
C. K. Wong 
D. T. Tang 

Dynamic  Memories  with  Faster 
Random and Sequential  Access 

Abstract: This  paper  extends  the dynamic  memory  proposed by Aho  and Ullman in two directions. Instead of a shuffle permutation, 
block shuffles are  introduced. By choosing suitable block  sizes, faster random and sequential access may result.  Another direction  of 
extension  comes  from  the addition of a reverse cyclic  permutation,  which results in even faster  random  and sequential access.  Analyses 
for  both the worst and the  average  cases  are given. Generalizations  to  arbitrary radices are  also  discussed. 

Introduction 
In [ 1-31, a  special kind of memory, called dynamic 
memory, is studied. It is an  array of n cells, each of which 
can hold one  data word. The  contents of only one of the 
cells, called the window,  can  be  read or written external- 
ly. Throughout this paper,  the window is assumed to  be 
cell 0. (See Fig. 1 . )  However,  the  contents of the cells 
in the memory can  be rearranged  internally by applying 
a sequence of operations called memory  transformations. 
Each transformation is a permutation of the  contents of 
the n cells. For  example, if the permutation r = (io,  i,, 

one  step  the  contents of cell j are  transferred  to cell ij 
for  allj,  0 5  j < n. 

In  [3],  the following two  transformations  are pro- 
posed ( n  = 2') : 

. . .  , in-,) is applied to  an n-cell dynamic  memory,  then in 

i = o ,  1, . . . "  n , 1 ,  

r,(i) = ( 1 )  
n n  
2 2  

i=- , -+ l;.., n -  1, 

and 

ret( i )  = rt(re(i) 1 ,  
where 

i +  1 ,  i even, 

i -  1 ,  i odd. ( 2 )  

By means of these  two  transformations,  the  contents 
of any cell can be brought to  the window in no  more than 
k = log,n steps.  Suppose  datum j denotes  the initial con- 
tents of cell j .  To access a block of data, say datum j ,  
datum j + 1, . . ., datum j + b - 1, we must  first locate  the 
cell that  contains  datum j .  Then  we must locate  the cell 

r,(i) = 

that contains datum j + 1 ,  and so on. Therefore, in the 
worst  case, b log,n steps  are  needed.  However,  Stone 
[ 51 has recently  shown that,  for  certain sizes of this kind 
of memory, an  address recoding exists  that  results in 
fast sequential access  as well as  random  access.  For 
other work  related to  these  transformations  and  dynamic 
memories, see [ 6-  111. 

In [ 11, another pair of transformations is proposed for 
n = 2' - 1, by which any  datum j can be accessed in no 
more than 2 log,(n + 1) - 2 steps and any block of b 1 2 
data items can  be  accessed in no more  than  3 log,( n + 1) + 
b - 4 steps.  These  transformations  are 

r,(i) = ( 2 i )  mod n, (3) 

r s ( i )  = ( i  - 1) mod ,,' (4) 

i = O ,  l ; . . ,n- l,wherex,,,,=x-ylx/yJ.Thesetrans- 
formations  are  further generalized to  arbitrary radi- 
ces [ 11. 

In this paper, we first replace (3) with rz)(i)  = 

( i  . 2"-") m,,d ,,, i = 0, 1, . . ., n - 1, where d is a parameter 
that divides k .  The resulting memory has the  same  ran- 
dom and  sequential access  characteristics  as before. In 
particular,  when d = 2 and k is even,  random  access  takes 
no more  than 2 log,(n + 1 )  - 2 steps  for  the worst case 
and  takes 1.25 log,(n + 1 )  - 1.333 steps  for  the  average 
case, which is about a 17 percent  improvement.  For 
sequential access,  after  the first two  items  have been 
accessed,  each  successive item can be accessed in one 
step  as in the original memory. 

memory structure considered above: 

r a ( i )  = ( i +  l )m, ,dn.  ( 5 )  281 

Later we introduce  one more  transformation to  the 
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Figure 1 

: : n  
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2 
3 

11 4 
10 5 
9 6 
8 I 

n=15 

Dynamic memory having 15 cells. 

Initially, the memory  map is f (  j )  = j ,  characterized by 
p = q = o .  

