190

B. D. WASHO

B. D. Washo

Rheology and Modeling of the Spin Coating Process

Abstract: This study examines the spin coating process both experimentally and from a fundamental point of view. The analysis has
produced a model and a quantitative relationship between spin coating thickness and pertinent material and process variables. The model
predicts that the simplest and most reproducible results occur in a region which is independent of thickness and time and is characterized
by low steady state radial flow on the substrate. The model also includes a time-dependent term, shown to be important for the region of
high radial flow —fluids of relatively low viscosity and process conditions of relatively high speed and/ or long times. Experimentally,
Newtonian-like polyamide in iso-amyl alcohol solutions was examined on large rotating substrates, and measurements showed excel-
lent correlation with the model. The sensitivity of the spin coating process to substrate size and shape is also reported and a comparison
with other data in the literature, particularly on photoresist solutions, is presented. The potential applicability of the model to non-ideal

fluids is also developed.

Introduction

The spin coating process has been used extensively,
particularly in the electronics industry, and is a popular
conformal technique for coating a planar substrate. Ac-
cordingly, applications of this process have ranged from
photoresist and polyimide coatings on semiconductor
silicon wafers to oxide coatings on memory disk-file sub-
strates. Because of its wide usage, there exist extensive
data on the process and many process parameter cor-
relations.

Unfortunately, many of these correlations suffer
several deficiencies: They tend to be inconsistent with
the use of process and material variables, incomplete
with regard to specification of process conditions, and not
readily applicable to other applications; almost all such
data are empirically, or at best semi-empirically, treated
[1-4]. The questions of what causes a coating solution
to behave in a predictable manner, and which process
parameters or groupings of process parameters primarily
govern the spin coating process, and with what priorities,
are best developed through a fundamental approach and
analysis.

The general problem of the flow of liquids on rotating
substrates, including the coating process governed by
this phenomenon, has received little attention in the
literature. It appears that the spin coating process - ap-
proached from a fundamental point of view —should be
useful toward understanding the nature of the process
and produce constructive correlation between process
and material parameters, thus improving process repro-
ducibility and reliability.

The spin coating process studied in this report was
used to provide protective overcoats for large litho-

graphic glass substrates (sizes to 25 cm X 30 cm). The
overcoat material was Milvex 4000 nylon (a modified
dimerized di-acid-based polyamide resin, product of the
General Mills Corporation). The Milvex material is
known to have the following basic properties: It is trans-
parent and inert with respect to uv radiation, has no
optical impairment in photolithographic resolution, is
wear and abrasion resistant, has a hydrophobic and anti-
sticking surface, and enhances mask-usage longevity.

Since reference data provided no information with re-
gard to the sensitivity of the spin coating process to sub-
strate size and configuration, spin coatings on large
masks were investigated experimentally as a function of
substrate size and process and material variables. A
theoretical model was also constructed to estimate these
effects on the process.

The Milvex resin was used in solution with iso-amyl
alcohol. Viscometry measurements on these solutions,
containing solids in the range 0 to 15 weight percent,
showed the solutions to be Newtonian-like over a shear-
rate-ratio range of two decades; i.e., the viscosity was
independent of shear rate (Fig. 1).

Historical review

Although there has been much research on the fluid-
mechanical properties of falling liquid films (5), only in
the last decade or so has attention been given to the flow
of liquids on rotating substrates. Many of these studies
have been directed toward heat transfer applications,
such as in connection with turbine rotors, packed absorp-
tion towers, cooling towers, distillation columns, etc.
[5-8].
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The first reported applications of the spin process as a
coating technique were for preparations of thin, uniform
films of paint and varnish [9] and of asphalt [10]. One
early study by Emslie et al. [11] used the spin coating
process to apply conformal films of phosphor-photoresist
to curvilinear surfaces of television faceplates. Emslie
developed theoretical solutions for the change with time
of the film thickness distribution of a Newtonian fluid
on an infinite rotating plane, given initial values. In at-
tempting to use his approach in our work, however, we
were unable to reconcile the use of certain assumptions
in his derivation and, in fact, our data appear to be con-
tradictory. Acrivos et al. [12] followed Emslie’s ap-
proach as applied to non-Newtonian liquids on a rotating
disk and, interestingly, concluded that coating uniformity
was virtually impossible for non-Newtonian fluids.

