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Buffer Performance Analysis of Communication
Processors During Slowdown at Network Control

Abstract: An approximate model based on renewal theory has been developed for the performance analysis of communication pro-
cessors during Network Control Program (NCP) slowdown. Performance values, which include cycle length, buffer utilization, and
message loss, were computed as functions of traffic loads and user-assigned threshold values of free buffers were used for slowdown con-
trol. Comparison of results obtained by the approximate method with simulated results shows a high degree of accuracy for the ap-

proximation.

Introduction
Teleprocessing in data communication systems is a
rapidly growing part of the data processing industry. The
complexity of a teleprocessing network increases with
the diversity of teleprocessing products, communication
facilities, transmission control units, and other equip-
ment. In earlier installations, primary control of the tele-
processing network was performed by the central pro-
cessing unit (CPU), with an access method administering
the flow of data from the stations to the CPU and vice
versa. Because of this additional requirement for message
handling, the performance of the CPU as a resource for
application processing was degraded. With the intro-
duction of communication processors such as the IBM
3704 or 3705 [1], this problem has been partially alle-
viated. Many message control functions have been trans-
ferred from the CPU to the communication processors.
Within the environment of the IBM Virtual Tele-
communication Access Method and the Network Con-
trol Program (VTAM and NCP), the IBM 3704 or 3705
interacts with the communication scanner and the chan-
nel adapter in controlling flow of data through the net-
work. In order to achieve high productivity, the per-
formance of the 3704 or 3705 with the NCP software
must be evaluated. Storage and performance estimates
for this purpose are provided in published material [ 2, 3].
One of the major concerns in performance is the
storage buffer pool for temporary storage of message
data. Both inbound and outbound messages must reside
in the buffer pool during the processing time of the NCP
which includes error checking, block handling, and mes-
sage routing. Buffer pool estimates are usually made
based on the traffic requirements of the network [2].
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Under normal operating conditions, the buffer pool will
be adequate for handling message traffic. During periods
of peak load, however, sporadic bursts of messages may
occasionally cause the buffer pool to overflow. Since
many of the messages are sequenced, loss or retrans-
mission of too many messages could severely degrade
NCP performance and lead to a possible deadlock [ 2, 3].

To partially relieve this situation, a slowdown algo-
rithm has been implemented in the NCP software [4].
The algorithm provides two threshold values of free
buffer space for controlling message arrival. When the
free space in the buffer pool is reduced to the lower
threshold value, pooling for terminal messages to the
NCP is temporarily suspended and the subsequent de-
pletion of messages in the buffer pool will free the buffer
units. Arrival traffic resumes when the free space reaches
the higher threshold value. Since the long-term overall
arrival rate averages out to the normal operating con-
dition, the system will eventually settle down after the
sporadic bursts.

In this paper, we study the mechanism of the slowdown
process in detail and analyze system performance in
terms of buffer utilization and message loss. The follow-
ing sections describe the slowdown process, give a
mathematical method of analysis based on renewal
theory, and present some illustrative examples of
computation.

Slowdown process in the NCP—traffic rates and
buffer usage

Although the sequence of events that takes place in the
NCP during the slowdown process is difficult to describe
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exactly, an approximate model may be used to depict
the process in terms of repeated cycles (Fig. 1). Each
cycle consists of five consecutive phases which are
described as follows:

As buffers, or buffer units, from the buffer pool are
used, the number of free buffer units, or the total free
area, is decreased. At times of sporadic heavy load, the
number of free buffer units drops down to or below the
lower threshold value L. Consequently system slowdown
takes effect, occurring at ¢, in Fig. 1.

The slowdown period, from ¢, to 7, in Fig. 1, may be
divided into two phases. During phase one (r, to t,), the
NCP stops polling messages and also issues a halt of
traffic request to the VT AM host. Messages continue to
arrive at a slower rate until residual messages in the net-
work are cleared. The length of this phase (7,) corre-
sponds roughly to the transmission time of all messages
from some station during a single poll. Since messages
continue to arrive while buffer capacity is limited, there
is a possibility of message loss. The second phase, from
t, to 7, ,, represents a period of depletion, during which
arrival traffic is stopped and buffers are returned to the
free space. System slowdown ends and the recovery
period commences when the number of free buffer units
reaches the upper threshold value M at time 7,_ .

