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Model  for the Kinematics of Polymer Dissolution 

Abstract: The dissolution of glassy  polymers is  described by a phenomenological  model of the motion oftwo boundaries:  the liquid-gel 
boundary  and  the gel-glass boundary. The motion of these boundaries, as well as  the  concentration profile in the  layers of a dissolving 
polymer,  was  obtained by numerical  solution of the Stefan  boundary  value  problem.  Confirmation of the experimental program written 
to simulate the problem is established by its good agreement with direct  observation of the dissolution  dynamics of polystyrene in 
methyl ethyl  ketone. A potential  application of this model to  the  study of the dissolution dynamics of other polymer-solvent systems is 
done by simulating the dissolution of three  types of polymer-solvent  pairs: 1 )  swelling of rubber, 2 )  high glass  transition concentration, 
and 3 )  low glass  transition  concentration. Contrasting dissolution characteristics are shown  for  the effect of different types of polymer- 
solvent  pairs as well as  for  the effect of different  molecular weights for  the  same  type of polymer-solvent pair. 

Introduction 
The polymer  dissolution phenomenon  has been of  in- 
terest  to  the scientific community for at  least  three 
decades.  However, industrial interest in this  subject has 
only  recently  been aroused by the  advent of the large 
scale  integrated circuit,  where  the preferred  fabrication 
method is the lithographic  technique. In particular, the 
use of polymers as  electron beam resist materials has in- 
tensified this interest. 

I t  was  observed [ 11 that  when a region of a film of 
poly(methy1 methacrylate),  PMMA, is exposed  to  an 
electron  beam, it dissolves  many  times faster  than  do un- 
exposed  areas. By careful  choice of solvents (devel- 
opers),  an image can  be  developed in the polymer sur- 
face, with  geometrical  integrity, of lines narrower than 
1 pm spaced  less  than 1 pm  apart.  The direction of this 
technology is toward  narrower lines and  greater line 
density. Therefore,  it  is  important  that  the geometric 
integrity of the radiation exposure  pattern  be maintained 
during the  development  process,  and this requires a 
greater  and  deeper  understanding of the  nature of poly- 
mer dissolution. 

In  response  to this need,  we initiated a study of the 
kinematics of polymer  dissolution. The first step  was a 
formulation of a mathematical model which describes, 
phenomenologically, the  Fickian diffusions involved in 
the  development  process.  The model takes  into  account 
the effect upon  the  contrast  and resolution of the devel- 
oped image of the  resist  due  to  the different  material 
parameters  (transport  and thermodynamic properties)  as 
well as  the processing parameters  (geometry  and  stimng 
speeds,  etc.). 

To verify the model and  the  computer simulation of the 
polymer  dissolution, experimental  techniques  for  the 
direct  observation of the dissolution process  were  de- 
veloped concurrently.  Polystyrene dissolving in methyl 
ethyl  ketone  (MEK) was the  system  used  for  the experi- 
mental verification of the model, because many of the 
material parameters  required  for  the  computer simulation 
are readily  available in the  open literature. For example, 
the diffusion coefficients of MEK in polystyrene  have al- 
ready been  obtained  by Ueberreiter [2] and  the  other 
material parameters  have been  published  by  Berry and 
Fox [3]  and by Graessley [4]. Using the model we  have 
investigated the effect of several  parameters  on  the kine- 
matics of the swelling and dissolution processes.  These 
parameters include the diffusion coefficients of the sol- 
vent in the polymer  matrix and of the polymer  in the 
solvent,  and  the polymer  molecular weight. 

Physical  concept of the model 
In a dissolving  polymer, two distinct  boundaries or inter- 
faces  characterized by a sharp  change in the  concentra- 
tion of the solvent may exist. These boundaries can be 
observed  because of sharp changes  in the refractive  in- 
dex, viscosity, and modulus at  the interfaces. These 
viscosity and modulus changes  are useful because  they 
allow the mechanical properties of the different phases 
between these boundaries to  be  characterized. 

The first boundary,  between  the liquid and  the gel-like 
solution phases,  is particularly significant, for it is here 
that  the partition between  the dissolved and  the undis- 
solved  polymer is likely to  occur should the polymer be 131 
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taken  out of contact with the solvent. For a given poly- 
mer-solvent  pair and polymer  molecular  weight, the 
concentration  at  the liquid-gel boundary is a defined 
quantity. For example, the  product of the polymer mole- 
cular weight and  the  concentration (e,) at  the liquid-gel 
interface of polystyrene dissolving  in MEK at room 
temperature  has  been  reported  to  be approximately 
27000 [3,4].  