Epsig and Hoyle [13] investigated the phenomenon
of wave formation in thin liquids on a rotating substrate
and correlated their measurements with a modified, early
theory of Nusselt [14]. Their work, basically in agree-
ment with the conclusions of earlier falling film investiga-
tions [15- 18], indicated that in order for waves to form,
surface forces are important and the Reynolds number
must be greater than four (a conservative minimum),
where

Re=4Q/wDv (1)

and Q, D, and v are the volumetric flow rate, diameter,
and kinematic viscosity, respectively. (It will be shown
that wave formation is not important and need not be
considered for the system studied in this report.)

Numerical solutions have been obtained by Dorfman
[7] for initial film formation, and analytic solutions have
been obtained for asymptotic or steady state behavior of
the film by Aroesty [19] and by Gazley and Charwat
[8]. These particular solutions were derived for Newton-
ian fluids, assuming in addition a constant liquid source
at the center of the disk. (No time dependence of the
solutions was addressed.)

In general, these early studies do not seem to be
readily applicable to the spin coating problem. However,
their results can be used to outline the general regions in
which certain simplifying assumptions can be made in the
spin coating case.

Rheology of the spin coating process

The spin coating process can best be understood by con-
sidering the rheology or flow behavior of fluids on a
rotating disk substrate.

Initially, the volumetric flow of liquid in the radial
direction on the substrate is assumed to vary with time
as indicated in Fig. 2. At ¢t = 0, initial flooding and
complete wetting of the surface substrate are assumed.
(Surface tension phenomena are thus minimized, i.e.,
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Figure 1 Newtonian viscosity of a Milvex 4000-iso-amyl
alcohol mixture over a shear-rate-ratio range of 200:1.

t

Figure 2 Volumetric flow of fluid in the radial direction, Q vs
time ¢ for the three flow regions: 1) predeveloping, 2) steady
state, and 3) quasi-steady state.

no waves, no dry spots, etc.) The disk is then accelerated
to a specific rotational velocity, causing the bulk of the
liquid to be sloughed off the disk. A steady state flow
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Figure 3 Flow rate Q and velocity profile v (z) for a homo-
geneous fluid in flow developed on a spinning disk.

regime (region 2), which follows this predeveloping
flow (region 1), is achieved in a relatively short time,
and is characterized by dQ/dt = 0—a plateau region of
relatively low and constant volumetric flow on, and of
course off, the disk. This steady state regime also means
that the average film thickness on the disk essentially
does not change with time. If dQ/dr # 0, the average
film thickness becomes time dependent (region 3) and
is treated later as a separate case.

At this point, the spin coating process can be visualized
by referring to Fig. 3, which shows the symmetrical flow
pattern of a homogeneous liquid on a rotating disk. A
fluid element in the form of an annulus moves symmetri-
cally outward from the center of the disk to the perimeter,
where the liquid is eventually lost if the process is con-
tinued long enough. At steady state, the fluid element
experiences essentially two forces in balance on it: the
outward centrifugal force of rotation (as opposed to the
inward centripetal force of rotation) and the viscous
shear force of the flowing annulus. Other forces such as
body and Coriolis can be shown to be unimportant for
the system studied in this report. The viscous flow of the
annulus is reflected as a velocity profile in Fig. 3.

The steady state, constant temperature flow behavior
is predicted to be a function of the fluid rheology —the
particular material constitutive equation of the fluid—
and the process parameters of rotational speed, disk size,
and time. The flow profile is seen to be initially nonuni-

form with an apparent midpoint mound that is the source
for the flow in the disk. Later in the process this flow is
quickly damped to a more uniform profile. (The steady
state profile, 8 & r 3, where 3 is the film thickness and r is
the radial position, is shown later.) Furthermore, upon
cessation of the spin coating process and subsequent
drying or curing of the film on the substrate, surface
tension forces aid in smoothing out the thickness profile
to make it highly uniform and conformal. In this report
all film thicknesses are given for the dry film.

s Theoretical model
Arbitrary flow behavior is completely generalized accord-
ing to the equation of fluid motion in vector notation,

pDv/Dt=V -7—VP+ pg, (2)
where

Dv/ Dr = substantial time derivative of fluid velocity
vector v,
T = stress tensor
VP = pressure gradient vector,
pg = gravitational body force vector, and
p = density.

