
C. K. Wong
D. T. Tang

Dynamic Memories with Faster
Random and Sequential Access

Abstract: This paper extends the dynamic memory proposed by Aho and Ullman in two directions. Instead of a shuffle permutation,
block shuffles are introduced. By choosing suitable block sizes, faster random and sequential access may result. Another direction of
extension comes from the addition of a reverse cyclic permutation, which results in even faster random and sequential access. Analyses
for both the worst and the average cases are given. Generalizations to arbitrary radices are also discussed.

Introduction
In [1-31, a special kind of memory, called dynamic
memory, is studied. It is an array of n cells, each of which
can hold one data word. The contents of only one of the
cells, called the window, can be read or written external-
ly. Throughout this paper, the window is assumed to be
cell 0. (See Fig. 1 .) However, the contents of the cells
in the memory can be rearranged internally by applying
a sequence of operations called memory transformations.
Each transformation is a permutation of the contents of
the n cells. For example, if the permutation r = (io, i,,

one step the contents of cell j are transferred to cell ij
for allj, 0 5 j < n.

In [3], the following two transformations are pro-
posed (n = 2') :

. . . , in-,) is applied to an n-cell dynamic memory, then in

i = o , 1, . . . " n , 1 ,

r,(i) = (1)
n n
2 2

i=- , -+ l;.., n - 1,

and

ret(i) = rt(re(i) 1 ,
where

i + 1 , i even,

i - 1 , i odd. (2)

By means of these two transformations, the contents
of any cell can be brought to the window in no more than
k = log,n steps. Suppose datum j denotes the initial con-
tents of cell j . To access a block of data, say datum j ,
datum j + 1, . . ., datum j + b - 1, we must first locate the
cell that contains datum j . Then we must locate the cell

r,(i) =

that contains datum j + 1 , and so on. Therefore, in the
worst case, b log,n steps are needed. However, Stone
[51 has recently shown that, for certain sizes of this kind
of memory, an address recoding exists that results in
fast sequential access as well as random access. For
other work related to these transformations and dynamic
memories, see [6- 111.

In [11, another pair of transformations is proposed for
n = 2' - 1, by which any datum j can be accessed in no
more than 2 log,(n + 1) - 2 steps and any block of b 1 2
data items can be accessed in no more than 3 log,(n + 1) +
b - 4 steps. These transformations are

r,(i) = (2 i) mod n, (3)

r s (i) = (i - 1) mod ,,' (4)

i = O , l ; . . ,n- l,wherex,,,,=x-ylx/yJ.Thesetrans-
formations are further generalized to arbitrary radi-
ces [11.

In this paper, we first replace (3) with rz)(i) =

(i . 2"-") m,,d ,,, i = 0, 1, . . ., n - 1, where d is a parameter
that divides k . The resulting memory has the same ran-
dom and sequential access characteristics as before. In
particular, when d = 2 and k is even, random access takes
no more than 2 log,(n + 1) - 2 steps for the worst case
and takes 1.25 log,(n + 1) - 1.333 steps for the average
case, which is about a 17 percent improvement. For
sequential access, after the first two items have been
accessed, each successive item can be accessed in one
step as in the original memory.

memory structure considered above:

r a (i) = (i + l)m, ,dn. (5) 281

Later we introduce one more transformation to the

MAY 1977 DYNAMIC MEMORIES

Figure 1

: : n
1
2
3

11 4
10 5
9 6
8 I

n=15

Dynamic memory having 15 cells.

Initially, the memory map is f (j) = j , characterized by
p = q = o .

2. An accessing sequence for datum j is defined as a
sequence of vm’s and r S ’ s that will move datum j into
the window.

