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Buffer Performance Analysis of Communication 
Processors During Slowdown  at  Network Control 

Abstract: An  approximate model based on renewal  theory  has  been  developed for the  performance  analysis of communication  pro- 
cessors during Network  Control Program (NCP) slowdown. Performance values, which include  cycle  length, buffer utilization, and 
message loss, were  computed as functions of traffic loads and user-assigned  threshold  values of free buffers were  used for slowdown  con- 
trol.  Comparison of results  obtained by the  approximate method with simulated results  shows a high degree of accuracy  for  the  ap- 
proximation. 

Introduction 
Teleprocessing in data communication systems is a 
rapidly growing part of the  data processing  industry. The 
complexity of a  teleprocessing  network increases with 
the diversity of teleprocessing products, communication 
facilities,  transmission  control  units,  and other equip- 
ment. In earlier  installations,  primary  control of the tele- 
processing network was  performed by the  central pro- 
cessing unit (CPU), with an  access method  administering 
the flow of data  from  the  stations  to  the  CPU and vice 
versa. Because of this  additional  requirement for message 
handling, the performance of the CPU  as a resource  for 
application  processing  was  degraded. With the intro- 
duction of communication processors  such as the  IBM 
3704  or  3705 [ I ] ,  this problem has been partially alle- 
viated.  Many  message  control  functions have been trans- 
ferred from the  CPU  to  the communication processors. 

Within the  environment of the  IBM Virtual Tele- 
communication Access  Method and the  Network  Con- 
trol  Program (VTAM and NCP) ,  the  IBM  3704  or  3705 
interacts with the communication scanner  and  the  chan- 
nel adapter in controlling flow of data through the net- 
work. In  order  to  achieve high productivity,  the per- 
formance of the  3704  or 3705 with the NCP software 
must  be  evaluated. Storage and  performance estimates 
for this purpose  are provided in published  material [ 2 ,  3 3.  

One of the major concerns in performance is the 
storage buffer pool for  temporary  storage of message 
data. Both inbound  and outbound messages  must  reside 
in the buffer pool during the processing  time of the NCP 
which  includes error checking, block handling,  and  mes- 
sage routing. Buffer pool estimates  are usually made 
based on the traffic requirements of the network [ 23. 
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Under normal  operating conditions,  the buffer pool will 
be adequate  for handling  message traffic. During  periods 
of peak  load, however,  sporadic  bursts of messages may 
occasionally cause  the buffer pool to overflow. Since 
many of the messages are  sequenced, loss or  retrans- 
mission of too many messages  could severely degrade 
NCP performance and lead to a  possible  deadlock [ 2 ,  31. 

To partially  relieve  this  situation,  a  slowdown algo- 
rithm has been  implemented in the NCP software [4]. 
The algorithm provides two threshold  values of free 
buffer space  for controlling  message  arrival. When  the 
free  space in the buffer pool is reduced  to  the lower 
threshold  value, pooling for terminal  messages to  the 
NCP is temporarily suspended and the  subsequent  de- 
pletion of messages in the buffer pool will free  the buffer 
units.  Arrival traffic resumes when the  free  space  reaches 
the higher threshold value. Since  the long-term overall 
arrival rate  averages  out  to  the normal  operating  con- 
dition, the  system will eventually settle down after  the 
sporadic  bursts. 

In this paper, we study the mechanism of the slowdown 
process in detail and  analyze  system performance in 
terms of buffer utilization  and  message loss. The follow- 
ing sections  describe  the slowdown process, give  a 
mathematical  method of analysis  based on renewal 
theory, and present some  illustrative examples of 
computation. 

Slowdown process in the  NCP-traffic  rates  and 
buffer usage 
Although the  sequence of events  that  takes place in the 
NCP during the slowdown  process is difficult to  describe 
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exactly,  an approximate model may be  used to  depict 
the  process in terms of repeated  cycles  (Fig. 1 ) .  Each 
cycle  consists of five consecutive  phases which are 
described  as follows: 

As buffers, or buffer units, from the buffer pool are 
used,  the number of free buffer units,  or  the total free 
area, is decreased. At  times of sporadic heavy  load, the 
number of free buffer units drops  down  to  or below  the 
lower threshold  value L. Consequently  system slowdown 
takes effect,  occurring at t, in Fig. 1. 