This equation is a phenomenological equation and must
be coupled with a material constitutive equation in order
to be completely solved. The simplest material is a fluid
that obeys Newton’s law of viscosity which, in one dimen-
sion, makes the fluid shear stress 7 directly proportional
to the shear rate; i.e., the viscosity is independent of
the shear rate:

T=pu dv/ oz, (3)

where u is the viscosity (proportionality constant) and
dv/dz is the velocity gradient or shear rate in the z
(coating thickness) direction. Coupling Newton’s law of
viscosity [ Eq. (3) in a generalized form] with the equa-
tion of fluid motion, Eq. (2), one obtains the classical
Navier-Stokes equation, which in vector form can be
written as

p Dv/Dt=— VP + Vv + pg. (4)

This equation can be simplified and solved for the
following conditions: steady state, constant pressure and
temperature, rotationally symmetric flow of a homo-
geneous fluid on a spinning disk, net flow only in the
radial direction, no evaporation loss (therefore u = con-
stant), and no body or surface forces (see Figs. 2 and 3
and the Appendix, Case A). Then, for any fluid in the
general spin coating process, the following phenomeno-
logical {or state) equation can be shown to be a solution
of Eq. (2):

o7,/ 8z =— pro’, (5)

where 7, is the shear stress on the z face of a fluid ele-
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ment arising from fluid momentum in the r direction, and
z is the film thickness direction. This equation can be
derived from another approach; see the Appendix, Case
B. For a Newtonian fluid, the equivalent result that fol-
lows from the Navier-Stokes equation (or the combina-
tion of Egs. (3) and (5) is

or,,/dz=p azvr/ 32 =— pro. (6)

For the general non-Newtonian fluid, a more compli-
cated material or fluid constitutive equation than (3) is
required. Once ascertained, its combination with Eq. (5)
allows, in principle, a solution of the problem. The sim-
plest non-Newtonian fluid is the power-law fluid de-
scribed in Eq. (7), with a constitutive equation analogous
to the Newtonian model described in Eq. (3):

7= dv/ dz, where u = m|dv/dz|""", (7)

and m and n are model constants. Work and results on
this power-law fluid model will be reported in a future

paper.

Time-independent solution

By using the steady state assumption dQ/dt = 0, Eq.
(6) can be shown to yield the following solution (see
Appendix Case C):

8= KC,(v/w'R*)3, (8)

where v is the kinematic viscosity; C,, is the volume frac-
tion of solids; w is the angular velocity; R is the disk
radius or average symmetrical dimension of the sample;
8 is the dry coating thickness; Q is thle volumetric flow
rate; and K is a constant, (81Q/ 164 )3.

Time-dependent solution

If dQ/ dt # 0, then significant removal of liquid from the
rotating disk occurs, seriously affecting the validity of
Eq. (8). The steady state thickness has a time depen-
dence as shown by region 3 of Fig. 2, where the plateau
region at some arbitrary velocity now has a nonzero
slope. This situation can occur for liquids of either
relatively low viscosity or high rotational process speeds,
and for long times. A quasi-steady state solution is
similar to Eq. (8) but is modified by a time-dependent
reduction factor (see Appendix, Case D):

1 g L gL
6=KC, (“wZLR§>3 [1 +0.395K* (%)3 z] . (9)
Here ¢ is the process time but it should be modified to
t — t', where ¢’ is the initial time, assumed to be short
(1 to 3 s), before flow develops on the disk.

Equation (9) reduces to Eq. (8) where there is no
time dependence, or for high viscosity fluid films at low
rotational speeds and for short times; these conditions
are related and defined by the following simple test. To
determine whether the spinning time over a range of con-
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Figure 4 Spin coating thickness of a Milvex 4000-iso-amyl
alcohol mixture on a 20.3-cm X 25.4-cm glass plate for three
speeds of rotation; M, =2.44, M, = 2.47.

cale

ditions is an important parameter, and therefore requires
the use of Eq. (9), one evaluates the ratio

tDrocess/ t0»5

which, in order to use Eq. (8), must be less than 0.01.
This is the ratio of the actual process time to the time
calculated as needed to reduce the coating thickness by a
factor of two. The latter is obtained from

t,s = 7.60/(«’/ V)85, (10)

where 8, is the desired coating thickness at 1 & 0 (see
Appendix, Case D).

Experimental resuits

Equation (8) can be tested by examining spin coating
data on log-log graph paper, which allows determination
of the characteristic exponents of the various parameters
via slope measurements. Using the slope data of Fig. 1,
which shows Newtonian viscosity correlated with
Milvex-solid content on a volume basis (u ~ CV4'44),
calculation can be made to obtain a predicted value:

VIC, A p3C, & ()50, = C 27 (12)

The resulting exponent, 2.47, is in good agreement with
the measured value of 2.44, which represents the average
slope as shown in Fig. 4.
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Figure 5 Spin coating thickness of a Milvex 4000-iso-amyl
alcohol mixture on a 20.3-cm X 25.4-cm glass plate for three
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Figure 6 Reduced thickness parameter of a Milvex 4000-iso-
amyl alcohol mixture for three rotational speeds.

