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Automatic Signature Verification

Based on Accelerometry

Abstract: The fine structure of the muscle forces that are exerted during the writing of a signature is constant and well defined for
most people. In general, the fine structure is not subject to conscious control. Based on these observations, an experimental system
has been designed that utilizes a person’s signature dynamics to verify identities. The design and operational features of this system are
described. Experiments on 70 subjects during a four-week period show a 2.9 percent rejection of valid signatures and a 2.1 percent
acceptance of forgeries. An average of 1.2 trials was necessary for verification. The forgers were knowledgeable about the verification
technique and did their best to deceive the system. The acceptance rate of random forgeries, i.e., accidental matching of two separate

signatures, was 0.16 percent.

Introduction

An effective automatic method of online signature verifi-
cation will have many important applications. A method
of personal identification that cannot be lost, stolen, or
forgotten is required for control of computer access,
building access or automatic banking. Because the signa-
ture is the normal and customary way of identifying an
individual in our society, it has many natural advantages
over competing techniques such as fingerprints or voice
verification.

Document examiners have long realized that signa-
tures, more than other kinds of writing, are written from
habit [ 1, 2]. The writer is generally thinking about what
he is signing rather than how to spell his name or form
the characters. From a very early age, shortly after learn-
ing to write, children personalize their signatures, i.e.,
vary them from copybook style. Signatures are written
for identification rather than legibility.

On the other hand, the track of the pen shows a great
deal of variability. No two genuine signatures are ever
precisely the same. Two identical signatures constitute
legal evidence of forgery by tracing. The normal varia-
bility of signatures constitutes the greatest obstacle to
be met in achieving automatic verification.

Signatures vary in their complexity, duration, and vul-
nerability to forgery. Signers vary in their coordination
and consistency. Thus, the security of the system varies
from user to user. A short, common name is no doubt
easier to forge than a long, carefully written name, no
matter what technique is employed. Therefore, the sys-
tem must be capable of “degrading” gracefully when
supplied with inconsistent signatures, and the security
risks must be kept to acceptable levels.
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This paper describes an online signature verification
system based on acceleration measurements. The quali-
tative considerations underlying the relevance of accel-
erometry, which results from the nature of the muscu-
lar activity, are first described in the second section, and
the verification system is presented in the third section.

For automatic comparison, two signatures must be
registered in time, and certain gross distortions of the
time axis must be removed. Furthermore, we must de-
fine a function that expresses the proper similarities
quantitatively, e.g., high for valid signatures and low for
forgeries. Our solution, regional correlation, is based on
our model.

A practical verification system must also be able to set
its parameters on the basis of a very small set of known
signature samples. A technique based on the principle of
optimizing the verification performance on the reference
samples is described in the section entitled “‘Reference
design procedures.” The results of a reasonably large lab-
oratory experiment evaluating these techniques are in-
cluded. The results show, subject to the usual caveats of
sample size and extensibility, that if one can overcome
certain systematic failures, performance and human ac-
ceptability will be high.

Previous workers have made dynamic measurements
on the signature process by using the conventional pat-
tern recognition methodology of statistical decision.
However, these measurements were unreliable and
achieved only indifferent results. (We mention only on-
line systems. Verification by optically scanning existing
signatures has been even less successful.) Mauceri [3]
took 50 signatures from each of 40 subjects, used power
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Figure 1 Displacement time diagram for movement perpen-

9

dicular to direction of motion for the handwritten letter “a,

together with associated electromyograms, after Vredenbregt
and Koster [14]. Alternate nature of antagonist pair activity is
evident.

spectral density and zero-crossing features, and was able
to correctly classify a signature 63 percent of the time.
Farag and Chien [4] used chain-encoded tablet data as
input to a recognition scheme. The performance for ten
subjects was 27 percent reject, 27 percent success of
forgery.

More recently, a system based on pressure measure-
ments was announced [5]. The prototype is now being
tested by the U.S. Air Force. Performance, based on
three signatures per trial, is given as 6.81 percent reject
and 3.19 percent random forgery [6]. A “random forg-
ery” consists in trying every valid signature in the data
base against every other, regardless of signer. It substan-
tially underestimates the actual forgery rate. When ac-
tual forgery was tried, 10 out of 58 attempts were suc-
cessful, i.e., 17 percent. In the same tests [6], an auto-
matic speaker verification method was evaluated and
gave better results (2.5 percent reject and 0.64 percent
random forgery, operating adaptively). The training
procedure is relatively involved, requiring the utterance
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of a minimum of twenty nonrepetitive four-word phrases.
Although subsequent verification is rapid and leaves the
hands free, the procedure requires special preliminary
training sessions.

