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Satellite Droplet Formation in a Liquid Jet

Abstract: The formation and behavior of satellite droplets in a liquid jet is investigated experimentally and theoretically. The satellite
droplet break-off distance is measured stroboscopically as a function of the frequency and amplitude of nozzle vibration. A second-order
analysis of spatial instability is developed, which demonstrates the essential features of satellite formation as it is observed. Satellite
formation is least likely to occur when the main-drop spacing is five to seven times the jet diameter.

Introduction

A liquid jet emanating from a nozzle, excited by a small-
amplitude axial vibration of appropriate frequency,
breaks up into uniformly spaced drops. Such a jet, how-
ever, also has a propensity to produce relatively small
satellite droplets interspersed among the main drops. The
existence and behavior of these satellites depend upon
conditions of the jet. Satellite separation from a main
drop can occur on the fore side of the droplet first, on the
aft side first, or on both ends simultaneously. In this latter
case, no momentum transfer takes place between the two
main drops and the satellite —the interaction time is zero.
This is the so-called “infinite” satellite condition and it is
quite reproducible experimentally.

There are, perhaps, some applications in which the
existence of satellites in a liquid jet is of benefit. Printing
with an ink jet is not one of them, however. Therefore, for
that application, it is important to understand the condi-
tions for occurrence of these satellites in order to learn
how to suppress their formation. The relative wavelength,
i.e., the spacing of the main drops relative to the initial
jet diameter, and the amplitude of the perturbing excita-
tion are the most important parameters, although the
liquid properties and the jet velocity are also significant.

Existing theories of drop formation do not suffice to
explain satellite formation. The linear analyses of Ray-
leigh [ 1, 2], Weber [ 3], Keller et al. [4], and Pimbley [ 5]
do not predict the formation of satellite droplets at all.
On the other hand, nonlinear theories using a temporal
instability, such as those of Yuen [6] and, more recently,
Lee [7], always predict the existence of satellites along
with the main drops. Furthermore, those nonlinear theo-
ries always predict satellite separation from the main
drops at both ends at the same time, and this prediction
disagrees with experimental observations,
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The principal effort of this paper is a nonlinear analysis
through second order of the drop formation problem
using a spatial instability. The one-dimensional model
which has been used previously {5-7] is used again in
this analysis. This model makes the problem tractable
in that only nine eigenfunctions are required. Keller et al.
[4] looked at the spatial instability problem using a three-
dimensional model and encountered an infinity of eigen-
functions. The one-dimensional model requires the
approximation that the wavelength (drop separation) be
significantly greater than the radius of the jet stream. Lee
[7] has shown that this approximation is valid in a linear
analysis for jets with relatively large velocity. One must
be cautious, however, in applying the model to higher
order terms where shorter wavelengths are encountered.

Presented first in this paper are our experimental
measurements and a discussion of our observations of the
satellite condition. Next our spatial instability analysis
is presented and applied to the separation point of the jet
to consider satellite formation and behavior. Discussion
and summary complete the paper.

Measurement and interpretation of satellite con-
dition

Observations of drop formation from a liquid jet were
made using five different jet-emitting assemblies. The noz-
zles were all made of glass and had, nominally, the same
dimensions; the diameter was 63 um, and the length of
the constant diameter section was 100 um. The assem-
blies were all vibrated magnetostrictively and although
the mechanical structures of the assemblies varied, these
latter characteristics are not important to our observa-
tions of the jet stream itself. Except for one set (G) of
experiments in which distilled water was used, the liquid
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Figure 1 Stroboscopic. microphotograph of a liquid jet showing
forward-merging satellites. The nozzle diameter was 63 um, the
jet velocity 9.0 m/s, and A\ /d = 5.3.
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Figure 2 Data indicating linear operation of the jet-emitting
assembly at f= 33 kHz and A\/d = 5.1.