The exponent on w can be similarly tested (Fig. 5),
and there is satisfactory agreement between the measured

slope (—0.68) and the predicted value (—0.67). The case
in which the slope was —0.45 is due to scatter in the data
in the area of very thin film thickness.

All the data can be reduced and consolidated by plot-
ting (w’R°p/w)5 (6/R) vs C, (Fig. 6). The predicted
linear fit of the data is shown with slope M(Q), which
allows determination of Q. This volumetric flow rate in
the radial direction is found to be 2.53 X 107° cm®/s,
from Q = 0.621M°. The model requires that Q be very
small and relatively constant. In addition, experiments
with coating times between 30 and 90 s show the coating
thickness to be independent of time for the Milvex solu-
tions. These data, together with Fig. 4 (small slope varia-
tion) show these assumptions to be essentially satisfied
for this system.

The equation of the solid line in Fig. 6 is

('R°p/ )7 (8/R) =3.44 X 107 C,, — 7.50 X 107,
where M(Q) = 3.44 x 107, (12)

The assumption of neglecting wave fronts is validated by
using the experimentally determined Q = 2.53 x 10~°
em®/s with Eq. (1) to demonstrate Re << 1. Coriolis
effects are shown to be negligible (see Appendix,
Case E).

The time-dependent reduction factor of Eq. (9) is
shown not to be important for this system by calculating
the ratio ¢ .../, . First, the lower bound of 7 is
calculated according to Eq. (10). For w/27 = 2000 rpm,
p = 30 centipoise (cP), p = 0.8 g/cm’, 8, = 1 um, and
t = 30 s, we find

process

t 1,5 = 0.0046, (13)

DI‘OCC‘SS/
which is well below 0.01; i.e., a 30-s process time does
not affect the steady state plateau region even for worst-
case conditions, and thus Eq. (8) is valid for this system.

The shape of the substrate was not found to be a
significant factor influencing spin coating results or con-
formality of the coating (excluding the film edges and
corners). For rectangular plates, the observed area of
film uniformity (ten film thickness measurements were
taken per quadrant and averaged) appeared to be that of
an inscribed ellipse, which suggested an average sym-
metrical dimension to be

2R = D* = [}(4® + B I7, (14)

where 4 and B are the sides of the rectangle.

Data on spin coating thickness as a function of disk
radius or, more generally, of the average symmetrical
din;ension D*, were not found to follow the predicted
R-7 dependence. Figure 7 shows data on large and small
rectangular mask plates and, in one case, on a silicon
wafer. (See Table 1.) The dotted line indicates the theo-
retical curve expected for the smaller plates, referenced
relative to Sample 4. These data show the actual coating
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Table 1 ‘“Average” dimension of substrates.

Sample A(cm) B(c) D*(cm)
1 6.35" 6.35
2 8.84" 8.84" 8.84
3 16.2 27.9 22.8
4 20.3 25.4 23.0
5 25.4 30.5 28.1

:Round substrate, silicon wafer.
Chromium mask.

thickness to be less than predicted and, furthermore, to
asymptotically become independent of plate size beyond
D* = 18 cm. The D* or R of the model does correlate
better with the general thickness gradient or profile
across the sample surface of a flowing film during the
spin coating process [8].

Comparison with other data

Though not specifically investigated, we expect the model
to be applicable to photoresist polymer solutions, and
correlation with such data in the literature was found, in
general, to be good. For example, data from Schwartz [ 2]
on computer-generated empirical equations for the spin
coating of Eastman Kodak KTFR photoresist indicate a
concentration-dependence exponent of 2.2 and an angu-
lar velocity-dependence exponent of —0.68, both in good
agreement with the model. In a similar manner, the data
of Kelley [20] on KTFR gave a value of —0.70.

The data of Zielinski [21] on DuPont RC5057 polyi-
mide in n-methyl pyrrolidone show good correlation with
the predicted slope of —0.667 for 8 — w in Fig. (8). The
data of Taylor [3] show & — w slopes of —0.657, —0.602,
and —0.430 for modified Eastman Kodak photoresist
(KMER) solutions of viscosity 65, 85, and 110 cP
(0.065, 0.085, and 0.11 Pa - s), respectively.