The slowdown  period, from t3 to T ~ + ,  in Fig. 1 ,  may be 
divided  into two phases.  During  phase one ( t 3  to t,) , the 
NCP stops polling messages  and also issues  a halt of 
traffic request  to  the  VTAM  host.  Messages  continue  to 
arrive  at a  slower rate until residual  messages in the net- 
work are cleared. The length of this phase (T,)  corre- 
sponds roughly to  the transmission  time of all messages 
from some station  during  a single poll. Since messages 
continue  to  arrive while buffer capacity is limited, there 
is a possibility of message loss. The  second  phase,  from 
t, to T~+,. represents a period of depletion, during which 
arrival traffic is stopped and buffers are  returned  to  the 
free  space.  System slowdown ends  and  the  recovery 
period commences  when  the  number of free buffer units 
reaches  the  upper threshold  value M at time T~+,. 

The  recovery period,  from T~ to t,, may again be de- 
scribed in two phases.  During  phase one ( T ~  to r , ) ,  al- 
though the NCP  starts polling, there is a  delay in the ar- 
rival of messages. The length of this  phase ( T , )  is roughly 
equal to  the transmission  time of a poll message. The 
second  phase, from t ,  to t , ,  experiences  an abnormally 
high rate of traffic because of the accumulation of mes- 
sages  at  stations during the slowdown process.  The 
length of this phase ( T , )  and  the traffic rate may be 
estimated  from  the length of the slowdown  period and  the 
amount of suppressed traffic. At time t,, the normal 
traffic period resumes. This  continues until the next 
point ( t3) at which the lower  threshold L is again reached. 
This period is shown  as T,.  

Total buffer pool size is usually determined  from nor- 
mal traffic conditions [ 21. With a fixed buffer pool size, 
the assigned  values of the  thresholds L and M affect buffer 
utilization  and  message loss. In general, the allowable 
percentage loss of messages is held below a certain  value, 
while utilization of buffers may be optimized under given 
rates of traffic and  processing. 

The following sections present an analytical  method for 
evaluating buffer utilization and loss of messages. 

Assumptions 
The arrival stream is assumed to be  a  Poisson  process 
with  a rate A ( t )  . Figure 2 (a) depicts a  typical  arrival rate 
A ( t )  along the time  axis. In this  analysis, it is assumed 
that A ( t )  is a jump  process  [see Fig. 2 (b) ]  such  that 
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Figure 1 Number of free  buffer  units k ( t ) .  
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Figure 2 Message arrival intensity A ( ? ) .  

\ 0 during the  recovery and  depletion  periods, 

A ( t )  = 
a during the  rush period, 

A during the normal  period,  and 

\/3 during the slowdown  period, 

and /3 < A < a. 
The message  processing rate p remains constant  at all 

times  and corresponds  to  the  average  rate of release of 
buffer units at  the  NCP. 



The random process K ( t )  , which represents  the num- 
ber of free buffer units at time t ,  is shown in Fig. 1. For a 
stable system the  process K (  t )  must not  drop  down to the 
slowdown  threshold L during the  rush period, i.e., 
f [  K ( t )  > L] is almost equal to unity for t ,  5 t < tz. 
Similarly, it is required that P [  K ( t )  < M ]  be  close  to 
unity for t, 5 t < t,. 

The periods TI, T ,  and T ,  are  constant. 
All messages are of the  same length as  the buffer unit 

size. 

Analysis 
The  expected number of lost messages (in  terms of 
buffer units)  during  a  slowdown  period and  the  extent of 
buffer utilization can  be  derived based on  the behavior 
of the  process K (  t )  . Two  cases  are investigated, the first 
for exponentially distributed processing  time,  and the 
second  for  constant processing time. In  the NCP prob- 
lem, the  constant  case is closer  to reality. 