2. An accessing  sequence for  datum j is defined as a 
sequence of vm’s and r S ’ s  that will move datum j into 
the window. 

3. If we represent f( j )  = ( j  . 2” + q) mod as a k-bit binary 
number,  the effect of applying rS to  the memory is to 
subtract 1 fromf( j )  , whereas  the effect of applying nm 
is to  rotate f ( j )  to the left cyclically by one bit. And 

Clearly, this is r r S  in the  reverse direction.  When d = 2, 
random  access now takes 1.5 log,(n + 1) - 1 steps  for 

application of an accessing sequence  to  the memory 
reduces f( j)  to 0. 

the  worst  case  and log,(n + 1) - 1.333 steps  for  the With  this  understanding,  Algorithm 1 in [ I ]  can be 
average  case (25 and 33 percent  improvements,  respec- informally described  as follows: 
tively, over  the original memory). Finally,  generaliza- 
tions of these  two  types of memories to  arbitrary  radices 
are  also discussed. 

As pointed out in [ 31, implementation of transforma- 
tions in memories such  as metal oxide  semiconductor 

Algorithm I Given p ,  q (the memory map)  and j (the 
datum  to  be  fetched), this algorithm generates  an  ac- 
cessing sequence.  As a side  effect, p and q are  updated so 
they  continue  to  represent  the memory map. 

(MOS) shift  register  memories amounts to the em- 
bedding of corresponding interconnecting patterns.  How- 
ever,  for  more rigidly structured memories such  as 
magnetic bubble memories [ 12, 131 such  an embedding 
is much harder  to realize. In [ 12 - 151 , various  ways to 
introduce  some simple forms of memory transformations 
in  magnetic bubble memories are  discussed and  analyzed. 
But the  access time is far  from  the logarithmic  growth 
with  memory size achieved in [ 1 ,  3 ,  51 and here.  In  fact, 
it is basically  linear. In view of the rapid  growth of this 

I new type of memory,  it may be of interest  to  study new 

1. Let  the binary representation of f(j) be b, . . . b,  b,. 
2. If all bi = 0, stop. 
3. If b, = 0, go to 4) .  Otherwise  generate mS. 

b, + 0. 

Go to 2 ) .  
4. Generate T,. 

c + b,. 
For i = k,  k - 1 , .  . ., 2, bi +“ b2-,; 6, + c .  

+ ( 4 -  1 ) m o d n  

P + ( P  + 1 ) m o d k ’  4 + (2q)modn. 
Go  to 3 ) .  

memory transformations, which may reduce  the  access 
time, say,  from a  linear increase  to a square  root  or  even 
a logarithmic increase with memory  size. 

Since most of the derivation of the formulae is very 
complicated  and is given in research  report [4], it is 
omitted here. 

From this  algorithm, we have  the following results. 
(For  the proof refer to [ 11 .) 

Theorem I 
Algorithm 1 brings datum j to  the window  in no  more  than 
2 log, ( n  + 1) - 2 steps,  where a step means one applica- 

Preliminary considerations 
To facilitate later  discussion,  we  restate  here  some of the 
results in f 11 : 

tion of either T,,, or 7 r S .  (In  other  words,  the  total  number 
of rm’s and r S ’ s  generated by Algorithm 1 is never more 
than 2 log,(n + 1) - 2.) 

1. A memory  address  map is defined as a function f from 

taining datum j .  If  only transformations T, and rs 
are  used,  the memory  map always  has  the  form 

Theorem 2 (sequential  accessing  property) 

and  datum j + 1 to  the window. Then  the  accessing se- 
quences  for  each of datum j + 2, datum j + 3 , .  . . are of 

data to such that f( j)  is the con- suppose we have  just used Algorithm 1 to bring datum j 

f ( j )  = ( j  . 2” + qImodn (6) length 1 ,  namely, T ~ .  
for integers p and q ,  where 0 i p < k and 0 5 q < n. Remark In  fact,  for  datum j + 1 ,  Algorithm 1 generates 
(Recall  that n = 2k - 1 .) Also only T,’S followed  by a single rrS, and  thus  accessing 

datum j + 1 requires  less time than usual.  A  detailed 
calculation shows  that  any block of b E 2 data  can  be 