was an ink with the following properties: surface tension,
T = 35 dynes/cm (0.035 N/ m) ; density, p = 1.3 g/ cm®
(1.3 x 10* kg/m®); and viscosity, 8.7 centipoise (0.0087
Pa-s) as measured on a Ferranti-Shirley viscometer.
Experimental observations were made using a micro-
scope (about 60Xx) with a cross-hair reticle with the
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liquid jet being back-illuminated by a light-emitting diode
strobed in synchronization with the jet excitation fre-
quency. The entire jet-emitting assembly was mounted on
an x-y table so that a micrometer with calibration to
0.0001 inch (0.0025 mm) could be used to measure dis-
tance along the jet. The wavelength was obtained by
measuring the distances between the first ten drops after
drop separation. Also, the drop separation distance was
measured. These data, together with the excitation fre-
quency as measured by an electronic counter, permitted
us to calculate the jet velocity and then the break-off
time.

The satellite condition was recorded by first noting the
presence or absence of satellite separation and then, if
separation had occurred, the distance downstream at
which the satellite merged with a main drop. Whether
the satellite droplet merged forward with the parent drop
previously emitted or backward with the next main drop
was also noted. The infinite satellite condition occurs
when the satellite moves with the same velocity as the
main stream parent drops and no merging occurs. This
condition is quite sharp and reproducible as compared
with other merge conditions.

Figure 1 is a photograph of a typical liquid jet viewed
through a stroboscopically illuminated microscope. For-
ward-merging satellites are formed which merge three
wavelengths downstream from their point of formation.

The linear portion of Lee’s analysis using a temporal
instability [7] predicts the satellite break-off time quite
well. The relation between ¢, and the initial velocity per-
turbation Av at the nozzle can be expressed as

e = 7Av/2\y, (1)

where vy is the Rayleigh instability factor. Equation (1)
indicates a logarithmic dependence between the break-off
time and the perturbation amplitude. If one assumes that
the vibrating jet-emitting assembly is operated in the
linear region so that the velocity perturbation amplitude
is proportiontal to the exciting current amplitude, then
the drop break-off time should be linearly dependent on
the logarithm of the exciting current amplitude. Also, the
slope of this linear relationship should yield the value of
the Rayleigh instability factor for the particular situation.
Figure 2 shows typical results from one set of data in
which only the current amplitude was varied. If this
amplitude is raised much above the values shown in this
figure, an overdrive situation occurs in which the data
depart from the straight line, i.e., from the linear region
of operation.

Figure 3 shows the Rayleigh instability factors ob-
tained from all of the data for one of the jet-emitting as-
semblies. The solid curve is the instability factor as pre-
dicted by Rayleigh’s analysis [ 1] for an inviscid liquid.
The dashed curve shows the prediction for a viscous
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Figure 3 The Rayleigh instability factor as a function of f and
N/ d. The solid curve is Rayleigh’s theoretical result [1] for an
inviscid liquid with parameters T = 0.035 N/m, p = 1.3 g/cm®
(1300 kg/m®), and a = 30 wm. The dashed curve is Weber’s
theoretical result [3] for a liquid of viscosity 0.087 Pa-s.

Table 1 Straight-line* parameters for the infinity condition
data shown in Figure 4.

Frequency
Data set (kHz) Slope Intercept
A 33 0.29 4.3
B 53 0.30 4.3
C 51 0.27 4.4
D 36 0.25 4.4
E 40 0.30 4.1
F 34 0.28 4.4
Gt 34 0.27 4.4

*In t,=a(A/d) + b, t, in s.
tDistilled water.

liquid given by Weber’s analysis [ 3], the viscosity being
8.7 centipoise (0.0087 Pa-s) in this case. The data taken
at a perturbation frequency of 53 kHz yield generally
higher instability factors, and represent a higher jet veloc-
ity (v=/\), than those at 33 kHz. This seems to indicate
that the liquid is acting in a non-Newtonian manner — the
higher velocities result in higher strain rates in the nozzle.

Figure 4 shows the loci of points for our observations
of the infinity condition. Each point gives the break-off
time at which the infinity condition occurred for a set of
data in the experiments. Six runs were made with an ink
and the seventh, G, with distilled water. Essentially all
the data are superposable but each run has been plotted
separately by uniformly shifting the linear ordinate scale.
As can be seen, the data form straight lines when the
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Figure 4 Data derived from observations of the infinite satellite
condition. The ordinate scale is shown only for data set A; the
other scales are the same but are displaced downward as indi-
cated; see Table 1.