The recovery period, from 7, to ¢,, may again be de-
scribed in two phases. During phase one (7, to t,), al-
though the NCP starts polling, there is a delay in the ar-
rival of messages. The length of this phase (T,) is roughly
equal to the transmission time of a poll message. The
second phase, from ¢, to 1,, experiences an abnormally
high rate of traffic because of the accumulation of mes-
sages at stations during the slowdown process. The
length of this phase (7,) and the traffic rate may be
estimated from the length of the slowdown period and the
amount of suppressed traffic. At time ¢,, the normal
traffic period resumes. This continues until the next
point (¢,) at which the lower threshold L is again reached.
This period is shown as T,.

Total buffer pool size is usually determined from nor-
mal traffic conditions [2]. With a fixed buffer pool size,
the assigned values of the thresholds L and M affect buffer
utilization and message loss. In general, the allowable
percentage loss of messages is held below a certain value,
while utilization of buffers may be optimized under given
rates of traffic and processing.

The following sections present an analytical method for
evaluating buffer utilization and loss of messages.

Assumptions

The arrival stream is assumed to be a Poisson process
with a rate A(t). Figure 2(a) depicts a typical arrival rate
A(r) along the time axis. In this analysis, it is assumed
that A(f) is a jump process [ see Fig. 2(b)] such that
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Figure 2 Message arrival intensity A (7).

0 during the recovery and depletion periods,

A1) = a during the rush period,

A during the normal period, and
B during the slowdown period,

and B <A< a.

The message processing rate u remains constant at all
times and corresponds to the average rate of release of
buffer units at the NCP.
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The random process K(t), which represents the num-
ber of free buffer units at time ¢, is shown in Fig. 1. For a
stable system the process K (#) must not drop down to the
slowdown threshold L during the rush period, i.e.,
P[K(1) > L] is almost equal to unity for ¢, = 1 < ,.
Similarly, it is required that P[K(f) < M] be close to
unity for 1, = 1 < t,.

The periods T, T, and T, are constant.

All messages are of the same length as the buffer unit
size.

Analysis

The expected number of lost messages (in terms of
buffer units) during a slowdown period and the extent of
buffer utilization can be derived based on the behavior
of the process K(r). Two cases are investigated, the first
for exponentially distributed processing time, and the
second for constant processing time. In the NCP prob-
lem, the constant case is closer to reality.

It is well known [ 5] that expectations derived from a
regenerative process can be obtained by looking at one
single regenerative cycle, and this approach is adopted
for our studies. Let {7, i=1, 2,- - -} represent a sequence
of time epochs such that a recovery period begins at each
7,. Since the arrival of message units is assumed to be a
Poisson process and a recovery period is always initiated
by having K (ﬁ) = M, the upper threshold value, it is
clear that {7,} forms a regenerative process with a cycle
length C =7, , — 7, (see Fig. 1).

For convenience, it is further assumed that r =0 is a
regenerative point. Both the cumulative number of ar-
rivals 4(f) and the cumulative number of departures
D(t) have a zero value at ¢t = 0.

Buffer utilization is then defined by

EUC K dt]

==y Rl

(1

where N is the buffer pool size. The numeratorin Eq. (1)
represents expected total free area (buffer-time units)
during C, which will be evaluated by separately con-
sidering the periods {T,, i=1,- -, 5}. Let

i
,=> 1T,
j=1

The free area during each period is given by

i=12,--5.

]
a=[" k@ i=120s, 2)
iy

and
0=t <t < <t,=C.

Then the total free area
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c 5
A=f K() dt=Y A,
0 i=1

The expected number of lost messages during C is
given by

V=E[A(C) — D(C)].

For a stable system, message loss can occur only during
the slowdown period T,. Since K(t,) = L, the lower
threshold value,

V= L+E[A(1) —A(t,)] —E[D(t,) — D(1,)]
—E[K(2)]
=L+ B8T,—E[D(t,) —D(t,)] —E[K(t,)]. 3)

e Case I: Exponential Processing Time
When exponential processing time distribution is con-
sidered, the process K(t) can be characterized by the
queue size in an M/ M/ 1 queuing system with a waiting
room of capacity N, an arrival rate u(t), and a service
rate A(r), i.e., interarrival time and service time in the
queuing system of the process K(r) are identical to mes-
sage processing time and interarrival time, respectively.
To avoid any ambiguity, the process K (r) will be con-
sidered in terms of queue size in the following analysis,
and all terms such as arrival, departure, etc. are referred
to this queuing system.