3. If we represent f(j) = (j . 2” + q) mod as a k-bit binary
number, the effect of applying rS to the memory is to
subtract 1 fromf(j) , whereas the effect of applying nm
is to rotate f (j) to the left cyclically by one bit. And

Clearly, this is r r S in the reverse direction. When d = 2,
random access now takes 1.5 log,(n + 1) - 1 steps for

application of an accessing sequence to the memory
reduces f(j) to 0.

the worst case and log,(n + 1) - 1.333 steps for the With this understanding, Algorithm 1 in [I] can be
average case (25 and 33 percent improvements, respec- informally described as follows:
tively, over the original memory). Finally, generaliza-
tions of these two types of memories to arbitrary radices
are also discussed.

As pointed out in [31, implementation of transforma-
tions in memories such as metal oxide semiconductor

Algorithm I Given p , q (the memory map) and j (the
datum to be fetched), this algorithm generates an ac-
cessing sequence. As a side effect, p and q are updated so
they continue to represent the memory map.

(MOS) shift register memories amounts to the em-
bedding of corresponding interconnecting patterns. How-
ever, for more rigidly structured memories such as
magnetic bubble memories [12, 131 such an embedding
is much harder to realize. In [12 - 151 , various ways to
introduce some simple forms of memory transformations
in magnetic bubble memories are discussed and analyzed.
But the access time is far from the logarithmic growth
with memory size achieved in [1 , 3 , 51 and here. In fact,
it is basically linear. In view of the rapid growth of this

I new type of memory, it may be of interest to study new

1. Let the binary representation of f(j) be b, . . . b, b,.
2. If all bi = 0, stop.
3. If b, = 0, go to 4) . Otherwise generate mS.

b, + 0.

Go to 2) .
4. Generate T,.

c + b,.
For i = k, k - 1 , . . ., 2, bi +“ b2-,; 6, + c .

+ (4 - 1) m o d n

P + (P + 1) m o d k ’ 4 + (2q)modn.
Go to 3) .

memory transformations, which may reduce the access
time, say, from a linear increase to a square root or even
a logarithmic increase with memory size.

Since most of the derivation of the formulae is very
complicated and is given in research report [4], it is
omitted here.

From this algorithm, we have the following results.
(For the proof refer to [11 .)

Theorem I
Algorithm 1 brings datum j to the window in no more than
2 log, (n + 1) - 2 steps, where a step means one applica-

Preliminary considerations
To facilitate later discussion, we restate here some of the
results in f 11 :

tion of either T,,, or 7 r S . (In other words, the total number
of rm’s and r S ’ s generated by Algorithm 1 is never more
than 2 log,(n + 1) - 2.)

1. A memory address map is defined as a function f from

taining datum j . If only transformations T, and rs
are used, the memory map always has the form

Theorem 2 (sequential accessing property)

and datum j + 1 to the window. Then the accessing se-
quences for each of datum j + 2, datum j + 3 , . . . are of

data to such that f(j) is the con- suppose we have just used Algorithm 1 to bring datum j

f (j) = (j . 2” + qImodn (6) length 1 , namely, T ~ .
for integers p and q , where 0 i p < k and 0 5 q < n. Remark In fact, for datum j + 1 , Algorithm 1 generates
(Recall that n = 2k - 1 .) Also only T,’S followed by a single rrS, and thus accessing

datum j + 1 requires less time than usual. A detailed
calculation shows that any block of b E 2 data can be

282 into (9 - I) m o d n , (7) accessed in no more than 3 log,(n + 1) + b- 4 steps [41. {
p into p ,

rS maps

C. K. WONG AND D. T. TANG IBM J . RES. DEVELOP.

A class of memory transformations
In this section, we introduce a class of memory trans-
formations, which are generalizations of (3) . First, note
that if we use the multiplier 2“’ instead of 2 in (3) ,

(the superscript (I) will become clear later), all the
results in the previous section remain valid since the only
difference is that r:’ now corresponds to a right cyclic
rotation of the binary representation off(Q) instead of a
left one. However, such a change makes later analysis
easier. Second, instead of k - 1 , we use (a - 1) d as the
exponent in (3 ’) , where k = ad for positive integers a, d.
(Recall that n = 2“ - 1 .) Here d serves as a parameter.
Different values of d result in different performance. The
choice of d is discussed later. We therefore have a class
of transformations,

parameterized by the integer d. For d = 1 , (9) becomes

Note that r:) now corresponds to a right cyclic rota-
tion of the binary representation of f (j) through d bits
instead of 1 .

