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Improving  the  Computation of 
Lower  Bounds  for  Optimal Schedules 

Abstract: Ways of decreasing the.number of operations needed to compute the  lower bounds of optimal schedules, by reducing  the 
number of time  intervals that must be considered,  are  presented.  The  bounds apply to a system of identical processors executing a par- 
tially ordered  set of tasks, with known  execution  times, using a non-preemptive  scheduling  strategy. In  one  approach we find that the 
required number of intervals depends on the graph. In our other  approach, which subsumes the first, the number of intervals  is  decreased 
to at most min[D2/2, n'], where D is the deadline to complete the  tasks  and n is the  number of tasks. The actual number  ofintervals 
for a particular graph can be considerably  smaller  than  this worst  case. 

introduction 
In a  previous paper [ 11 we discussed efficient ways of 
computing  lower  bounds  for the optimal schedules pre- 
sented by  FernCindez and Bussell [2]. The  number of 
operations required is approximately D2/2,  where D is 
the  deadline to  complete  the  tasks,  because  one  operation 
is performed  for each interval [ t , ,  t,] for 0 5  t ,  and t , l  D. 
Any reduction in this  number of operations must  result 
from a  reduction in the number of intervals to be con- 
sidered. It was  shown in [ 11 that  the number of intervals 
to  consider can  be  reduced if the graph structure  is of a 
specific type, such as a tree, a set of independent  tasks,  or 
a set of independent  chains. In  those  cases it is possible 
to  take  into  account only some specific intervals. Here 
we show  that similar reductions in the number of intervals 
can be  obtained by examining the particular  time  con- 
straints of the  tasks of the graph. 

The  importance of lower  bounds for optimal  scheduling 
has been discussed elsewhere [ 1-41.  Lower bounds are 
useful also  for evaluating approximate scheduling  meth- 
ods  [5].  Therefore,  an effort to obtain accurate lower- 
bound expressions and to find efficient ways of calcu- 
lating these  expressions is well justified. 

This  paper should be considered a continuation of 
previous  work [ I ] ,  and familiarity with that work is an 
important requirement in understanding the  ideas pre- 
sented  here. We use  the model, concepts,  and notation 
hitherto introduced in [ 11 (which we summarize in the 
second section),  and only new concepts  are defined in 
detail. 

In  the third section, a way of eliminating some in- 
tervals from  consideration is presented.  The improve- 
ment  obtained depends  on  the  structure of the  graph,  and 

a modification of the algorithm given previously [ I ]  is 
presented  to  incorporate this  saving. In  the final section, 
reductions in the number of intervals are found by study- 
ing the regions  along the time  axis  where M ( t , ,  t z )  / 
( t ,  - f,), the  average  number of tasks which have to be 
executed in interval [ t , ,  t2], changes  monotonically. This 
reduction  allows  calculation of the lower  bound on 
the number of processors, m,,, using at most  only 
min[D2/2, n"] intervals, or  min[D2/2,  2n2]  intervals if 
an incremental  method of computation is used.  We show 
that  for specific graphs  the actual number of intervals 
required is considerably  smaller. 

Definitions and previous results 
A set of tasks T = { T, ,  T,; . ., T , }  is to be executed by a 
set of identical processors Pi ,  i = 1, 2, . . ., m. A partial 
order < is given on T ,  and a nonnegative integer dj 
represents the duration of execution of task T j .  The  tasks 
are assigned to  processors using a non-preemptive type 
of scheduling, and they  must be completed within a 
deudline D. According to  some schedule, for  each Tj 
we have a  completion  time, Cj. The  precedences of the 
partial  ordering determine  for a given T j  a minimum time 
in which this  task can be finished, its  earliest  completion 
time, ecj. The latest  completion  time of T j ,  lcj ,  indicates 
how long the completion  time of this  task can be  delayed 
without  exceeding the deadline. Similarly, a  given  sched- 
ule defines for Tj an initiation  time, and we have an 
earliest  initiation  time,  eij, and a latest initiation  time, 
lu. If all the tasks  are in their  earliest possible  positions, 
the number of units of task Tj  that lie in the interval 
[t,,  t,] is denoted  as e j ( t l ,  r 2 ) .  Similarly, if all tasks lie in 273 
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‘ Figure 1 Example for Theorem 1 .  
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their latest possible  positions, the  number of units of task 
T j  in this  interval is called G ( t l ,  t , ) .  