Although there are no definitive experiments, human
examination of signatures is not very accurate. Trained
document examiners were reported in one test as
achieving 25 percent no-opinion or reject, without accept-
ing any forgeries [7]. Untrained personnel such as bank
tellers accept 10— 50 percent of the forged signatures pre-
sented when under test conditions [5], and almost 100
percent in actual practice. Most of the successful forg-
eries that occur are totally unskilled. Bank losses through
forgery of stolen checks were estimated by the American
Bankers Association at 50 million dollars for 1974, far
exceeding the total losses due to bank robbery and bur-
glary combined [8].

Models of handwriting

Motions controlled by sensory feedback are generally
slow and precise. Both opposing muscles (called the
agonist and the antagonist) for a particular degree of
freedom are active together, and their ratio is controlled
consciously. Since the muscles are organized in groups,
accurate measurement of these motions shows stepwise
increases in force rather than a smooth continuous mo-
tion. Other concomitants of closed-loop control systems,
such as hunting (tremor) and instability (in neurological
diseases), can also be observed. Much writing and draw-
ing clearly consists of controlled motions.

But not all bodily motions are controlled by sensory
feedback. Those motions that do not involve sensory
feedback are called ballistic motions. These are gener-
ally rapid, practiced motions whose accuracy increases
with speed [9]. In a sense, they cannot be done slowly
at all. Walking, playing a musical instrument, and tennis
or golf swings are all examples of ballistic motions. In
many cases, a motion can be done either consciously or
ballistically, albeit at different speeds. The purest ex-
ample of ballistic motion is the rapid saccadic motion of
the eye [10]. The saccades, or small jumps, are typically
10-30 ms in duration.

The individual muscle forces in rapid handwriting are
30- 100 ms in duration. Sensory feedback from the eye to
the brain to the hand requires on the order of 200 ms.
The individual muscle forces, therefore, cannot possibly
be determined by simple feedback but are rather prede-
termined by the brain. This can also be demonstrated
experimentally [11]. These forces are not only predeter-
mined but are given strictly in terms of only two vari-
ables —magnitude and duration.

When applied to handwriting, the ballistic model gives
a better fit to measured data than does any model yet
proposed [11-13]. Vredenbregt and Koster [ 14] built a
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simple simulator based on the ballistic model, containing
damping in the form of spring forces arising from the
stiffness of the unexcited opposing muscle, and a viscous
damping term representing the various fluids surround-
ing the muscles. The stiffness term is negligible and the
viscous damping term is assumed to be constant al-
though, as Yasuhara later pointed out [13], it contains
secondary effects from friction, and hence from pres-
sure. The excitations were programs of impulses de-
duced from the envelope of measured electromyograms,
shown in Fig. 1. The simulator wrote single characters
quite naturally. Most significantly, perturbations in the
excitation gave rise to natural-looking distortions in the
resulting pattern, and changes as short as five ms pro-
duced alterations in the character shape. This simulation
suggests that the muscles are excited with impulses of
considerable accuracy. These notions have not previous-
ly been applied to signatures.

Perhaps the most striking aspect of signature dy-
namics is that the time interval for writing a signature,
measured from start to finish, remains remarkably con-
sistent. Successive signatures frequently differ in duration
by as little as 10 ms from each other. Combined with the
assumption that signatures are ballistic motions, which
implies that the motions are completely predetermined,
this observation leads us to expect that the durations of
the individual muscle forces are also identical. If the
signature is indeed a constant-time phenomenon, the
magnitude of the forces parallel to the writing surface is
then related only to the size of the resultant trace, i.e.,
the distance the pen point traverses as a result of a given
force. We then expect that the durations and hence the
zero-crossings of the pen acceleration would be invariant.
(Additional information is contained in the relative
amplitudes of the strokes.) The corresponding strokes of
different signatures will thus be formed by forces of
identical duration. Changes in size are interpreted as
changes in force [11]. Our first inspection of acceleration
waveforms, Fig. 2, showed that this description was
qualitatively correct.

