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Model for the Kinematics of Polymer Dissolution

Abstract: The dissolution of glassy polymers is described by a phenomenological model of the motion of two boundaries: the liquid-gel
boundary and the gel-glass boundary. The motion of these boundaries, as well as the concentration profile in the layers of a dissolving
polymer, was obtained by numerical solution of the Stefan boundary value problem. Confirmation of the experimental program written
to simulate the problem is established by its good agreement with direct observation of the dissolution dynamics of polystyrene in
methyl ethyl ketone. A potential application of this model to the study of the dissolution dynamics of other polymer-solvent systems is
done by simulating the dissolution of three types of polymer-solvent pairs: 1) swelling of rubber, 2) high glass transition concentration,
and 3) low glass transition concentration. Contrasting dissolution characteristics are shown for the effect of different types of polymer-
solvent pairs as well as for the effect of different molecular weights for the same type of polymer-solvent pair.

Introduction

The polymer dissolution phenomenon has been of in-
terest to the scientific community for at least three
decades. However, industrial interest in this subject has
only recently been aroused by the advent of the large
scale integrated circuit, where the preferred fabrication
method is the lithographic technique. In particular, the
use of polymers as electron beam resist materials has in-
tensified this interest.

It was observed [1] that when a region of a film of
poly (methyl methacrylate), PMMA, is exposed to an
electron beam, it dissolves many times faster than do un-
exposed areas. By careful choice of solvents (devel-
opers), an image can be developed in the polymer sur-
face, with geometrical integrity, of lines narrower than
1 um spaced less than 1 um apart. The direction of this
technology is toward narrower lines and greater line
density. Therefore, it is important that the geometric
integrity of the radiation exposure pattern be maintained
during the development process, and this requires a
greater and deeper understanding of the nature of poly-
mer dissolution.

In response to this need, we initiated a study of the
kinematics of polymer dissolution. The first step was a
formulation of a mathematical model which describes,
phenomenologically, the Fickian diffusions involved in
the development process. The model takes into account
the effect upon the contrast and resolution of the devel-
oped image of the resist due to the different material
parameters (transport and thermodynamic properties) as
well as the processing parameters (geometry and stirring
speeds, etc.).
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To verify the model and the computer simulation of the
polymer dissolution, experimental techniques for the
direct observation of the dissolution process were de-
veloped concurrently. Polystyrene dissolving in methyl
ethyl ketone (MEK) was the system used for the experi-
mental verification of the model, because many of the
material parameters required for the computer simulation
are readily available in the open literature. For example,
the diffusion coefficients of MEK in polystyrene have al-
ready been obtained by Ueberreiter [2] and the other
material parameters have been published by Berry and
Fox [3] and by Graessley [4]. Using the model we have
investigated the effect of several parameters on the kine-
matics of the swelling and dissolution processes. These
parameters include the diffusion coefficients of the sol-
vent in the polymer matrix and of the polymer in the
solvent, and the polymer molecular weight.

Physical concept of the model

In a dissolving polymer, two distinct boundaries or inter-
faces characterized by a sharp change in the concentra-
tion of the solvent may exist. These boundaries can be
observed because of sharp changes in the refractive in-
dex, viscosity, and modulus at the interfaces. These
viscosity and modulus changes are useful because they
allow the mechanical properties of the different phases
between these boundaries to be characterized.

The first boundary, between the liquid and the gel-like
solution phases, is particularly significant, for it is here
that the partition between the dissolved and the undis-
solved polymer is likely to occur should the polymer be
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taken out of contact with the solvent. For a given poly-
mer-solvent pair and polymer molecular weight, the
concentration at the liquid-gel boundary is a defined
quantity. For example, the product of the polymer mole-
cular weight and the concentration (c,) at the liquid-gel
interface of polystyrene dissolving in MEK at room
temperature has been reported to be approximately
27000 [3, 4].