It is well known [ 51 that  expectations derived from a 
regenerative process can be obtained by looking at  one 
single regenerative cycle, and  this approach is adopted 
for  our studies. Let { T ~ ,  i = 1,2; . .} represent a sequence 
of time epochs  such  that a recovery period begins at  each 
T ~ .  Since  the arrival of message  units is  assumed  to  be a 
Poisson process and a recovery period is always  initiated 
by having K ( 7 : )  = M ,  the  upper threshold  value, it is 
clear  that { T ~ }  forms a regenerative  process with a  cycle 
length  C = T ~ + ~  - T~ (see Fig. 1) .  

For  convenience, it is further assumed that t = 0 is a 
regenerative point.  Both the cumulative number of ar- 
rivals A ( t )  and  the cumulative  number of departures 
D ( t )  have a zero value at t = 0. 

Buffer utilization is then defined by 

E[ loc K ( t )  dt]  
u =  1 - 

N . E [ C ]  ' ( 1 )  

where N is the buffer pool size. The  numerator in Eq. ( 1) 
represents  expected  total  free  area (buffer-time units) 
during C, which will be evaluated by separately  con- 
sidering the periods { T i ,  i = 1,. . ., s}. Let 

1 

ti = 2 T j ,  i =  1, 2;.., 5 .  
j = l  

A = l o c K ( t )  dt = A i .  
i = l  

The  expected  number of lost messages  during  C is 
given by 

V =  E[A(C) - D(C)] .  

For a stable  system, message loss can occur only  during 
the slowdown  period T,.  Since K(t , )  = L, the  lower 
threshold  value, 

V =  L + E[A(t4) - A ( t , ) ]  - E[D(t,) - D(t,)] 

- E[K(t4)I 

= L + PT, - E[D(t4) - D(t,)] - E[K(t,)]. (3)  

Case 1 :  Exponential  Processing  Time 
When  exponential  processing  time  distribution is con- 
sidered,  the  process K (  t )  can be characterized by the 
queue size in an M/  M/  1 queuing system with  a waiting 
room of capacity N ,  an arrival rate p ( f ) ,  and a service 
rate A ( t ) ,  i.e., interarrival  time and  service time in the 
queuing system of the  process K (  t )  are identical to mes- 
sage  processing  time  and  interarrival  time,  respectively. 

To  avoid any ambiguity, the  process K (  t )  will be con- 
sidered in terms of queue size  in the following analysis, 
and all terms  such  as arrival, departure,  etc.  are referred 
to this  queuing system. 

Expected  number of lost messages 
Since it is unlikely that K ( t )  will attain  the value N 
during the slowdown  period, D (  t4)  - D (  t3) can  be viewed 
as a  Poisson process with a rate p(the exponential rate 
of arrivals to the queuing system).  Equation (3)  can then 
written as 

V = L + p . T , - - . T T 4 - E [ K ( t 4 ) ] .  (4) 

It  is known [ 61 that  the  transient  behavior of the  queue 
size K ( t )  in an M/  M/  1 system is characterized by 

Pij(S) = f [ K ( S )  = j l K ( O )  = i ]  

= r j - i (S)  + p- i - l r j+ i+l (S)  + ( 1  - p ) d ~ - ~ - ~ - ~ ,  

( 5 )  

where 

The  free  area during each period is given by P = P I P ,  

and 

O = t o < t , < . ~ ~ < f , = C .  

i 

266 Then  the  total  free  area Based  upon  this  relation, it can be shown  that 
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i-1 

+ C, ( i  - j )  p"rj (S). 

Since P [ K ( t , )  = L] = 1 ,  

j=l 

E [ K ( t , ) l  = E [ K ( t ,  + T, ) IK( t , )   =LI ,  

which is given by Eq. (6 )  with S replaced by T ,  and i 
by L. Thus,  the  expected number of lost  messages V can 
be determined by Eqs. (4) and (6) .  