282 into ( 9  - I ) m o d n ,  (7 )  accessed in no more than 3 log,( n + 1 )  + b-  4 steps [ 41. { 
p into p ,  

rS maps 
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A class of memory  transformations 
In this  section, we introduce  a class of memory trans- 
formations, which are generalizations of ( 3 ) .  First,  note 
that if we use the multiplier 2“’ instead of 2 in ( 3 ) ,  

(the  superscript ( I )  will become  clear  later), all the 
results in the previous  section remain valid since the only 
difference is that r:’ now corresponds  to a right cyclic 
rotation of the binary representation off(Q) instead of a 
left one.  However,  such a change makes  later  analysis 
easier.  Second, instead of k - 1 ,  we use ( a  - 1 )  d as  the 
exponent in ( 3 ’ ) ,  where k = ad for positive  integers a,  d. 
(Recall  that n = 2“ - 1 .) Here d serves  as a parameter. 
Different  values of d result in different performance.  The 
choice of d is discussed later. We therefore  have a  class 
of transformations, 

parameterized by the integer d. For d = 1 ,  (9 )  becomes 

Note  that r:) now corresponds  to a right cyclic  rota- 
tion of the binary representation of f (  j )  through d bits 
instead of 1 .  

If we use (4) and (9)  only, then  the memory map takes 

(3’).  

the  form 

f ( j )  = ( j  . 2d” + qIrnodn (6’) 

for integers p and q, where 0 5 p < a and 0 5 q < n. 
Also. 

Corresponding  to Algorithm 1 ,  we have  the following 
algorithm. 

Algorithm I‘ Given p ,  q (the memory map) and j (the 
datum  to be fetched), this  algorithm generates  an  ac- 
cessing sequence of r s ’ s  and ,PI’S and updates p ,  q. 

1 .  Let  the binary representation of f(j) be 6,. . . b, b,. 
Divide it into a blocks of d bits each.  Number  the 
blocks 1, 2, . . ., a! from right to left. Let  the  numbers 
represented by the blocks  be a,, a,, . . ., a,, respec- 
tively. 

2. If all ai = 0, stop. 
3. If a ,  = 0, go  to 4) .  Otherwise,  generate a1 r s ’ s .  

a’ + 0. 
4 + ( 4  - “Jml ,dn .  

Go  to 2 ) .  
4. Generate r:’. 

ai c ai+l,  for i = 1 ,  2,. . ., a - 1 ; aa +- 0. 

Go to 3 ) .  
P +- ( P  - l)m,lda’ 4 + ( 4  . 2 Im<,dn.  

1,- I Id 
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Figure 2 Sequence of transformations to  access datum 12. 

Remark Step 3) means  that if the rightmost  number a ,  
is not zero, we apply  enough rs ’s  to  reduce it to  zero. 
(Recall  that  each rs subtracts 1 from the binary repre- 
sentation of f (  j )  .) Step 4) is to right rotate  the resulting 
binary representation  for d bits so that  the previous 
number now becomes the new ai and the new aa is 
zero. 

Example Assume n = 15, k = 4, d = 2. In Fig. 2 (a) ,  the 
locations of data  are listed before  accessing. (Note  that 
the  sequence rsrE1rs has been  applied to  the initial con- 
figuration to make  this current configuration more com- 
plicated.) The memory  map is f ( i )  = ( i  . 2’ + 10) ,,,od15, 

i.e., p = 1, = IO .  Suppose  datum 12 is to be accessed. 
Its location isf(  12) = 13,  whose binary representation is 
1 101. So there  are  two blocks each of length 2. The 
rightmost block is 0 I .  We therefore  apply one rs to  the 
memory,  resulting in the configuration in Fig. 2(  b) . The 
location of datum 12 is nowf( 12) = 12, which is 1100. 
We now apply rzl, which changes the location of datum 
I2  to ( 2’ . 12) mod 15 = 3 as  shown in Fig. 2 (c) . Therefore 

f (  12) is now 001 I ,  which is a  right-rotated 1100. We 
then  apply 3 r,’s consecutively to bring datum 12 to  the 
window (cell 0) , as shown in Fig. 2 (d) . The memory map 
is now f(i) = (i + 3)mod Le., p = 0, q = 3. 