At the liquid-gel interface, it is envisioned that the
polymer molecules go from the gel-like phase (entangled
state) to the less viscous liquid solution (free state) at a
rate which is defined as the disassociation rate (R). Of
all the material parameters required in this model, the
most difficult to define from an analytic point of view is
this disassociation rate. Intuitively, it is reasonable to
relate R to the osmotic pressure as the driving force, and
to the segmental stiffness (chain friction coefficient) as
the resisting force. Thus, R must be related to the viscos-
ity phenomena of highly concentrated polymer selutions.
However, the complexity of this relaxation process pre-
vents a quantitative prediction of R from the molecular
properties of the polymer and the solvent. Experimen-
tally, R may be estimated by extrapolating the solubility
rate to very high solvent velocity across the liquid-gel
interface. Our simulation results indicate that this method
of estimating the value of R is valid because the solubility
rate at this condition is controlled primarily by R, and it
is no longer affected by the diffusion of the dissolved
polymer across the boundary layer.

The second boundary lies between the gel-like and the
glass-like phases. Again, this interface is characterized by
a defined concentration. In addition to a sharp change in
refractive index, this boundary is also marked by a steep
change in the diffusion coefficient of the solvent in the
polymer matrix. The highly nonlinear concentration de-
pendence of the diffusion coefficient is well known [2]
and, as will be shown, plays a major role in the dynamics
of polymer dissolution. Once the concentrations at these
boundaries are defined and the different material param-
eters (diffusion coefficients of the solvent and polymer
and R) are known, the kinematics of dissolution can be
formulated and the spatial locations of the liquid-gel and
gel-glass interfaces tracked with time. Thus, the kinema-
tics of the swelling and the dissolution of the polymer
may be described analytically. We define the following
physical parameters:

* Disassociation concentration c,—the volume concen-
tration of the polymer at the gel-liquid interface;
0<c, <1

¢ Disassociation rate R —the rate in cm/s at which the
disassociated polymer molecules are freed to diffuse
into the liquid solution from the gel-liquid interface.
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* Glass-gel interface concentration c,—the volume con-
centration of the polymer at which the diffusion co-
efficient of solvent begins a sharp decrease: ¢, <c¢, < 1.

¢ Nominal diffusion coefficient of solvent in polymer
(D,) —the diffusion coefficient of solvent in polymer at
the gel-liquid interface in cm®/s.

* Nominal diffusion coefficient of polymer in liquid
solution D —the diffusion coefficient of polymer in
dilute solution in cm®/s.

* Gel-liquid interface y(¢) —position of the gel-liquid in-
terface at time ¢ in cm.

e Glass-gel interface x()—position in the polymer

where the volume concentration is ¢, at time ¢, (1) <

x;(1).

Boundary layer thickness B —thickness in the liquid

solution, measured from the gel-liquid interface to a

point in the liquid phase where concentration of the

polymer may be taken to be zero. The boundary layer
is established by flow in the liquid phase due to me-
chanical stirring of the solvent.

The space coordinate x is directed into the polymer and
x = 0 coincides with the gel-liquid interface at time t = 0.
Thus, y(0) = 0; ¢, and R are dependent upon the molec-
ular weight of the polymer, but they are independent of
each other in the model.

Mathematical formulation of the boundary value
problem

In addition to the physical considerations discussed in the
previous section, we assume that the conditions of con-
stant disassociation concentration and constant disas-
sociation rate are established immediately upon wetting
of the polymer surface, and that the solvent and the
polymer are incompressible. The following notations are
introduced in addition to those defined previously:

¢ Volume concentration of polymer, 0 < ¢ < 1;
c Volume concentration of solvent, ¢’ =1 — ¢;
H Initial thickness of polymer film when ¢ =1, i.e.,

polymer occupies the region 0 <x < H_att=0;

f.(c¢)  Numerical factor for the diffusion coefficient of
solvent in polymer. Hence the local diffusion co-
efficient of solvent in polymer is equal to D_f, (c).
fle) >0, fc) =15

f,(c}  Numerical factor for the diffusion coefficient of
dissolved polymer in liquid solution. Hence, the
local diffusion coefficient of polymer in liquid
solution is equal to D_f,(c) and f,(c) > O,
50 =1;

q(x, 1) Local flux of dissolved polymer in liquid solution
in cm/s;

q'(x, t) Local flux of solvent in polymer in cm/s; and

v(x, t) Swelling rate of polymer at x and time ¢incm/s.
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The local flux of solvent passing through any material
point x in the polymer is given in terms of the concentra-
tion of solvent ¢’ by

q' (x, 1) =— D f.(c) ac' [ ax, x> y(t). (1)