A lower bound on  the minimum number of processors 
required to perform the  computations of G in time D 
is given by 

Because of its  importance  for  computational  purposes, 
we make the following definition: 

M ( t , ,  t 2 )  = minEej(t,, t,), <.(tl,   t ,)l,  

which allows  rewriting mL as 

n 

j = 1  

Method to reduce the number of intervals 

Intervals  where  M(t,,  t,) is zero 
The following theorem allows those  intervals  where 
M ( t , ,  t,) is zero  to be  eliminated from consideration. 

Theorem I 
Assume  that  the n tasks  are numbered such  that their 
latest initiation  times are in ascending order, i.e., we  have 

lijz 1, fo r j  < k ,  0 5  j ,  k 5  n. 

Then 

Prooj 
From our earlier work [ 11, by definition we have 

n 

M ( t , ,  f,) = min(e,(t,, t,), l q ( t l ,   t , ) ) .  
q= 1 

If t ,  I l i j  then lq ( t l ,  t z )  = 0 for q 1 j ,  because by hypothesis 
the  latest initiation  times are in ascending order.  Also, if 
t11max[{e,)15p5j-1}],thene,(t,,t,)=0forp<j. 
Consequently, M ( t l ,  t , )  = 0 for  these values oft, and t,. 

Figure 1 illustrates the effects of this  theorem. (In this 
figure, and in subsequent figures, the tasks’ earliest posi- 
tions are indicated by double lines.) The  coordinate  axes 
represent tl and t,, respectively. The triangle (0, D ) ,  
( D ,  D ) ,   ( D ,  0) is the limit of the intervals [t,, t,] that can 
exist since,  for  any legal interval, t, 5 t2. Therefore, all 
the legal values for pairs (t,, t z )  lie within this triangle. 
The rectangles (perhaps with corners missing) cor- 
respond  to  the limits for  the  intervals [t,, tZ ]  where a 
given  task makes a contribution to M ( t , ,  t , )  [i.e., every 
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interval within the rec :tangle of task Tj has  some  contribu- 
tion from Tj in its M ( t , ,  $ ) I .  The shaded  regions repre- 
sent  the intervals for which M(t,,  t 2 )  = 0 by Theorem I .  
These intervals need not be considered in the  computa- 
tion of the lower  bound. 

9 Improved  algorithm 
The algorithm previously given [ I ]  to calculate M ( t , ,  t 2 )  
incrementally  can now be modified to  incorporate  the 
results of Theorem 1 .  The improved algorithm uses the 
same  arrays  as  the previous  algorithm (plus two new 
arrays) and  uses the  procedure COMPUTE  NEW F from 
that algorithm (this  procedure is used  here  without  show- 
ing its details).  This algorithm requires  the  tasks  to be 
numbered  such that  their  latest initiation times are in 
ascending  order. Also, this algorithm includes the cal- 
culation of  maxltl, t , , [M( t , ,  t z ) /  ( lz  - l , ) ] ,  which is given 
separately in [ I .  Section 3.41. 

Arrays 
OLI[ 1 : n ]  contains latest  initiation  times in ascending 

MM[ 1 : d l  contains max M for  interval of length 1. 

Scalars 
MEC partial maximum  earliest  completion  time,  i.e., 

order; 

max(ecjIjZ k ) .  

BEGIN 
k = 1 ; MEC = OLI( 1 j ; 
MM = 0; 
FOR f , = 0  UNTIL D- 1 DO 

BEGIN 
FORJ" 1 UNTIL n DO 

BEGIN  'COMPUTE NEW F ' ;  

IF ( t ,  > EI(j))A(t, 5 LI(j))A(f, 5 EC(jj )  
THEN 

BEGIN 

F(T( j )  1 = F(T(.i))  - I ;  
T(j)  = T(j)  - I ;  

END; 
END; 

M ( f , ,  OLI(k)) = O; /  :/ by Theorem I * / 
FOR tz = max(t, + 1, OLI(k) + 1) UNTIL D DO 