Summary

The spin coating model appears to accurately describe
the spin coating process for material systems that behave
in a Newtonian manner. This was found to be the case
for the polymer solutions examined in this study. Further-
more, the model predicts that the simplest and most
reproducible results of the spin coating process occur
when the process is operated in a region characterized by
low, steady state, radial flow. High radial flow involves a
more complicated time-dependent behavior, which be-
comes important for low viscosity fluid films at relatively
high process speeds or long times, but this is also de-
scribed by the model. As a corollary of the treatment, a
measure of the “Newtonian-ness” of a fluid is the agree-
ment between the experimental data and the char-
acteristic exponents of the model.
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Figure 8 Spin coating thickness of normal (14 percent solids)
and diluted (11.5 percent solids) DuPont RC5057; data of
Zielinski on silicon wafers [21], M _=—0.667.

cale

Future work should extend the model to treat non-
Newtonian solutions (probably most photoresist sys-
tems); solutions containing highly volatile solvents;
viscoelastic solutions; and transient effects such as con-
stant and variable acceleration (which are known to lead
to anomalous results). Further examination of the effects
of size and geometry, particularly with non-Newtonian
fluids, and the effects of substrate topology, e.g., pattern
dimensions and relief surfaces in the case of photoresist
systems, is also warranted.
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Appendix: Derivation of model equations
The fundamental equation in the derivation of the spin
coating model is Eq. (5), namely,

or,,/ 8z =—pre?, (5

where 7, is the shear stress on the z face of a fluid ele-
ment arising from fluid momentum in the r direction. This
may be derived by means of two basic approaches: 1) by
simplification of either the general equations of fluid
motion or the Navier-Stokes equation in cylindrical coor-
dinates, and 2) by a simple, steady state force-balancing
on a differential annulus of fluid on the rotating substrate.
This Appendix also develops the time-independent and
time-dependent solutions, and treats the Coriolis force.

s Case A: Equations in cylindrical coordinates

Vector Eq. (1) of the paper can be fully detailed in cy-
lindrical coordinates by reference to any general rheology
textbook [22]. For our purposes, consider only the r
component of the equation. With reference to Fig. 3,

p[avr n V0V, " &<ﬂ> _ v_f, n Uzavr]
ot o r\af r 0z

ap  [l/o7 1 879> Te | OT
==+ |+ ——+—'“ﬁ]+ , (Al
or [r< or ) r( a6 r 0z P&y (AD

where 7, is the normal stress on the x face of a fluid
element and 7, is the shear stress on the y face of an
element arising from momentum in the x direction.

The model invokes the following assumptions to
simplify the equations (the 6 and z components can be
shown to reduce to zero by means of these assumptions):

1. Steady state conditions.
2. Rotationally symmetric flow of a homogenous fluid.
3. No body force or surface force (i.e., complete wetting
and initial substrate flooding).
4. Constant pressure flow.
5. Net flow in r direction only.
a. v, ~ 0,
b. v, & re(angular velocity of rotating disk),
c. v, << v,
6. Low constant volumetric flow Q in the radial direction
(Steady-state assumption dQ /dt = 0).

With these assumptions, Eq. (A1) simplifies to
v,9v, vz l(arm>

ar rop

0z (A2)

Then, with the following simplified continuity equation,

179 v v
o)) sy,
ar or r

(A3)

r

and assumptions 5(b) and 5(¢), lead to the working phe-
nomenological Eq. (5)

For a Newtonian fluid in this coordinate system, we
have

7,, = WiV, / 8z; (3)
and with Eq. (5),
pd’v, /82" = —pre’. (6)

Equation (6) is the result which one also obtains from the
Navier-Stokes equation upon applying assumptions 1
through 5 of the preceding section. In a different but
analogous study, Gazley and Charwat [8] and Emslie
[11] independently derived a similar equation.

Explicit phenomenological solution
Equation (5) is solved explicitly using the following
boundary conditions:

Tre = Trmax for z=0,

7,,=0 forz =28 (A4)
(for a free surface).

These lead to

7, =pto’ (8 —2) =1 (1—2/8). (AS)

The working phenomenological Eq. (A5) can also be
derived illustratively by use of a simple model of the
process as detailed below.

s Case B: Steady state force balance on fluid annulus
Consider Fig. 3 which shows the symmetrical flow pat-
tern of the fluid on the rotating disk. The steady state

balance of centrifugal forces shows that
(A6)

AF = Ame’r = 2nrzpAre’r

for a differential annulus. Similarly, the shear force
balance is

AF =1 AA =7, 27rAr, (A7)
and at steady state,

AF, =AF;

2arAr(zpa’r) = T,, 27rAr. (A8)

One must satisfy the boundary conditions stated in Eq.
(A4) and simplification leads to the result

Tre ™ pwzr(s - Z) = ’Tmax(‘1 - Z/S)’ (A9)

which is equivalent to Eq. (AS5).

