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Abstract: The fine structure of the muscle  forces that  are  exerted  during  the writing of a signature  is  constant  and well defined for 
most  people. In general,  the fine structure is not subject  to conscious  control. Based on these  observations,  an experimental system 
has  been designed that utilizes  a  person’s  signature  dynamics to verify identities. The design  and  operational features of this system  are 
described.  Experiments on 70 subjects during  a  four-week period show a 2.9  percent rejection of valid signatures and a 2.1 percent 
acceptance of forgeries.  An average of 1.2 trials  was  necessary for verification. The forgers  were  knowledgeable about  the verification 
technique  and did their best  to deceive  the system.  The  acceptance  rate of random forgeries, i.e., accidental  matching of two  separate 
signatures,  was 0.16 percent. 

Introduction 
An effective automatic method of online  signature verifi- 
cation will have many important applications.  A  method 
of personal identification that  cannot  be lost, stolen, or 
forgotten is required for  control of computer  access, 
building access or automatic banking. Because  the signa- 
ture is the normal and  customary way of identifying an 
individual in our society, it has many natural advantages 
over competing techniques  such as fingerprints or voice 
verification. 

Document  examiners  have long realized that signa- 
tures, more  than other kinds of writing, are written  from 
habit [ 1, 21. The  writer is generally thinking about  what 
he is signing rather  than how to spell his name or form 
the  characters.  From a  very early age,  shortly after learn- 
ing to write,  children  personalize their signatures, i.e., 
vary  them from copybook  style.  Signatures are written 
for identification rather than legibility. 

On  the  other  hand,  the  track of the  pen shows a great 
deal of variability. No two genuine  signatures are  ever 
precisely the same. Two identical  signatures constitute 
legal evidence of forgery by tracing. The normal varia- 
bility of signatures constitutes  the  greatest  obstacle  to 
be met in achieving automatic verification. 

Signatures  vary  in their complexity, duration,  and vul- 
nerability to forgery.  Signers  vary  in their coordination 
and  consistency. Thus,  the security of the  system varies 
from user  to  user. A short, common  name is no  doubt 
easier  to forge  than a long, carefully  written name,  no 
matter  what  technique is employed. Therefore,  the  sys- 
tem must  be capable of “degrading” gracefully when 
supplied  with  inconsistent  signatures, and  the  security 
risks  must be kept to  acceptable levels. 

This  paper  describes  an online  signature verification 
system based on acceleration measurements.  The quali- 
tative  considerations underlying the relevance of accel- 
erometry, which results  from  the  nature of the  muscu- 
lar activity,  are first described in the  second  section, and 
the verification system is presented in the third  section. 

For  automatic  comparison,  two signatures  must be 
registered in time, and  certain gross distortions of the 
time  axis must be  removed.  Furthermore,  we must de- 
fine a function that  expresses  the  proper similarities 
quantitatively, e.g., high for valid signatures and low for 
forgeries. Our solution, regional correlation, is based on 
our model. 

A practical  verification system must also  be  able  to  set 
its parameters  on  the basis of a very  small set of known 
signature  samples. A technique  based on  the principle of 
optimizing the verification performance on  the  reference 
samples is described in the section  entitled “Reference 
design  procedures.” The  results of a reasonably large lab- 
oratory  experiment evaluating these  techniques  are in- 
cluded. The  results show, subject  to  the usual caveats of 
sample  size  and  extensibility, that if one  can  overcome 
certain  systematic failures, performance  and human ac- 
ceptability will be high. 

Previous  workers  have  made dynamic measurements 
on  the signature process by using the  conventional  pat- 
tern recognition  methodology of statistical  decision. 
However,  these  measurements  were unreliable and 
achieved only indifferent results. (We mention  only on- 
line systems. Verification by optically  scanning  existing 
signatures has been even  less successful.) Mauceri [3] 
took 50 signatures from  each of 40 subjects, used  power 
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Figure 1 Displacement time  diagram for movement  perpen- 
dicular to direction of motion for the  handwritten letter “a,” 
together  with associated electromyograms, after  Vredenbregt 
and  Koster [ 141. Alternate  nature of antagonist  pair  activity is 
evident. 

spectral density  and  zero-crossing features,  and  was  able 
to  correctly classify a signature 63  percent of the time. 
Farag and Chien  [4] used chain-encoded  tablet  data  as 
input  to a  recognition scheme.  The performance for  ten 
subjects  was 27 percent  reject, 27 percent  success of 
forgery. 