If we use (4) and (9) only, then the memory map takes

(3’).

the form

f (j) = (j . 2d” + qIrnodn (6’)

for integers p and q, where 0 5 p < a and 0 5 q < n.
Also.

Corresponding to Algorithm 1 , we have the following
algorithm.

Algorithm I‘ Given p , q (the memory map) and j (the
datum to be fetched), this algorithm generates an ac-
cessing sequence of r s ’ s and ,PI’S and updates p , q.

1 . Let the binary representation of f(j) be 6,. . . b, b,.
Divide it into a blocks of d bits each. Number the
blocks 1, 2, . . ., a! from right to left. Let the numbers
represented by the blocks be a,, a,, . . ., a,, respec-
tively.

2. If all ai = 0, stop.
3. If a , = 0, go to 4) . Otherwise, generate a1 r s ’ s .

a’ + 0.
4 + (4 - “Jml ,dn .

Go to 2) .
4. Generate r:’.

ai c ai+l, for i = 1 , 2,. . ., a - 1 ; aa +- 0.

Go to 3) .
P +- (P - l)m,lda’ 4 + (4 . 2 Im<,dn.

1,- I Id

5 9

6
10
14

11

13
2
6

10
14
3
I

9 12

13
14
0

13
14
0
1
2
3
4

Figure 2 Sequence of transformations to access datum 12.

Remark Step 3) means that if the rightmost number a ,
is not zero, we apply enough rs ’s to reduce it to zero.
(Recall that each rs subtracts 1 from the binary repre-
sentation of f (j) .) Step 4) is to right rotate the resulting
binary representation for d bits so that the previous
number now becomes the new ai and the new aa is
zero.

Example Assume n = 15, k = 4, d = 2. In Fig. 2 (a) , the
locations of data are listed before accessing. (Note that
the sequence rsrE1rs has been applied to the initial con-
figuration to make this current configuration more com-
plicated.) The memory map is f (i) = (i . 2’ + 10) ,,,od15,

i.e., p = 1, = IO . Suppose datum 12 is to be accessed.
Its location isf(12) = 13, whose binary representation is
1 101. So there are two blocks each of length 2. The
rightmost block is 0 I . We therefore apply one rs to the
memory, resulting in the configuration in Fig. 2(b) . The
location of datum 12 is nowf(12) = 12, which is 1100.
We now apply rzl, which changes the location of datum
I2 to (2’ . 12) mod 15 = 3 as shown in Fig. 2 (c) . Therefore

f (12) is now 001 I , which is a right-rotated 1100. We
then apply 3 r,’s consecutively to bring datum 12 to the
window (cell 0) , as shown in Fig. 2 (d) . The memory map
is now f(i) = (i + 3)mod Le., p = 0, q = 3.

It can be shown exactly as in [I] that the sequential
accessing property (Theorem 2) holds for Algorithm 1 ’
as well [41. We are therefore concerned only with the
accessing of a datum and analyze its performance for
both the worst case and the average case.

To compute the number of r s ’ s and r t l ’ s generated by
Algorithm 1 ’ for accessing datum j , we represent the
memory map of f (j) in binary numbers as in step 1) of
Algorithm 1 ’. If ai = 0 for i = 1 , 2; . ., a , then both num-
bers are zero. Otherwise, the number of r,’s is equal to
C%,ai (see step 3) of Algorithm 1 ‘), and the number of
r,,, s is equal to q - 1 , where q = max {ilai > 0} (see
step 4) and the remark following Algorithm 1 ’) .