It can  be shown exactly as in [ I ]  that  the sequential 
accessing  property (Theorem 2) holds for Algorithm 1 ’ 
as well [ 41. We are  therefore  concerned only with the 
accessing of a datum  and  analyze its  performance for 
both the  worst  case and the  average  case. 

To compute  the number of r s ’ s  and r t l ’ s  generated by 
Algorithm 1 ’  for accessing datum j ,  we represent  the 
memory map of f ( j )  in binary numbers  as in step 1 )  of 
Algorithm 1 ’. If ai = 0 for i = 1 ,  2; . ., a ,  then both  num- 
bers  are  zero.  Otherwise,  the number of r,’s is equal to 
C%,ai (see  step 3 )  of Algorithm 1 ‘ ), and the number of 
r,,, s is equal to q - 1 ,  where q = max {ilai > 0} (see 
step 4) and the remark following Algorithm 1 ’ ) .  

With this  understanding, it is easy  to  see  that  to  access 
any  datum j ,  Algorithm 1 ‘ takes  at most Sk,d = 2d . a! - 2 
steps  because a worst case  occurs when datumj is located 
at cell n - 1 .  The binary representation of its  memory 

( d l ,  
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Table 1 Steps needed to access a  datum using Algorithm 1 ’ .  Table 2 Steps needed to access a  datum using Algorithm 1”.  

Worst case Average  case Worst  case  Average  case 

d 5 log,(n + 1 )  - 2 log,(n + I )  - - 2d 2d 
1 2 log,(n + 1 )  - 2 
2  2 log,(n + 1 )  - 2  1.25 log,(n + 1 )  - 1.333 

2d-  1 
1.5 log,(n + I )  - 2 

3  2.667 log,(n + 1 )  - 2 1.5 log,(n + I )  - 1.143 
4 4 10g,(n + 1 )  - 2 2.125 log,(n + 1 )  - 1.067 

d 9 log,(n + 1 )  - 1 ~ 2d-2 + log,(n + 1) - - 
d 2“- 1 

2d 

1 2 log,(n + 1 )  - 1 1.5 log,(n + 1 )  - 2 
2 1.5 log,(n + 1 )  - 1 log,(n + I )  - 1.333 
3  1.667 log,(n + 1) - 1 log,(n + 1 )  - 1.143 
4 2.25 log,(n + 1 )  - 1 1.25 log,(n + 1 )  - 1.067 

284 

map f ( j )  = n - 1 has all 1’s except  the rightmost bit. If 
we divide it  into a blocks each of length d, then all blocks 
except  the rightmost one  have 1’s in all d positions. The 
number of r z ) ’ s  generated  is  thus a - 1 ,  and  the  number 
of rs’s generated is ( a  - 1) ( 2d - 1 )  + ( 2d - 2 ) ,  with  a 
total of 2d . a - 2 .  

To compute  the  average number of steps, i.e., the  total 
number of r p ” s  and r,’s generated by Algorithm l ’ ,  we 
assume  that all data  are equally likely to be accessed. We 
show  that  to  access any datum j ,  on  the  average, Algo- 
rithm l ’  takes 

2d 
tk,d = a - - 

2 d -  1 (10) 

x, s and ( d ) ,  

2 d -  1 
Ub,d = - a (11) 

x,”s for large k. 
To prove ( 10) and ( I ] ) ,  recall that  the memory map 

f (  j) ranges from 0 to n - 1 .  Since we are  interested in the 
case when k (hence n)  is large, as a good approximation, 
we  can  assume tha t f ( j )  ranges from 0 to n and each of 
these n + 1 numbers is equally likely to  occur.  Such  an 
assumption greatly simplifies the calculation because, if 
we represent a givenf(j) by a k-bit binary number,  any 
bit has  equal probability 1 /  2 to be 0 or 1. Let t be the 
number of r p l ’ s  generated  for f ( j )  . Then  the  average 
value of t is given by 

2 i P [ t = i ]  =x i P [ t = i ]  

2 

a- 1 a-1 

i = O  I = ,  

a-2 

= 2 P [ t  > i] 
i = O  

a-2 

=E ( I - P [ t Z  i ] ) .  
i = O  

To compute P [  t 5 i ]  , divide  the binary representation of 
f (  j) into a blocks  with  representing numbers a,, . . ., am 
(from right to left) as before. Then  for 0 5 i 5 a - 2,  t 9 i 
if and only if ai+2, ai+3,. . ., aa are all zero.  Thus P [  t 9  i ]  = 
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2-‘a-i-1’d , and  the  average value of t is ( a  - 1 )  - 
[ ( 1 - 2-k+d) / ( 2 d  - 1 ) I .  Equation ( 10) therefore 
follows. 