More  recently, a system  based  on  pressure  measure- 
ments was announced [ 5 ] .  The  prototype is now being 
tested by the U.S. Air  Force.  Performance, based on 
three signatures per trial, is given as 6.81 percent reject 
and  3.19  percent  random forgery [ 61. A “random forg- 
ery”  consists in trying every valid signature in the  data 
base against every  other, regardless of signer. It  substan- 
tially underestimates  the  actual forgery rate.  When  ac- 
tual  forgery was tried, 10 out of 5 8  attempts  were  suc- 
cessful, i.e., 17 percent.  In  the  same  tests [6], an  auto- 
matic speaker verification method  was evaluated  and 
gave  better  results (2.5 percent  reject  and 0.64 percent 
random  forgery, operating adaptively) . The training 
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of a minimum of twenty  nonrepetitive four-word phrases. 
Although subsequent verification is rapid and leaves the 
hands  free,  the  procedure  requires special  preliminary 
training sessions. 

Although there  are  no definitive experiments,  human 
examination of signatures is not very accurate.  Trained 
document  examiners  were  reported in one  test  as 
achieving 25 percent no-opinion or  reject,  without  accept- 
ing any forgeries [7]. Untrained personnel such  as bank 
tellers accept 10- 50 percent of the forged signatures  pre- 
sented when under  test conditions [ 5 ] ,  and almost  100 
percent in actual  practice.  Most of the successful forg- 
eries  that  occur  are totally  unskilled. Bank losses  through 
forgery of stolen checks were estimated by the  American 
Bankers Association at 50 million dollars for 1974, far 
exceeding the total  losses due  to  bank  robbery  and  bur- 
glary combined [ 81. 

Models of handwriting 
Motions controlled by sensory  feedback  are generally 
slow  and precise. Both  opposing  muscles  (called the 
agonist and  the  antagonist)  for a particular  degree of 
freedom are  active together, and their ratio is controlled 
consciously. Since  the muscles are organized in groups, 
accurate  measurement of these motions shows  stepwise 
increases in force  rather  than a smooth  continuous mo- 
tion. Other  concomitants of closed-loop control  systems, 
such as hunting (tremor) and  instability (in neurological 
diseases),  can  also be observed.  Much writing and  draw- 
ing clearly consists of controlled  motions. 

But not all bodily motions are controlled by sensory 
feedback.  Those motions that  do  not involve sensory 
feedback  are called ballistic  motions. These  are gener- 
ally rapid,  practiced  motions whose  accuracy  increases 
with speed  [9].  In a sense,  they  cannot  be  done slowly 
at all. Walking, playing a musical instrument,  and tennis 
or golf swings are all examples of ballistic  motions. In 
many cases, a motion can  be  done  either consciously or 
ballistically,  albeit at different speeds.  The  purest  ex- 
ample of ballistic  motion is the rapid saccadic motion of 
the  eye [lo]. The  saccades, or small jumps,  are typically 
10- 30 ms in duration. 

The individual  muscle forces in rapid  handwriting are 
30- 100 ms in duration.  Sensory  feedback from the  eye  to 
the brain to the hand requires  on  the  order of 200 ms. 
The individual muscle forces,  therefore,  cannot possibly 
be  determined by simple feedback  but  are  rather prede- 
termined by the brain. This  can  also be demonstrated 
experimentally [ 1 1 3 .  These  forces  are not only  predeter- 
mined but are given  strictly in terms of only two vari- 
ables -magnitude and  duration. 

When applied to handwriting, the ballistic  model gives 
a better fit to  measured  data  than  does any model yet 
proposed [ 1 1 - 131. Vredenbregt  and  Koster [ 141 built a 
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simple  simulator  based on  the ballistic model,  containing 
damping in the form of spring forces arising from  the 
stiffness of the  unexcited opposing  muscle, and a  viscous 
damping term representing the various fluids surround- 
ing the muscles. The stiffness term is negligible and  the 
viscous  damping term is assumed to be constant al- 
though, as  Yasuhara  later pointed out [ 131, it contains 
secondary effects from friction, and  hence  from  pres- 
sure.  The excitations  were  programs of impulses de- 
duced  from  the  envelope of measured  electromyograms, 
shown in Fig. 1 .  The simulator wrote single characters 
quite naturally. Most significantly, perturbations in the 
excitation gave rise to natural-looking distortions in the 
resulting pattern,  and  changes  as  short  as five ms pro- 
duced  alterations in the  character  shape.  This simulation 
suggests that  the muscles are excited with impulses of 
considerable accuracy.  These notions have not  previous- 
ly been  applied to signatures. 