At  the liquid-gel interface, it is envisioned that  the 
polymer  molecules go from the gel-like phase (entangled 
state)  to  the less  viscous liquid solution (free  state)  at a 
rate which is defined as  the disassociation rate ( R )  . Of 
all the material parameters required in this  model, the 
most difficult to define from  an analytic point of view is 
this  disassociation  rate. Intuitively,  it is reasonable  to 
relate R to  the  osmotic  pressure  as  the driving force,  and 
to the segmental stiffness (chain friction  coefficient) as 
the resisting  force. Thus, R must  be  related  to  the viscos- 
ity phenomena of highly concentrated polymer  solutions. 
However,  the complexity of this  relaxation process pre- 
vents a quantitative prediction of R from  the molecular 
properties of the polymer and  the solvent.  Experimen- 
tally, R may be estimated  by  extrapolating the solubility 
rate to very high solvent velocity across  the liquid-gel 
interface. Our simulation results  indicate  that this  method 
of estimating the value of R is valid because  the solubility 
rate at this  condition is controlled primarily by R ,  and  it 
is no longer  affected  by the diffusion of the dissolved 
polymer across  the  boundary  layer. 

The second  boundary lies between  the gel-like and  the 
glass-like phases.  Again,  this  interface is  characterized by 
a defined concentration.  In addition to a sharp change  in 
refractive index, this boundary  is  also marked by a steep 
change in the diffusion coefficient of the  solvent in the 
polymer  matrix. The highly nonlinear concentration de- 
pendence of the diffusion coefficient is well known [2] 
and,  as will be  shown, plays  a  major  role in the dynamics 
of polymer  dissolution. Once  the  concentrations  at  these 
boundaries are defined and  the different  material  param- 
eters (diffusion coefficients of the  solvent  and polymer 
and R )  are known, the kinematics of dissolution can be 
formulated and  the spatial  locations of the liquid-gel and 
gel-glass interfaces tracked with time. Thus,  the kinema- 
tics of the swelling and  the dissolution of the polymer 
may  be  described analytically. We define the following 
physical parameters: 

Disassociation  concentration cF - the volume concen- 
tration of the polymer at  the gel-liquid interface; 
o < c , <  1. 
Disassociation  rate R - the  rate in cm/s  at  which the 
disassociated  polymer  molecules are  freed to diffuse 
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Glass-gel  interface concentration cC - the volume  con- 
centration of the polymer at which the diffusion co- 
efficient of solvent begins a sharp  decrease: c, < cG < 1. 
Nominal diffusion coefficient of solvent in polymer 
(D, )  -the diffusion coefficient of solvent in  polymer at 
the gel-liquid interface in cm2/s. 
Nominal diffusion coefficient of polymer in liquid 
solution D,-the diffusion coefficient of polymer in 
dilute  solution in cm2/s. 
Gel-liquid interface y ( t )  -position of the gel-liquid in- 
terface  at time t in  cm. 
Glass-gel  interface xG(  t )  -position in the polymer 
where  the volume concentration  is cc; at time  t, y (  t )  < 

Boundary layer  thickness  B-thickness in the liquid 
solution,  measured from  the gel-liquid interface to a 
point in the liquid phase  where  concentration of the 
polymer  may be  taken  to be  zero. The  boundary  layer 
is established  by flow in the liquid phase  due  to me- 
chanical stimng of the solvent. 

x , , ( t ) .  

The  space  coordinate x is directed into  the polymer and 
x = 0 coincides  with the gel-liquid interface at time  t = 0. 
Thus, y ( 0 )  = 0; c, and R are  dependent upon the molec- 
ular weight of the  polymer,  but  they  are  independent of 
each  other in the model. 

Mathematical formulation of the boundary value 
problem 
In addition to  the physical considerations discussed in the 
previous  section, we  assume  that  the conditions of con- 
stant disassociation concentration  and  constant disas- 
sociation rate  are established  immediately upon wetting 
of the polymer surface,  and  that  the  solvent  and  the 
polymer are incompressible. The following notations are 
introduced  in  addition to  those defined previously: 

c Volume concentration of polymer, 0 < c < 1 ; 
c‘ Volume concentration of solvent, e’ = 1 - e;  

H ,  Initial thickness of polymer film when c = 1, i.e., 
polymer occupies  the region 0 < x < H ,  at t = 0; 

f , ( c )  Numerical factor  for  the diffusion coefficient of 
solvent in  polymer. Hence  the local diffusion co- 
efficient of solvent in polymer is equal to D,f, ( e ) .  