Similarly, to  compute  the  average value of the  number 
of xs’s generated,  it suffices to  compute  the  average 
value of ai, 1 9 i 5 a, and sum over i .  But the  average 
value of ai is equal to ( 2d - 1 )  / 2 for all i. Thus ( 1 1 )  
follows. 

Table 1 lists the  number of steps needed to  access a 
datum j for various values of d for  both the worst  case 
and the  average  case. For comparison, we express  the 
formulae 2d . a - 2 ,  ( 101, and ( 1 1) in terms of  log,( n + 1 )  . 
Thus  the  best choice is d = 2 .  Note  that  for large d the 
average value is approximately half of the worst case 
value. 

An additional memory  transformation 
In this section,  we  introduce a  new  transformation 

xa( i )  = ( i +  I)modn,  ( 1 2 )  

which is (4) in the  reverse direction. The  dynamic mem- 
ory now has  three kinds of transformations,  namely, 
(4), ( 9 ) ,  and ( 1 2 ) .  Algorithm 1 ‘ can then  be  generalized 
to Algorithm I“, which generates  an accessing sequence 
of xs’s, xa’s, and xjndl’s to  fetch a datum j ,  and better  per- 
formance  results.  In this  memory, the memory address 
map is also given  by ( 6 ’ ) ,  and, in  addition to (7) and 
( 8 ’ ) ,  we now have 

p into p ,  

4 into (4 + I )modn.  ( 1 3 )  i xa maps 

(Recall  that n = 2k - 1 and k = ad.) 
In  step 3 )  of Algorithm l ’ ,  if a ,  # 0, a,  rs ’s  are gen- 

erated. With the  introduction of xa, we  have  the  option 
of using xa instead of xs. Since 0 5 a ,  5 2d - 1 ,  we use 
xs’s for a ,  < 2d”. But for a,  > 2d”, we use r a ’ s  to bring 
a, to 2d so that a carry is generated  and a,  becomes zero. 
(The  case a, = 2d” needs special attention  for  later 
analysis to  go through.) However,  because of the 
presence of carries,  we  have  to  separate  the  case 2”” 5 
f (  j) 5 2k - 1 from the  case 0 5 f(j) 5 2“” - 1. In  the 
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former  case,  the leftmost bit in the binary representation 
of f ( j )  is always 1 .  A carry may cause overflow. For- 
tunately, this  problem can be avoided if we consider  the 
complementary representation of f ( j )  . For  example, if 
x = b; . . b ,  is the binary representation off( j )  , (b ,  = 1 )  , 
then ;I. = b k .  . '6, represents a number 5 2"" - 1, where 
bi = 1 - bi. Assuming that  the accessing sequence gen- 
erated  for X is s,, s,, . . ., s,, then s,, s,, . . ., s, is an ac- 
cessing sequence  for  the original x, i.e., f ( j ) ,  where 

- 1  ra if Si = rs, 

Si = 7 r m  '"1 If . si = r?), 

rS if Si = ra. 

(See [41 .I 
We next give a detailed description of the algorithm 

and  present analytic results concerning  its  performance. 
Note  that  the sequential  accessing property is also Pre- 
served in this  memory  Structure. 

Algorithm I" Given p ,  q (the memory  map)  and j (the 
datum  to be fetched), this algorithm generates  an ac- 
cessing sequence of r s ' s ,  r , 's ,  and r:"s. (Updating of p ,  
q is omitted for simplicity.) 

Assume 0 5 f ( j )  5 2'-' - I ; otherwise  consider com- 
plementary representation. 