Perhaps  the most  striking aspect of signature  dy- 
namics is that  the time  interval for writing a  signature, 
measured  from start  to finish, remains  remarkably con- 
sistent.  Successive signatures frequently differ in duration 
by as little as 10 ms  from each  other. Combined  with the 
assumption  that signatures are ballistic  motions, which 
implies that  the motions are completely predetermined, 
this observation leads us to  expect  that  the  durations of 
the individual  muscle forces  are  also identical. If the 
signature is indeed a constant-time  phenomenon,  the 
magnitude of the  forces parallel to  the writing surface is 
then related only to the size of the  resultant  trace, i.e., 
the  distance  the  pen point traverses  as a  result of a given 
force.  We  then expect  that  the  durations and hence  the 
zero-crossings of the pen  acceleration would be invariant. 
(Additional information is contained in the relative 
amplitudes of the  strokes.)  The  corresponding  strokes of 
different  signatures will thus be  formed by forces of 
identical duration.  Changes in size are  interpreted  as 
changes in force [ 1 11. Our first inspection of acceleration 
waveforms, Fig. 2 ,  showed that this  description  was 
qualitatively correct. 

Based on this  model, we  propose  an  automatic signa- 
ture verification system using the acceleration-time func- 
tion as  the principal measurement. 

For a  variety of reasons, this concept is not  complete- 
ly straightforward to implement or  test. Because of gross 
variations in the  signature,  a  program  written to com- 
pare signatures  automatically may not actually compare 
the  proper segments. Secondly,  the  above  arguments  are 
true  for individual muscle groups, but the motion of the 
pen is the product of several  different  muscle groups: 
pivoting between  the  thumb  and forefinger, pivoting at 
the wrist,  and  pivoting at  the elbow and shoulder. Each 
antagonist  pair may have its own timing, and we know 
nothing about  the  synchronization of the various  combi- 
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Figure 2 Accelerations in y-axis of plane of paper derived 
from tablet data  for a) two  samples of the same individual's sig- 
nature,  b) signals superimposed so that  the first names corre- 
spond, c )  signals shifted to match the middle section,  and d )  
signals shifted to match  the  last section.  Correspondence of 
force  durations is striking.  Amplitudes differ because two  sam- 
ples  were of slightly different  size. 

nations.  Finally, the timing correspondence is clearly  not 
absolute.  There  are variations on a  day-to-day  basis, 
even  for valid signatures,  and the time  axis is subject to 
many distortions.  There may be major pauses and hesi- 
tations, minor  tics  and gaps,  added  or  deleted  strokes, 
and  even misspellings. 

Our decision  technique  was chosen  to find the  best 
time  registration on a global basis by means of a modified 
correlation function.  The initial registration  was  based 
on  pen  contact with the writing surface.  Thus, we did 
not rely on  the  presence of any one particular  landmark. 
Furthermore,  correlation is sufficiently general to be 
evaluated on relatively small data  sets. We were  there- 
fore able to  have  an operating verification system de- 
signed on a small sample while gathering  a  larger data 
base. Using  correlation to find the registration does not 
preclude the  use of a second  stage  to  the decision pro- 
cess, based on a more complete analysis of the motion in 
terms of the foregoing  model. 247 
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Verification  system 
A general  signature verification system basically con- 
sists of four  parts:  the  transducer,  the  comparator,  the 
reference file, and  the decision logic. It should  be clear 
from the previous  section that we wish to  measure  or 
derive  the muscle forces in the hand  during the signa- 
ture. If a transducer of constant weight and shape is 
used, we may then observe  the accelerations of the pen. 

