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Improving the Computation of
Lower Bounds for Optimal Schedules

Abstract: Ways of decreasing the-number of operations needed to compute the lower bounds of optimal schedules, by reducing the
number of time intervals that must be considered, are presented. The bounds apply to a system of identical processors executing a par-
tially ordered set of tasks, with known execution times, using a non-preemptive scheduling strategy. In one approach we find that the
required number of intervals depends on the graph. In our other approach, which subsumes the first, the number of intervals is decreased
to at most min[D*?/2, n*], where D is the deadline to complete the tasks and # is the number of tasks. The actual number of intervals
for a particular graph can be considerably smaller than this worst case.

Introduction

In a previous paper [1] we discussed efficient ways of
computing lower bounds for the optimal schedules pre-
sented by Ferniandez and Bussell [2]. The number of
operations required is approximately D?/2, where D is
the deadline to complete the tasks, because one operation
is performed for each interval [7,,1,} for 0=t and7,< D.
Any reduction in this number of operations must result
from a reduction in the number of intervals to be con-
sidered. It was shown in [1] that the number of intervals
to consider can be reduced if the graph structure is of a
specific type, such as a tree, a set of independent tasks, or
a set of independent chains. In those cases it is possible
to take into account only some specific intervals. Here
we show that similar reductions in the number of intervals
can be obtained by examining the particular time con-
straints of the tasks of the graph.

The importance of lower bounds for optimal scheduling
has been discussed elsewhere [1-4]. Lower bounds are
useful also for evaluating approximate scheduling meth-
ods [5]. Therefore, an effort to obtain accurate lower-
bound expressions and to find efficient ways of calcu-
lating these expressions is well justified.

This paper should be considered a continuation of
previous work [1], and familiarity with that work is an
important requirement in understanding the ideas pre-
sented here. We use the model, concepts, and notation
hitherto introduced in [1] (which we summarize in the
second section), and only new concepts are defined in
detail.

In the third section, a way of eliminating some in-
tervals from consideration is presented. The improve-
ment obtained depends on the structure of the graph, and
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a modification of the algorithm given previously [1] is
presented to incorporate this saving. In the final section,
reductions in the number of intervals are found by study-
ing the regions along the time axis where M(t,, ¢,)/
(1, — t,), the average number of tasks which have to be
executed in interval [, z,], changes monotonically. This
reduction allows calculation of the lower bound on
the number of processors, m,, using at most only
min[D*/2, n*] intervals, or min[D?/2, 2x4°] intervals if
an incremental method of computation is used. We show
that for specific graphs the actual number of intervals
required is considerably smaller.

Definitions and previous results

A set of tasks T={T,, T,,- -+, T,} is to be executed by a
set of identical processors P, i =1, 2,- -, m. A partial
order < is given on 7, and a non-negative integer d;
represents the duration of execution of task T;. The tasks
are assigned to processors using a non-preemptive type
of scheduling, and they must be completed within a
deadline D. According to some schedule, for each T,
we have a completion time, C;. The precedences of the
partial ordering determine for a given 7; a minimum time
in which this task can be finished, its earliest completion
time, e . The latest completion time of T;, I, indicates
how long the completion time of this task can be delayed
without exceeding the deadline. Similarly, a given sched-
ule defines for 7, an initiation time, and we have an
earliest initiation time, € and a latest initiation time,
L;. If all the tasks are in their earliest possible positions,
the number of units of task 7; that lie in the interval
[1,, 1,] is denoted as e;(t,, t,). Similarly, if all tasks lie in
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Figure 1 Example for Theorem 1.
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their latest possible positions, the number of units of task
T, in this interval is called /(z,, t,).

A lower bound on the minimum number of processors
required to perform the computations of G in time D
is given by

1 LI

m, = [max { D mln[ej(tl, t,), 4(t,, t?_}]}].
) U~ 5 3

Because of its importance for computational purposes,

we make the following definition:

M1, 1) = é minfe; (1, t,), [{1,, t,)],

=1

which allows rewriting m, as

M(t, t,)
m, = [ max ——2~|.
fe,t) B4

Method to reduce the number of intervals

s Intervals where M(t,, t,) is zero
The following theorem allows those intervals where
M1, t,) is zero to be eliminated from consideration.