f , (c)  Numerical  factor  for  the diffusion coefficient of 
dissolved  polymer in liquid solution. Hence,  the 
local diffusion coefficient of polymer in liquid 
solution is equal to D,f,(c) and & ( e )  > 0, 

q(x ,  t )  Local flux  of dissolved  polymer in liquid solution 

q’(x, t )  Local flux of solvent in polymer in cm/s;  and 
u ( x ,  t) Swelling rate of polymer at x and time tin  cm/ s. 

f , ( c )  > O,f,(c,) = 1; 

f , ( O )  = 1; 

in cm/ s; 
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The local flux  of solvent passing  through any material 
point x in the polymer is given in terms of the  concentra- 
tion of solvent c' by 

q ' ( x ,  t )  =- D,&(c) adlax,  X > y ( t ) .  ( 1 )  

Similarly, the local flux of polymer in liquid solution is 
given by 

Swelling of the  polymer 
As  solvent diffuses into  the  polymer,  the  latter swells at 
the  rate u(x, t ) ,  equal in magnitude  but opposite in di- 
rection to  the flux q ' ( x ,  t )  of the  solvent  at x and t ;  hence, 

U(X, t )  =- q'(x, t ) ,  y ( t )  < X < H,. 

However,  at  the gel-liquid interface, x = y ( t )  ; the inter- 
face position is determined by the equation 

d y / d t = u [ x = y + ( t ) ,  t ]  - q [ x = y - ( t ) ,  t ] ,  (4) 

where q[x = y-( t )  , t]  is  the flux of dissolved  polymer 
leaving the interface, and y'( t )  indicate the gel and  the 
liquid solution sides of the  interface y (  t )  , respectively. 
The effect of swelling was  investigated  by  Wang  and 
Kwei [ 51 based on  constant swelling rate,  independent 
of x and t. 

Diffusion  of solvent in the  polymer,  y'(t) < X < H, 
Observed from a coordinate moving with the swelling 
rate u(x, t )  of the polymer  material at x, the local flux of 
solvent is 4'. The  absolute flux  of solvent  as  seen by the 
stationary  observer  is,  therefore, q' + c'u. Consequently, 
the  conservation  equation becomes 

- + - (q' + c'u) = 0 ,  y ' ( t )  < X < H,. ac' a 
at ax 

Since c' = 1 - c ,  the  conservation equation  may be ex- 
pressed in terms of c by  means of Eqs. ( 1 )  and ( 3 )  in the 
form 

Initially, c' = 0;  hence, 

c(x, t =  0 )  E 1, ~ ' ( 0 )  = 0 < x < H,. (7)  

At  the gel-liquid interface, x = y+ ( t )  , the  concentration 
is kept at  constant cF. For  an impervious substrate  at 
x = H,, the flux vanishes. Thus,  the  boundary conditions 
for c are 

c = cF at x = y + ( t ) ,  t > 0;  

At  the glass-gel interface, both c and  the flux D,f,(c) 
ac/ ax must  be  continuous. 

Diffusion of dissolved  polymer in the liquid solution, 

The swelling of the polymer causes a bulk motion in the 
liquid phase  (dilute solution) at  the velocity of the gel- 
liquid interface given  by  Eq. ( 4 ) .  Observed from  a  co- 
ordinate moving with the liquid solution at velocity 
d y l   d t ,  the local flux of polymer in the solution is q. The 
absolute flux of polymer  in  solution (as  seen  from a sta- 
tionary  coordinate)  is,  therefore, q + c dy/  dt. Hence,  the 
conservation  equation  becomes 

x < Y - ( t )  

ac a 
-+-  q + c -  = o ,  x < y - ( t ) .  at ax ( 3 
Making use of Eq. (2) , we  derive  the  conservation  equa- 
tion in terms of c: 

Initially, 

c(x, t = 0) = 0,  x < y - ( o )  = 0. ( 1 1 )  

At  the gel-liquid interface, x = y-( t )  , the flux of dis- 
solved  polymer  leaving the interface is  computed ac- 
cording to 

q[x = y - ( t ) ,  t ]  =-D,f,(c) &/ax at y = y - ( t ) ,  

t 20. (12) 

Depending  on  the condition at the gel-liquid interface, 
either of the following may take place: 

1 .  Starting from time t = 0, the flux given  by Eq. (12) is 
limited by the  disassociation  rate R of the dissociated 
polymer  molecules that  are available from  the gel- 
liquid interface. Hence, 

-q(x= y - ( t ) ,  t )  = Dpf , ( c )  ac/ax= R 

at x = y - ( t ) ,  0 < t < t,, ( 1 3 )  

for  some t,, provided c < cF at x = y-  ( t ) .  Gradually, 
the  concentration c at x = y- ( t )  , which is  zero  at t = 0, 
increases  as long as 0 < c < cF at x = y-  (1). During 
these  times,  the diffusion capability is always sufficient 
to carry  away  whatever dissolved polymer  is available 
at the interface. 