Expected  free area  during recovery  period T ,  
The  recovery period starts  at t = 0 with K (0') = M .  Since 
A (  t )  = 0, for t E [ 0, t l )  , the  queue  size K (  t )  grows mon- 
otonically at a rate p. For a given K ( t l ) ,  it is well known 
that  the arrival epochs  are uniformly distributed  over  the 
interval [ 0, t , )  ; hence 

EIAI IK( t , ) l  = K ( O )  T l  + 4 E [ K ( t l )  - K ( 0 ) 1  T , ,  

and 

E I A l ]  = M * T ,  + +p . Tt.  ( 7 )  

Expected  free area  during rush  period T,  
During this  period, the  server  resumes his service with a 
rather high rate CY > p. In  order  to  evaluate 

E[A,l =I" E [ K ( t ) ]   d t ,  
*l 

one may first compute  the conditional expectation 
E[  K ( t )  1 K (  t , ) ]  by employing Eq. (6) to  obtain E [   K ( t )  I .  
This  approach,  however,  requires a tedious computa- 
tional effort. A  simple  approximation of sufficient ac- 
curacy  is recommended in the following: 

By assuming that P [  L < K (  t )  < N ,  t E [ t , ,  t,) ] 1 ,  it 
follows that 

K ( t )  M K(t l )  + -o(f,)l - [ A ( ? )  - -A ( t l ) l .  (8)  

Then 

and 

M [ M  + p T l  - ( p  - a) t ]  dt 

= (M + p T , )   T ,  + (a: - p) T i / 2 .  (9) 

The  accuracy of Eq. (9) depends upon parameters a, 
p and T,. In general, a should be large compared with p 
so that K ( I )  < N .  On  the  other  hand, T,  must be small 
enough that K ( t )  > L. 

Figure 3 Busy periods and areas under k ( f )  during normal 
period T,, when k (  fZ) - L = 3.  

Expected  free area  during normal  period T ,  and  expected 
length of the  normal  period 
After a  rush period,  the  service  rate  is back to normal; 
i.e., A(t )  = A. The termination of the normal  period is at 
the  instant when K ( t )  = L,  and  therefore T3 is a  random 
variable. In this situation,  one should evaluate not  only 
E[A,] but also E[ T 3 ] .  This can  be done by  introducing 
the  concept of a  busy  period. 

A  busy  period is initiated  by an arrival that finds an 
idle server,  and terminated when  the  system first be- 
comes idle. Thus, a  busy  period is identically  distributed 
as  an interval [x ,  y ) ,  such  that K ( y )  = K ( x )  - 1 and 
K ( z )  > K ( y ) ,  V z E [ x ,  y ) .  If K(r,)  = n + L,  then the 
period T,  contains n distinct busy  periods ( B l , .  . ., B,) 
and Bi is defined by the busy  period of an M / M /  1 queue 
with  a finite waiting room of capacity N - K (t,) + i. 
(See Fig. 3 . )  It can  be shown  that 

E[B,]  =- I ( I  - P Q ) >  (10) 

where p = p / A ,  and Q = N - K(t , )  + i. Thus, 

E[T , IK( t , )   =k]  = - 

A " C L  

A-L 1 
( 1  - P Q )  

Q=N-R+1 A - 

- k -  N-k+l  
1 - p"-L 

A - P  I - p  
, and 

Let ai be the  expected  area  under  the  curve of the 
queue size in an M /  M /  1 queue during Bi,  and Y = 
K ( t , )  - L. Given Y ,  the conditional expected  free  area 
(see Fig. 3 )  is 

Y 

E[A31Y] = x {ai + ( L  + Y - i ) E [ B , ] } .  (12) 
i = l  267 
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Note  that when the waiting room  capacity is Q = N - Since L is so chosen  that  the possibility of message 
K ( t , )  + i ,  the  expected  queue size is loss is negligible, a  simple approximation  for  E[A,] can 