Based on this model, we propose an automatic signa-
ture verification system using the acceleration-time func-
tion as the principal measurement.

For a variety of reasons, this concept is not complete-
ly straightforward to implement or test. Because of gross
variations in the signature, a program written to com-
pare signatures automatically may not actually compare
the proper segments. Secondly, the above arguments are
true for individual muscle groups, but the motion of the
pen is the product of several different muscle groups:
pivoting between the thumb and forefinger, pivoting at
the wrist, and pivoting at the elbow and shoulder. Each
antagonist pair may have its own timing, and we know
nothing about the synchronization of the various combi-
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Sample 1

Sample 2

Figure 2 Accelerations in y-axis of plane of paper derived
from tablet data for a) two samples of the same individual’s sig-
nature, b) signals superimposed so that the first names corre-
spond, c) signals shifted to match the middle section, and d)
signals shifted to match the last section. Correspondence of
force durations is striking. Amplitudes differ because two sam-
ples were of slightly different size.

nations. Finally, the timing correspondence is clearly not
absolute. There are variations on a day-to-day basis,
even for valid signatures, and the time axis is subject to
many distortions. There may be major pauses and hesi-
tations, minor tics and gaps, added or deleted strokes,
and even misspellings.

Our decision technique was chosen to find the best
time registration on a global basis by means of a modified
correlation function. The initial registration was based
on pen contact with the writing surface. Thus, we did
not rely on the presence of any one particular landmark.
Furthermore, correlation is sufficiently general to be
evaluated on relatively small data sets. We were there-
fore able to have an operating verification system de-
signed on a small sample while gathering a larger data
base. Using correlation to find the registration does not
preclude the use of a second stage to the decision pro-
cess, based on a more complete analysis of the motion in
terms of the foregoing model.
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Verification system

A general signature verification system basically con-
sists of four parts: the transducer, the comparator, the
reference file, and the decision logic. It should be clear
from the previous section that we wish to measure or
derive the muscle forces in the hand during the signa-
ture. If a transducer of constant weight and shape is
used, we may then observe the accelerations of the pen.

In the experiments reported here, an experimental pen
containing two orthogonal piezoelectric accelerometers
is mounted as close to the point as possible. It has a tri-
angular cross section with a preferred orientation, and is
tapered smoothly from the point to the top. The writing
element is an ordinary ball-point cartridge. The writing
surface is a paper tape one inch wide, fitted over a rec-
tangular treadle that closes a set of gold contacts when a
force of more than 30 g is applied. This serves as the
pen switch. Making the pen switch separate from the
pen itself simplified the pen structure for the purpose of
this investigation. The signals are digitized at the rate of
five ms, and read into an IBM System/7 computer. The
signature is then transferred into a time shared IBM
370/ 145 under VM. The comparator is a PL/ I correla-
tion program which runs on the 370/145. The decisiot
result is transferred back to the System /7 which lights a
lamp to notify the signer. Under normal loads, the sys-
tem responds in 10 s, which seems quite acceptable.

For the test, the reference library of signatures is kept
on a separate disc file. References are usually generated
offline in an overnight operation on the basis of a five-
signature design set. Adaptation has not been permitted
in these experiments, although it is definitely possible.

Signatures are 2-10 s in duration, with the average
being about 5 s. The signals, sampled at the rate of 5 ms,
2 bytes/point, are thus 2000 bytes on the average. The
waveforms are substantially oversampled in both dimen-
sions. With run-length coding and a coarser amplitude
grid, 100-400 bytes appear ample to describe the signa-
ture fully.

The dual accelerometer pen is sensitive at high fre-
quencies, although it contains an electrical roll-off of 6
dB per octave at 30 Hz. A linear-phase recursive digital
filter with integer coefficients has been designed to re-
move the high-frequency paper noise. It has a zero at 40
Hz and a half-power point of 22.5 Hz. The linear phase
property maintains the timing of the zero-crossings un-
disturbed.