BEGIN 

M ( f , ,  1,) = M ( f , ,  f, - 1 )  + F ( t , ) ;  
MM(f,- f l )  = max(MM(t,- t , ) ,  M ( f , ,  f,)); 

END; 
IF f ,  = M E C  - 1 THEN 

BEGIN 
WHILE ( M E C  2 E C ( k ) )  A ( k  # n )  DO 

k = k + 1 ; / i- keeps  increasing k 
if previous e ,  is  larger than e,  
of task under consideration B / 
MEC = E C [ k ] ;  

0 2 4 6 8 10 12 14 16 18 20 
I I I I  I 1  I I  I I  

f 

E N D ;  

E N D ;  

E N D .  

Further  reduction of the number of intervals 

Shape o f M ( t , ,  t 2 )  
We denote  as Mj (fl, t 2 )  the contribution to M ( t , ,  t 2 )  of a 
specific task T,j. When the interval [ t,, f,] starts  at a  time 
t,, the portions of task Ti that have to be done in the 
interval [ t,, t 2 ]  increase linearly  from r, = lij to t2 = w j  ( t,). 
This  latter value, defining a  knee-point in Mj (fa, t 2 ) ,  de- 
pends on the relative  position oft, with respect  to eij and 
eCj as follows: 

I;; if t ,  5 eij, Fig. 2(a) 

wj(f,2) = I C j -  ( f a -  eij) if eij < t ,  < e c j ,  Fig. 2(b) 

' 2  j if t ,  2 ecj. Fig. 2(c) 275 
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Figure 3 Superposition of tasks contributing to M ( t , ,  t z ) .  

The total  value of M ( t , ,  t,) can  be  obtained by super- 
imposing the  contributions of  all the  tasks in the  graph, 
which is monotonically  increasing with respect  to t,. 
Here M ( r , ,  t z )  consists of linear  segments of integer slope 
0 5 k 5 n. The slope changes  at points lij  and wi (fa). We 
denote  these points as h,, where r is  an increasing index, 
1 4 r 5  n. An example is given in Fig. 3, which also shows 
the  corresponding M(t,, t , )  / ( t ,  - t,). 

We  now present  two  theorems  that permit  a further 
reduction on  the  number of intervals  that  have  to  be con- 
sidered to  compute  the lower  bound mI., by defining 
regions where M (  t , ,  t , )  / ( t ,  - t,) changes monotonically. 

Theorem 2 
In a region in which M (  t , ,  t,) has  constant slope, 
M(t,, t,) / ( t ,  - t,) is monotonic  with respect  to t , .  

Proof 
For the region satisfying the  hypothesis,  we  can write 

and 

where to is the beginning time of the region,  and k is the 
276 constant  slope in that region. This function is mono- 
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tonically increasing, constant,  or monotonically decreas- 
ing depending on  whether M ,  is less than, equal to, or 
greater than k (  to - t,) , respectively. 

Corollary 
As M (  t,, t,) / ( t ,  - t,) is monotonic in each region of 
constant slope, to  obtain m L  = maxt [maxt,? [ M (  t,, t,) / 
( t ,  - fa) ] 1, it is sufficient to  consider &ly those values of 
t, for which the  slope changes,  i.e., those  that  correspond 
to l j j  or wj (t,) . 

A further elimination of t, values can be accomplished 
by proving that a  maximum of the  quotient M ( t , ,  f z )  / 
( t ,  - I , )  cannot  occur  at some of the values of t ,  selected 
by the corollary of Theorem 2. 

Theorem 3 
Let kr-l be  the  slope of M ( fa, t,) before time h,., and let k ,  
betheslopeaftertimeh,.Then,max,,[M(t,, t z ) / ( t z - t a ) ]  
does  not  occur  at t, = h, if k ,  > k,- l .  That is, the maximum 
of M (  t,, t,) / ( t, - f a )  cannot  be  at a  point where  the slope 
of M ( t , ,  t,) increases. 

Proof 
Let 

e, = M ( t , ,  h,) / ( h ,  - la).  