2.  In  the  end, c = cF at x = y - ( t )  for t > t,, because  the 
diffusion capability becomes insufficient to  carry  away 
the dissolved  polymer  molecules that  continue  to  be 
available at  the  disassociation  rate R .  Thereafter,  the 
concentration c at x = y- ( t )  is maintained at cy Hence, 

c = cF at x = y - ( t ) ,  t > t,. (14) 

At t = t,, both  Eqs. ( 1 3 )  and (14) are satisfied. 133 
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Figure 1 Photomicrographs of NBS-705 in contact with methyl ethyl ketone (MEK): (a) after a few  seconds,  (b) after 200 seconds, 
and (c) after about 1000 seconds. 

When the condition ( 1 3 )  is valid, we call this “source- 
limited analysis.”  When the condition (14) prevails, we 
call this “flux-limited analysis.”  Phenomenologically, the 
dissolution process may be  referred  to  as disassociation- 
rate-controlled  in the  former  case  and  as  difision-con- 
trolled  in the  latter case. 

is given by 

c=O atx=y- (1 )” .  (15) 

Sincef,(O) = 1 ,  the  rate of removal of dissolved  polymer 
may be computed according to 

The  second  boundary condition at  the  boundary  layer 

q g = - D p   a c l a x ,   x = y - ( t )  - B .  (16) 

For  the gel-liquid interface given by Eq. (4 ) ,  the velocity 
may be  expressed in terms of c by using ( 1 )  , (2) ,  and  the 
condition f ,  ( cF) = 1 : 

Mathematical solution 
By introducing the dimensionless  time  variable T defined 
by 

T = D,t/HE, (18) 

and normalizing all linear  dimensions  with respect to the 
initial film thickness H,, the  boundary value  problem de- 
fined in Eqs. ( 5 )  through (17) may be interpreted by 

134 means of the following dimensionless parameters: 
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Y * ( T )  = y ( t )  I f f , , ,  
x ~ ( T )  = x , ( t ) / H , ,  

B* = B / H , ,  

r* = D,/Ds, 

R* = H,R/D,, and 

x* = x / H , .  

Diffusion of solvent in polymer,  y*+ (7) < x* < 1 
The differential equation can be written as 

with the initial condition 

c(x* ,  7=.0) 3 1, Y*+(O) = 0 < x* < 1 ,  

and  the  boundary conditions 

C = C l i ,  X*=y*+(T) ,  7 > 0; 

ac/ax* = 0 ,  X* = 1 ,  T > 0. 

Diffusion of dissolved  polymer  in  the  liquid, y * - ( ~ )  

For the differential equation, 
- B* < X* < y*-(T) 

for  the initial condition, 
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c(x*, T =  0) 0, - B* < x* < y*-  (0) = 0; (24) 

and  for  the  boundary conditions, 

c = 0, X* = y * - ( 7 )  - B*.  

1. Source-limited  analysis, if 0 < c < cF at x* = y * - ( ~ ) ,  
and 0 < T < 7c, 

f p ( c )  ac/ax* = R* at x* = y * - ( ~ ) .  (26) 

2. Flux-limited  analysis, T > rC, 

c = CF, x* = y * - ( r ) .  (27) 

When 7 = re, both  Eqs.  (26)  and  (27)  are satisfied. 

Free  boundary  condition 

Continuity  conditions  at  the  gluss-gel  transition, 
x* =x; (7) 

cIx*=x,-(7) cI**=x:'(7) - 
- - - 

CG 1 

Equations  (20) through (29)  constitute a Stefan prob- 
lem [6].  The  methods of mathematical  solution and 
numerical  integration are described separately in a paper 
to be  published elsewhere  [7]. We define the similarity 
variables 5, 7) by 

[ = 

7) = 77, (30) 
1 

By letting 

Y*(T) = 7)5(7)) 9 

x; (7)  = TZG(77) 9 (31) 

it can  be shown,  for small 0 < 7) < < 9, = T!, the solution 
of the  Stefan problem may be approximated  [7] by 

[ ( a )  5, (a constant), 

c(5, 7)) c0(5), i; < 5 < 7)-l, 

E S C ' ( ~ ) ,  5, - B*q" < 5 < 5;. (32) 

Both 5, and  co([)  are  determined from  a subroutine that 
solves,  for  an  arbitrary E ,  the initial value  problem in the 
space variable 5 of the ordinary differential equation 

with the initial conditions at [ = E ,  
c = CF, 

(34) 

70 Solution-gelinterface 

I "i( 6 )  

Figure 2 Positions of the gel-liquid and glass-gel interfaces 
plotted against the square root of the time. The open circles are 
calculated from the model; the solid circles are experimental 
values. 
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Figure 3 Diffusion coefficient D, of some polymers in various 
solvents plotted against  their molecular weights M,. 

