , k = O , l;.., N - 1, (22)

we have

n. .I. NUSSBAUMER IBM 1. RES. DEVELOP.

I N / , - 1 References

‘n=o I

If N / 2 is a perfect square, with N / 2 = M2, the transform
can be computed by a first stage with additions a, +- a,+&,,,,
followed by a variable shift circuit for multiplication by
Wn2 in the case of A,, by W””” in the case of A,k+l and
followed by a bank of recursive circuits. I t can be seen
therefore that the multiplication required for one-stage
FFT decomposition has been combined with that re-
quired for the chirp Z-transform and that the number of
operations has been reduced to 2 M + 1 additions and one
variable shift per output sample. In the case of complex
transforms, it may be advantageous to use a one-stage,
radix 4 decomposition with transforms of length N = 4Me.

The applicability of the recursive filtering technique
for computing N T T can therefore be extended to trans-
form lengths multiple of a perfect square and the number
of variable shift circuits reduced to only one when
N = M2, 2 M 2 or 4 M 2 . This covers many practical cases
corresponding to pseudo-Mersenne Transforms defined
modulo zz5 - 1 , 227 - 1, 249 - 1 , pseudo-Fermat Number
Transforms defined modulo 2” + 1 , 227 + 1 , Z4’ + 1 and
Fermat Number Transforms.

Concluding remarks
In this paper we have considered possible architectures
for computing Number Theoretic Transforms. We have
capitalized on the low cost of multiplications by fixed
powers of two to devise configurations that are well
adapted for pseudo-Mersenne Transforms having a
number of terms which is a multiple of a perfect square.
We have also shown that, thanks to a special coding
scheme, this approach could be extended to cover the
case of Fermat and pseudo-Fermat Number Transforms.
For Fermat Number Transforms, the proposed tech-
nique, when used with FFT-type decompositions, covers
a wide range of possible transform lengths. In the case of
FNT, however, the proposed technique is somewhat
suboptimal because the computation is not fully factor-
ized, and the number of multiplications by variable
powers of two is reduced at the expense of an increased
number of additions.

I .

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

C. M. Rader, “Discrete Convolutions via Mersenne Trans-
forms,” IEEE Trans. Comput. C-21, 1269 (1972).
R. C. Agarwal and C. S. Burrus, “Fast Convolution Using
Fermat Number Transforms with Applications to Digital
Filtering,” IEEE Trans. Acoust. Speech Signal Process.

R. C. Agarwal and C. S. Burrus, “Number Theoretic Trans-
forms to Implement Fast Digital Convolution,” Proc. IEEE

ASSP-22, 87 (1974).

63, 550 (19;s).
H. J. Nussbaumer. “Digital Filtering Usinn Comolex

-

Mersenne Transforms,” i B M J . Res.-De~elo>. 20, ‘498
(1976).
G. D. Bergland and H. W. Hale, “Digital Real Time
Spectral Analysis,” IEEE Trans. Electron. Comput.

H. L. Groginsky and G. A. Works, “A Pipeline Fast
Fourier Transform,” IEEE Trans. Comput. C-19, 1015
(1970).
G. C. O’Leary, “Nonrecursive Digital Filtering Using Cas-
cade Fast Fourier Transformers,” IEEE Trans. Audio
Electroacoust. AU-18, 177 (1970).
J . H. McClellan, “Hardware for the Fermat Number Trans-
form,” Report ESD-TR-75-149, Lincoln Laboratory,
Massachusetts Institute of Technology, Cambridge, MA,
1975.
H. J. Nussbaumer, “Complex Convolutions via Fermat
Number Transforms,” IBM J . Res. Develop. 20, 282
(1976).
H. J. Nussbaumer, “Digital Filtering Using Pseudo-Fermat
Number Transforms,” IEEE Trans. Acoust. Speech Signal
Process., to be published.
L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The Chirp
Z-Transform Algorithm and its Application,” Bell Syst.
Tech. J . 48, 1249 (1969).
L. I. Bluestein, “A Linear Filtering Approach to the Com-
putation of the Discrete Fourier Transform,” Northeast
Electronics Research and Engineering Meeting, paper no.
10-218, 1968. IEEE, New York.
L. I. Bluestein, “A Linear Filtering Approach to the Com-
putation of Discrete Fourier Transform,” IEEE Trans.
Audio Electroacoust. AU-18, 45 1 (1970).
G. R. Nudd and 0. W. Otto, “Chirp Signal Processing using
Acoustic Surface Wave Filters,” 1975 Ultrasonics Sympo-
sium Proceedings, p. 350. IEEE, New York.
A. V. Oppenheim and R. W. Schafer, Digital Signal Pro-
cessing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975,
Ch. 6, p. 307.
L. M. Leibowitz, “A Simplified Binary Arithmetic for the
Fermat Number Transform,” IEEE Trans. Acoust. Speech

EC-16, 180 (1967).

Signal Process. ASSP-24, 356 (1976).
17. B. Gold, C. M. Rader, A. V. Oppenheim, and T. G.

Stockham, Digital Processing of Signals, McGraw-Hill
Book Company, Inc., New York, 1969, Ch. 7, p. 203.

Received June I I , 1976; revised November 23, 1976

The author is located at the Compaanie IBM France,
Centre d’Etudes et Recherches, 06610 La Gaude,
France.

JULY 1977 NUMBER THEORETIC T

339

‘RANSFORMS