In  the  experiments  reported  here,  an experimental  pen 
containing two orthogonal  piezoelectric accelerometers 
is mounted as  close  to  the point as possible. It  has a tri- 
angular cross section with a  preferred orientation, and is 
tapered smoothly  from the point to  the  top.  The writing 
element is an ordinary  ball-point  cartridge. The writing 
surface is a paper  tape  one inch  wide, fitted over a  rec- 
tangular treadle  that  closes a set of gold contacts when a 
force of more than  30 g is applied. This  serves  as  the 
pen  switch.  Making the pen  switch separate from the 
pen itself simplified the pen structure  for  the  purpose of 
this  investigation. The signals are digitized at  the  rate of 
five ms,  and read  into  an IBM System/7  computer.  The 
signature is then transferred into  a  time shared IBM 
370/ 145 under  VM.  The  comparator is a PL/ I correla- 
tion program  which runs  on  the  3701 145. The decision 
result is transferred back to  the  System/7 which lights a 
lamp to notify the signer. Under normal loads,  the  sys- 
tem responds in 10 s, which seems quite acceptable. 

For  the  test,  the  reference library of signatures is kept 
on a separate  disc file. References  are usually generated 
offline  in an overnight operation on the basis of a five- 
signature  design set.  Adaptation  has not  been  permitted 
in these  experiments, although it is definitely possible. 

Signatures are  2-  10 s in duration, with the  average 
being about 5 s. The signals,  sampled at  the  rate of 5 ms, 
2 byteslpoint,  are  thus 2000 bytes  on  the  average.  The 
waveforms are substantially  oversampled in both dimen- 
sions. With run-length  coding  and a coarser amplitude 
grid, 100-400  bytes  appear ample to  describe  the signa- 
ture fully. 

The dual accelerometer pen is sensitive at high fre- 
quencies, although it contains  an electrical roll-off of 6 
dB  per  octave  at 30 Hz. A linear-phase recursive digital 
filter with integer coefficients has  been  designed to re- 
move the high-frequency paper noise. It has  a zero  at  40 
Hz and a half-power  point of 22.5 Hz.  The linear phase 
property maintains the timing of the zero-crossings  un- 
disturbed. 

Regional  correlation  algorithm 
To compare  the sample  and reference signatures, each is 
partitioned  into  pieces, called segments, and  correspond- 
ing segments are  cross-correlated with a modified cor- 
relation measure.  Various segmentation policies are 248 
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used. The  average  correlation  depends  on  the segment 
length;  the longer the segment, the more difficult it is to 
find alignment because of the accumulation of minor 
errors.  Thus  far,  the best results  on a  large  sample 
have been  found  with  segments in the  range of 1 - 2 s. 
This  depends  on  the distribution of variable pauses in 
the  signature;  some individuals  write  entirely  without 
pauses, and  longer  segments  give  satisfactory  matches. 
Although the  experiments  are not yet conclusive, best 
results  thus  far  have  been obtained  from  segmentation 
based on paper contact. Variable pauses  seem  to  occur 
more frequently  when the pen is  in the air. On  the  other 
hand, for many signatures the intervals while the pen is 
in the  air contain characteristic motions that should be 
of discriminatory  value since  they  are completely secret. 
Thus, a segment can  be defined with equal validity to 
extend  from pen-down to pen-down, including this  time, 
or  from pen-down to pen-up. This is a  program  variable. 

Segmentation can also  be  accomplished  without paper 
contact information. The signature may simply be  equal- 
ly divided  (uniform segmentation),  or various computa- 
tional approaches can  be taken  to find matching seg- 
ments  (e.g.,  register the amplitude peaks,  correlate con- 
tinuously using a  piece of the  reference,  etc.);  the seg- 
ments also can be allowed to  overlap. 

If the  two orthogonal  acceleration channels  are la- 
beled p and q, and the sample  and reference signals are 

then for  the ith segment,  the  correlation may be defined as 

t 

1 

and the correlation is normalized by dividing it by 

This is the complex  correlation of magnitude C and 
phase angle 4, normalized so that  the signals have  zero 
mean and unit  energy in the  product.  One  advantage of 
this  form of correlation is that its magnitude is rotation- 
ally invariant. Suppose  the sample is rotated by 0, i.e., 
s* = reJ*. Clearly, from  the  above  equation,  the magni- 
tude of C is not changed  from the  unrotated value. 

IBM  J .  RES. DEVELOP. 