Similarly, the local flux of polymer in liquid solution is
given by

a(x 1) ==D,f,(c) €. x<y(0. (2)

s Swelling of the polymer

As solvent diffuses into the polymer, the latter swells at
the rate v(x, f), equal in magnitude but opposite in di-
rection to the flux ¢’ (x, 1) of the solvent at x and ¢; hence,

vix, n =—4q'(x,0), y(O) <x<H,

However, at the gel-liquid interface, x = y(¢); the inter-
face position is determined by the equation

dy/di=v[x=y"(1),1] —qlx=y (1), 1], (4)

where g[x = y (1), t] is the flux of dissolved polymer
leaving the interface, and y“(¢) indicate the gel and the
liquid solution sides of the interface y(r), respectively.
The effect of swelling was investigated by Wang and
Kwei [5] based on constant swelling rate, independent
of x and ¢.

s Diffusion of solvent in the polymer, y' (1) < x < H,
Observed from a coordinate moving with the swelling
rate v(x, 1) of the polymer material at x, the local flux of
solvent is g'. The absolute flux of solvent as seen by the
stationary observer is, therefore, ¢’ + ¢’v. Consequently,
the conservation equation becomes

ac’

o1 y(t) <x<H, (5)

+2 (g + ') =0,
ax

Since ¢’ = 1 — ¢, the conservation equation may be ex-

pressed in terms of ¢ by means of Egs. (1) and (3) in the

form

d_p o 9c +
E_DS Py [fs(c) Cax]’ y ) <x<H, (6)

Initially, ¢’ = 0; hence,

clx,t=0) =1, y (0 =0<x<H, (7)

At the gel-liquid interface, x = y* (1), the concentration
is kept at constant c,. For an impervious substrate at
x = H , the flux vanishes. Thus, the boundary conditions
for ¢ are

c=cp at x=y"(1), t>0;
X—0 atx=H t>0. (8)
ax P
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At the glass-gel interface, both ¢ and the flux D f,(c)
dc/ x must be continuous.

« Diffusion of dissolved polymer in the liquid solution,
x<y (9

The swelling of the polymer causes a bulk motion in the
liquid phase (dilute solution) at the velocity of the gel-
liquid interface given by Eq. (4). Observed from a co-
ordinate moving with the liquid solution at velocity
dy/ dt, the local flux of polymer in the solution is g. The
absolute flux of polymer in solution (as seen from a sta-
tionary coordinate) is, therefore, g + ¢ dy/ dt. Hence, the
conservation equation becomes

g, 2 ( )

— c—

=4 )=0, x <y (1). (9)

Making use of Eq. (2), we derive the conservation equa-
tion in terms of c:

ac dy ac d ac _

ar  dr ax b, ax [fp(c) ax]’ x<y (. (10)
Initially,

c(x,t=0) =0, x <y (0)=0. (11)

At the gel-liquid interface, x = y (¢), the flux of dis-
solved polymer leaving the interface is computed ac-
cording to

glx=y"(1),t] =—D,f,(c) ac/ox aty=y (1),

t=0. (12)

Depending on the condition at the gel-liquid interface,
either of the following may take place:

1. Starting from time ¢ = 0, the flux given by Eq. (12) is
limited by the disassociation rate R of the dissociated
polymer molecules that are available from the gel-
liquid interface. Hence,

—qx=y (t),t) =D f,(c) dc/3x =R

at x =y (1), o<tr<t, (13)

for some ¢, provided ¢ < ¢  at x = vy (t). Gradually,
the concentration ¢ at x =y  (t), which is zeroat t=0,
increases as long as 0 < ¢ < ¢, at x=y (¢). During
these times, the diffusion capability is always sufficient
to carry away whatever dissolved polymer is available
at the interface.