SATELLITE FORMATION



24

600 |- Rear-merging Forward-merging,
zone zone
/
/
500 Infinity condition 10N mcrge//
7/
/
/
4
/
4 4
/
/
,
P /
400 - 4
4
4
LN merge
‘ ’
/
s
/
e
4
,/
300~ 7
200 + Nosatellite
- formation
=
hnd 1 1 1 i 1
4 5 6 7 8 9
N/d

Figure 5 “Map” of the satellite condition.

logarithms of the derived break-off times are plotted
against wavelength (interdrop spacing). The siopes and
intercepts of these lines are listed in Table 1. Within ex-
perimental error, the slopes and intercepts are essentially
equal. Thus, for these data, which involved five different
mechanical assemblies, different vibration frequencies,
and two liquids, one empirical relation seems to suffice:

ty,, = 76 €V (2)

b

Figure 5 is a plot incorporating all of the data taken.
The upper solid curve is the infinity condition as given by
Eq. (2). The lower solid curve gives the boundary below
which no satellite formation takes place. The “window”
for ink jet printing is below this latter curve which, how-
ever, is not nearly so well defined by the data as the
infinity condition is. A lower bound for the print window
is not shown, but we have observed that when the ex-
citing current is increased beyond the region of linear
operation, satellite formation again occurs. For larger
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currents, the onset of the nonlinear operation of the vi-
brating head would be indicated by the data departing
from the straight-line relationship shown in Fig. 2. For
ink jet printing, therefore, one should operate in the linear
region.

Extending upward from the peak of the no-satellite
boundary is a quasi-boundary for longer wavelengths.
Along and below this curve satellite separation does not
always occur, In this region either two to four wave-
lengths are required before the ligament rejoins the parent
drop or, ultimately, satellite separation occurs two to four
wavelengths downstream from the initial spreading.
(These latter semi-quantitative observations pertain to
the relatively viscous ink, whereas in distilled water the
satellite separation occurs more quickly.)

The other two dashed curves in Fig. 5 show the ap-
proximate parameter values at which satellites merge
forward at four and at ten wavelengths downstream from
their formation. The actual data-scatter around these
representative curves is considerable.

The satellite condition depends upon whether the fore
or the aft end of the satellite separates first and how much
time exists between the two separations. We call this
time interval the satellite interaction time. It is within
this interval that momentum transfer takes place, which
results in the slowing down or speeding up of the satellite
relative to the rest of the stream. As mentioned previ-
ously, no momentum transfer takes place when the satel-
lite separates at both ends simultaneously (the infinite
satellite condition).

When the drop formation in a jet is stabilized at the
lowest possible excitation, rear-merging satellites are
observed. In general, these satellites merge within two to
four wavelengths downstream from the separation point.
As the excitation amplitude is increased, the distance
for merging increases until the infinity condition is
reached. Thereafter, forward-merging satellites are ob-
served. As the excitation is further increased, the for-
ward-merging satellites require less distance to merge
until the condition is reached in which satellite separation
no longer takes place. Beyond this point is thus the
desired drop condition, with no satellite formation oc-
curring. Stated somewhat differently, at higher excitation
amplitudes the satellite interaction time can increase
enough so that the second separation is entirely frus-
trated, resulting in no actual satellite formation,

The satellite interaction time is dependent on wave-
length as well as on excitation level. As can be discerned
from Fig. 4, the interaction time increases with increasing
wavelength. Thus at shorter wavelengths (from 3.2 to
about 4.7 diameters), satellite formation is quite persis-
tent due to inadequate interaction time.

That observation might lead one to expect better drop
formation at longer wavelengths. However, at the longer
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wavelengths (greater interdrop spacing) the satellite
droplets tend to be much larger and the ligaments be-
tween drops and impending satellites much longer. There-
fore, relatively long satellite interaction times become
necessary in order to frustrate satellite formation.