Expected number of lost messages

Since it is unlikely that K(f) will attain the value N
during the slowdown period, D(#,) —D(¢,) can be viewed
as a Poisson process with a rate u(the exponential rate
of arrivals to the queuing system). Equation (3) can then
written as

V=L+B'T4_M'T4*E[K(t4)]- (4)

It is known [ 6] that the transient behavior of the queue
size K(f) in an M/ M/ 1 system is characterized by

P,(S) = P[K(S) =jlK(0) =]

=1, () +p T (S) + (1 —p)o'R__, .

(5)
where
p=u/pB,
o S n+j S n
r(8) = > kS E:-:j)!e_ﬁs ('Bn!) , and

R(S) = 3 r(S).

i=—aw

Based upon this relation, it can be shown that
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E[K(S)|K(0) =il =i+ (;L-B>s+IT”p

xexp {B(p— 1)S+ pu(p™ — 1)S}

~i

p P
—l—_p‘FT_—pE}(P —p7) r(8)
+3 (i=5) 71, (5). (6)

Since P[K(z,) =L] =1,
E[K(t)] =E[K(t,+ T )|K(z,) =L],
which is given by Eq. (6) with S replaced by T, and i

by L. Thus, the expected number of lost messages V can
be determined by Egs. (4) and (6).

Expected free area during recovery period T,

The recovery period starts at r= 0 with K(0") = M. Since
A(#) =0, for t € [0, 1), the queue size K(s) grows mon-
otonically at a rate u. For a given K (z,), it is well known
that the arrival epochs are uniformly distributed over the
interval [0, ) ; hence

E[4,|K(t)] =K(0)T, +3E[K(z) — K(0)]T,,
and
E[4,]=M - T,+3u-T:. (7)

Expected free area during rush period T,
During this period, the server resumes his service with a
rather high rate « > w. In order to evaluate

Bl4,) = [ BIK()] a,

one may first compute the conditional expectation
E[K(7)|K(t,)] by employing Eq. (6) to obtain E[K (#}].
This approach, however, requires a tedious computa-
tional effort. A simple approximation of sufficient ac-
curacy is recommended in the following:

By assuming that P[L < K(f) < N,t €[, 1,))] = 1,it
follows that

K(t) & K(1) +[D(1) = D(1,)] —[A(1) —A(1)]. (8)
Then
E[K(H]IAM+uT, — (p—a)(t—1,),

and
Ty

E[4,] NJ' M+ uT, — (p—a)1] dt
0

= (M+puT)T,+ (a—p) T2/2. (9)

The accuracy of Eq. (9) depends upon parameters «,
w and T,. In general, « should be large compared with u
so that K () < N. On the other hand, T, must be small
enough that K(r) > L.
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Figure 3 Busy periods and areas under k(¢) during normal
period T,, when k(1,) — L =3.

Expected free area during normal period T, and expected
length of the normal period

After a rush period, the service rate is back to normal;
i.e., A(f) = A. The termination of the normal period is at
the instant when K (7) = L, and therefore T, is a random
variable. In this situation, one should evaluate not only
E[4,] but also E[T,]. This can be done by introducing
the concept of a busy period.

A busy period is initiated by an arrival that finds an
idle server, and terminated when the system first be-
comes idle. Thus, a busy period is identically distributed
as an interval [x, y), such that K(y) = K(x) — 1 and
K(z) > K(y),Vz€[x,y). If K(t,) = n + L, then the
period T, contains » distinct busy periods (B, -, B,)
and B, is defined by the busy period of an M/M/ 1 queue
with a finite waiting room of capacity N — K(¢,) + i.
(See Fig. 3.) It can be shown that
BIB) =51, (1=p%), (10)
where p = u/\, and Q = N — K (z,) + i. Thus,

N—-L

1
E[TJK@n)=kl= ¥ == 1-p%
Q=N—k+1 K
k—L R P
i —— ————, and
& p 1—p an
E[K(IZ)] —L B pN+1E[p4K(22)] _ pN-—L+1

E[T,] = (11)

A—p 1—0p

Let a, be the expected area under the curve of the
queue size in an M/M/1 queue during B,, and ¥ =
K(t,) — L. Given Y, the conditional expected free area
(see Fig. 3) is

E[A3|Y]=§Y: {a,+ (L+Y~DE[B]}. (12)

i=1

267

BUFFER PERFORMANCE ANALYSIS




268

Note that when the waiting room capacity is Q = N —
K (t,) + i, the expected queue size is

L(Q)= lim [ N(s) ds/1

EU:i N(S) dS]

~ E[B,+1]

where N(S) is the queue size at time S and 7 is the idle
period. By definition,

o[ e a

=L(Q) {E[B] + 1/u}. (13)
Furthermore, it is easy to show that

+1 Q+1
Lig)=—t__@*Der (14)
1—p 1—p

By using Eqgs. (10), (12), (13), and (14), it follows that

A= (B () e

n+1

+ <n+7{—;) P (=Bl D

(15)

where n=N—L—1and Y =K(1,) — L.
By using Eq. (8), one can estimate the expectations of
Y in Eq. (15) as follows:

YA M+ [D(1,) — D(0)] — [A(1,) —A(0)] — L
— M+D(1,) — [A(t,) —A(1,)] — L.