Theorem [
Assume that the n tasks are numbered such that their
latest initiation times are in ascending order, i.e., we have

<L, forj < k,0=j,k=n.

Then

M(t,1,)=0

for (r,= I;) A (t; Z max{{e, |l = p=j—1}]).

Proof
From our earlier work [1], by definition we have

n
M, t,) = 2 min(eq(tl, 1), lq(tl, ).
=1
If 1,= [ thenl (1, 2,) = 0 for ¢ = j, because by hypothesis
the latest initiation times dre in ascending order. Also, if
ty Zmax[{e|1=p=j—1}], thene,(t,t,)=0forp <j.
Consequently, M (¢, t,) = 0 for these values of 7, and ¢,.
Figure 1 illustrates the effects of this theorem. (In this
figure, and in subsequent figures, the tasks’ earliest posi-
tions are indicated by double lines.) The coordinate axes
represent ¢, and f,, respectively. The triangle (0, D),
(D, D), (D, 0} is the limit of the intervals [7,,7,] that can
exist since, for any legal interval, ¢, = ¢,. Therefore, all
the legal values for pairs (¢, 1,) lie within this triangle.
The rectangles (perhaps with corners missing) cor-
respond to the limits for the intervals [¢,, t,] where a
given task makes a contribution to M(z,, 1,) [i.e., every
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interval within the rectangle of task 7, has some contribu-
tion from T, in its M (¢, t,)]. The shaded regions repre-
sent the intervals for which M (¢, t,) = 0 by Theorem 1.
These intervals need not be considered in the computa-
tion of the lower bound.

e Improved algorithm

The algorithm previously given [ 1] to calculate M (z,, t,)
incrementally can now be modified to incorporate the
results of Theorem 1. The improved algorithm uses the
same arrays as the previous algorithm (plus two new
arrays) and uses the procedure COMPUTE NEW F from
that algorithm (this procedure is used here without show-
ing its details). This algorithm requires the tasks to be
numbered such that their latest initiation times are in
ascending order. Also, this algorithm includes the cal-
culation of max, tZ][M(tl, 1,)/ (¢, —1,) 1, which is given
separately in [1, Section 3.4].

Arrays

OLI[1:n] contains latest initiation times in ascending
order;

MM]|1:d] contains max M for interval of length /.

Scalars

MEC partial maximum earliest completion time, i.e.,
max (e,;|j = k).

BEGIN
k=1; MEC = OLI(1);
MM = 0;
FOR 7, =0 UNTIL D — | DO
BEGIN

FOR j= 1 UNTIL # DO
BEGIN ‘COMPUTE NEW F’;
1E (t, > EI(j))A(1; = LI(j) )A (1, = EC()))

THEN
BEGIN
F(T()) =F(T()) ~ 1;
T) =T~ L;
END;
END;

M(t,, OLI(k)) = 0;/ + by Theorem 1 * /
FOR t, = max(s, + 1, OLI(k) + 1) UNTIL D DO
BEGIN
M, t,) =M, 1,— 1)+ F(,);
MMz, — ¢,) = max(MM(zs, — 1,), M(2,, 1,));
END;
IF t; = MEC — | THEN
BEGIN
WHILE (MEC = EC(k)) A (k # n) DO
k= k+ 1;/ * keeps increasing k
if previous e, is larger than e,
of task under consideration « /
MEC = EClk];
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Figure 2 Graphs of w; (¢,) for different positions of 7.

END;
END;
END.

Further reduction of the number of intervals

e Shape of M(1,, 1)

We denote as M, (t,» 1,) the contribution to M (¢, #,) of a
specific task 7';. When the interval [, t,] starts at a time
t,, the portions of task 7, that have to be done in the
interval [z, 1,] increase linearly from 1, =1 to t,=w,(z,).
This latter value, defining a knee-point in M; (1,5 1,), de-
pends on the relative position of ¢, with respect to e;; and
e,; as follows:

lcj if1,= e, Fig. 2(a)
Wj(’a): ly— (1,—e) ife“.<ta<ecj,Fig. 2(b)
[U. ift,=>e,. Fig. 2(¢)

275

COMPUTATION OF LOWER BOUNDS




276

| ! I I T T |
1
Tl
Tl
————
T2
T2
=]
T3
T3
————

M(r“’ tﬂ)/(tz—‘td)

M(ra, r2)

Figure 3 Superposition of tasks contributing to M (z,, 1,).