With this understanding, it is easy to see that to access
any datum j , Algorithm 1 ‘ takes at most Sk,d = 2d . a! - 2
steps because a worst case occurs when datumj is located
at cell n - 1 . The binary representation of its memory

(d l ,

DYNAMIC P

283

AEMORIES MAY 1977

Table 1 Steps needed to access a datum using Algorithm 1 ’ . Table 2 Steps needed to access a datum using Algorithm 1”.

Worst case Average case Worst case Average case

d 5 log,(n + 1) - 2 log,(n + I) - - 2d 2d
1 2 log,(n + 1) - 2
2 2 log,(n + 1) - 2 1.25 log,(n + 1) - 1.333

2d- 1
1.5 log,(n + I) - 2

3 2.667 log,(n + 1) - 2 1.5 log,(n + I) - 1.143
4 4 10g,(n + 1) - 2 2.125 log,(n + 1) - 1.067

d 9 log,(n + 1) - 1 ~ 2d-2 + log,(n + 1) - -
d 2“- 1

2d

1 2 log,(n + 1) - 1 1.5 log,(n + 1) - 2
2 1.5 log,(n + 1) - 1 log,(n + I) - 1.333
3 1.667 log,(n + 1) - 1 log,(n + 1) - 1.143
4 2.25 log,(n + 1) - 1 1.25 log,(n + 1) - 1.067

284

map f (j) = n - 1 has all 1’s except the rightmost bit. If
we divide it into a blocks each of length d, then all blocks
except the rightmost one have 1’s in all d positions. The
number of r z) ’ s generated is thus a - 1 , and the number
of rs’s generated is (a - 1) (2d - 1) + (2d - 2) , with a
total of 2d . a - 2 .

To compute the average number of steps, i.e., the total
number of r p ” s and r,’s generated by Algorithm l ’ , we
assume that all data are equally likely to be accessed. We
show that to access any datum j , on the average, Algo-
rithm l ’ takes

2d
tk,d = a - -

2 d - 1 (10)

x, s and (d) ,

2 d - 1
Ub,d = - a (11)

x,”s for large k.
To prove (10) and (I]) , recall that the memory map

f (j) ranges from 0 to n - 1 . Since we are interested in the
case when k (hence n) is large, as a good approximation,
we can assume tha t f (j) ranges from 0 to n and each of
these n + 1 numbers is equally likely to occur. Such an
assumption greatly simplifies the calculation because, if
we represent a givenf(j) by a k-bit binary number, any
bit has equal probability 1 / 2 to be 0 or 1. Let t be the
number of r p l ’ s generated for f (j) . Then the average
value of t is given by

2 i P [t = i] =x i P [t = i]

2

a- 1 a-1

i = O I = ,

a-2

= 2 P [t > i]
i = O

a-2

=E (I - P [t Z i]) .
i = O

To compute P [t 5 i] , divide the binary representation of
f (j) into a blocks with representing numbers a,, . . ., am
(from right to left) as before. Then for 0 5 i 5 a - 2, t 9 i
if and only if ai+2, ai+3,. . ., aa are all zero. Thus P [t 9 i] =

C. K. WONG AND D. T. TANG

2-‘a-i-1’d , and the average value of t is (a - 1) -
[(1 - 2-k+d) / (2 d - 1) I . Equation (10) therefore
follows.

Similarly, to compute the average value of the number
of xs’s generated, it suffices to compute the average
value of ai, 1 9 i 5 a, and sum over i . But the average
value of ai is equal to (2d - 1) / 2 for all i. Thus (1 1)
follows.

Table 1 lists the number of steps needed to access a
datum j for various values of d for both the worst case
and the average case. For comparison, we express the
formulae 2d . a - 2 , (101, and (1 1) in terms of log,(n + 1) .
Thus the best choice is d = 2 . Note that for large d the
average value is approximately half of the worst case
value.