L ( Q )  = lim lot N ( S )   d S l t  
be derived  as follows. For 

I+-= K ( r )  m L +   [ D ( t )  - D ( t , ) ]  - [ A ( t )  - A ( t 3 ) 1 9  

E [ [ '   N ( S )   d S ]  
- - 

E[B,+I ]  ' 

where N ( S )  is the  queue size at time S and I is the idle 
period. By definition, 

ai = E[L: N ( t )   d t ]  

Furthermore,  it is easy  to  show  that 

ByusingEqs. ( l o ) ,  (12),(13),and(14),itfollowsthat 

t E [t,, f 4 ) >  

E[K( t ) ]  = L - (P  - p )  ( t  - f , ) .  (19) 

Therefore, 

E[A,] = LT, - +(/3 - p )  Ti. (20) 

Expected area during the depletion period T ,  and ex- 
pected length of the depletion  period 
During this  period, no  customer will be served (i.e., 
there  are  no incoming messages),  hence h ( t )  = 0. The 
period is terminated when queue size is equal to M. It 
follows  immediately that K ( t )  - K(t , )  is a Poisson pro- 
cess with a rate p and K ( T ~  + C) = K (T,+,) = M. 

E[T,IK(t,)l =- [ M -  K ( t , ) l ,  
1 

CL 

and 

E[A,IK(t,)]  =@[T,IK(t,)I (M - K( t , )  - 1 )  

+ ( n  +-----I - (1 - E[p-'I)], 
1 pn+' + E[T,lK(t ,) l   K(t ,) .  

1 " p  I - p  ( 15) Taking  expectations  on both sides of the  equations and \" ,  
using Eq. (19) ,  we have 

where n = N - L - 1 and Y = K (t ,)  - L. 

Y in Eq. ( 1  5)  as follows: CL 
By using Eq. ( 8 ) ,  one  can  estimate  the  expectations of E [  T,] = - 1 [M  - L + ( p  - p )  T,],  and (21 1 

Y M M + [D( t , )  - D ( O ) ]  - [ A  ( t , )   -A(O)]  - L 

= M + D ( r , )  - [ A ( t * )   - A ( t , ) ]  - 3 5 .  

Since D (t,) and A (t,) - A ( t , )  have approximately in- 
dependent Poisson  distributions  with  means h ( T ,  + T,) 
and aT,, respectively, 

E I Y ] m M - L + p T I +  ( /L - - (Y )T , ,  (16) 

E[Y2] M p ( T l  + T 2 )  + a T ,  + ( E [ Y ] ) ' ,  and (17) 

E [ p - Y ] = p L " e x p { [ h ( T , + T , ) - a T , ]  (1-p)].  (18)  

By substituting Eqs. ( 1 6 ) -  (18) into Eq. (15 ) ,  E[A,] 
is obtained. 

Expected  free area during slowdown period T ,  
The slowdown  period starts when K ( t )  is reduced to L. 
Then, h ( t )  = /3 < p. Clearly 

E[A,] = E [ Y  K ( t )  dt] 
f 3  

= loT4 jP,,(t)  dt, 
j = O  

where P,,(t) is defined by Eq. (5 )  

E[A,] =- { M ( M  - 1) + L - 2 / 3 .  T ,  1 
2P 

+ [ L  - (/3 - CL) T,]']. (22) 

9 Case 2: Constant Processing Time 
When the processing  time is constant, say d, the  random 
process K ( t )  or  its complement N ( t )  = N - K ( t )  no 
longer possesses  the memoryless property.  This prob- 
lem can be  handled by means of the imbedded Markov 
chain as in the analysis of the M I D /  1 queue with finite 
waiting room of capacity N .  The regenerative  cycle has 
the  same  components  as in the exponential case. Using 
the  same  approach  as before, the  separate analysis of the 
five periods ( T , ,  i = 1, 2, .  . ., 5)  may be carried  out.  The 
complication of this  analysis lies in the  fact  that, with the 
exception of T I ,  each of the periods  may  not  initiate at 
the  instant of service completion. In  the  case of T ,  and 
T,, the remaining service times of the first message, S, 
and S,, are fixed values. For  the periods T ,  and T,, the 
remaining service times of the first message, S, and S,, 
are random  variables. In  the  appendix, we outline  a 
method of determining the distribution of S,. Knowing 
the distribution of S,, we may easily find the distribution 
of S, since T,  is constant. 
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qj = P[there  are j arrivals during time  interval dl 

vice  time on utilization is rather small and  can usually 
be  neglected. 