We prove  that 1 ) when Q,  5 k,, the value of this quotient 
at time h, + 1, denoted  as Q‘, is greater  than or equal  to 
Q,; 2 )  when Q, > k,, the value of the  quotient  at time 
h, - 1, denoted  as Q ,  is  greater  than or equal  to Q,.. 

Proof  for Q,  5 k,  
At time h, + 1 we  have 

(2‘ = [ M ( t , ,  h , )  + 4 . 1  / ( h ,  - I, + 11, 

but M ( t , ,  h , )  = ( h ,  - t , )Q, ;  therefore, 

Q’= [ ( h , - t , ) Q , + k , l / ( h , - t , +  1) 
= [ ( + f a +  l ) Q , + k , - Q , l / ( h , - t , +  1) 
=e,+ ( k , - Q , ) / ( h , - t a +  1). 

The  second  term in the right hand  side expression is 1 0 
when Q, 5 k,; therefore, Q’ 1 Q,. 

Proof   for  Q, > k ,  

At time hr - 1 we have 

Q“ = [M(t , ,  h,) - k , ]  / ( h ,  - t ,  - 11, 

and replacing as in the previous case we get 

Q”=Q,+ ( Q , - k , . ) / ( h , - t , -  1) .  

Again the  second  term is 5 0 and Q 1 Q,. 
Therefore,  the maximum of Q along t ,  occurs  either be- 

fore h, or  after h,, but  not  at h,, which proves  the theorem. 
Combining the Corollary of Theorem 2 with Theorem 

3 we see  that  to calculate r n L  it is sufficient to  consider, 
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for a  given t ,  = t,, only the  intervals  that end at values 
of t, at which the  slope of M(t,, r z )  decreases.  This 
happens  at all times when  the number of tasks  that  have 
wj( ta)  = t, exceeds  the number of tasks  that  have l i j  = tz. 
In this way the  number of intervals required in the  worst 
case is reduced  from 4Dz to nD. The  number of intervals 
for a particular  case  is smaller because 1) not all the 
wj (t,) are different; 2) when t ,  is increased  more  and 
more  tasks  are eliminated from consideration (tasks with 
e, less  than  the  current t ,  do not  participate in the calcula- 
tion) ; and 3)  for a given wj (t,) more  tasks  can begin 
than end, i.e., the  slope of M(t,, t z )  increases. 

Elimination o f t ,  values 
Theorems 2 and 3 permit  a  reduction in the number of 
values of t, that  have  to be  considered for a  given t,. We 
now obtain  a further reduction by showing that it is not 
necessary  to  consider all values of t ,  either. 

Theorem 4 
M (  t,, wk ( t , )  ) / ( wk ( t,) - t,) is monotonic as a function of 
t,, in a region in which t, is between  two  successive 
earliest times  (initiation or completion),  corresponding  to 
tasks Tj and Tk. 

Proof 
We compare M ( f ,  + 1, w k ( t ,  + 1 ) )  with M ( t a ,  wk( t , ) ) ,  
i.e., we consider how the value of M changes when the 
initiation of the interval  changes.  When we move the 
initiation of the interval  from t ,  to f ,  + 1 and  the termi- 
nation of the  interval  from wk( f a )  to wk ( t ,  + 1 ), the 
contribution of task Tj to M(t, ,  wk(t,) ) is reduced by 1 if 
one of the following conditions is satisfied: 
1. ( t ,  < eij) A ( I c j  1 wk(t,))  A ( e i k 5  t ,  < e c k ) ;  

2. ( e i j 5  t ,  < e c j )  A (w j ( t , )  5 wk( t , ) ) ;  

3. (eijf t ,  < e c j )  A ( w j ( t a )  > wk( t , ) )  

A (eik 5 t ,  < e c k ) ;  

This  contribution is not changed otherwise. 

To visualize why  this is true  we  consider all the pos- 
sible  positions for t ,  and its corresponding wk(t,), and 
analyze  the effect of increasing t ,  by 1. First, we notice 
from Fig. 2 that 

wk( t ,  + 1 )  = w k ( t a )  if t, < eik 

and 

wk( t ,  + 1 )  = wk(t,) - 1 if eik 5 t, < e,. 