An additional memory transformation
In this section, we introduce a new transformation

xa(i) = (i + I)modn, (1 2)

which is (4) in the reverse direction. The dynamic mem-
ory now has three kinds of transformations, namely,
(4), (9) , and (1 2) . Algorithm 1 ‘ can then be generalized
to Algorithm I“, which generates an accessing sequence
of xs’s, xa’s, and xjndl’s to fetch a datum j , and better per-
formance results. In this memory, the memory address
map is also given by (6 ’) , and, in addition to (7) and
(8 ’) , we now have

p into p ,

4 into (4 + I)modn. (1 3) i xa maps

(Recall that n = 2k - 1 and k = ad.)
In step 3) of Algorithm l ’ , if a , # 0, a, rs ’s are gen-

erated. With the introduction of xa, we have the option
of using xa instead of xs. Since 0 5 a , 5 2d - 1 , we use
xs’s for a , < 2d”. But for a, > 2d”, we use r a ’ s to bring
a, to 2d so that a carry is generated and a, becomes zero.
(The case a, = 2d” needs special attention for later
analysis to go through.) However, because of the
presence of carries, we have to separate the case 2”” 5
f (j) 5 2k - 1 from the case 0 5 f(j) 5 2“” - 1. In the

IBM J . RES. DEVELOP.

former case, the leftmost bit in the binary representation
of f (j) is always 1 . A carry may cause overflow. For-
tunately, this problem can be avoided if we consider the
complementary representation of f (j) . For example, if
x = b; . . b , is the binary representation off(j) , (b , = 1) ,
then ;I. = b k . . '6, represents a number 5 2"" - 1, where
bi = 1 - bi. Assuming that the accessing sequence gen-
erated for X is s,, s,, . . ., s,, then s,, s,, . . ., s, is an ac-
cessing sequence for the original x, i.e., f (j) , where

- 1 ra if Si = rs,

Si = 7 r m '"1 If . si = r?),

rS if Si = ra.

(See [41 .I
We next give a detailed description of the algorithm

and present analytic results concerning its performance.
Note that the sequential accessing property is also Pre-
served in this memory Structure.

Algorithm I" Given p , q (the memory map) and j (the
datum to be fetched), this algorithm generates an ac-
cessing sequence of r s ' s , r , 's , and r:"s. (Updating of p ,
q is omitted for simplicity.)

Assume 0 5 f (j) 5 2'-' - I ; otherwise consider com-
plementary representation.

1 . Let a be the k-bit binary number representing f (j) .
Then the leftmost bit of a is always zero. Divide u into
a blocks of d bits each. Number the blocks 1 , 2; . ., a
from right to left. Let the numbers represented by the
blocks be a,, a2,. . ., a,, respectively. Then 0 5 ai 5
2" - 1 for all i < a , and 0 5 u, 5 2"-' - 1.

2 . /3 + 0. (This is the carry parameter. If /3 = 1, the cur-
rent value of a , is the sum of a carry from the right and
its old value.)

3. If all ai = 0, stop.
4. If u, = 0, go to 5) . Otherwise we have the following

cases:
a. For 0 5 a, < 2"", apply ut r , ' s to the memory.

b. For 2d" < u , 5 2" - 1, apply (2" - u l) r,'s to the

c. For u , = 2"" and p = 0, apply a, r,'s to the mem-

d. For a, = 2"" and p = 1 , apply u1 r s ' s to the mem-

a, + 0, p +- 0.

memory. a, + 0, /3 + 1.

ory. a, + 0, /3 +- 1.

ory. a, + 0, 0.

if a, = 2d-' is not the result of a carry from the right,
then r a ' s are used and a carry is generated from this
block. On the other hand, if a, = 2"" is the result of a
previous carry, then rs ' s are used and no carry is gen-
erated. This makes the probability for a block to generate
a carry 1 / 2 . (See [4] .)

After an analysis similar to but considerably lengthier
than before [4], we find that to access any datumj, Algo-
rithm l " takes at most W , , steps, where

(2d" + 1) a - 2 , for a odd, (14)

+ 1) a - 1, for a even. (14')

For the average case, to access a datumj, the total num-
ber of r s ' s and ra's generated by Algorithm 1" is uk,",
where

wk,d = {

Uk,d =k 2"- . f f (15)

for large k. The total number of r;"s generated by Algo-
rithm l" is r ~ ~ , ~ , where

2"
Uk,d = a - ~

2"- 1
for large k.