Among all the solutions e([), we look for 5, and ~'((5) 
such  that co(m)+l .  Finally, ZG(q)  Z,, are  determined 
following the solution co (5). The function c1 (5) is  deter- 
mined from  the  boundary value  problem of the differential 
equation 
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Figure 4 Diffusion coefficient Ds of MEK  polystyrene against 
the polymer concentration. 

Table 1 Material constants for the  polystyrene-  MEK system. 

Disassociation 
Molecular  weight  volume  fraction Disassociation  rate R 

M ,  X CF x 100 (A/rnin)  (cm/s) 

0.63 70.00 

3.00 8.91 1.22 X lo6 2.04 X 
5.00 5.35 5.17 X IO4 8.63 X 
7.00 3.82 6.64 X 103 1.11 X 

1 .oo 26.74 1.74 X 10' 2.90 X 10" 

10.00 2.67 2.61 X 10' 4.35 X lo-' 

subject  to  the boundary  conditions 

dc'([)/d[ = r*, [ = 5;; 
c'([) = 0, [ +-E'. (36) 

Assuming that  the initial solutions co, 5,, and Z,, are 
valid for small 7 + 0, we  can  interpret them  in terms of 
the dimensionless space variables x* and 7 (or the physi- 
cal  variables x and t )  by means of Eqs. (30),  (18), and 
( 19). Thus,  the gel-liquid interface y ( t )  is given, approxi- 
mately for t + 0, by 

y ( t )  M H,5,? = 5,,-t, (37) 

Figure 5 The  polymer  concentration ( C J M I  ) at  the impermeable substrate  and  the location of the gel-liquid interface ( Y I F )  plotted 
vs time  for a rubbery  type polymer with the following parameters: H ,  = cm;  boundary  layer thickness B = cm; D, = 3 X 
cm'/s; D ,  = lo" crn'/s; cp  = 0.25; and  the disassociation rate R = 0. 
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and  the glass-gel interface x , ( t )  may be computed, ap- 
proximately for t + 0,  according to 

x,$)  = H,Zco7) = z , , v q  (38) 

To continue  the solution of the Stefan  problem,  Eqs. 
(20) through (29) have  to be integrated  numerically. The 
method consists of the following steps: 

1 .  The moving gel-liquid interface y*  (T) is extrapolated 
to  the forward  time level by means of an explicit  for- 
ward difference expression of Eq.  (28). 

2 .  Equations  (20)  and  (23)  are first linearized  upon the 
solution at T and then  replaced by the  Crank-Nicholson 
difference operators. By this means,  the  concentration 
profiles of the  forward time level can  be  determined 
algebraically. 

3. Until the  establishment of T ~ ,  since T 5 T~ when c 5 cF 
at x* = Y*-(T), the analysis  remains to be source- 
limited, and  the  boundary condition (26) is to  be used. 
Thereafter, T > T ~ ,  and  the  boundary condition (27) 
of the flux-limited analysis is  to be  used. 

In  the  absence of the glass  transition, no numerical 
complication was  encountered in the calculation. How- 
ever, when the glass  transition does  exist,  we  have ob- 
served  that: a )  there  is a  very sharp  concentration gra- 
dient  near the  glass transition,  and b )  there  is a very 
sharp inflection as c + 1 in order  to satisfy the condition 

ac/  ax* = 0 at x* = 1 in Eq.  (22).  Consequently,  very 
stringent  conditions  must be imposed on  both  the mesh 
size Ax* and  the time step  size AT in the integration 
scheme. This, in fact,  constitutes a  very sharp boundary 
layer in which the  exact  concentration distribution is not 
of great  interest,  but  for which the  rate of motion is im- 
portant. For this reason, and because of the  extreme 
difficulty of carrying out a  difference  solution, we  turned 
to a further approximation for  the numerical  solution. 