2. In the end, ¢ = ¢ at x =y (¢) for ¢ > ¢, because the
diffusion capability becomes insufficient to carry away
the dissolved polymer molecules that continue to be
available at the disassociation rate R. Thereafter, the
concentration ¢ at x=y" (¢) is maintained at c,.. Hence,

c=cg at x =y (1), 1>, (14)

At t=1t, both Egs. (13) and (14) are satisfied.
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Figure 1 Photomicrographs of NBS-705 in contact with methy! ethyl ketone (MEK): (a) after a few seconds, (b) after 200 seconds,

and (c¢) after about 1000 seconds.

When the condition (13) is valid, we call this “source-
limited analysis.” When the condition (14) prevails, we
call this “flux-limited analysis.”” Phenomenologically, the
dissolution process may be referred to as disassociation-
rate-controlled in the former case and as diffusion-con-
trolled in the latter case.

The second boundary condition at the boundary layer
is given by

c=0 atx=y (t)—B. (15)

Since f,,(0) = 1, the rate of removal of dissolved polymer
may be computed according to

gy =—D, dc/ax, x=y (t) —B. (16)

For the gel-liquid interface given by Eq. (4), the velocity
may be expressed in terms of ¢ by using (1), (2), and the
condition f,(c;) = 1:

ac
S 9x

dy ac
- = Dpfp(C)a—

dt -Db

=y ()

(17)

r=yt ()

Mathematical solution

By introducing the dimensionless time variable 7 defined
by

r=Dyt/H., (18)
and normalizing all linear dimensions with respect to the
initial film thickness H , the boundary value problem de-

fined in Eqs. (5) through (17) may be interpreted by
means of the following dimensionless parameters:
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y*(r) =y(/H,

xi(r) =x,(t)/H,

B* =B/H,

r* =D)/D,

R* =HR/D, and

x*  =x/H, (19)
~ Diffusion of solvent in polymer, y** () < x* < 1
The differential equation can be written as

a8
ot ox*

[fs(C)c ;{—i} (20)

with the initial condition
cx*,7=0)=1, yT(0)=0<x*<1, (21)
and the boundary conditions

c=¢p x*=y** (1), T>0;

ac/ax* =0, x*=1, > 0. (22)
~ Diffusion of dissolved polymer in the liquid, v* (1)

— B* < x* < y* (1)
For the differential equation,
ac_ dy* ac

a
== T g
T dr x* 4 ax*

[0 =] (23)

for the initial condition,
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c(x*,7=0)=0, —B* <x* <y* (0)=0; (24)
and for the boundary conditions,
c=0, x* = y*7(7) — B*. (25)

1. Source-limited analysis, if 0 < ¢ < ¢, at x* =y* (7),
and 0 <7 <1,

fole) ac/ox* =R*  atx* =y* (7). (26)
2. Flux-limited analysis, 1 > 1,

c=cp,  X*=y*" (7). (27)
When 7 =7, both Egs. (26) and (27) are satisfied.

e Free boundary condition

dc
x*=y* (1) ax

dy*
dr

(28)

c

= rf(e) =5 :

v ax* x*=y** (1)

e Continuity conditions at the glass-gel transition,
x*=xk(7)

C| *=x¢ (1) c|x*=x(’f*(7) = Co

[fs(c) ;;C ]x*—x “(r) [fs(c) f}f—*]x*qg*(rf (29)

Equations (20) through (29) constitute a Stefan prob-
lem [6]. The methods of mathematical solution and
numerical integration are described separately in a paper
to be published elsewhere [7]. We define the similarity
variables £, n by

E= x*T_%,

n= T%. (30)
By letting

y*(r) =ni(n),

xE(r) = mZg(m), (31)

it can be shown, for small 0 < n < <17, = fr%, the solution
of the Stefan problem may be approximated [7] by

{(n) == ¢, (a constant),
&M= ), 5 <E<7m,
=~ nc'(§), {; —B*n < E<,. (32)

Both ¢, and c® (&) are determined from a subroutine that
solves, for an arbitrary Z, the initial value problem in the
space variable £ of the ordinary differential equation

alreed]ried=0. t<g<= (33)
with the initial conditions at & =,
¢ = Cp,
dc__ g3 4
T 1. (34)
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Figure 2 Positions of the gel-liquid and glass-gel interfaces
plotted against the square root of the time. The open circles are
calculated from the model; the solid circles are experimental
values.
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Figure 3 Diffusion coefficient D, of some polymers in various
solvents plotted against their molecular weights M,,.