The total value of M(z,, t,) can be obtained by super-
imposing the contributions of all the tasks in the graph,
which is monotonically increasing with respect to f,.
Here M (t,, t,) consists of linear segments of integer slope
0 = k = n. The slope changes at points /;; and w; (r,). We
denote these points as h,, where r is an increasing index,
1= r= n. Anexample is given in Fig. 3, which also shows
the corresponding M (1., 1,) / (t,— ).

We now present two theorems that permit a further
reduction on the number of intervals that have to be con-
sidered to compute the lower bound m,, by defining
regions where M (1., t,) / (t, - 1,) changes monotonically.

Theorem 2
In a region in which M(¢, 1,) has constant slope,
M(t,, t,)/ (1, — t,) is monotonic with respect to f,.

Proof
For the region satisfying the hypothesis, we can write

M(t, t,) =M, + k(t,—t,),
and

MG, t,) M, +k(@,—1)

>

,—1, t,—t,

where ¢, is the beginning time of the region, and & is the
constant slope in that region. This function is mono-
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tonically increasing, constant, or monotonically decreas-
ing depending on whether M, is less than, equal to, or
greater than k(t, — 1), respectively.

Corollary

As M(t, t,)/ (1, — t,) is monotonic in each region of
constant slope, to obtain m, = maxta[maxtz[M (ty 1)/
(t,—t,)1], it is sufficient to consider only those values of
t, for which the slope changes, i.¢., those that correspond
to Iij or w; (t,).

A further elimination of ¢, values can be accomplished
by proving that a maximum of the quotient M(z,, t,)/
(1,—t,) cannot occur at some of the values of #, selected
by the corollary of Theorem 2.

Theorem 3

Let k,_, be the slope of M (¢, t,) before time &, and let k,
be the slope after time /,. Then, max, (M, 1)/ (t,—1,)]
does not occur at t,= h, if k. > k,_,. That is, the maximum
of M(t,, t,)/ (z,— t,) cannot be at a point where the slope
of M(t,, t,) increases.

Proof
Let

0, =Mty )/ (h —1,).

We prove that 1) when Q, = k_, the value of this quotient
at time #, + 1, denoted as Q’, is greater than or equal to
Q,; 2) when Q, > k,, the value of the quotient at time
h,— 1, denoted as Q" is greater than or equal to Q,.

Proof for Q, = k,

At time s, + 1 we have

Q' =M, h)+k1/(h,—t,+1),
but M (¢, h,) = (h,—t,)Q,; therefore,

Q =[h—t)0,+k]1/(h —1,+1)
=[h,—1,+1)Q, +k,~0Q1/(h,—1,+1)
=Q,+ (k,—Q)/(h,~1,+1).

The second term in the right hand side expression is = 0
when Q, = k,; therefore, Q' = Q,.
Proof for Q, > k,

At time h, — 1 we have
Q'=[M(,h)—k]/(h—1,—1),

and replacing as in the previous case we get
Q'=0,+(Q,—k)/(h,~t,—1).

Again the second term is = 0 and Q" = Q,.
Therefore, the maximum of Q along ¢, occurs either be-
fore h, or after h,, but not at &, which proves the theorem.
Combining the Corollary of Theorem 2 with Theorem
3 we see that to calculate m, it is sufficient to consider,
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for a given ¢, = t,, only the intervals that end at values
of ¢, at which the slope of M(z, t,) decreases. This
happens at all times when the number of tasks that have
w;(t,) = t, exceeds the number of tasks that have /;;=¢,.
In this way the number of intervals required in the worst
case is reduced from $D? to nD. The number of intervals
for a particular case is smaller because 1) not all the
w;(t,) are different; 2) when ¢, is increased more and
more tasks are eliminated from consideration (tasks with
e, less than the current ¢, do not participate in the calcula-
tion); and 3) for a given wj(ta) more tasks can begin
than end, i.e., the slope of M(1,, t,) increases.

» Elimination of t, values

Theorems 2 and 3 permit a reduction in the number of
values of ¢, that have to be considered for a given ¢,. We
now obtain a further reduction by showing that it is not
necessary to consider all values of ¢, either.