An  obvious  alternative is to  correlate  each channel 
individually and form  an  average  for  the total  correla- 
tion. That is, 

c ; ( T )  = x i ( t ) r ) l ( t  + T ) ,  and 
L 

L.)l(T) =x S b ( f ) Y b ( f  + T ) ,  (3) 
t 

with similar  normalization. 
Then we can  with  equal  reason  combine according  to 

an arithmetic  rule, 

or a  geometric  rule, 

These combinations reflect various degrees of strin- 
gency,  because  the geometric rule is less forgiving. Con- 
sider  the forger who is perfect in one channel and  zero in 
the  other.  The  arithmetic formula will assign  a  correlation 
of 0.5 and  the geometric will give zero. 

The complex  correlation  automatically removes a 
fixed rotation of the  pen, allowing the use of an unorient- 
ed pen. But this gain in freedom costs in terms of dis- 
crimination,  since the forger would seem to  have a 
somewhat less difficult task;  hence, both methods must 
be evaluated  experimentally. 

The segments are  cross-correlated in isolation,  replac- 
ing the neighboring signals with padding zeros.  The 
sample is shifted by up to 20 percent of the  reference 
length, but  never  more than 300 ms. The correlation 
results  are then weighted to penalize excessive shifting, 
because this  improves  discrimination [ 151. 

The  pen lift pattern, which may be  viewed as  the 
quantized axial pressure, contains  a significant random 
component. While the principal pen lifts denoting dif- 
ferent  sections of the name  should always be present, 
others  can  come  and go. Although there  are repetitive 
pressure  patterns,  document  examiners have  noted that 
writing pressure is varied consciously in response  to 
how the pen is inking rather than  from  habit.  Many indi- 
viduals lighten up on retrace  strokes  for pictorial effect. 
Whether  or not the pen  inks on  the  retrace  stroke is of- 
ten not important to  the signer. The  presence of a pen 
lift will thus  depend on the particular  algorithm or hard- 
ware switch  used. 

The strategy we  have implemented, called VPEN, is 
to eliminate extra pen lifts, trying all combinations  ex- 
haustively, until the  best mean-square  match  between 
the  two timing patterns is achieved; i.e., if the two signa- 
tures X and R have segment  times T ,  and T,, 

then we eliminate all combinations of pen lifts to make 
p = v, thus minimizing I T, - T,i, the root-mean-square 
norm. An  exhaustive  process is feasible because p and v 
are small, typically six or less. 

The result of cross-correlating  two  signatures X and R 
is a vector consisting of a correlation for  each  segment, 
C,, = (C’,  C2,. ’ ’, C”) ,  ( 7 )  

where  the C‘ are  the segment cross-correlations.  Let n 
be  the corresponding  segment  lengths of the  reference 
signature. The  results must then be  combined to give the 
final decision.  Properly  speaking, we should weight each 
segment’s cross-correlation according to  the difficulty of 
forging it. This information is usually not  available. 
However, we have noticed that forgers have more trou- 
ble with the longer  segments. This  seems natural  be- 
cause a  longer  segment represents a more complex mo- 
tor  task. Accordingly, each segment is weighted by the 
reference length. 

We define V (for verification measure)  as 

V =  c ( n : / n )  C‘, 
z 

where n = x,.: and n: is the ith segment length in sample 
points for  the  reference signature. A threshold  based on 
the analysis data must then  be  chosen. 

Reference design  procedures 
Reference design  may  be viewed as a  combinatorial op- 
timization  problem. Of the  Comb (M,  N) ways in which 
A4 signatures may be  selected from N given signatures, 
the  “best” M signatures  must  be determined as refer- 
ence signatures for verification purposes. This  statement 
implies that we need both a  criterion by which  each  sub- 
set of M signatures can be  evaluated  and  algorithms for 
determining the optimal subset  as  references. We de- 
scribe in this section a selection  criterion, an algorithm 
for  reference design,  and  a procedure  for estimating the 
decision  threshold for  each  reference. 

Let s , ( t ) ,  s , ( t ) ,  . . ., ~ , ~ ( t )  be N sample  signatures  giv- 
en by a user.  Our criterion is the following: We wish to 
find a minimal subset of M signatures such  that with the 
signatures in this subset  as  reference  signatures,  the ver- 
ification measure  between each  one of the remaining N - 
M signatures  and one of the M reference signatures will 
be at  least  as large as a specified value. In  other  words, 
we would like to maintain a certain specified value of 
verification measure  between a set of reference signa- 
tures and the  rest of the sample  signatures. If more  than 
one  subset of M signatures satisfies this criterion,  then 
the optimal subset is defined as  the  one in which the 
smallest verification measure between a sample  and  its 
nearest  reference signature is the largest  among all sub- 
sets of M satisfying the  criterion. 249 
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Table 1 Comparison of correlation  algorithms. 