Since D(t,) and A(t,) — A(z,) have approximately in-
dependent Poisson distributions with means M7, + T,)
and «T,, respectively,

E[Y]RM—L+ul,+ (p—a)T,, (16)
E[Y' ]~ u(T, + T, + aT,+ (E[Y])", and (17)
E[p71=p""exp {[M(T,+ T,) —aT,] (1—p)}. (18)

By substituting Eqs. (16)-(18) into Eq. (15), E[4,]
is obtained.

Expected free area during slowdown period T
The slowdown period starts when K (¢) is reduced to L.
Then, A(1) = B < u. Clearly

E[4,] = EUt4 K(1) dt]

Ty »
- [ Siruo a,
o iZe

where PLj(t) is defined by Eq. (5).
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Since L is so chosen that the possibility of message
loss is negligible, a simple approximation for E[A4,] can
be derived as follows. For

Ky~ L+ [D()—D(t,)]— [A() — A1) ],

tE [t,t,),
EK(H)]=L—(B—u)(t—1,). (19)
Therefore,

E(A4,]=LT,—%B—un) T, (20)

Expected area during the depletion period T, and ex-
pected length of the depletion period

During this period, no customer will be served (i.e.,
there are no incoming messages), hence A(z) = 0. The
period is terminated when queue size is equal to M. It
follows immediately that K(7) — K(t,) is a Poisson pro-
cess with a rate u and K(r,+ C) = K(7,,) =M.

1

E[T,/K(1,))] :i [M—K(,)],

and
E[A4,|K(t,)] =3E[T,|K(r,)] (M —K(z,) — 1)
+ E[T,|K(1,)] K(t,).

Taking expectations on both sides of the equations and
using Eq. (19), we have

E[T5]=;1L-[M—L+(B—u) 7], and (1)

E[4,] =i (M(M—1)+L—28"-T,
+[L—-(B—w TJ} (22)

s Case 2: Constant Processing Time

When the processing time is constant, say d, the random
process K(t) or its complement N(¢t) = N — K(1) no
longer possesses the memoryless property. This prob-
lem can be handled by means of the imbedded Markov
chain as in the analysis of the M/D/1 queue with finite
waiting room of capacity N. The regenerative cycle has
the same components as in the exponential case. Using
the same approach as before, the separate analysis of the
five periods (T,,i=1, 2,---, 5) may be carried out. The
complication of this analysis lies in the fact that, with the
exception of T, each of the periods may not initiate at
the instant of service completion. In the case of T, and
T,, the remaining service times of the first message, §,
and S,, are fixed values. For the periods T, and T, the
remaining service times of the first message, S, and S,
are random variables. In the appendix, we outline a
method of determining the distribution of §,. Knowing
the distribution of S,, we may easily find the distribution
of S, since T, is constant.
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For practical problems, the number of messages served
during each period is so large that the effect of first ser-
vice time on utilization is rather small and can usually
be neglected.

The determination of free area A4; or its complement
NT,; — A, is straightforward for the periods 7, and T,
since A(¢) = O for these periods. For T, and T ,, the com-
putation is more complicated. One may evaluate the
process N{(t)} through a few consecutive processing
intervals of length d each.

For the normal period 7,, which takes up a large per-
centage of the cycle time, we shall describe in detail the
method of evaluating 1) the expected length of the
period E[Tg], and 2) the expected used buffer area
E[N - T,— A4,).

Since the normal period may not start at a service
completion, we discuss the first message service time
separately from the subsequent messages.

Distribution of N(t) at the end of first message service
time, N(t,+ 5,).
Note that

N(H~N-—-M+A(t) — D)
=N-—-M+A()—h(t/d), =0, (23)

where h(X) is the integer part of X. Since the Poisson
arrival stream has a rate

0, 0=r<1;
A1) =qa, L=<ty
A, L=t<t,+85,

fl

R T.) AS)"
P[N(tz + 53) — n] 2 e-uTg l:(al!z) ] e')\SS [—ER 3_)1)!]’
(24)

where R=n— N+ M+ h (t,+ S,/d), and §, is the
fraction part of 1,/ d.