Among all the solutions ¢(¢), we look for {, and A (&)
such that ¢’ (%)—1. Finally, Z,(n) == Z, are determined
following the solution ¢’(£). The function c¢'(£) is deter-
mined from the boundary value problem of the differential
equation

Lo - Ty,

—w<E<y,  (35)
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Table 1 Material constants for the polystyrene — MEK system.

Wl Disassociation
Molecular weight volume fraction Disassociation rate R
M, X 107° ¢ X 100 (A/min) (cm/s)
0.63 70.00

1.00 26.74 1.74 x 10°  2.90 x 107
s 3.00 8.91 122 x10° 2.04 x 107
10 5.00 5.35 5.17 X 10* 8.63 x 107°
7.00 3.82 6.64 x 10> 1.11x10°®
10.00 2.67 2.61 X 10> 4.35x10°®

subject to the boundary conditions

1007 _
de'(&)lde=r*, £=1¢;
e =0, ¢->—o (36)
~§ Assuming that the initial solutions ¢, ¢, and Z, are
i"’lo_12 valid for small 7 — 0, we can interpret them in terms of
] i

the dimensionless space variables x* and r (or the physi-
cal variables x and ¢) by means of Eqgs. (30), (18), and
(19). Thus, the gel-liquid interface y(¢) is given, approxi-
mately for r — 0, by

40 60 80 100

Polymer concentration, ¢ (percent)

Figure 4 Diffusion coefficient D_ of MEK polystyrene against
the polymer concentration. y(1) & H{m={VDg, (37)

Figure 5 The polymer concentration (C/M1) at the impermeable substrate and the location of the gel-liquid mtelface (YIF) plotted
Vs tlme for a rubbery type polymer with the following parameters: H = 10™* cm; boundary layer thickness B = 10~ cm; D ,=3X 107°
cm’/s; D, = 107" em®/s; ¢ = 0.25; and the disassociation rate R = .
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and the glass-gel interface x,(¢f) may be computed, ap-
proximately for ¢t — 0, according to

x.(ty R HZ,m=Z, VDt (38)

To continue the solution of the Stefan problem, Eqgs.
(20) through (29) have to be integrated numerically. The
method consists of the following steps:

1. The moving gel-liquid interface y*(7) is extrapolated
to the forward time level by means of an explicit for-
ward difference expression of Eq. (28).

2. Equations (20) and (23) are first linearized upon the
solution at 7 and then replaced by the Crank-Nicholson
difference operators. By this means, the concentration
profiles of the forward time level can be determined
algebraically.

3. Until the establishment of 7, since 7 = 7, when ¢ = ¢,
at x* = y* (7), the analysis remains to be source-
limited, and the boundary condition (26) is to be used.
Thereafter, r > 7, and the boundary condition (27)
of the flux-limited analysis is to be used.

In the absence of the glass transition, no numerical
complication was encountered in the calculation. How-
ever, when the glass transition does exist, we have ob-
served that: a) there is a very sharp concentration gra-
dient near the glass transition, and b) there is a very
sharp inflection as ¢ — 1 in order to satisfy the condition

dc/ox* = 0 at x* = 1 in Eq. (22). Consequently, very
stringent conditions must be imposed on both the mesh
size Ax* and the time step size Ar in the integration
scheme. This, in fact, constitutes a very sharp boundary
layer in which the exact concentration distribution is not
of great interest, but for which the rate of motion is im-
portant. For this reason, and because of the extreme
difficulty of carrying out a difference solution, we turned
to a further approximation for the numerical solution.