The  determination of free  area Ai  or its  complement 
N T ,  - A i  is straightforward for  the periods T ,  and T ,  
since A ( t )  = 0 for  these periods. For T ,  and T,, the com- 
putation is more  complicated. One may evaluate  the 
process N ( t )  through a few consecutive processing 
intervals of length d each. 

For  the normal  period T,, which takes  up a large  per- 
centage of the  cycle time, we shall describe in  detail the 
method of evaluating 1)  the  expected length of the 
period E[ T,] ,  and 2 )  the expected used buffer area 

Since  the normal period may not start  at a service 
completion, we discuss  the first  message service time 
separately from the  subsequent messages. 

E [ N .  T , - A , ] .  

Distribution of N ( t )  at  the  end of j i rs t  message  service 
time,  N ( t ,  + S , ) .  
Note  that 

N ( t ) % N - M + A ( t ) - D ( t )  

= N - M + A ( t )  - h ( t / d ) ,  t E 0,  ( 2 3  1 

where h ( X )  is the integer part of X .  Since  the Poisson 
arrival stream  has a rate 

0 5  t < t , ;  

t ,  5 t < t,; 

t ,  5 t < t, + s,. 
H 

P [ N ( t ,  + S,) = n ]  = x e - u T 2  - [ (a:)i] e - ~ ~ 3  
i =O ( R  - i ) !  ' 

(24) 

where R = n - N + M + h ( t z  + S , / d ) ,  and S, is the 
fraction part of t , /d .  

Expected  length of the  normal  period T ,  
The length of a normal  period can be interpreted  as  the 
first passage  time of the  event { N ( t )  = N - L } .  Let 

B ,  = rnin { t l N ( t )  = N - L, N ( 0 )  = n ,  N(O-) = n + l}, 

and 

6,  = E[B,] .  

Clearly, 

E [ T , ] = S , + C b , . P [ N ( t , + S S ) = n ] .  ( 2 5 )  

It is then  required to  evaluate 6,. Define  a Markov chain 
imbedded at  each  departure  epoch,  and let 

n 

= e  
-Ad 

j !  . 

Suppose  that a departure  occurs  at t and N ( t + )  = n. If 
n = 0, the  next transition  must be an arrival. In  the  case 
in which n > 0 and there  are k arrivals  during the  next 
service time d,  then N ( t  + d )  = ( n  - 1 ) + k .  For k 1 
( N  - L )  - n,  

Consequently, a set of linear equations  can  be defined as 

b, = 2 ( d +  bn-l+j)  qj 
N-L-n-1  

j = O  

In solving for { b, } ,  the value of E [ T,]  can be determined 
by using Eqs. (24) and ( 2 5 ) .  

Expected  used  buffer area E [ N  . T, - A,]  during  the 
normal period 
Define 

If there  are k arrivals during  an  interdeparture time d, 
then  the  expected  area an will be 

N - L - n - 1  d N - L - n  ' 2 ) k + l  

i f k P N - L - n .  

It follows that 
.V--L--n-l K + 2n 

The conditional expectation of the used buffer area during 
S,, given that N ( t ,  + S,) = n, is 269 
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Table 1 Computation of simulation  and  analytic  results. 