Expected length of the normal period T,
The length of a normal period can be interpreted as the
first passage time of the event {N(r) = N — L}. Let

B,=min {{N(t)=N—L N(0)=n, N(O)=n+ 1},
and

b,=E[B,].

Clearly,

E[T,)=S,+Y b, PIN(t,+8;) = n]. (25)

It is then required to evaluate b,. Define a Markov chain
imbedded at each departure epoch, and let
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q; = P[there are j arrivals during time interval d]

e (A2)’

; (26)

Suppose that a departure occurs at ¢ and N(¢7) = n. If
n = 0, the next transition must be an arrival. In the case
in which n > 0 and there are k arrivals during the next
service time d, then N(t + d) = (n— 1) + k. For k =
(N=L)~—n,

E[B,|k] =(ﬂ;—f%:—”d.

Consequently, a set of linear equations can be defined as

N—L-n-1
b,= 2 (d+ b, ;) 4
j=0
> N—L—n
+ d-——/—"4q,
j:I\rg—n jt1 !

n:l’z’...,N_L_z.,

by =1+ b

[ A 1

(27)

In solving for {b,}, the value of E[ T,] can be determined
by using Egs. (24) and (25).

Expected used buffer area E[N - T, — A,] during the
normal period
Define

an=EUBn N(t) dtf)N(O) =n, N0 )=n+ l}.

If there are k arrivals during an interdeparture time d,
then the expected area a, will be

(nd+§d)+an_kﬂ,
ifk=0,1, - N—L—n—1I;

N—L—n—l) N—L—n
+
(” 2 T

iftk=N—-L—n.

It follows that

( N-L-n-1
an = E (K - 2” d + an#’Kvl) qK

K=0 2

<N—L+n— 1)<N-—L—-n>
dq,,

D>

K=N-~L-n

n=1,N—L—2;

2 K+1

(28)

The conditional expectation of the used buffer area during
S,, given that N(z, + §,) = n, is
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Table 1 Computation of simulation and analytic results.

Given Data:
a =448 Message size 256 bytes
A =384 L = 8 message units
B =32 M = 32 message units
©w=36 N = 64 message units
Constant Proc. Time Exponential Proc. Time
Simulation Analytic Simulation Analytic
T, 0.1 0.1
T, 0.5 0.5
T, 9.67 9.66 9.56 9.08
T, 1 1
T, 0.532 0.556 0.544 0.556
(uti) T, 0.479 0.470 0.472
(uti) T, 0.483 0.479 0.478
(utih T, 0.562 0.569 0.496 0.490
(util) T, 0.838 0.837 0.844
(util) T, 0.670 0.683 0.691
C 11.9 11.81 11.8 11.24
Utilization 0.588 0.594 0.535 0.531
Message Loss (%) 2.5x10™ 1.5 x 107 8.4 x 107
W o= : [53 “(R—1) i J —er, (@Ty)' other phases, computations are based on exponential
" 2(:) 2 af ¢ i! processing time. Results are verified through a detailed
AS.)E simulation using APLOMB [7]. Simulation results confirm
oS3 (S)™ - (PIN(t, + 8,) =n]) 7, (29) our assumption that buffer utilization during T,, T,, T,

R—i

where R=n—~ N+M+h (t,+5,/d). From Egs. (24),
(28), and (29), the value of

E[N : T3 ——A3] = 2 (Wn+ an) P[N(t2 + SS) = f'[]
" (30)

can be determined.

Numerical results and discussion of results
A sample problem illustrating the 3705 NCP process
was chosen with the following data:

A fixed size message length of 256 bytes is assumed.
The buffer pool N is 16K bytes, or the equivalent of 64
message units, The NCP processing rate is estimated to
be 36 message units per second.

Three combinations of threshold values (M, L) in
terms of message units are selected for study. They are
(32, 8), (32, 16) and (16, 8).

Arrival rate A\ of traffic to the NCP during the normal
phase T, varies from 38 to 46 message units per second.
The corresponding rush phase rate « during 7, varies
from 44 to 52 message units per second.

The lengths of the recovery phase T,, the rush phase
T,, and the slowdown phase T, are estimated to be 0.1,
0.5, and 1.0 respectively.