Theorem 4

M(t,, w,(t,))/(w,(t,) —t,) is monotonic as a function of
t,,» in a region in which t, is between two successive
earliest times (initiation or completion), corresponding to
tasks T, and T,.

Proof

We compare M(t, + 1, w (1, + 1)) with M(z, w,(¢2,)),
i.e., we consider how the value of M changes when the
initiation of the interval changes. When we move the
initiation of the interval from ¢, to ¢, + 1 and the termi-
nation of the interval from w,(z,) to w,(z, + 1), the
contribution of task T;to M (1., w,(t,)) is reduced by 1 if
one of the following conditions is satisfied:

L, <e) N ;Zwlt)) A(ey=t,<e,);

2. (el.jf t, < ec].) A (wj(ta) =w,(t));

3. (eijf 1, < e, ) A (w].(ta) > wy(1,))
Aleg=1t,<e,);

This contribution is not changed otherwise.

To visualize why this is true we consider all the pos-
sible positions for ¢, and its corresponding w,(¢,), and
analyze the effect of increasing ¢, by 1. First, we notice
from Fig. 2 that

w(t,+1)=w. (1) ift, <e,
and
w(t,+ 1)=w(t,)—1 ife,=t, <e,.

Then, the effect on M, (¢, w,(t,)) is as follows:

w (1) > ch — no change; Fig. 4(a)
t, < e 3 wlt) =1 ;and 1, < e, — no change; Fig. 4(b)
w,(t,) =1, and e, =1, < e, — change; Fig. 4(c)
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Figure 5 Example of Theorems 2, 3, and 4 using the tasks of
Figure 1.

w,(1,) = wj(ta) — change; Fig. 4(d)

e; =1, < e, w (1) < w;(1,) and 1, < e, — no change; Fig. 4(e)
w, () < Wj(ta) and e, = 1, < e, — change;Fig. 4(f)

1, = e ; — no change. Fig. 4(g)
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Figure 4(c) corresponds to condition 1, Fig. 4(d) to
condition 2, and Fig. 4(f) to condition 3.

It is possible to see that the cardinality of the set of
tasks that satisfy one of these conditions is constant in the
regions specified by the hypothesis (i.e., between two
earliest times). Therefore,

M(t,, w(t)) =M, — (z,— {)a,

where 1, is the smallest beginning time of the interval, and
M= M1, w,(t)).

The denominator (w,(z,) —t,) can be found by noting
that

w, (1) = w (1) — (t,— 1,) 8,

where 8is 1 if e, = 1, < e, and 0 otherwise (itis constant
in the region). Therefore,

w(t) —t,=wlt) — (t,—t)B— ¢,
={w(t) —t) — (B+ 1)1, — 1),
and
M, w (1,)) / (w, (1) — 1)
=[M,— (t,— t,)al/[w, (&) —t,— (B+ D ({1, — 1) ]:

this is a monotonic function of 7.

Corollary

M(t,, w,(t,))/ (w.(t,) —1,) is monotonic as a function of
t, in the region between two earliest times. Therefore, to
obtain m, it is sufficient to consider only the intervals that
start at times corresponding to the earliest initiation or
completion times of all the tasks.

It is clear that we now need to consider only 2# distinct
values for ¢, (instead of D as before). Furthermore, since
whenever one task has its earliest completion time,
another task has to start (i.e., it has its earliest initiation
time), at most # distinct values for ¢, are needed. Com-
bining Theorems 2, 3, and 4, we see that the total number
of intervals to be considered in the worst case is r’.
Notice that the number of intervals is always smaller than
D? /2. Therefore, the effective number of intervals to
consider in the worst case is min[D”/2, n”]. For specific
cases, the required number of intervals can be consider-
ably smaller for the same reasons as in Theorems 2 and 3.

* Incremental calculation

M (1, t,) can be calculated incrementally in a manner
similar to previous work [1]. The set of the /;; and w; (t)
are first reordered and then relabeled according to their
position along time. Let h (t) represent either 11.]. or
w; (t,), and let the index r represent the ordering along
time (Fig. 3). Then, since M (¢, t,) is composed of linear
segments of slope k,, as indicated in Fig. 2, it can be
calculated by means of the recurrence relations:
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M(t, b, (1)) =M1, h(2)) + kLA, (1) — k()]
kr+1 = kr + Nr’

where N, = §, — E,, §, is the number of tasks that have
l; = h,, E, is the number of tasks for which w;(z,) = 4,
and k_ is the slope of M (t,, t,) at time h.