Regional correlation algorithm

To compare the sample and reference signatures, each is
partitioned into pieces, called segments, and correspond-
ing segments are cross-correlated with a modified cor-
relation measure. Various segmentation policies are
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used. The average correlation depends on the segment
length; the longer the segment, the more difficult it is to
find alignment because of the accumulation of minor
errors. Thus far, the best results on a large sample
have been found with segments in the range of 1-2 s.
This depends on the distribution of variable pauses in
the signature; some individuals write entirely without
pauses, and longer segments give satisfactory matches.
Although the experiments are not yet conclusive, best
results thus far have been obtained from segmentation
based on paper contact. Variable pauses seem to occur
more frequently when the pen is in the air. On the other
hand, for many signatures the intervals while the pen is
in the air contain characteristic motions that should be
of discriminatory value since they are completely secret.
Thus, a segment can be defined with equal validity to
extend from pen-down to pen-down, including this time,
or from pen-down to pen-up. This is a program variable.

Segmentation can also be accomplished without paper
contact information. The signature may simply be equal-
ly divided (uniform segmentation), or various computa-
tional approaches can be taken to find matching seg-
ments (e.g., register the amplitude peaks, correlate con-
tinuously using a piece of the reference, etc.); the seg-
ments also can be allowed to overlap.

If the two orthogonal acceleration channels are la-
beled p and ¢, and the sample and reference signals are

s(0) =(s,(0), 5,0)  and r(0) = (r, (D, r(0), (1)

then for the /th segment, the correlation may be defined as

Cc'= max > [s' ()t +7)]
=max 3, [s, (1) +js, (t + ) 1[r, (1) —jr (1 + 7)]
t

=|Cle™, (2)
where the segment is normalized such that

S s =0,

t

S A =0,

t

and the correlation is normalized by dividing it by
[g {15,(0T + L4(0)] }2 [th o1+ o]

This is the complex correlation of magnitude C and
phase angle ¢, normalized so that the signals have zero
mean and unit energy in the product. One advantage of
this form of correlation is that its magnitude is rotation-
ally invariant. Suppose the sample is rotated by 6, i.e.,
s* = se’’. Clearly, from the above equation, the magni-
tude of C is not changed from the unrotated value.

IBM J. RES. DEVELOP.




An obvious alternative is to correlate each channel
individually and form an average for the total correla-
tion. That is,

C;(T) =3y s;(t) r;(t + 1), and
t
L';(T) =E sfl(t)r;(t-i—r), (3)
¢
with similar normalization.
Then we can with equal reason combine according to
an arithmetic rule,

Cc'=1% max (CEP(T) + (,’;(T) )s (4)

or a geometric rule,
C'= max R CIRACHN (5)

These combinations reflect various degrees of strin-
gency, because the geometric rule is less forgiving. Con-
sider the forger who is perfect in one channel and zero in
the other. The arithmetic formula will assign a correlation
of 0.5 and the geometric will give zero.

The complex correlation automatically removes a
fixed rotation of the pen, allowing the use of an unorient-
ed pen. But this gain in freedom costs in terms of dis-
crimination, since the forger would seem to have a
somewhat less difficult task; hence, both methods must
be evaluated experimentally.

The segments are cross-correlated in isolation, replac-
ing the neighboring signals with padding zeros. The
sample is shifted by up to 20 percent of the reference
length, but never more than 300 ms. The correlation
results are then weighted to penalize excessive shifting,
because this improves discrimination [15].

The pen lift pattern, which may be viewed as the
quantized axial pressure, contains a significant random
component. While the principal pen lifts denoting dif-
ferent sections of the name should always be present,
others can come and go. Although there are repetitive
pressure patterns, document examiners have noted that
writing pressure is varied consciously in response to
how the pen is inking rather than from habit. Many indi-
viduals lighten up on retrace strokes for pictorial effect.
Whether or not the pen inks on the retrace stroke is of-
ten not important to the signer. The presence of a pen
lift will thus depend on the particular algorithm or hard-
ware switch used.

The strategy we have implemented, called VPEN, is
to eliminate extra pen lifts, trying all combinations ex-
haustively, until the best mean-square match between
the two timing patterns is achieved; i.e., if the two signa-
tures X and R have segment times T, and T,

T,=(T,, T, T

o
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T,=(T,T, - T), (6)

then we eliminate all combinations of pen lifts to make
i = v, thus minimizing {7, — 7|, the root-mean-square
norm. An exhaustive process is feasible because p and v
are small, typically six or less.