To investigate the swelling and the dissolution of glassy
polymer, it is therefore assumed that the concentration
profile in the glassy state of the polymer may continue to
be approximated by ¢*(¢£). In the gel layer, the concentra-
tion is so determined that the concentration is continuous
at the glass-gel transition, x* = x}(7), satisfying the
first continuity condition in Eq. (29) throughout the dura-
tion of the existence of the glass phase. Thereafter, the
boundary condition dc/ dx* = 0 at x* = 1 in Eq. (22) is
again used after the disappearance of the glassy phase. In
view of the fact that the thickness of the gel layer,
xg(r) —y* (7), varies in 7, the mesh size in the gel layer is
allowed to vary accordingly.

Experimental verification

Polystyrene is undoubtedly one of the most studied poly-
mers; hence many of its physical and chemical properties
that we need as input parameters to our dissolution kine-

Figure 6 The rate of removal of dissolved polymer at the boundary layer (SINK in cm/s); the liquid phase polymer concentration
(CYP) at the gel-liquid interface; the polymer concentration at the impermeable surface (CJM1}; and the location of the gel-liquid
interface (YIF) plotted against time in the dissolution of a rubbery type polymer. The material and experimental variables are A =
107 cm; D, =3 x 107° cm®/s; R =107 cm/s; and ¢, = 0.25. The large value of R makes this example a flux-limited case.
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Figure 7 Expanded scale of Fig. 6. SINK, CYP, CJM]1, and YIF are quantities defined in Fig. 6. The parameters are identical with

those of Fig. 6.

matics model are readily available in the literature. Fur-
thermore, Ueberreiter and his colleagues [8-10] have
studied the dissolution behavior of polystyrene in many
solvents. Thus, our choice of obtaining data on polysty-
rene dissolving in methyl ethyl ketone (MEK) to com-
pare with our model is an obvious one.

To obtain experimental data that can be compared with
computer results of the analytic model, it was necessary
to develop an in situ technique for measuring the motion
of the gel-glass and the liquid-gel interfaces. We succeed-
ed in measuring the real time motion of these two bound-
aries by using critical-angle illumination microscopy.
This technique takes advantage of the sharp change in the
refractive index at the boundaries of a dissolving poly-
mer, resulting in a marked difference in the amount of
light transmitted to the objective of the microscope from
the different phases (solvent, gel, glass) of the dissolving
polymer. Consequently, the solvent appears dark, the gel
very bright, and the glass slightly darker than the gel in
the photomicrographs of NBS-705 dissolving in MEK as
shown in Fig. 1. The motion of the different boundaries is
measured with the aid of a fixed cross hair in the micro-
scope and a set of micrometers that drives an x-y platen
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holding the sample cell. This allows us to align the inter-
faces with the cross hair and thereby to follow the loca-
tions of the boundaries with time. A detailed description
of the apparatus will be given in a separate paper [11].

The good agreement between the experimentally mea-
sured boundary position with time and that calculated
from the model is shown in Fig. 2. It plots the positions
of the liquid-gel and the gel-glass interfaces versus the
square root of time for polystyrene (molecular weight
179000) dissolving in MEK. The parameters used in
the calculations of interface positions from the model
corresponded closely with the physical properties of
polystyrene dissolving in MEK, ie., D, = 10 %cm?/s,
D,=10""cm’/s, ¢, = 0.15, ¢, = 0.75, and the geometrical
characteristics of the sample, H,=1cm and B=10.5 cm.

The diffusion coefficients of polystyrene in MEK and
of other polymer-solvent systems over a range of molec-
ular weight, were obtained using Rayleigh scattering
spectrophotometry [12-14]. Figure 3 shows the dif-
fusion coefficient of polystyrene in MEK plotted against
the molecular weight. In our simulation work we assumed
D, to be independent of concentration, i.e., fp(c) = 1.
This assumption appears to be justified by the weak de-
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Figure 8 An example of source-limited dissolution. The flux at the boundary layer (SINK) ; the liquid phase polymer concentration
(CYP); the polymer concentration of the impermeable surface (CJMI}; and the location of the gel- hqu1d mterface (YIF) are plotted

agamst dlssolutlon tlme in the dlssolutlon of a rubbery type polymer. The parameters are H,

em’/s; D, =107 cm’/s; R = % em/s; and ¢, = 0.05.

pendence of D on the concentration as demonstrated in
the results of King, Knox, and McAdam [15].