Given  Data: 
a = 44.8 Message  size 256 bytes 
h = 38.4 L = 8 message  units 
p = 3 2  M = 32 message  units 
p =  36 N = 64 message  units 

~~ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ ~  ~~ 

Constant  Proc. Time Exponential  Proc. Tirrze 
Simulation Analytic  Simulation  Analytic 

- ~~ 

T ,  0.1 0.1 
T,  0.5 0.5 
T ,  9.67 9.66 
T4 1 1 
T5 0.532 0.556 0.544 0.556 

9.56 9.08 

(util) T I  0.479 0.470 0.472 
(util) T ,  0.483 0.479 0.478 
(util) T ,  0.562 0.569 0.496 0.490 
(util) T ,  0.838 0.837 0.844 
(util) T,  0.670 0.683 0.691 
C 11.9 11.81 11.8 11.24 
Utilization 0.588 0.594 0.535 0.53 1 
Message Loss (%) 2.5 X 1.5 X 10"' 8.4 X 

w h e r e R = n - N + + + h ( t , + S 3 / d ) . F r o m E q s . ( 2 4 ) ,  
(28),  and  (291,  the value of 

E [ N . T 3 - A 3 ] = Z   ( W , + a , )  P [ N ( t , + S , ) = n ]  
n 

(30) 

can be determined. 

Numerical results and discussion of results 
A  sample  problem  illustrating the  3705 NCP process 
was  chosen with the following data: 

A fixed size  message  length of 256 bytes is assumed. 
The buffer pool N is 16K  bytes,  or  the equivalent of 64 
message  units. The  NCP processing rate is estimated  to 
be 36 message  units  per second. 

Three combinations of threshold  values ( M ,  L )  in 
terms of message  units are  selected  for  study.  They  are 
(32, 8), (32,  16)  and  (16, 8 ) .  

Arrival rate A of traffic to  the NCP during the normal 
phase T,  varies  from 38 to  46 message  units per  second. 
The  corresponding  rush  phase  rate Q during T,  varies 
from 44 to  52 message  units per  second. 

The lengths of the  recovery  phase T, ,  the  rush  phase 
T,, and the slowdown phase T ,  are  estimated  to be 0.1, 
0.5,  and 1.0 respectively. 

The  cases  for  both  constant  and exponential  processing 
time are investigated for  the normal phase T,. For  the 270 
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other  phases,  computations  are  based  on exponential 
processing time. Results  are verified through a detailed 
simulation using APLOMB [ 71. Simulation results confirm 
our  assumption  that buffer utilization  during T, ,   T , ,   T , ,  
and T ,  varies slightly with respect  to  the processing  time 
distribution (exponential  or  constant).  Total buffer utili- 
zation,  however, differs significantly for  the  two  cases. 

From simulation results,  it is observed  that when 
( M ,  L )  = (16, 8), the values of M and L are so close 
together  that a stable  system  cannot be  realized. The 
process simply oscillates between slowdown and rush 
phases. 

Computation of simulation and analytic  results 
Computation  results  and  the  chosen conditions on which 
the  computations  were  based  are given in Table 1. 

Cycle  length, bufjer  utilization, und fractional loss oj 

Figures  4, 5 ,  and  6 give the plots of cycle length,  overall 
buffer utilization and  fractional  message loss against 
traffic arrival rate A. 

The ( M ,  L J  = (32, 8)  case gives a  higher utilization 
than  does  the ( M ,  L )  = (32,  16)  case,  but  the fractional 
message loss is  also higher. 

message 

Discussion of results 
When  the buffer pool size N is given, the designer may 
choose  the smallest  value of L such  that  the fractional 
message loss can  be kept within an allowable limit. He 
may then select  the  value of M which  gives the  best utili- 
zation. However, buffer utilization governs  the mean 
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Figure 4 Expected cycle length vs traffic arrival rate in  T,. 

effective traffic arrival rate, which is always less  than A. 
The  net result of slowdown is typically  a  longer wait time 
at  the terminal. If the long wait time is  not  acceptable,  the 
designer may have to  increase  the buffer pool size N .  
The tradeoff between cost of buffer storage and delay 
at  the terminal must be weighed for a  compromise 
solution. 
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Appendix- distribution of the first message service 
time  in slowdown period S,, when processing time 
is constant. 
For a stable system, it is required that N ( t , )  < N - L. 
Assume  that  there  are k arrivals  during S,. Two different 
cases may exist: 

1 .  k + N ( t , )  E N - L. 