The result of cross-correlating two signatures X and R
is a vector consisting of a correlation for each segment,

CXR = <C1, CZ,. T CV>7 (7)

where the C' are the segment cross-correlations. Let »
be the corresponding segment lengths of the reference
signature. The results must then be combined to give the
final decision. Properly speaking, we should weight each
segment’s cross-correlation according to the difficulty of
forging it. This information is usually not available.
However, we have noticed that forgers have more trou-
ble with the longer segments. This seems natural be-
cause a longer segment represents a more complex mo-
tor task. Accordingly, each segment is weighted by the
reference length.
We define V' (for verification measure) as

V=3(m/n C,

where n = Ein'; and nir is the ith segment length in sample
points for the reference signature. A threshold based on
the analysis data must then be chosen.

Reference design procedures

Reference design may be viewed as a combinatorial op-
timization problem. Of the Comb (M, N) ways in which
M signatures may be selected from N given signatures,
the “best” M signatures must be determined as refer-
ence signatures for verification purposes. This statement
implies that we need both a criterion by which each sub-
set of M signatures can be evaluated and algorithms for
determining the optimal subset as references. We de-
scribe in this section a selection criterion, an algorithm
for reference design, and a procedure for estimating the
decision threshold for each reference.

Let s,(#}, 5,(¢), -~ s,(¢) be N sample signatures giv-
en by a user. Our criterion is the following: We wish to
find a minimal subset of M signatures such that with the
signatures in this subset as reference signatures, the ver-
ification measure between each one of the remaining N -
M signatures and one of the M reference signatures will
be at least as large as a specified value. In other words,
we would like to maintain a certain specified value of
verification measure between a set of reference signa-
tures and the rest of the sample signatures. If more than
one subset of M signatures satisfies this criterion, then
the optimal subset is defined as the one in which the
smallest verification measure between a sample and its
nearest reference signature is the largest among all sub-
sets of M satisfying the criterion.

249

SIGNATURE VERIFICATION




250

Table 1 Comparison of correlation algorithms.

Average of two
correlations

Magnitude of
complex correlation

Rejection of
valid signatures
Acceptance of
forged signatures

183/695 = 26% 124/695 = 17.8%

2/287= 0.70% 2/287= 0.70%

Table 2 Effect of multiple references per user.

Single reference
per user

Two or fewer
references per user

Rejection of valid

signatures 142/695 = 20.4% 124/695 = 17.8%
Acceptance of forged
signatures 4/287= 1.4% 2/287= 0.70%

Table 3 Verification results with three trials.

Rejection of valid Acceptance of Average number
signers forgers of trials

17/592=287% 2/97=2.1% 695/592=1.17

The reference design algorithm selects an optimal refer-
ence set by sequentially determining whether, for M = 1,
2, a subset of M signatures satisfies the criterion. If no
subset of two signatures meets the threshold requirement,
then the subset closest to meeting the requirement is
selected.

We have implemented this algorithm, and for practical
reasons have chosen M to be less than or equal to two.
If a specific number of reference signatures is desired,
e.g., one, the algorithm can be used to select the “best”
signature. However, the specified design threshold value
in this case is not guaranteed.

Another plausible way to derive a reference signature
is to take the sample average for each user. Since it is
possible to have many variations in the design samples,
it is often not feasible to average all samples into a single
reference signature. The average of poorly correlated
signals tends to zero. A sequential scheme that avoids
this problem by averaging clusters of samples into refer-
ence signatures was implemented, but the above method
was experimentally superior.
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» Verification threshold estimation

In conventional pattern recognition applications, sam-
ples of all pattern classes are given for reference design
and decision boundary determination. Many techniques
have been developed for determining the optimal deci-
sion boundaries. However, for signature verification,
forged signatures are not available for the reference de-
sign, and therefore a verification threshold must be cho-
sen on the basis of the given valid signatures alone. The
only information available on forgery is our previous
general experience.