Remark Our computation [4] shows that uhd and tk, ,
(Eq. (10)) have not only the same approximation but
also the exact formulae. This means that the effect of the
carries on the number of r p) ' s is being averaged out.

Table 2 lists the number of steps needed to access a
datum j for various values of d for both the worst case and
the average case. (See (14'), (1 9 , and (16).)

Again, d = 2 gives the best performance. For d large,
the average value is approximately half of the worst
case value. Also note that for large d, both the worst
case value and the average case value for Algorithm 1"
are approximately half of those for Algorithm 1' .

Finally, it should be pointed out that the improvements
of this memory structure (for d = 2) are about 25 and 33
percent over the original memory proposed in [1] for the
worst case and the average case, respectively.

Generalization to arbitrary radix
As in [11, we can generalize our memory structure using
an arbitrary radix. Let n = r' - 1 and k = ad, where r, a, d
are positive integers and r 1 2. The counterparts of the
transformations in the section on "A class of memory
transformations" are rs and

e. For a,-= 2", a, +- 0, /3 + 1. ("1 (j) = (i . r (O - l l ")
"m, r mud n' (17)

G o to 3) .
5. Generate r:).

a1 t a2 + p. ai + ui+,, for i = 2 , . . ., a - I . aa 0. (d 1

Go to 4).

for i = 0, 1,. . ., n - 1. Those of the transformations in the
section on "An additional memory transformation" are
rs, ray and rm,..

Note that if we represent i as a k-digit base r number,
Note that when a, = 2d", we can choose either ra or then the effect of rg),, is to right rotate it for a block of d

rs. For simplicity of analysis, we use the present rule, i.e., digits. 285

MAY 1977 DYNAMIC MEMORIES

Table 3 Worst case number of steps required using Algorithm IC.

r
d

).ff

d log,r ~ log,(n + I) - 2

2 3 4 5
~ ”~ ~ _ _ _ _ _ ~ ~ .

1
2 2 log,(n + 1) - 2
3 2.667 log,(n + I) - 2

2 log,(n + 1) - 2 1.893 log,(n + 1) - 2 2 log,(n + 1) - 2 2.153 log,(n + I) - 2

4 4 log,(n + 1) - 2 12.776 log,(n + 1) - 2 32 log,(n + I) - 2 67.293 log,(n + 1) - 2

2.839 log,(n + I) - 2 4 log,(n + I) - 2
5.678 log,(n + I) - 2

5.383 log,(n + I) - 2
10.667 log,(n + I) - 2 17.945 log,(n + I) - 2

Table 4 Average number of steps required using Algorithm 1:.

r
d 2 3 4 5

1 1.5 log,(n + 1) - 2 1.262 log,(n + I) - 1.5 1.25 log,(n + 1) - 1.333 1.292 log,(n + I) - 1.25
2 1.25 log,(n + I) - 1.333
3

1.577 log,(n + I) - 1.125 2.125 log,(n + I) - 1.067 2.799 log,(n + 1) - 1.042
1.5 log,(n + 1) - 1.143

4
2.944 log,(n + I) - 1.038 5.417 log,(n + 1) - 1.016 9.044 log,(n + 1) - 1.008

2.125 log,(n + I) - 1.067 6.467 log,(n + I) - 1.013 16.063 log,(n + 1) - 1.004 33.7 log,(n + 1) - 1.002

286

Algorithm 1 ’ can now be generalized to Algorithm 1;
in the following manner. In step 1) of Algorithm l ’ , we
now represent,f(j) as a k-digit base r number instead of a
binary number. In step 4), we use r:,: instead of rp’.
A similar analysis of the algorithm can be carried out [41.