¢ Case C: dQ/dt=10

By coupling Eq. (A5) or (A9) with Eq. (3), Newton’s
law of viscosity in one dimension, we compute the ve-
locity gradient as

IBM J. RES. DEVELOP.




v, 1 () =prw2
3z M rz u

(8 —2). (A10)

Equation (A10) is solved by using the following bound-
ary conditions:

v,=0 for z=0,
U, = Upas for z=2. (A11)
Then
_ ()=ﬁ[f_l<z_z):|
Or = Ul 5 2\8°
—ay 212 Al2
= Zna{ 5~ 2157/ | (Arz)

where v = u/p.

To determine the velocity profile (Fig. 3) of flow
across a thickness of film, we average the velocity over
all z:

® ® 1/re’8
v, = f Zerr(z)dz/f 2mrdz =~< ) (A13)
o 0 3\ v

The volumetric flow rate is

2w
Q—217r80r—T—V— , (Al14)
and the thickness is
1
3 3
o= 53] (415

Averaging over all r, we obtain the average thickness

§ = J* 2mrddr/ [ 2mrdr= (81/16a)% (Qv)5/ (wR)’.

(A16)
By converting from the wet to the dry film state,
Bary = 0,0 Chos (A17)
we obtain the final result,
8= KC,(v/ 'R, (8)

s Case D: dQ/dt # 0 )
The derivation of Eq. (10) follows. Let V be the volume
of liquid on the disk at any time. Then,

dV/dt = Q =—aR* d§/ dt, (A18)

and Eq. (A16) relates Q to the average thickness 3, so
that

d_S _ _& wZSiS)

dr 81( v /) (A19)
Then, after integrating from ¢ = 0,

1/8 —1/8;=0.395 ’t/v. (A20)

When § = 0.550, the time to achieve half-thickness is
lys=7.60 v/w’8). (10)
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The time-dependent equation (9) is derived using a quasi-
steady state approach. 50 is defined as the average thick-
ness at the onset of the region labeled as 3 in Fig. (2), and
steady state Eq. (A16) applies.

§,= (81/16m) (Q)¥/ (wR) . (A16)

Equation (A20) can now be rewritten as

8/5,= (1 +0.395 w*5,t/v) 2. (A21)

Combining Eqs. (A16) and (A21) with Eq. (A17), we

eliminate 50 and obtain for the time-dependent thickness,
K%CV K z w2 % 7

8= ;[1 + O.395<'_2) <—~) t] , (A22)
(Rw)? R? v

where, for substrates with R > 18 cm, R is constant, i.e.,

equal to 18 cm.

~ Case E: Coriolis effect
The Coriolis force shows its effect as the relative devia-
tion of the angular velocity v, from the local disk velocity
wR, or (wR — v,)/wR. This deviation factor, if it is
significant, affects assumption 5(b) of Case A (where
r = R) of the model; the effect can be calculated as
follows.

The Coriolis force perpendicular to the radius (and
opposite in direction to w) for the differential annulus
of Case B is

AF = Am2v,0. (A23)

A steady state force balance for the ner circumferential
flow, (Rw — v,), is similar to that of Case B:

AF AF or

shear — coriolis?

1

dv 2\"
20RARu (d—"> = 27RARpS <1 —3> v, (A24)
Z

where v, = Rw — v, is the net flow in the 6 direction. On
simplifying we have

dv;/dz=zv;w8 (1 _§> (A25)
Then, integrating over z, we obtain

oy =222 (2-1%) ana (A26)
Upmax = PUpmax0d /. (A27)
Using (A12) we have

Upmax = @RS /2. (A28)
If we combine Eqs. (A28) and (A29),

Vpma = (@R) /2 (w8 /v)*; (A29)
but

Upmax = @R — U, (A30)
so that
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(@R —v,) /wR =} (ﬂf-z)z.

(A31)

For /27 = 2000 rpm, = 1 um and v = 0.125 cm®/s
thus,

(@R —v,) /wR =1.4x 107" (A32)

A similar value may be obtained using the analytical
results for the velocity deviation factor of Gazley and
Charwat [8] under these conditions.
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