We have essentially a maximum-minimum type of
problem in that there are two effects, each of which tends
to insure complete satellite formation. At shorter wave-
lengths, an inadequate interaction time does not permit
the frustration of satellite formation. At longer wave-
lengths, larger masses would have to be moved over
longer distances in order to frustrate the satellite forma-
tion. As it turns out, the range of A from 5 to 6.5 diameters
is the best range for frustrating the formation of satellite
droplets.

Spatial instability analysis

The nonlinear differential equations for the one-dimen-
sional problem of drop formation have been presented
previously [5-7]:

rQQ=— 2(Uﬂ+ﬂ>,
9z 9z ot

v v 1ap

CART Y 3)
where p, the pressure, is given by
T 1 (8°r/o2")
o [~ ;| (@)
V14 (ar/ez)" Lr 1+ (3r/3z2)

The dependent variables in these equations are r and v,
respectively the radius of the column of liquid and the
axial velocity. These variables are dependent on time ¢
and axial displacement z; T is the surface tension of the
liquid boundary, and p is the density of the liquid.

The solution is to be constrained by the following
boundary conditions at z = 0:

r=a,
o _9r_

sz o2

v=uy,(1+vcos2nft), (5)

where v, is the jet velocity and » = Av/uy, is the relative
amplitude of the velocity perturbation imposed thereon
with frequency f.

For this analysis we make the following substitutions
and definitions:

r=a(l+39), v=u,(1+u),
_ar _
t_U > 4 af,

_2ma — T
® N € 2pav(2)' (6)
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The boundary conditions at ¢ = 0 become

95 _ 3°8
s=2-25-y,
& af
U=V COS wT. (7)

The differential equations now take the form

u 36
(1+6)a§_ 2[(1+ )ag ]

du du__2acdp
a+(1+)a§ T o (8)

If v is very small, we can use it as an expansion parameter
for the solutions & and u:

6=V81+V282+V383+"',
u=vu1+vzu2+v3u3+“'. 9)

Then, through second order,

af_a

ac 9
V2T<_ 38 638 38, 85, 39, )
EY a§3 Yot & 3¢
When Eqgs. (9) and (10) are substituted into Eq. (8), we
have, through second order in v,

5 3,
—"~1+2<— a\ 0,

ap vT( 38, 6381>

(10)
a

a¢ of
%+"L_2 ("5+35) 0,
ar 9 ag
o o(@e By
3 o ’
du, ou, 2<382 a“az)
2 4 772 —L2 4+ —2)=G,
67+a§ 2¢€ a§+a§“ (11)
where
(a—+2 "5)
13 ‘85
au 38, 88, E
G=— 2e —1> 12
1a§+ (ag ag 2135 (12)

The solution to the first-order equations, the first two
of Egs. (11), has been given previously [5]. The linear
solution, with Eqs. (7) as the boundary conditions, can
be given in the form

C].Kj cos 6].,

djcos 0, (13)
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where
O;=0wr— g,
C,= 0

AT +62)K?—3wr<j+ 2w’

d;=2C (0 —k;);

Kk, =vy+io,
K, =7y — io,
Kg=—7vy+B,
Ky=—vy—B,

where y and g8 are real constants;

2
o 0] +(y2_1+€),

= 2)/52 2¢
2w (s 1+ ez)
B 2'}’62 (7 262 ’

4’y — 28 (1 + €)y'
+ [F(1 +52)2+w252]y2—%w2=0. (14)
To determine the particular solution of the second-
order equations, the last two of Egs. (11), the F and G of

(12) must be evaluated. Upon substituting the linear
solution into (12),

4
F= Ef” sin 26].
i=1

4 3

+3 3 [f;,sin (0, +6,) +,,sin (6,—6,)],
n= j=1
j+1

4
G=7Y g;sin 20,
j=1

4 3

+> D [g;,sin (O,+6,) +g,,sin (0,-06,)],
Fint
(15)
where
_ 2
fjj=3C]2.Kj(Kj—w),
fin=C,C I3k, (k; + k,) = 20(k; + kK, + k3],
fj"ECjcn(Kj—Kn)[3Kan_2(Kj+K")],
2 N2 2.2 2
8= CjKj[z(Kj ) +€Kj(2+Kj)],
8n="C;C.(k;+ x,) [2(k; — @) (k, — w)
+ GZK].K"(Z + k) 1
é}.n=—Can(Kj—Kn)[Z(Kj—w)(Kn—w)
+€2Kan(2—Kan)]. (16)