The cases for both constant and exponential processing
time are investigated for the normal phase T,. For the
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and T varies slightly with respect to the processing time
distribution (exponential or constant). Total buffer utili-
zation, however, differs significantly for the two cases.

From simulation results, it is observed that when
(M, L) = (16, 8), the values of M and L are so close
together that a stable system cannot be realized. The
process simply oscillates between slowdown and rush
phases.

o Computation of simulation and analytic results
Computation results and the chosen conditions on which
the computations were based are given in Table 1.

s Cycle length, buffer utilization, and fractional loss of
message
Figures 4, 5, and 6 give the plots of cycle length, overall
buffer utilization and fractional message loss against
traffic arrival rate A.
The (M, L) = (32, 8) case gives a higher utilization
than does the (M, L) = (32, 16) case, but the fractional
message loss is also higher.

s Discussion of results

When the buffer pool size N is given, the designer may
choose the smallest value of L such that the fractional
message loss can be kept within an allowable limit. He
may then select the value of M which gives the best utili-
zation. However, buffer utilization governs the mean
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Figure 4 Expected cycle length vs traffic arrival rate in 7.

effective traffic arrival rate, which is always less than A.
The net result of slowdown is typically a longer wait time
at the terminal. If the long wait time is not acceptable, the
designer may have to increase the buffer pool size N.
The tradeoff between cost of buffer storage and delay
at the terminal must be weighed for a compromise
solution,
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Appendix—distribution of the first message service
time in slowdown period S,, when processing time
is constant.

For a stable system, it is required that N(,) < N — L.
Assume that there are k arrivals during S;. Two different
cases may exist: '

1. k+ N(1,) =N — L.

In this case, the normal period is terminated during S,.
Thus, S, = §, — T,. Note that §, is a fixed value and T,
is the [N — L — N(z,)]th order sample of a uniform ran-
dom variable over the interval [0, S,]. Therefore, the
distribution of §, can easily be derived.

2. k+N(,) <N-—L.

Let the age of the last service time in T, be 7; hence
v=d—§,. Since d is a constant, it suffices to obtain the
distribution of y. Suppose that N(r, + 5,) =i <{N—L).
The problem can be cast in the following fashion: What
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Figure 5 Buffer utilization vs traffic arrival rate in T,.
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Figure 6 Fractional loss of messages vs traffic arrival rate
inT
3.

is the age distribution of the last service time at which an
M/D/1 queue starts its operation with queue length i
and terminates its service dt the first time the queue
length is equal to N — L?

First, we investigate the conditional distribution of the
queue length at the beginning of the last sefvice, or
N(h")|h=1t,— v, for a given i. (See Fig. 7.)

Define a Markov chain {X,, n=1,2,-} such that X,
is the queue length in the system when the nth customer
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Figure 7 Number of used buffer units and age of the last ser-
vice time in T,.

is about to be served. {X,} can take one of the states
{1,2,--+, N— L—2, g} where g is an absorbing state in-
dicating X, = N — L — 1. Let

(m) . .
Pij = P[Xn+m ZJIXn = l]’

— 1)
P,=P,
y=1,~v, and
Q;(i) =P[N(y") =j|N(t,+ S,) =i, N(;) =N — L].
Then

0,() =3 PX, , = X,=g|X,=il.

n=1

Given X, = i, the event {X,_, =/, X, = g} implies that
X,, # g Vm < n— 1, since the period T, would be termi-
nated at any X, = g. Using the Markov Property,
PIX,  =j,X,=3glX =i]

=Plx, =glX,_,=j] PIX,_, =jlX, =il

_ (n-1)

=P,Py

Therefore,
Q=73 Png;;lil)
n=1

P, S Py, i # s (31
n=1

S (n) PR
P+ P, i=] (32)
n=1

Write
o p)
fi=2 Py
n=1

= 2 Pikfkj—%Pij(l + i)

k#j.8

= Pufy; + P Vi # g (34)

k=g

Using Eqs. (31)-(34), Q;),j=12,N—L,2can
be solved.

To evaluate the age distribution of service v, we con-
sider first the conditional probability

Ply=(N(h")=j, N(1,+8,) =]
where

t n—j—1
. oy ()"
F(1j.n) =J’0 e Ml_—ﬂ_(n — Ady.

Then, we have

NEPFUN—L ,
Ply=<{N(1,+8S,) =il= 2 F—E%JV—_L—; Q; ().

j=t
(35)

After making Eq. (35) unconditional by using Eq. (24),
the age distribution P[y = ¢] follows.
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