To investigate the swelling and  the dissolution of glassy 
polymer, it is  therefore  assumed  that  the  concentration 
profile in the glassy state of the polymer may continue  to 
be approximated by co (6) .  In  the gel layer, the  concentra- 
tion is so determined that  the  concentration  is  continuous 
at  the glass-gel transition, x* = x: (T), satisfying the 
first continuity  condition in Eq. (29) throughout  the  dura- 
tion of the  existence of the glass  phase. Thereafter,  the 
boundary  condition ac/ ax* = 0 at x* = 1 in Eq. (22) is 
again used after  the  disappearance of the glassy  phase. In 
view of the  fact  that  the  thickness of the gel layer, 
x: (T) ,- y* (T), varies in T, the mesh  size in the gel layer  is 
allowed to vary  accordingly. 

Experimental verification 
Polystyrene is undoubtedly one of the most  studied poly- 
mers;  hence many of its  physical  and  chemical properties 
that  we need as  input  parameters  to  our dissolution kine- 

Figure 6 The rate of removal of dissolved polymer at the boundary layer ( S I N K  in cm/ s) ; the liquid phase polymer concentration 
(CYP)  at the gel-liquid interface; the polymer concentration at the impermeable surface ( C J M I ) ;  and the location of the gel-liquid 
interface (YZF) plotted against time in the dissolution of a rubbery type polymer. The material  and experimental variables are H ,  = 

cm; D, = 3 X cm'/s; R = cm/s;  and cF = 0.25. The large value of R makes this example a flux-limited case. 
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Figure 7 Expanded  scale of Fig. 6.  S I N K ,  CYP, CJMI ,  and YIF are quantities  defined in Fig. 6.  The  parameters  are  identical  with 
those of Fig. 6 .  

matics model are readily  available in the literature. Fur- 
thermore,  Ueberreiter  and his colleagues [8- 101 have 
studied the dissolution  behavior of polystyrene in many 
solvents. Thus,  our  choice of obtaining data  on polysty- 
rene dissolving in methyl  ethyl ketone (MEK) to  com- 
pare with our model is an  obvious one. 

To obtain experimental data  that can  be compared with 
computer  results of the  analytic model, it was  necessary 
to  develop  an in situ technique  for measuring the motion 
of the gel-glass and  the liquid-gel interfaces. We  succeed- 
ed in measuring the real  time  motion of these  two bound- 
aries by using critical-angle illumination microscopy. 
This technique takes  advantage of the  sharp change in the 
refractive  index at  the  boundaries of a  dissolving poly- 
mer,  resulting in a  marked  difference in the  amount of 
light transmitted  to  the  objective of the  microscope from 
the different phases  (solvent, gel, glass) of the dissolving 
polymer. Consequently,  the  solvent  appears  dark,  the gel 
very bright, and  the glass slightly darker  than  the gel in 
the photomicrographs of NBS-705 dissolving in MEK as 
shown in Fig. 1.  The motion of the different  boundaries is 
measured  with the aid of a fixed cross hair in the micro- 
scope  and a set of micrometers  that  drives  an x-y platen 138 
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holding the sample cell. This allows us to align the inter- 
faces with the  cross hair and  thereby  to follow the loca- 
tions of the boundaries  with time. A detailed  description 
of the  apparatus will be given in a separate  paper [ 1 1 1 .  

The good agreement  between  the experimentally mea- 
sured boundary  position with time and  that calculated 
from the model is shown in Fig. 2. It plots the positions 
of the liquid-gel and  the gel-glass interfaces versus  the 
square  root of time for  polystyrene (molecular weight 
179000) dissolving  in MEK. The  parameters used  in 
the calculations of interface  positions  from the model 
corresponded closely  with the physical properties of 
polystyrene  dissolving in MEK, i.e., D, = 10-6cm2/s, 
D, = 10-7cm2/s, cF = 0.15, cG = 0.75, and  the geometrical 
characteristics of the sample, H ,  = 1 cm and B = 0.5 cm. 

The diffusion coefficients of polystyrene in MEK and 
of other polymer-solvent systems  over a range of molec- 
ular  weight,  were  obtained  using Rayleigh scattering 
spectrophotometry [ 12 - 141. Figure 3 shows  the dif- 
fusion coefficient of polystyrene in MEK plotted  against 
the molecular weight. In  our simulation  work we assumed 
D, to be independent of concentration, i.e., f,(c) = 1. 
This  assumption  appears  to be  justified by the weak  de- 
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Figure 8 An example of source-limited  dissolution. The flux at  the boundary  layer ( S I N K )  ; the liquid phase polymer concentration 
( C Y P )  : the polymer concentration of the impermeable surface ( C J M I )  ; and  the location of the gel-liquid interface ( Y I F )  are plotted 
against  dissolution  time in the dissolution of a  rubbery type polymer. The  parameters  are H,, = cm; B = I O "  cm; D, = 3 X 
cm2/s; D ,  = lo-' cmY/s; R = cm/s;  and cF = 0.05. 

pendence of D ,  on  the  concentration  as  demonstrated in 
the  results of King, Knox, and McAdam [ 151. 