W. T. PIMBLEY AND H. C. LEE

With F and G as given by (15), the pair of second-
order equations separates into 16 independent equations.
The 16 solutions which form the particular solution to the
equations can be written as

4
8,,= 2 A;; cos 20;
j=1

-I—24 i [4;,cos (0;+06,)

n= j=1
J+1

+A7jn cos (Oj -0,)1,

4
Uy, =Y B;; cos 20;
j=1

4 3

+> E [B;,cos (©,+06,)
Fovht
+l§jn cos (ej—en)]. (17)

The 32 constants of Egs. (17) are obtained by substi-
tuting this solution into the differential equations. As a
result, the following three sets of equations are used to
calculate these constants:
35, = 1By + 2k, — w)A 5,
3g,;,= (k;— w)B; + 2k, [1 — 4k3)A ;5
fin=(k;+K,)B;, + 2[(k;+ «,) —20]4;,,
g, = [(k;+«,) —20]B,,

+ 262(Kj + ) [ = (k; + K")Z]Ajn;

Fin= (K].— k,)B;, + 2(Kj_K")A- R

in
gjnz (Kj_ Kn)Bjn

—252(Kj—-Kn)[1—(Kj—Kn)z];ijn. (18)

As with the presentation of the linear solution [5], this
second-order solution is presented in complex form. The
solution, however, is real; the complex factors and terms
exist in conjugate pairs that combine to form a real
solution.

The linear portion of the problem already satisfies the
boundary conditions. Therefore, the general second-
order solution must cancel the values of the particular
second-order solution at the boundary. The boundary
values for the general solution at ¢ = 0 are

8,,= R, cos 2w + R,,

35, i

a—;" = R, sin 2wr,

6262?-

a—gz—-= R, cos 207 + R,,

u,, = Ry cos 2ot + R, (19)
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where the seven real constants are given by

J+1
4 ) 4 3
R,=4iA,+3 3 (x;+«,)4,,,
j=1 n= j=1
Jj+1
4 3 2
R,=Y 2 (k; = Kk, VA5,
n= j=1
j+1
4 4 3
R6=—Z BJJ_Z 2 Bjn’
i=1 n= j=1
J+1
4 3 -
Ri=—3% % B (20)
n= j=1

The general second-order solution can be considered in
two parts, the time-independent part satisfying the con-
stant terms of the boundary conditions (19) and the other
part obeying the time-varying terms of (19). The time-
independent part of the solution is

R5
8 =R2+7(7(1 — cos ké),

2
~ 2R5
iy, = R7 —7(1 — COS kf),

k=V1+é€/e 21)

The solution to the time-dependent part is analogous
to the linear solution presented previously. However, o
must be changed to 2w and the matrix equation that
determines the coefficients becomes more complicated.
The solution may be written as

4
8,,= > C,;k;cos O,
=1

Il2g =

. Cos éj. (22)

3

P

it
-

J

In this solution, 6, d,, &;, &, B, and 7 are all defined ina
manner analogous to the definitions (14). The only
difference is that 2w replaces o in those equations. The
constants Cj, however, take the following form because
of the more complicated boundary conditions:

o o(Rg+2R) +&,[€k] — (1 + )R, + €&IR, + K €'R,

i 2[(1+ €177 — 6wk, + 8u’] (23)
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Figure 6 Regions for satellite droplet formation in parameter
space.

The total solution to the spatial instability problem
may now be written through second order as

d=wd, +1°(8,,+8,, +3,,),
u=vu, + VZ(MZD + iy, t iy, ), (24)

using appropriate substitutions from (13), (17), (21),
and (22).