Using Ueberreiter and Asmussen’s data [2], we ap-
proximated the diffusion coefficient of solvent in polymer
as a function of polymer concentration by an algebraic
formula as plotted in Fig. 4. The diffusion coefficient D,
appears to be almost independent of concentration from
the pure solvent to 70 percent polymer. However, from
70 to 100 percent polymer the value of D_ drops pre-
cipitously by almost six orders of magnitude. This
behavior is common to many glassy polymers and the
onset of a rapid decrease in D_ with polymer concentra-
tion is coincident with the transition of the swollen layer
from gel-like to glass-like material.

The polymer concentration c, at the liquid-gel bound-
ary for the polystyrene-MEK system is obtained from the
relationship ¢,M, = 27000 [3, 4]. Hence, for polysty-
rene of M_ = 180000, the value of ¢, is 0.15. The other
geometrical parameters (H, and B) were measured from
the sample and the geometrical dimensions of the dis-
solution cell.
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=10"cm; B=10" cmD—3><10

In lithography, polymers are dissolved in very thin
films, usually about 1 um thick. Consequently, it is useful
to investigate the effect of the different material variables,
i.e., ¢, D, etc., on the dissolution dynamics of very thin
films. The following section presents examples of the
simulation of polymer films 1 um thick.

Dissolution of polymer in the absence of glass-gel
interface

In the absence of a glass-gel interface in the polymer, no
sharp change in concentration gradient is expected. To
investigate the effect of various physical parameters, we
consider the case of constant diffusion coefficients f,(c) =
1 and f,(c) = 1, and use Table 1 as a guide to choose ma-
terial constants. These constants are for the polystyrene-
MEK system and were approximated using the Vogel
relation [3]. We consider a thin polymer of film thickness
H, and boundary layer thickness B = H_ = 107 em in
all calculations, and take values for the diffusion coeffi-

cients of D, = 3 x 10™° ¢m’/s and D_ = 107 cm’/s. 139
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Figure 9 The effect of the gel-phase polymer concentration
¢, at the gel-liquid interface on the degree of swelling of the
dissolving polymer.
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Figure 10 Concentration dependence factors of the diffusion
coefficient of solvent in polymer for polymer-solvent pairs of
type A, polyisobutylene in mineral oil; type B, polystyrene in
MEK; and type C, polystyrene in amylacetate.

* Pure swelling, no dissolution (R =0), ¢, = 0.25

For a non-dissolving polymer such as cross-linked sys-
tems with an equilibrium swollen polymer concentration
of ¢, = 0.25, our calculation predicts the ultimate swollen
thickness of four times the original value. This has been
illustrated in the computational results shown in Fig. 5.
The position of the gel-liquid interface (curve YIF)
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Figure 11 Similarity solutions of the concentration profile
for polymer dissolution of types A, B, and C.

gradually reaches the ultimate swollen thickness as the
concentration at the substrate (curve CJM) reaches ¢,
asymptotically.

* Dissolution of polymer of c,= 0.25, R = 107 em/ s
As the polymer dissolves we observe the following:

1. The concentration of the polymer (CYP in Figs. 6 and
7) in the liquid phase at the gel-liquid interface rises
quickly and reaches ¢, in about 4 ms. Figure 7 is an
expanded scale of Fig. 6. Thereafter, the disassocia-
tion rate R plays no direct role in the dissolution.
Hence, the dissolution is primarily diffusion-con-
trolled.

2. The rate of removal (SINK in Fig. 6) of dissolved
polymer at the boundary layer becomes constant in
about 50 ms. The steady rate of SINK is about 25
percent of R.

3. The location of the gel-liquid interface (Y/F) first
moves in the liquid by swelling, subsequently slows
down because of polymer dissolution, and then re-
treats after about 120 ms to complete dissolution in
about 1.5 s. The maximum swollen thickness is about
2.3 times the original film thickness.

s Dissolution of polymer, c,= 0.05, R=10"° cm/s

The disassociation rate is quite small. We observe:

1. The concentration (CYP) of the liquid at the gel-
liquid interface rises steadily, but reaches a concentra-
tion of 0.001 (short of ¢, = 0.05) in about 200 ms
(Fig. 8). At this concentration, the flux across the
boundary layer (SINK) equals the value of R (107°
cm/s}. Consequently, the disassociation rate R con-
tinues to control the dissolution.
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Figure 12 Similarity solutions of the concentration profile
for polymer dissolution of type A with ¢, =0.05-0.25 (in incre-
ments of 0.05).