Using Ueberreiter  and Asmussen's data [ 2 ] ,  we ap- 
proximated the diffusion coefficient of solvent in polymer 
as a  function of polymer concentration by an algebraic 
formula as plotted in Fig. 4. The diffusion coefficient D, 
appears  to be almost independent of concentration from 
the  pure solvent to 70 percent polymer. However, from 
70 to 100 percent polymer the value of D, drops pre- 
cipitously by almost six orders of magnitude. This 
behavior is common to many glassy polymers  and the 
onset of a rapid decrease in D, with polymer concentra- 
tion is coincident with the transition of the swollen layer 
from gel-like to glass-like material. 

The polymer concentration cF at  the liquid-gel bound- 
ary  for  the  polystyrene-MEK  system is obtained from  the 
relationship cFMw = 27 000 [ 3 ,  41. Hence,  for polysty- 
rene of Mw = 180000, the value of cF is 0.15. The  other 
geometrical parameters ( H ,  and B )  were  measured  from 
the sample  and the geometrical  dimensions of the dis- 
solution cell. 

In lithography,  polymers are dissolved in very thin 
films, usually about 1 pm thick. Consequently,  it is useful 
to investigate the effect of the different material  variables, 
i.e., cF, D,, etc., on the dissolution  dynamics of very thin 
films. The following section presents examples of the 
simulation of polymer films 1 pm thick. 

Dissolution of polymer in the absence of glass-gel 
interface 
In the  absence of a glass-gel interface in the polymer, no 
sharp change in concentration gradient is expected. To 
investigate the effect of various  physical parameters, we 
consider the  case of constant diffusion coefficients & ( c )  = 
1 and f ,  ( c )  E 1, and  use  Table 1 as a guide to  choose ma- 
terial constants.  These  constants  are  for  the  polystyrene- 
MEK  system  and  were  approximated using the Vogel 
relation [3]. We consider a thin  polymer of film thickness 
H, and boundary  layer  thickness B = H ,  = cm in 
all calculations,  and take values for the diffusion coeffi- 
cients of D, = 3 X cm2/s and D ,  = cm2/s. 139 
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Figure 10 Concentration dependence factors of the diffusion 
coefficient of solvent in polymer for polymer-solvent pairs of 
type A, polyisobutylene in  mineral oil; type B, polystyrene in 
MEK; and type C, polystyrene in amylacetate. 

Pure swelling, no dissolution ( R  = 0 )  , c ,  = 0.25 
For a non-dissolving  polymer such  as cross-linked  sys- 
tems with an equilibrium swollen polymer concentration 
of cF = 0.25, our calculation predicts  the ultimate swollen 
thickness of four times the original value. This  has been 
illustrated in the computational results  shown in Fig. 5. 

140 The position of the gel-liquid interface (curve YIF)  
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Figure 11 Similarity solutions of the concentration profile 
for polymer dissolution of types A, B, and C. 

gradually reaches  the ultimate  swollen thickness  as  the 
concentration at the  substrate  (curve C J M )  reaches cF 
asymptotically. 

Dissolution of polymer of c,  = 0.25, R = c m /  s 
As  the polymer  dissolves we observe  the following: 

1 .  The  concentration of the polymer (CYP in Figs. 6 and 
7 )  in the liquid phase  at  the gel-liquid interface rises 
quickly and  reaches cF in about 4 ms. Figure 7 is an 
expanded scale of Fig. 6. Thereafter,  the disassocia- 
tion rate R plays no  direct role in the dissolution. 
Hence,  the dissolution is primarily diffusion-con- 
trolled. 

2. The  rate of removal (SINK in Fig. 6)  of dissolved 
polymer at  the boundary layer becomes constant in 
about 50 ms. The  steady  rate of SINK is  about 25 
percent of R. 

3. The location of the gel-liquid interface (YIF)  first 
moves  in the liquid by swelling, subsequently  slows 
down  because of polymer  dissolution, and  then re- 
treats  after  about 120 ms to complete dissolution in 
about 1.5 s. The maximum swollen thickness  is  about 
2.3 times the original film thickness. 