In this case,  the normal  period is terminated  during S,. 
Thus, S, = S, - T,.  Note  that S ,  is a fixed value and T ,  
is the [ N  - L - N ( t , )  ]th  order sample of a  uniform  ran- 
dom variable over  the interval [0, S,]. Therefore,  the 
distribution of S, can easily be derived. 

2. k + N ( t , )  < N - L. 

Let  the age of the  last  service  time in T ,  be y ,  hence 
y = d - S,. Since d is a constant, it suffices to  obtain  the 
distribution of y. Suppose  that N ( t ,  + S , )  = i < ( N  - L )  . 
The problem can be cast in the following fashion: What 
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Figure 5 Buffer utilization vs traffic arrival rate in  T,. 

2.00 

1.75 

1.50 

- 1.25 

'0 
v 1.00 
M a 
2 0.75 

5 0.5C 

L 

- - 
F: .s 0.24 
0 

" 0  
E 

t - o(M,L) = (32,s) 
o(M.L) = (32,16) 

- 
1) " " 

0 - 
I I I I I I I I I I I I I  1 1  

39 40  41  42  43 44 45 46 

Traffic arrival rate in T3 

Figure 6 Fractional loss of messages vs traffic arrival rate 
in T,, 

is the age distribution of the last servici: time at which an 
M / D / 1 queue  starts  its  operation with queue length i 
and  terminates  its  service  at  the first time the  queue 
length is  equal to N - L? 

First, we investigate the conditional  distribution of the 
queue length at  the beginning of the  last  service,  or 
N ( h + )  Ih = t ,  - y ,  for a given i. (See Fig. 7.) 

Define a Markov  chain {Xn, n = 1, 2 , .  . .} such  that X ,  
is the  queue length in the  system when the  nth  customer 271 
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Figure 7 Number of used buffer units and age of the  last ser- 
vice  time in T,. 

is about to be  served. {X,}  can  take  one of the  states 
{ I ,  2, .  . ., N - L - 2, g }  where g is an  absorbing  state in- 
dicating X, f N - L - 1. Let 

~j,m’ = P[x,+, =jJxn = i] , 

P . .  = P ! ! ) ,  
13 11 

y = t3 - y ,  and 

Qjj(i) = P [ N ( y + )  = j l N ( t ,  + S , )  = i, N ( t i )  = N -  L ] .  

Then 

Q , ( i ) = ~ P [ X , - , = j , X , = g I X , = i l .  

Given X ,  = i ,  the  event {X,-l = j ,  X n  = g }  implies that 
X, # g, ‘dm < n - 1, since  the period T ,  would be termi- 
nated  at  any X ,  = g. Using the  Markov  Property, 

P [ X , - ,  = j ,  X ,  = g l X ,  = i] 

,=1 

= P [ X ,  = g ( X n - ,  = j ]  P[Xn- ,  =jlXl = i] 

= Pj,P;l!-”. 
Therefore, 

Q, ( i )  = Pj,P:;-” 
m 

n=1 

m 

i # j ;  (31) 
- - 
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Write 
m fi, = Pi?’ 

n=l 
13 

= Pi ,  fkj + P i j ,  Vi ,  j # g .  (34) 

UsingEqs. ( 3 1 ) - ( 3 4 ) , Q j ( i ) , j = 1 , 2 ; . . , N - L , 2 c a n  
be solved. 

To  evaluate  the age  distribution of service y ,  we con- 

k # R  

sider first the conditional  probability 

P [ y 5  t ( N ( h + )  = j ,  N(t,+S,) = i ]  

where 

Then, we have 

After making Eq. ( 3 5 )  unconditional by using Eq. (24),  
the age distribution P [ y  I t ]  follows. 
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