The particular estimation scheme used is as follows.
Let the minimum of the set of verification measures be-
tween R,(¢) and each sample assigned to R,(1) be V*,
Let the standard deviation of these verification measures
be o. Then, the verification threshold T, for reference
R, (1) is estimated as

T, = min {0.6, max[(V* — ko), 0.48]}. (8)

In other words, we estimate T, from the verifica-
tion measures obtained between R,(f) and samples s;(1),
and then set an upper limit of 0.6 and a lower limit
of 0.48 on the estimated value. In a case for which there
is only one sample or no sample signature assigned to
reference R,(r), the threshold T, is rather arbitrarily set
at 0.5.

The parameter & selects the tradeoff between rejects
and errors. Depending on the application, it could be
varied dynamically. In these experiments, k= 1.5.

Experimental results
In this section, we present the results of our investiga-
tion of an experimental signature verification system.

In April 1975, we collected on our experimental sys-
tem 1332 signatures from 70 volunteers. To simulate a
real application environment, each individual was asked
to sign five times on the system in the first session to
provide the sample signatures needed for reference de-
sign. No special training or practice was provided.
Based on the five samples, a set of references was de-
signed for each user and stored in the reference file. In
the subsequent daily sessions, each individual was given
up to three trials to have his signature verified by the
system. Subjects were motivated by the prospect of free
coffee. For reference design, 350 signatures were col-
lected (5 X 70 users). The total number of test signatures
collected was 695. In addition to the valid signatures, we
also collected 287 forged signatures. The ‘‘forger” was
free to practice the target signature. In some instances,
the forger watched how the valid signature was signed
and attempted to duplicate the gross features of the mo-
tion. Some forgers attempted to exploit flaws in the ex-
perimental system. All forgers were urged to write rapidly
and freely if they wished to succeed. Thus, these forgeries
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were not casual, but part of an attempt to exercise the
verification scheme vigorously.

e Decision rules

To decide whether a signature should be verified or re-
jected, two decision rules are used sequentially. The first
rule checks to see if the difference in time between the
signature and a reference is within a tolerance of 20 per-
cent. The signature is rejected if the time difference is
greater than the tolerance. Otherwise the signature is
passed to the second rule which checks whether the ver-
ification measure between this signature and the refer-
ence is higher than the verification threshold associated
with the reference. A signature is verified if the verifica-
tion threshold is exceeded for any one of the reference
signatures. Otherwise it is rejected. Since the first rule
involves very little computation, the two rules are used
sequentially.

e Comparison of correlation algorithms

The performances of the two correlation algorithms de-
scribed earlier, the magnitude of complex correlation,
and the weighted average of correlations from two chan-
nels, were investigated experimentally. References were
designed with M = 2. In the case of complex correlation,
a set of 119 reference signatures was selected for the 70
users, and in the case of average correlation of two
channels, a set of 118 reference signatures was selected.
All of the 695 test signatures and 287 forged signatures
were tested. The results are shown in Table 1.

It is apparent that the complex correlation algorithm
gave superior performance and it was therefore chosen
as our experimental system. The significantly large dif-
ference in the number of rejects was due to the probiem
of stylus rotation. Although there was a preferred orien-
tation for our stylus, some users did not always conform
to the convention.

e Performance of single reference

A set of single references for each user was designed.
The desired design threshold value of Th = 0.5 could not
be satisfied for approximately 70 percent of the users.
The verification thresholds for this subset of users were
set at 0.48. The results of all test and forged signatures
are shown in Table 2. The restriction of one reference
signature per user produced a significant degradation of
performance.

e Verification results

The results of the online experiment using complex cor-
relation, three trials for verification, and the set of 119
references are shown in Table 3. An examination of re-
ject rate for each individual revealed that for exactly half
of the users, all valid signatures were verified on the first
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Figure 3 Distribution of individual reject rates. Over half the
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s oo A g P AL oy —
o gme AP b PR

Verification measure,

Figure 4 Typical rejected sample. Two signatures are shown
overlapped in position of highest correlation. Each axis shows
one channel. Rejection is caused by failure of individual to
write his last name completely. Accelerometer outputs are
shown for p channel, upper axis, and g channel, lower axis.

trial and all forged signatures were rejected. More than
half of the rejected valid signatures came from a subset
of seven users, four of whom signed their names with
motions that could not adequately be detected by our
present stylus (the accelerometer outputs were largely
zero). When a user did need a second trial, his success
rate for the second trial on the average was roughly 70
percent. When he went to a third trial, the average rate
of success dropped to below 40 percent. This is another
indication of a systematic mode of failure. A plot of the
distribution of rejects for valid users is shown in Fig. 3.
The gross averages are thus distorted by the small num-
ber of users who fail badly.