Discussion

For various values of the parameters o and €, the solu-
tion can grow in an exponential fashion, leading to drop
formation and separation. The ranges of these parameters
for such formation to occur for the linear terms have been
discussed previously [5]. In Fig. 6, region 1 shows the
range of parameters in which all four of the controlling
eigenvalues «; are real. Hence, all of the functions are
circular; no drop formation takes place. In regions 2 and
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3, however, the first two eigenvalues are complex. As a
result, hyperbolic functions appear in the solution, and
drop growth ensues.

The particular second-order solution, Eq. (17), is
controlled by the same four eigenvalues, There is no drop
formation in region 1 of Fig. 6, whereas drop formation
does proceed in regions 2 and 3.

The general second-order solution, Eqs. (21) and
(22), is controlled by a different set of eigenvalues, the
&; and k. All five of these values are real in regions 1 and
2. The first two eigenvalues are complex, however, in
region 3. Therefore, in region 1, no drop formation takes
place; in region 2, only linear terms and particular
second-order terms contribute to drop formation; and it
is only in region 3 that terms of the general second-order
solution grow in an exponential fashion.

Let us consider the solution at drop separation only
for values of € which are much less than one. In this so-
called Rayleigh range, which has been discussed previ-
ously [5], the jet velocity is significantly greater than the
capillary velocity in the jet. The experiments reported in
this paper, as well as most of the experimental work re-
ported in the literature, were performed in this range of
small €.

Many of the terms in the theoretical solution do not
contribute significantly to the answer and can be ignored.
In fact, at least for small €, our calculation shows that
terms which contain the eigenvalues «,, «,, K,, k,, and &
may be neglected. By approximating hyperbolic functions
as exponential ones near the drop separation point, one
can write

8 =8, + 15, + 178, + -, (25)
where

vs, R~ 47 sin (wr — &),

. 2
V'8, R — eza(g‘fh)B + (=2w) 40)22(” ) cos 2(wr — v§€)

+Z sin Z(wr—yf)]
w

E%Z)_w—;——‘l)l_) €727 cos 2(wr — &),
VZSZg R e 2“[4wP cos |5)¢ cos (2ur — ¥£)
+ 2(&P + 2wQ) sin |F|¢€ sin 2wr — ¥£)];

90’ — 100" + 1

P 8w’ (1 — 4of)

€ 140" — 320" + 216* =3
|&| 46 (4" — 1) ’ (26)

Q

and o is defined in Eqs. (14). In these equations, ¢, is the
separation distance predicted by the linear theory [5]:
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et = wv/40. (27)

The terms from the general solution in Eqs. (26) are
given in a form that is valid for region 2 where these terms
do not grow exponentially. In region 3, a different form
that includes hyperbolic functions is required.

Calculations from the second-order spatial instability
analysis show satellite droplet formation for perturbation
wavelengths greater than about 5.5 jet diameters. For
shorter wavelengths, and for small perturbation ampli-
tudes and small values of €, no satellite formation is
predicted. This conflicts with experimental evidence,
which shows that persistent satellite formation exists at
shorter wavelengths. This same situation exists in a
second-order temporal instability analysis, developed in a
similar way, wherein the second-order solution predicts
a wavelength boundary at about 5.4 diameters, below
which satellites will not form, whereas the complete non-
linear solution, as presented by Lee {7], shows satellite
formation for all wavelengths. Clearly, the higher order
terms are required to give a complete picture of satellite
droplet formation.

A look at the exponential factors in Eqs. (26) shows
that, for both the first- and the second-order solutjons,
these factors grow to the order of one as drop separation
occurs. From the form of the analysis, it can be seen that
higher order terms also exist, which approach the order of
one at drop separation. These higher order terms can,
therefore, contribute significantly to the complete so-
lution.