9 Dissolution of polymer, c, = 0.05, R = c m / s  
The disassociation rate  is  quite small.  We observe: 
1. The  concentration (CYP)  of the liquid at  the gel- 

liquid interface  rises  steadily, but  reaches a concentra- 
tion of 0.001 (short of cF = 0.05) in about 200 ms 
(Fig. 8). At this concentration,  the flux across  the 
boundary  layer ( S I N K )  equals  the value of R ( 
cm/s).  Consequently,  the disassociation rate R con- 
tinues to control the dissolution. 
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Figure 12 Similarity solutions of the concentration profile 
for polymer dissolution of type A with cF = 0.05- 0.25 (in incre- 
ments of 0.05). 

2. After 4 s the  concentration  at  the  substrate (CJMI  ) is 
still approaching cF = 0.05, and the gel-liquid interface 
(YZF) is still being swollen into  the liquid phase. 

Plotted on a common  time scale, Fig. 9 shows  the  con- 
trasting characteristics of the dissolution of polymers for 
cF = 0.25 and 0.05 in the  absence of glass-gel transition. 

Results for initial swelling 
We have investigated three  types of polymer  dissolution. 
The  concentration  dependence  factors, f , ( c ) ,  of the dif- 
fusion coefficient of the  solvent in the polymer are given 
by: 

1 .  & ( c )  = 1 ,  0 < c < 1 .  This is a rubbery polymer; no 
glassy phase  exists, e.g., poly(isobuty1ene) in light 
mineral oil. 

2. & ( c )  may be  approximated algebraically by 

& ( c )  = 1 ,  0 < c < 0.65; 
- - 10-loooo~c-o.65)3~o.85-c) , 0.65 < c < 0.75; 

= 10--20c+14, 0.75 < c < 1 .  

The glass  transition concentration is taken  to be 
cG = 0.75. This  type is represented by the dissolution 
of polystyrene in methyl ethyl ketone [2]. 

3. &( c )  may be approximated algebraically by 

&(c)  = 1 ,  0 < c < 0.25; 
- - 10-96(c-0.25?(5-8c) , 0.25 < c < 0.5; 

= 0.5 < c < 1 .  

The glass  transition concentration is taken  to be cG = 

Figure 13 Similarity solutions of the concentration profile 
for polymer dissolution of type B with cF = 0.05 - 0.25 (in incre- 
ments of 0.05). 

I 1 I 1 
-0.R -0.6 -0.4 -0.2 0 0.2 

x / q  

Figure 14 Similarity solutions of the concentration profile for 
polymer dissolution of type C with cF = 0.05 - 0.25 (in incre- 
ments of 0.05). 

0.35. This  type  is  represented by the dissolution of 
polystyrene in amylacetate [ 21. 

The  concentration  dependence  factors f, ( c )  of these 
three  types  are plotted in Fig. 10 and are referred to  as 
types  A, B, and C ,  respectively. 

The practical range of the disassociation concentration 
is 0 < cF < 0.25. The effect upon the initial swelling of 
these  three  types of polymer  dissolution is shown in 
Fig. 1  1 where  the initial solution co (6) is plotted for 
cF = 0.15. Figures 12, 13, and 14 show  the initial solutions 141 
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Figure 15 Initial swelling for polymer  dissolution of types  A, 
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co([) for cF = 0.05, (0.05),  0.25 for  types A, B, and C, 
respectively. The effect on initial swelling is  quite  pro- 
nounced for polymer  dissolution of type C. The gel layer 
and the glassy phase of the polymer are clearly identifi- 
able  in  Figs. 10,  13, and 14 for types B and C dissolution. 

The gel-liquid interface y ( t )  and  the glass-gel transition 
x,( t )  are given by Eqs. (37)  and  (38), respectively, for 
small time t. Hence,  the  thickness of the gel layer in the 
polymer increases  for small time t according to 

The values of Z,, and to are plotted in Fig. 15. 

Summary 
The kinematics of polymer  dissolution in one dimension 
can be described phenomenologically by an analytic 
model using material and geometrical parameters  that 
are readily  measurable. From existing data  for  the dis- 
solution of polystyrene in MEK,  the mathematical model 
is verified experimentally by an in  situ technique  mea- 
suring the motions of the glass-gel and  the liquid-gel 
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interfaces. By means c _, .-z model we have investigate( d 
the effect of the different  material parameters  upon  the 
dynamics of polymer  dissolution. The simulation results 
show  that  the diffusion coefficient of solvent in polymer 
has a major effect on  the kinematics of polymer  dissolu- 
tion. For example,  both the  rate of dissolution and  the 
extent of swelling depend highly on  the  concentration 
dependence of the diffusion coefficient of solvent in the 
polymer. 
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