1 .  Let a be the k-bit binary  number  representing f ( j )  . 
Then  the leftmost bit of a is always zero. Divide u into 
a blocks of d bits each.  Number  the blocks 1 ,  2; . ., a 
from right to left. Let  the  numbers  represented by the 
blocks  be a,, a2,. . ., a,, respectively. Then 0 5 ai 5 
2" - 1 for all i < a ,  and 0 5 u, 5 2"-' - 1. 

2 .  /3 + 0. (This is the  carry  parameter. If /3 = 1, the  cur- 
rent value of a ,  is the sum of a carry from the right and 
its old value.) 

3. If all ai = 0, stop. 
4. If u,  = 0, go  to 5) .  Otherwise we have  the following 

cases: 
a.  For 0 5 a, < 2"", apply ut r , ' s  to  the memory. 

b. For 2d" < u ,  5 2" - 1, apply ( 2" - u l )  r,'s to  the 

c.  For u ,  = 2"" and p = 0, apply a, r,'s to  the mem- 

d.  For a, = 2"" and p = 1 ,  apply u1 r s ' s  to  the mem- 

a, + 0, p +- 0. 

memory. a, + 0, /3 + 1. 

ory. a, + 0, /3 +- 1. 

ory. a, + 0, 0. 

if a, = 2d-' is not the result of a carry  from  the right, 
then r a ' s  are used  and  a carry is generated  from this 
block. On  the  other  hand, if a,  = 2"" is the result of a 
previous carry, then rs ' s  are used  and no  carry  is gen- 
erated.  This makes the probability for a block to  generate 
a carry 1 / 2 .  (See  [4] .) 

After  an analysis similar to  but considerably  lengthier 
than before [4],  we find that  to  access  any  datumj, Algo- 
rithm l "  takes  at most W , ,  steps,  where 

( 2d" + 1 ) a  - 2 ,  for a odd,  (14) 

+ 1 ) a  - 1, for a even.  (14') 

For  the  average  case,  to  access a datumj,  the total num- 
ber of r s ' s  and ra's generated  by  Algorithm 1" is uk,", 
where 

wk,d = { 

Uk,d =k 2"- . f f  (15)  

for large k. The total  number of r;"s generated by Algo- 
rithm l"  is r ~ ~ , ~ ,  where 

2" 
Uk,d = a - ~ 

2"-  1 
for large k. 

Remark  Our  computation  [4] shows that uhd and tk, ,  
(Eq. ( 10) ) have not  only the  same approximation but 
also the exact  formulae.  This means that  the effect of the 
carries  on  the number of r p ) ' s  is being averaged out. 

Table 2 lists the  number of steps needed to  access a 
datum j for various values of d for  both  the  worst  case  and 
the average case.  (See  (14'), ( 1 9 ,  and (16).) 

Again, d = 2 gives the  best performance. For d large, 
the  average value is approximately half of the worst 
case value. Also  note  that  for large d, both  the  worst 
case  value and the  average  case value  for  Algorithm 1" 
are approximately half of those for  Algorithm 1' .  

Finally, it should  be  pointed out  that  the  improvements 
of this  memory structure  (for d =  2 )  are  about 25 and 33 
percent  over  the original memory  proposed in [ 1 ] for  the 
worst  case and the  average  case, respectively. 

Generalization to arbitrary radix 
As in [ 11, we can generalize our memory structure using 
an  arbitrary radix. Let n = r' - 1  and k = ad,  where r, a, d 
are positive  integers  and  r 1 2. The  counterparts of the 
transformations in the section on  "A  class of memory 
transformations" are rs and 

e.  For a,-= 2", a, +- 0, /3 + 1. ("1 ( j )  = ( i  . r ( O - l l " )  
"m, r mud n' (17) 

G o  to 3) .  
5. Generate r:). 

a1 t a2 + p. ai + ui+,, for i = 2 , .  . ., a - I .  aa 0. ( d  1 

Go to 4). 

for i = 0, 1,.  . ., n - 1. Those of the  transformations in the 
section on "An  additional  memory  transformation" are 
rs, ray and rm,.. 

Note  that if we  represent i as a k-digit base r number, 
Note  that when a, = 2d", we  can  choose  either ra or  then  the effect of rg),, is to right rotate it for a block of d 

rs. For simplicity of analysis, we use  the  present  rule, i.e., digits. 285 
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Table 3 Worst case  number of steps required using Algorithm IC. 

r 
d 

).ff 

d log,r ~ log,(n + I )  - 2 

2 3 4 5 
~ ”~ ~ _ _ _ _ _ ~ ~  . 