Then,  the effect on M j  ( f a ,  wk( t,)) is as follows: 

wk(t,,) > I c j  + no change; Fig. 4(a) 

wk(ra)  5 lei and t ,  < e,* + no change; Fig. 4(b) 

w k ( f , )  5 l,, and eik 5 t ,  < e,* + change; Fig. 4(c)  

0 2 4 6 8 10  12  14 16 18 20 22 24 
1 1 1 1 1 1 1 1 1 1 1 1  

i 

Figure 4 Effect on M j  ( t a ,  wk( t , )  ) of different  positions of t,. 277 
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Figure 4 (c )  corresponds  to condition 1 ,  Fig. 4(d)  to 
condition 2, and  Fig. 4 ( f )  to condition 3 .  

It  is possible to  see  that  the cardinality of the  set of 
tasks  that satisfy one of these conditions is constant in the 
regions specified by the hypothesis (i.e.,  between  two 
earliest times).  Therefore, 

M(t,> w,(t,)) = Mo - ( t ,  - t,)a, 

Mo = M(to,  w,(to) 1. 
where to is the smallest beginning time of the  interval, and 

The  denominator (w,(t,) - fa) can be  found by noting 
that 

W k ( t , )  = l v , ( t o )  - ( la  - to)P3 

where P is 1 if eik 5 t, < eck and 0 otherwise  (it is constant 
in the  region).  Therefore, 

W,(t,) - fa = ",(to) - ( f a  - t o )P  - t ,  

= Ov,(t,) - to) - ( P  + 1 )  (fa - to ) .  

and 

M(t,, ~ ' ~ ( t , ) ) /  (w, (t,) - tal  

= [Mo-  ( t , - t , )aI / [w, ( t , )  - t o -  ( P +  1 ) ( t a - t o ) 1 ;  

this is a  monotonic  function of t,. 

Corollury 
M ( t,, wk ( t,) ) / ( wk ( t,) - t,) is monotonic as a  function of 
t, in the region between two earliest  times. Therefore,  to 
obtain r n L  it is sufficient to consider  only the intervals that 
start  at times corresponding  to  the earliest  initiation or 
completion  times of all the tasks. 

It is clear  that we now need to  consider only 2n distinct 
values for t ,  (instead of D as  before).  Furthermore, since 
whenever  one task has its  earliest  completion  time, 
another  task has to  start  (i.e., it has its  earliest initiation 
time),  at most n distinct  values for t ,  are  needed.  Com- 
bining Theorems 2, 3, and  4,  we  see  that  the total  number 
of intervals to be  considered in the worst case is n'. 
Notice  that  the number of intervals is always  smaller  than 
D 2 / 2 .  Therefore,  the effective  number of intervals  to 
consider in the  worst  case is min [ D 2 /  2, n 2 ] .  For specific 
cases,  the.required number of intervals can be consider- 
ably  smaller for  the  same  reasons  as in Theorems 2 and 3. 

9 lncrernentml calculution 
M(t, ,  t z )  can  be  calculated  incrementally in a manner 
similar to previous  work [ I ] .  The  set of the r i j  and wj ( t , )  
are first reordered and then  relabeled  according to their 
position along time. Let  h,(t,)  represent  either l i j  or 
N) ( t , ) ,  and let the index r represent the  ordering along 
time (Fig. 3 ) .  Then, since M(t,, t 2 )  is composed of linear 
segments of slope k,, as indicated in Fig. 2, it can be 
calculated by means of the  recurrence relations: 
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where N ,  = S, - E,., S, is the number of tasks  that  have 
lij = h,, E,  is the  number of tasks  for which wj(tu) = h,, 
and k, is the slope of M(t,, f,) at time h:. 

The initial conditions  for the  recurrence relations are 

Notice  that for  intervals which have t ,  = 0, {h,} = {fij} U 
{ / c j } ;  i.e., the list of h, contains  only latest initiation and 
completion  times. For  each t ,  > 0, the f i j  remain in 
the list but  the rCj are replaced by the wj(tl) .  For  every 
new f , ,  the wj ( t , )  and N ,  must be recalculated  and the 
ordered list of h, must be set up. It is possible to organize 
the list of h, in such a way that  these  changes  are  made 
efficiently, since  only a few specific changes  occur  for a 
new t,. For example,  the wi can be calculated  in the 
following way. 