Average of two  Magnitude  of 
correlations  complex  correlution 

Rejection of 

Acceptance of 
valid signatures 183/695 = 26% 124/695 = 17.8% 

forged signatures 2/287 = 0.70% 2/287 = 0.70% 

Table 2 Effect of multiple references per user. 

Single  reference Two or  fewer 
per  user  references  per  user 

Rejection of valid 

Acceptance of forged 

- 

signatures 142/695 = 20.4% 124/695 = 17.8% 

signatures 4/287= 1.4% 2/287= 0.70% 

Table 3 Verification  results with three trials. 

Rejection of valid  Acceptance of Average  number 
signers  forgers of trials 

17/592 = 2.87% 2/97 = 2.1% 6951592 = 1.17 
.. ~ 

The  reference design  algorithm selects  an optimal refer- 
ence  set by sequentially  determining whether,  for M = 1, 
2, a subset of M signatures satisfies the criterion. If no 
subset of two signatures meets  the threshold requirement, 
then  the  subset  closest  to meeting the  requirement is 
selected. 

We have implemented  this  algorithm,  and for practical 
reasons  have  chosen M to be  less  than or  equal  to  two. 
If a specific number of reference signatures is desired, 
e.g., one,  the algorithm can be used to  select  the  “best” 
signature. However,  the specified design threshold  value 
in this case is not guaranteed. 

Another plausible way to  derive a reference signature 
is to  take  the sample average  for  each  user.  Since  it is 
possible to  have many variations in the design samples, 
it is often  not  feasible to  average all samples into a single 
reference signature. The  average of poorly correlated 
signals tends  to  zero. A  sequential scheme  that  avoids 
this  problem by averaging clusters of samples into refer- 
ence signatures was implemented,  but the  above method 
was experimentally superior. 
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Ver$cation  threshold  estimation 
In conventional pattern recognition  applications,  sam- 
ples of all pattern  classes  are given for  reference design 
and decision boundary  determination. Many techniques 
have been  developed for determining the optimal  deci- 
sion  boundaries. However,  for signature  verification, 
forged  signatures are not  available for  the  reference  de- 
sign, and  therefore a verification threshold  must  be cho- 
sen  on  the basis of the given valid signatures alone.  The 
only  information  available on  forgery is our previous 
general experience. 

The particular  estimation scheme used is as follows. 
Let  the minimum of the  set of verification measures be- 
tween R i (  t )  and each sample  assigned to R i ( t )  be V * .  
Let  the  standard deviation of these verification measures 
be u. Then,  the verification threshold Ti for  reference 
R , ( t )  is estimated as 

Ti = min (0.6, max[ (V* - ku), 0.4811. (8) 
In  other  words,  we  estimate Ti from the verifica- 

tion measures obtained between Ri(  t )  and  samples s j ( t ) ,  
and then  set  an  upper limit of 0.6 and a lower limit 
of 0.48 on  the  estimated value. In a case  for which there 
is only one sample or  no sample  signature  assigned to 
reference R i (  t )  , the threshold Ti is rather arbitrarily set 
at 0.5. 

The  parameter k selects  the tradeoff between  rejects 
and  errors.  Depending  on  the application, it could be 
varied  dynamically. In  these  experiments, k =  1.5. 

Experimental results 
In this section,  we  present  the  results of our investiga- 
tion of an experimental  signature verification system. 

In April 1975, we collected on our experimental  sys- 
tem 1332 signatures from  70 volunteers. To simulate  a 
real application environment,  each individual was  asked 
to sign five times on  the  system in the first session  to 
provide  the  sample signatures  needed for  reference  de- 
sign. No special  training or  practice  was provided. 
Based on  the five samples, a set of references  was  de- 
signed for  each  user and stored in the  reference file. In 
the  subsequent daily sessions,  each individual was given 
up to  three trials to  have his signature verified by the 
system.  Subjects  were motivated by the  prospect of free 
coffee. For  reference design, 350 signatures were col- 
lected ( 5  X 70  users).  The total number of test signatures 
collected  was  695. In addition to  the valid signatures, we 
also  collected  287  forged  signatures. The “forger” was 
free  to  practice  the target  signature. In some instances, 
the forger watched how the valid signature was signed 
and attempted  to  duplicate  the  gross  features of the mo- 
tion. Some forgers attempted  to exploit flaws in the  ex- 
perimental system. All forgers  were  urged to write  rapidly 
and  freely if they  wished to  succeed.  Thus,  these forgeries 
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were  not  casual, but  part of an  attempt  to  exercise  the 
verification scheme vigorously. 