1 
2 2 log,(n + 1 )  - 2 
3 2.667 log,(n + I )  - 2 

2 log,(n + 1 )  - 2 1.893 log,(n + 1) - 2 2 log,(n + 1 )  - 2 2.153 log,(n + I )  - 2 

4  4 log,(n + 1) - 2 12.776 log,(n + 1 )  - 2 32 log,(n + I )  - 2 67.293 log,(n + 1 )  - 2 

2.839 log,(n + I )  - 2 4 log,(n + I )  - 2 
5.678 log,(n + I )  - 2 

5.383 log,(n + I )  - 2 
10.667 log,(n + I )  - 2  17.945 log,(n + I )  - 2 

Table 4 Average  number of steps  required  using Algorithm 1:. 

r 
d 2 3 4 5 

1 1.5 log,(n + 1 )  - 2  1.262 log,(n + I )  - 1.5 1.25 log,(n + 1 )  - 1.333  1.292 log,(n + I )  - 1.25 
2 1.25 log,(n + I )  - 1.333 
3 

1.577 log,(n + I )  - 1.125  2.125 log,(n + I )  - 1.067  2.799 log,(n + 1 )  - 1.042 
1.5 log,(n + 1 )  - 1.143 

4 
2.944 log,(n + I )  - 1.038  5.417 log,(n + 1 )  - 1.016  9.044 log,(n + 1 )  - 1.008 

2.125 log,(n + I )  - 1.067  6.467 log,(n + I )  - 1.013  16.063 log,(n + 1 )  - 1.004  33.7 log,(n + 1 )  - 1.002 
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Algorithm 1 ’  can now be  generalized to Algorithm 1; 
in the following manner. In  step 1) of Algorithm l ’ ,  we 
now represent,f(j)  as a k-digit base r number  instead of a 
binary number.  In  step 4), we use r:,: instead of rp’. 
A similar analysis of the algorithm can  be  carried out [ 41. 

To access any datum j ,  Algorithm 1: takes  at most 

Sk,d ,r  steps,  where 

Sk& = rd . a! - 2. (18)  

If tk ,d ,r  is the  average number of ~:’,’s generated by Algo- 
rithm l;, then 

t k , d , r  = a! - ~ 

rd 
P- 1 (19) 

for large k. If c ~ , “ , ~  is the  average  number of rs’s, then 

r“- I 
‘k ,d,r  = ~ 2 

for large k. 
We tabulate  the res& of (18),  (19),  and ( 2 0 )  in 

Tables 3 and 4. 
Note  that  both formulae are invariant under  the  trans- 

formation r + ?, d - d / 2 .  This explains why the  en- 
tries for d= 2,  Y =  2 and for d= 1 ,  r=  4 are identical. This 
is  because a  change of radix of the  form d+ d /  2 is equiv- 
alent  to taking  twice  as many digits at a  time, which is 
exactly balanced by halving the  number of digits in the 
higher  radix. 

a! ( 2 0 )  
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Referring to  the  tables, d = 1 ,  r = 3 is the  best  for  the 
worst  case and d = 2 ,  Y = 2 (or d= 1, r =  4) is the  best for 
the  average  case.  Note  that for large d and fixed r, the 
average value is half of the worst case value. 

Algorithm 1 ”  can be  generalized to Algorithm 1: for 
arbitrary radices in a similar fashion except for handling 
r even  and r odd.  For r even,  as in Algorithm I”, if a,  < 
r d / 2 ,  apply a ,  r s ’ s  to turn it to  zero. If a ,  > r d / 2 ,  apply 
(r“ - u,)  r;,’s to bring it up to r“ and  a carry is generated. 
When u1 = r d / 2 ,  we apply either a ,  r,’s or a ,  r,’s, de- 
pending on  the  existence of a carry from the right. If 
r,’s are applied, a carry is generated.  This  forces  the 
probability for a  block to generate a carry  to be 1 / 2 as in 
the binary  case. For r odd, rd is also  odd.  Thus,  the 
probability for a block to  generate a carry  can  never 
be 112, and we do  not make a special case  for u,  = 

( f  - 1 )  / 2, i.e., if a ,  5 ( r d  - 1) 1 2 ,  apply a ,  rTT,’s,  and if 
a ,  > (r“ - I )  1 2 ,  apply (r“ - a,) r a 9 s .  