To access any datum j , Algorithm 1: takes at most

Sk,d ,r steps, where

Sk& = rd . a! - 2. (18)

If tk ,d ,r is the average number of ~:’,’s generated by Algo-
rithm l;, then

t k , d , r = a! - ~

rd
P- 1 (19)

for large k. If c ~ , “ , ~ is the average number of rs’s, then

r“- I
‘k ,d,r = ~ 2

for large k.
We tabulate the res& of (18), (19), and (2 0) in

Tables 3 and 4.
Note that both formulae are invariant under the trans-

formation r + ?, d - d / 2 . This explains why the en-
tries for d= 2, Y = 2 and for d= 1 , r= 4 are identical. This
is because a change of radix of the form d+ d / 2 is equiv-
alent to taking twice as many digits at a time, which is
exactly balanced by halving the number of digits in the
higher radix.

a! (2 0)

C. K. WONG AND D. T. TANG

Referring to the tables, d = 1 , r = 3 is the best for the
worst case and d = 2 , Y = 2 (or d= 1, r = 4) is the best for
the average case. Note that for large d and fixed r, the
average value is half of the worst case value.

Algorithm 1 ” can be generalized to Algorithm 1: for
arbitrary radices in a similar fashion except for handling
r even and r odd. For r even, as in Algorithm I”, if a, <
r d / 2 , apply a , r s ’ s to turn it to zero. If a , > r d / 2 , apply
(r“ - u,) r;,’s to bring it up to r“ and a carry is generated.
When u1 = r d / 2 , we apply either a , r,’s or a , r,’s, de-
pending on the existence of a carry from the right. If
r,’s are applied, a carry is generated. This forces the
probability for a block to generate a carry to be 1 / 2 as in
the binary case. For r odd, rd is also odd. Thus, the
probability for a block to generate a carry can never
be 112, and we do not make a special case for u, =

(f - 1) / 2, i.e., if a , 5 (r d - 1) 1 2 , apply a , rTT,’s, and if
a , > (r“ - I) 1 2 , apply (r“ - a,) r a 9 s .

By reasoning similar to that used before, one can show
[4] that for r even, to access any datumj, Algorithm 1:
takes at most steps, where

+

2 a! - 2 for a! odd, (2 1)

I f is the average total number of r s ’ s and r;,’s
generated by Algorithm I:, then

IBM J . RES. DEVELOP.

r even: __ rd + 2
2d log,r

r odd: ~

r"+ 1
2d log,r

r
d 2 3 4 5 6 7 8 9

1 2 1.262 1.5 1.292 1.547 1.425 1.667 1.577
2 1.5 1.577 2.25 2.799 3.675 4.453 5.5 6.467
3 1.667 2.944 5.5 9.044 14.055 20.425 28.556 38.393
4 2.25 6.467 16.125 33.7 62.766 106.965 170.75 258.836

Table 6 Average results. , rd + 4
4d log,r

~ r
d 2 3 4 5 6 7 8 9

1 1.5 1.104 1 0.969 0.967 0.980 1
2 1 1.025 1.25 1.561 1.934 2.360

1.025

3
2.833

1.630
3.352

2.833 4.630 7.092 10.302 14.333 19.275
4 1.25 3.352 8.125 16.93 1 31.431 53.549 85.417 129.477

1

rd
' k ,d , r = 7 a (2 3) (2 6) , and (2 7) .) We tabulate the values of (r" + 4)/

4d log,r in Table 6. Note that these formulae are also
for large k . The average number of n-:i's generated is invariant under the transformations Y +. r', d -+ d / 2. For

(24) For the average case, r = 6, d = 1 gives the best perfor-
mance.Ford=l,r=4,5,7,8andr=2,d=2,3perfor-

for large k. mance is comparable. Note that for large d and fixed r ,

When r is odd, to access any datum j , Algorithm 1; the average value is half of the worst case value. Also for
takes at most W k , d r steps, where large d , both the worst case value and the average case
- value for Algorithm 1: are approximately half of those for

d the worst case, r = 3, d = 1 gives the best performance.
'k ,d ,r a -

r
rd- 1

wk,d, r = - r'* + 1 (y- 1 .
2 (25) Algorithm 1:.