Let t: be  the new  value for tu; then 

if th 5 e i j ,  wj (t:) = f .; 

if e . .  5 th < ecj 

if th 2 e c j ,  wj(tL) = l i j .  

C J  

ta 5 eij, w . ( t ' )  = w . ( t  ) - (t: - e i j ) ;  
tu > e i j ,  w j  ( I ;)  = w j  (t,) - ( t ;  - t u ) ;  I J  

. l a  j a  

Notice  that by using incremental  calculation, the savings 
of Theorem 3 cannot be obtained,  since  the l i j  are needed 
as intermediate  values in the calculation. Nevertheless, 
the incremental  method may be  preferred because  the 
number of operations  per interval is reduced. 

Example 
We now present  an example to illustrate the reductions 
due  to  Theorems  2, 3, and 4. Consider  the  graph of tasks 
in Fig. 1;  Fig. 5 displays these reductions. The circles 
(empty or crossed) indicate the values of t, that  must be 
considered for  three specific values of t ,  ( f ,  = 0,2 ,  and 8 )  
according to Theorem  2; Le., they correspond  either  to 
some fij  or  to some wj ( t l ) .  The  crossed  circles identify 
the l i j  that  can  be eliminated from  consideration  accord- 
ing to  Theorem 3 (unless an incremental  method is used 
as in the preceding section). According to  the Corollary 
of Theorem 4, all the intervals  starting at t ,  = 2 can  also 
be  eliminated. The only  values of t ,  which must  be  used 
for this case  are 0, 3 ,  6, 7, 8 ,  9,  and 13. 

For this  particular case,  Table 1 summarizes the in- 
tervals required in the calculation of n~,. ,  according to 1 )  
Theorems 2, 3, and 4 combined, and 2) the incremental 
method, Theorems 2 and 4. The required  values of t ,  
according to  Theorem 4 are  the  rows of the table, and  the 
required  values oft,  are listed for  each t,. The values of 

Table 1 Intervals required  in the calculation of mL. 

Number of intervals 

Theorems  lncrernental 
t ,  t 2  2, 3, 4 method 

0 @) 7 a l l   1 2 0 1 7  4 7 

3 7 all 1 2 0 1 7  4 6 

6 @ 8 1 1  1 2 0 1 7  4 6 

7 @10@)12@16 17 4 7 

8 9 0 1 7  2 3 

9 0 1 6  1 2 

13 0 0 

Total 19 31 

t ,  that can  be  eliminated by Theorem 3 are circled. The 
maximum savings,  obtained using Theorems  2, 3 ,  and 4, 
require a  total of  19 intervals, while the incremental 
method needs 3 1 intervals. These values  should be com- 
pared to the worst case predictions, which are 

min[ rD2/21, n'] = min[ 145, 491 = 49 

for  the combination of Theorems 2, 3, and  4, and 

min[ [ D 2 / 2 ] ,  2n2] = min[ 145, 981 = 98 

for  the incremental  method. The method described in [ 11 
requires  the consideration of [D2/2]  = 145 intervals. 

Summary 
Four theorems  have been presented which allow more 
efficient calculation of the lower  bound expression pre- 
sented by Fernandez and Bussell [2].  These  results 
improve  on  the computation methods already given in 
[ 11. Theorem 1 allows a reduction in the  number of 
intervals to be  considered  based on  the determination of 
the intervals for which M(t,, t,) = 0. A small modifica- 
tion of the algorithm  given in [ I ]  is required to  take 
advantage of this  result. Theorems 2  and  4 can be com- 
bined to provide  a significant reduction-from  0'12 
intervals to  min[D2/2, 2n2] intervals. If direct calcu- 
lation is used,  instead of incremental computation as 
proposed in [ 11, Theorem 3 allows  a further reduction to 
min[D2/2, n'] intervals. However,  the  operations needed 
in this case  to keep  track of the  graph's  structural prop- 
erties make the savings  less significant except for graphs 
in which D is large compared  to n. 279 
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