The initial conditions for the recurrence relations are

M1, h(1,)) =0,
k,= 0.

Notice that for intervals which have ¢, =0, {A,} = {lij} U
{lc].}; i.e., the list of & contains only latest initiation and
completion times. For each ¢, > 0, the /;; remain in
the list but the / ; are replaced by the w;(¢,). For every
new 1,, the w;(¢,) and N, must be recalculated and the
ordered list of 4, must be set up. It is possible to organize
the list of A, in such a way that these changes are made
efficiently, since only a few specific changes occur for a
new f,. For example, the w; can be calculated in the
following way.
Let ¢, be the new value for 7,; then

. N
if 1, = € wj(ta) = lcj,

’ —_— —_ o .
L,= e wj(ta) = wj(ta) (1, ei].),

ife,<t <e, i °
ij a cj [ta > e Wj([:z) = wj(ta) - (t;—’ta);

ifr,=e,;, wj(t"l) =1,

Notice that by using incremental calculation, the savings
of Theorem 3 cannot be obtained, since the /;; are needed
as intermediate values in the calculation. Nevertheless,
the incremental method may be preferred because the
number of operations per interval is reduced.

o Example

We now present an example to illustrate the reductions
due to Theorems 2, 3, and 4. Consider the graph of tasks
in Fig. 1; Fig. 5 displays these reductions. The circles
(empty or crossed) indicate the values of 7, that must be
considered for three specific values of ¢, (z,=0, 2, and 8)
according to Theorem 2; i.e., they correspond either to
some [, ; or to some w; (1,). The crossed circles identify
the /;; that can be eliminated from consideration accord-
ing to Theorem 3 (unless an incremental method is used
as in the preceding section). According to the Corotlary
of Theorem 4, all the intervals starting at 7, = 2 can also
be eliminated. The only values of ¢, which must be used
for this case are 0, 3, 6, 7, 8, 9, and 13.

For this particular case, Table 1 summarizes the in-
tervals required in the calculation of m,, according to 1)
Theorems 2, 3, and 4 combined, and 2) the incremental
method, Theorems 2 and 4. The required values of ¢,
according to Theorem 4 are the rows of the table, and the
required values of ¢, are listed for each t,. The values of
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Table 1 Intervals required in the calculation of m,.

Number of intervals

Theorems Incremental
I3 I 2,3.4 method
0o @71@unE1 4 7
3 7 @11 120317 4 6
6 @s1n2(317 4 6
7 @367 4 7
8 9@ 17 2 3
9 @16 1 2
13 0 0
Total 19 31

t, that can be eliminated by Theotrem 3 are circled. The
maximum savings, obtained using Theorems 2, 3, and 4,
require a total of 19 intervals, while the incremental
method needs 31 intervals. These values should be com-
pared to the worst case predictions, which are

min[[D?/2], n*] = min[ 145, 49] = 49
for the combination of Theorems 2, 3, and 4, and
min{[D*/2], 24*] = min[ 145, 98] = 98

for the incremental method. The method described in [1]
requires the consideration of [D?/2] = 145 intervals.

Summary

Four theorems have been presented which allow more
efficient calculation of the lower bound expression pre-
sented by Ferniandez and Bussell [2]. These results
improve on the computation methods already given in
[1]. Theorem 1 allows a reduction in the number of
intervals to be considered based on the determination of
the intervals for which M(z,, ¢,) = 0. A small modifica-
tion of the algorithm given in [1] is required to take
advantage of this result. Theorems 2 and 4 can be com-
bined to provide a significant reduction—from D*/2
intervals to min[D?/2, 2#°] intervals. If direct calcu-
lation is used, instead of incremental computation as
proposed in [1], Theorem 3 allows a further reduction to
min[D?/2, n’] intervals. However, the operations needed
in this case to keep track of the graph’s structural prop-
erties make the savings less significant except for graphs
in which D is large compared to n.
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