The average total number of r s ' s and ra's is

for large k. The average number of r:),'s is
d

'k ,d , r = a-*l. (2 7)

for large k, i.e., the same as when r is even.
We tabulate the worst case results of (2 2) and (25)

in Table 5. For r even, it is [(rd + 2) / (2 d log,r)]
log,(n+l)-1,andforrodd,itis[(rd+1)/(2dlog,r)]
iog,(n + 1) - 1 . Only the coefficients of log,(n + 1) are
listed.

For the average case, we only consider the term
[(r d + 4)/(4d log,^)] log,(n + 1). (See (2 3) , (24),

Conclusions
In this paper, we extend the results in [11 in two direc-
tions. By introducing a parameter d and considering right
rotations instead of left rotations, we extend the shuffle
transformation to a family of transformations that might
be termed block shuffles. The algorithms proposed in [11
are also extended accordingly. Better performance results
when the appropriate parameter is chosen. By adding a
new transformation, namely, the reverse cyclic shift, a
new memory structure with still better performance
results.

Finally, all memory structures and results are gen-

It should be pointed out that the improvements of [1 1
eralized to the case of arbitrary radix.

by Stone [5] are also applicable here. 287

MAY 1977 DYNAMIC MEMORIES

Rapid Random and Sequential Access,” IEEE Trans. Com-

2. H. S. Stone, “Parallel Processing with the Perfect Shuffle,”
IEEE Trans. Cornput. C-20, 153 (1971 1.

3. H. S. Stone, “Dynamic Memories with Enhanced Data
Access,” IEEE Trans. Comput. C-21, 359 (1972).

4. C. K. Wong and D. T. Tang, “Dynamic Memories with
Faster Random and Sequential Access,” Research Report
RC 5682, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, 1975.

5. H. S. Stone, “Dynamic Memories with Fast Random and
Sequential Access,” IEEE Trurrs. Comput. C-24, 1167
(1975).

6. T. Lang, “Interconnections Between Processors and
Memory Modules Using the Shuffle-Exchange Network,”
Stanford University, CA; available as reprint R74-19 from
IEEE Computer Society Repository.

7. T. Lang, “Performing the Perfect Shuffle in an Array Com-
puter,” Stanford University, CA; available as reprint
R74-20 from IEEE Computer Society Repository.

8. T. Lang and H. S. Stone, “A Shuffle-Exchange Network
with Simplified Control,” IEEE Trans. Comput. (2-25,
5 5 (1976).

9. D. H. Lawrie, “Access Requirements and Design of Pri-
mary Memory for Array Processors,” University of Illinois,
Urbana; available as reprint R74-30 from IEEE Computer
Society Repository.

10. D. H. Lawrie, “Access and Alignment of Data in an Array
Processor,” ZEEE Trans. Cornput. C-24, 1145 (1975).

put . C-23, 272 (1974).
Universitk de Rennes, Department de Mathematique et
Informatique, 1976.

12. W. F. Beausoleil, D. T. Brown, and B. E. Phelps, “Mag-
netic Bubble Memory Organization,” IBM J . Res. Deuelop.
16, 587 (1972).

13. P. I. Bonyhard and T. J . Nelson. “Dynamic Data Reloca-
tion in Bubble Memories,” Bell Syst. Tech. J . 52, 307
(1973).

14. C . Tung, T. C. Chen, and H. Chang, “A Bubble Ladder
Structure for Information Processing,” IEEE Truns.
Magnet. MAG-11, 1163 (1975).

15. C. K. Wong and D. Coppersmith, “The Generation of Per-
mutations in Magnetic Bubble Memories,” IEEE Trans.
Comput. C-25, 254 (1976).

Received September 6, 1976

The authors are located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

288

C . K. WONG AND D. T. TANG IBM .I. RES. DEVELOP.