Decision rules 
To decide  whether a  signature  should  be verified or re- 
jected,  two decision  rules are used  sequentially. The first 
rule  checks to see if the difference in time between  the 
signature  and a reference is within a tolerance of 20 per- 
cent.  The signature is rejected if the time  difference is 
greater  than  the  tolerance.  Otherwise  the signature is 
passed  to  the second  rule which checks  whether  the ver- 
ification measure between  this  signature and  the refer- 
ence is higher than  the verification threshold associated 
with the  reference. A  signature is verified if the verifica- 
tion threshold is exceeded  for  any  one of the  reference 
signatures.  Otherwise  it is rejected.  Since  the first rule 
involves  very little computation,  the  two rules are used 
sequentially. 

Comparison of correlation algorithms 
The performances of the  two correlation  algorithms  de- 
scribed earlier,  the magnitude of complex correlation, 
and the weighted average of correlations  from  two chan- 
nels, were investigated  experimentally. References  were 
designed with M 5 2. In the  case of complex correlation, 
a set of 1 19 reference signatures was  selected  for  the 70 
users,  and in the  case of average correlation of two 
channels, a set of 1 18 reference signatures was selected. 
All of the 695 test signatures and 287 forged signatures 
were  tested.  The  results  are  shown in Table 1 .  

It is apparent  that  the complex  correlation  algorithm 
gave  superior performance and it was therefore  chosen 
as  our experimental  system. The significantly large dif- 
ference in the  number of rejects was due  to  the problem 
of stylus  rotation.  Although there was a preferred  orien- 
tation  for  our  stylus,  some  users did not  always conform 
to  the  convention. 

Performance of single reference 
A set of single references  for  each  user  was designed. 
The  desired design  threshold  value of Th = 0.5 could not 
be  satisfied for approximately 70 percent of the  users. 
The verification thresholds  for this subset of users were 
set  at 0.48. The  results of all test  and forged signatures 
are  shown in Table 2. The  restriction of one  reference 
signature per  user produced a significant degradation of 
performance. 

Ver$cation results 
The  results of the online  experiment using complex  cor- 
relation, three trials for verification, and the  set of I 19 
references  are  shown in Table 3. An examination of re- 
ject  rate  for  each individual  revealed that  for  exactly half 
of the  users, all valid signatures were verified on  the first 

m 

(0 
10 20 30 40 50 

and 
over 

Percentage of rejects 

Figure 3 Distribution of individual reject rates.  Over half the 
subjects never had a reject. 

Figure 4 Typical rejected sample. Two signatures are shown 
overlapped in position of highest correlation. Each axis shows 
one channel. Rejection is caused by failure of individual to 
write his last name completely. Accelerometer outputs are 
shown for p channel, upper axis, and q channel, lower axis. 

trial  and all forged  signatures  were  rejected. More than 
half of the  rejected valid signatures came  from a subset 
of seven  users,  four of whom signed their  names with 
motions that could  not  adequately be  detected by our 
present  stylus  (the  accelerometer  outputs  were largely 
zero). When  a user did need a second  trial, his success 
rate  for  the second  trial on  the  average was roughly 70 
percent. When he went to a third trial, the  average  rate 
of success  dropped  to below 40 percent.  This is another 
indication of a systematic mode of failure.  A plot of the 
distribution of rejects  for valid users is shown in Fig. 3. 
The  gross  averages  are  thus  distorted by the small num- 
ber of users  who fail badly. 

Figure 4 shows a  rejected  signature compared with  its 
reference signature. Figure 5 shows  an  accepted forgery. 

Another  measurement of false acceptance  rate  was 
made by comparing the  reference signatures of every 
user against the  reference signatures of every  other  user. 
This is the  random forgery experiment. 
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Verification measure, V = 0.65 

Figure 5 One of two accepted forgeries. Although timings 
match well, signals are still substantially different. The p channel 
is upper axis and q channel, lower axis. 