2. After 4 s the concentration at the substrate (CJM1) is
still approaching ¢, = 0.05, and the gel-liquid interface
(YIF) is still being swollen into the liquid phase.

Plotted on a common time scale, Fig. 9 shows the con-
trasting characteristics of the dissolution of polymers for
¢, = 0.25 and 0.05 in the absence of glass-gel transition.

Results for initial swelling

We have investigated three types of polymer dissolution.
The concentration dependence factors, f.(c), of the dif-
fusion coefficient of the solvent in the polymer are given
by:

1. f,(c) =1, 0 < ¢ < 1. This is a rubbery polymer; no
glassy phase exists, e.g., poly(isobutylene) in light
mineral oil.

2. f.(c) may be approximated algebraically by

file) =1, 0<c<0.65;
— 10—10000((}—0.65)3(0.85—6')’ 065 <ec< 075’

= 107 0.75<c< 1.

The glass transition concentration is taken to be
¢, = 0.75. This type is represented by the dissolution
of polystyrene in methyl ethyl ketone [2].

3. f.(c) may be approximated algebraically by

f;(c) = 1’

= 1070 68 95 o < 0.5

0<c¢<0.25

=107%, 05<c<l1.

The glass transition concentration is taken to be ¢, =

MARCH 1977

Figure 13 Similarity solutions of the concentration profile
for polymer dissolution of type B with ¢, =0.05—0.25 (in incre-
ments of 0.05).
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—0.8 —0.6 —0.4 —0.2 0 0.2

Figure 14 Similarity solutions of the concentration profile for
polymer dissolution of type C with ¢, = 0.05 — 0.25 (in incre-
ments of 0.05).

0.35. This type is represented by the dissolution of
polystyrene in amylacetate [2].

The concentration dependence factors f,(c) of these
three types are plotted in Fig. 10 and are referred to as
types A, B, and C, respectively.

The practical range of the disassociation concentration
is 0 < ¢, < 0.25. The effect upon the initial swelling of
these three types of polymer dissolution is shown in
Fig. 11 where the initial solution ¢’(¢) is plotted for
¢ =0.15. Figures 12, 13, and 14 show the initial solutions
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Figure 15 Initial swelling for polymer dissolution of types A,
B, and C; gel-liquid interface y(¢r) = {,V D t; glass-gel interface
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c°(§) for ¢, = 0.05, (0.05), 0.25 for types A, B, and C,
respectively. The effect on initial swelling is quite pro-
nounced for polymer dissolution of type C. The gel layer
and the glassy phase of the polymer are clearly identifi-
able in Figs. 10, 13, and 14 for types B and C dissolution.

The gel-liquid interface y(¢) and the glass-gel transition
x;(t) are given by Eqgs. (37) and (38), respectively, for
small time ¢. Hence, the thickness of the gel layer in the
polymer increases for small time ¢ according to

X () =y () R (Zyy— ) VDt

The values of Z., and {, are plotted in Fig. 15.

Summary

The kinematics of polymer dissolution in one dimension
can be described phenomenologically by an analytic
model using material and geometrical parameters that
are readily measurable. From existing data for the dis-
solution of polystyrene in MEK, the mathematical model
is verified experimentally by an in situ technique mea-
suring the motions of the glass-gel and the liquid-gel

YIH-O TU AND A. C. OUANO

interfaces. By means of the model we have investigated
the effect of the different material parameters upon the
dynamics of polymer dissolution. The simulation results
show that the diffusion coefficient of solvent in polymer
has a major effect on the kinematics of polymer dissolu-
tion. For example, both the rate of dissolution and the
extent of swelling depend highly on the concentration
dependence of the diffusion coefficient of solvent in the
polymer.
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