Figure 4 shows a rejected signature compared with its
reference signature. Figure 5 shows an accepted forgery.

Another measurement of false acceptance rate was
made by comparing the reference signatures of every
user against the reference signatures of every other user.
This is the random forgery experiment.
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Figure 5 One of two accepted forgeries. Although timings
match well, signals are still substantially different. The p channel
is upper axis and g channel, lower axis.

The complete set of 119 reference signatures for 70
users was used in the simulation. Since each reference
signature had an individual verification threshold, the
total number of comparisons was 8211. It was found
that there were 13 errors involving seven users’ refer-
ences, or an error rate of 0.16 percent. In 59 percent of
the cases, forger rejections were based upon time dis-
crepancies.

An examination of the 13 errors showed that six were
due to verification thresholds, which were set at the min-
imum of 0.48, a problem caused by the inconsistent
sample signatures used in the reference design.

Discussion
The performance figures quoted in the previous section
are conservative for several reasons. First, the results
are completely unedited. The subjects themselves con-
trolled the terminal with very little prompting from the
experimenter. From time to time there were human er-
rors, such as pausing in the middle of a signature, which
stopped the recording, or advancing the paper tape at
the wrong time, or writing too large for the space avail-
able and hitting the cover of the paper retainer. At least
30 such signatures were noted during the experiment,
and it is likely that others passed into the data unno-
ticed. Therefore, at least 24 percent of the gross rejects
were justifiable.

There was no training or practice. Most subjects re-
quired one to three trials to adjust to the strange pen and
writing circumstances. This was quite noticeable in the
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overall time, where initial samples took much longer.
The most direct effect of strictly taking the first five sig-
natures for references was that the reference algorithm
really had only three or four good signatures to deal
with. On-line checking to assure five consistent samples
is obviously needed. But in a sense, the human factors of
taking a reference in one session are insurmountable. If
the subject is not able to give a typical signature in the
first session, there is not much to be done about it save
finding a secure way to update the reference later, a so-
called “‘post-enrollment” strategy of the type described
in {6].

The subjects in these experiments were not greatly
motivated nor very much distressed by a rejected valid
signature. Also, although in real situations forgers re-
ceive a relatively high payoff, they perform under great
stress. Our stress-free forgers appeared to be highly mo-
tivated by the gaming aspects of the experiment. Thus,
we feel that both sides of the experiment are conserva-
tive; in an actual application, motivated signers will do
better than our unmotivated subjects, and stressed forg-
ers will do worse.

Regional correlation demonstrates an effective method
for comparing signature dynamics. Previous techniques
failed because they could not accommodate the normal
distortions in the time axis (pauses, missing strokes,
etc.). Regional correlation is computationally reason-
able, not fine-tuned, and gives a familiar measure for
the similarity of two signals. However, as our experience
with real signatures and good forgeries increases, we
expect to be able both to improve the performance and
to simplify the computation by defining more powerful
local measurements. It is also possible that more power-
ful techniques for measuring time distortions used in
speech analysis may be applicable [16].

We found a considerable difference between the distri-
butions of scores for valid signatures and forgeries for
most of our subjects. One successful forgery was the
result of too much variability in the design set, which
caused the system to choose a low threshold. This is in
accord with the experience of conventional document
examiners. The forgeries that give trouble may be quite
different from the reference, but the examiner may con-
clude that they are within the normal range of variation
for this signer. Thus, improvements to the reference
procedure are of equal value to increasing the sharpness
of the decision rule.

The foremost technical problem remaining is to obtain
consistency of performance for all subjects. It is con-
ceivable that some individuals sign too inconsistently to
use the system, but that is not the case with the data we
have studied. The failures of our system are largely due
to imperfections in the measurement design and instru-
mentation.
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Finally, despite the many intrinsic human-factor prob-
lems we have mentioned, we believe our performance
figures are sufficiently encouraging to indicate the feasi-
bility of signature verification as a means of personal
identification.
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