By reasoning  similar to  that used  before, one  can  show 
[4] that  for r even,  to  access  any  datumj, Algorithm 1: 
takes  at most steps,  where 

+ 

2 a! - 2 for a! odd, ( 2 1 )  

I f  is the  average total number of r s ’ s  and r;,’s 
generated by Algorithm I:, then 
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r even: __ rd + 2 
2d log,r 

r odd: ~ 

r"+ 1 
2d log,r 

r 
d 2  3  4 5 6  7  8  9 

1 2 1.262 1.5 1.292 1.547 1.425 1.667 1.577 
2 1.5 1.577 2.25 2.799 3.675 4.453 5.5 6.467 
3 1.667 2.944 5.5 9.044 14.055 20.425 28.556 38.393 
4 2.25 6.467 16.125 33.7 62.766 106.965 170.75 258.836 

Table 6 Average results. , rd + 4 
4d log,r 

~ r 
d 2  3  4 5 6  7  8  9 

1 1.5 1.104 1 0.969 0.967 0.980 1 
2 1 1.025 1.25 1.561 1.934 2.360 

1.025 

3 
2.833 

1.630 
3.352 

2.833 4.630 7.092 10.302 14.333 19.275 
4 1.25 3.352 8.125 16.93 1 31.431 53.549 85.417 129.477 

1 

rd 
' k ,d , r  = 7 a ( 2 3 )   ( 2 6 ) ,  and ( 2 7 ) . )  We tabulate  the values of (r" + 4)/ 

4d log,r in Table 6. Note  that  these  formulae  are  also 
for large k .  The  average number of n-:i's generated is invariant under  the transformations Y +. r', d -+ d /  2. For 

(24) For  the  average  case, r = 6, d = 1 gives the best  perfor- 
mance.Ford=l,r=4,5,7,8andr=2,d=2,3perfor- 

for large k. mance is comparable.  Note  that for large d and fixed r ,  

When r is odd, to  access any datum j ,  Algorithm 1; the  average value is half  of the worst case value.  Also for 
takes  at most W k , d r  steps, where large d ,  both the  worst  case value and  the  average  case 
- value for Algorithm 1: are approximately half of those for 

d the  worst  case, r = 3, d = 1 gives  the best performance. 
'k ,d ,r  a -  

r 
rd- 1 

wk,d, r = - r'* + 1 (y- 1 .  
2 (25) Algorithm 1:. 

The  average total number of r s ' s  and ra's is 

for large k.  The  average number of r:),'s is 
d 

'k ,d , r  = a-*l. ( 2 7 )  

for large k,  i.e., the same  as when r is even. 
We tabulate  the  worst  case  results of ( 2 2 )  and (25) 

in Table 5. For r even, it is [ (rd + 2 )  / ( 2 d  log,r)] 
log,(n+l)-1,andforrodd,itis[(rd+1)/(2dlog,r)] 
iog,(n + 1 )  - 1 .  Only the coefficients of log,(n + 1 )  are 
listed. 

For  the  average  case, we only consider  the  term 
[ ( r d  + 4)/(4d  log,^)] log,(n + 1). (See ( 2 3 ) ,  (24), 

Conclusions 
In this paper, we extend  the  results in [ 11 in two direc- 
tions. By introducing a parameter d and considering right 
rotations instead of left rotations, we extend  the shuffle 
transformation  to a family of transformations  that might 
be termed  block shuffles. The algorithms  proposed in [ 11 
are  also  extended accordingly. Better performance results 
when the  appropriate  parameter is chosen. By adding a 
new transformation, namely, the  reverse cyclic  shift, a 
new  memory structure with still better performance 
results. 

Finally, all memory structures and results  are gen- 

It  should be pointed out  that  the  improvements of [ 1 1  
eralized to  the  case of arbitrary  radix. 

by Stone [5] are  also applicable  here. 287 
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