The  complete  set of 1 19 reference signatures for 70 
users  was  used in the simulation.  Since each  reference 
signature  had an individual verification threshold,  the 
total  number of comparisons  was 821 1. It  was  found 
that  there  were 13 errors involving seven users’  refer- 
ences,  or  an  error  rate of 0.16 percent.  In 59 percent of 
the  cases,  forger rejections were based  upon  time  dis- 
crepancies. 

An examination of the 13 errors  showed  that six were 
due  to verification thresholds, which  were set  at  the min- 
imum of 0.48, a  problem caused by the  inconsistent 
sample signatures  used in the  reference design. 

Discussion 
The performance figures quoted in the previous section 
are  conservative  for  several  reasons.  First,  the  results 
are completely  unedited. The  subjects  themselves con- 
trolled the terminal  with  very  little  prompting from  the 
experimenter.  From time to time there  were human er- 
rors,  such  as pausing  in the middle of a signature,  which 
stopped  the recording, or advancing the  paper  tape  at 
the wrong  time, or writing too large for  the  space avail- 
able  and hitting the  cover of the  paper retainer. At  least 
30 such signatures were noted  during the  experiment, 
and it is likely that  others passed into  the  data unno- 
ticed. Therefore,  at least 24 percent of the  gross  rejects 
were justifiable. 

There  was  no training or practice. Most  subjects re- 
quired one  to  three trials to  adjust  to  the  strange  pen and 
writing circumstances.  This  was  quite noticeable in the 

overall  time, where initial samples took much longer. 
The most direct effect of strictly  taking the first five sig- 
natures  for  references was that  the  reference algorithm 
really had only three  or  four good signatures to  deal 
with.  On-line  checking to  assure five consistent samples 
is obviously  needed. But in a sense,  the human factors of 
taking a reference in one session are  insurmountable. If 
the  subject is not able  to give  a  typical  signature in the 
first session,  there is not much to be done  about it save 
finding a secure way to  update  the  reference  later, a so- 
called “post-enrollment’’  strategy of the  type  described 
in [6]. 

The  subjects in these  experiments were not greatly 
motivated nor very much  distressed by a rejected valid 
signature. Also, although in real situations  forgers  re- 
ceive a  relatively high payoff, they  perform under  great 
stress.  Our  stress-free forgers appeared  to  be highly mo- 
tivated  by the gaming aspects of the  experiment.  Thus, 
we feel that  both sides of the  experiment  are  conserva- 
tive; in an  actual application,  motivated  signers will do 
better than our unmotivated subjects,  and  stressed forg- 
ers will do  worse. 

Regional correlation demonstrates  an effective method 
for comparing  signature dynamics.  Previous  techniques 
failed because they could not accommodate  the normal 
distortions in the time axis  (pauses, missing strokes, 
etc.) . Regional correlation is computationally reason- 
able, not  fine-tuned, and gives  a  familiar measure  for 
the similarity of two signals. However, as our  experience 
with  real  signatures  and good forgeries increases, we 
expect  to  be able both  to  improve  the  performance  and 
to simplify the  computation by defining more  powerful 
local measurements.  It is also possible that more  power- 
ful techniques  for measuring  time distortions used in 
speech analysis may be applicable [ 161. 

We found  a considerable difference between  the distri- 
butions of scores  for valid signatures  and  forgeries for 
most of our  subjects.  One successful  forgery was  the 
result of too much  variability in the design set, which 
caused  the  system to choose a low threshold.  This is in 
accord with the  experience of conventional document 
examiners. The forgeries that give trouble may be  quite 
different from  the  reference, but the examiner may con- 
clude  that they are within the normal range of variation 
for this signer. Thus,  improvements  to  the  reference 
procedure  are of equal  value to increasing the  sharpness 
of the decision  rule. 

The  foremost technical  problem  remaining is to  obtain 
consistency of performance for all subjects. I t  is con- 
ceivable that  some individuals sign too inconsistently to 
use  the  system,  but  that is not the  case with the  data  we 
have  studied.  The failures of our  system  are largely due 
to imperfections in the  measurement design and instru- 
mentation. 
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Finally, despite  the many  intrinsic  human-factor  prob- 
lems we have mentioned, we believe our performance 
figures are sufficiently encouraging to indicate the feasi- 
bility of signature verification as a  means of personal 
identification. 
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