Figure 7 shows the effect of perturbation amplitude on
the drop formation. For a perturbation wavelength of six
diameters and for € = 0.002, these drop formation shapes
in the vicinity of the separation point were calculated
from the first of Egs. (24). This “pinching” of the jet
column shows the same shape tendencies as are observed
experimentally. For small perturbations (long break-off
distances ¢,) the first separation occurs on the fore side
of the satellite; a slightly lower satellite velocity and rear-
merging result. For a single critical perturbation ampli-
tude corresponding to ¢, = 90, the satellite separates at
both ends simultaneously, which is the infinite satellite
condition. At higher excitation amplitudes (shorter
break-off distances), forward-merging satellites are
formed.

The second-order theory predicts the infinite satellite
condition for a break-off length £, = 90. The empirical re-
lation (2) gives a corresponding value of £ = 185 when
€ is set equal to 0.002. It can be seen, therefore, that the
second-order theory gives a good qualitative description
of the effect.

In the Appendix of Ref. 3, the slowing down of the jet
during drop formation was predicted using gross momen-
tum considerations. This phenomenon is not predicted
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by linear analyses. A time-independent term in Eq. (17)
brings in this effect:

V'B,, cos (0, — 0,) & 3 (30’ — 5) 7, (28)

where the approximation is for small €. At the separation
point,

v=1,l1 — &G —30Y)). (29)

Previously [5], we obtained the more accurate expres-
sion v=1v,(1 — €°). Again, it can be seen that our second-
order theory describes the effect qualitatively, although
the complete nonlinear equations are needed to develop
quantitative accuracy.

Summary

A liquid jet, breaking up into drops, tends to form satellite
droplets interspersed among the main drops of the stream.
Depending upon various conditions, satellite separation
can occur on the fore side of the droplet first, on the aft
side first, or at both ends simultaneously.

The satellite interaction time, defined as the time be-
tween the break-offs of the two ends of a satellite, allows
a momentum transfer between the satellite droplet and a
main drop of the stream. This transfer alters the velocity
of the satellite so that it merges with a main drop: Satellite
separation occurring first on the fore side of the droplet
results in rear-merging satellites; separation first on the
aft side causes a forward-merging situation.

The two most relevant parameters that control satellite
droplet formation are the amplitude of the perturbation
and the wavelength-to-diameter ratio of this perturbation.
Very small perturbation amplitudes result in rear-merging
satellites. At a higher value of this amplitude the infinity
condition occurs; i.e., both ends of the droplet separate
simultaneously. As the amplitude is increased above this
value, forward-merging occurs and the satellite inter-
action time also increases.

An investigation of the infinity condition has revealed a
relation between perturbation amplitude and wavelength
as shown by Eq. (2) and Fig. 4. Shorter wavelengths re-
quire a stronger perturbation to cause this condition. For
the forward-merging satellite condition [perturbation
amplitudes greater than given by Eq. (2)], larger pertur-
bation amplitudes are required at the shorter wavelengths
to produce equal satellite interaction times.

For wavelengths of about five to sevén jet diameters,
the satellite interaction time can become large enough to
frustrate the second droplet separation, and no satellite
formation results. At shorter wavelengths, the requisite
interaction times are more difficult to achieve. At longer
wavelengths, the larger droplet volumes and longer liga-
ments work against the frustration of the second droplet
separation; i.e., they make separation more likely.
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Linear terms
only

Figure 7 Theoretical drop formation shapes near the separa-
tion point. Plotted symmetrically in the vertical direction are the
jet column radii r(z) or r(£) at an instant of time. The effect of
excitation amplitude is shown through the parameter £,; A/ d=6
and € = 0.002.
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Linear theories and theories using temporal instabilities
are inadequate to describe satellite droplet formation; a
nonlinear spatial instability analysis is required. The
second-order analysis made in this paper gives a qualita-
tive description of the process. For an accurate quantita-
tive description, the inclusion of higher order terms, or
the complete solution of the nonlinear equations, is
needed.

In this paper, the jet excitation was purely sinusoidal.
It is known, however, that the use of combinations of
frequencies or harmonics in the excitation influences sat-
ellite droplet formation. The nonlinear spatial instability
analysis could be used as a powerful tool to investigate
this influence. In addition, the analysis could be used to
predict the best combinations of exciting frequencies for
use in a particular application.

References

1. J. W. S. Rayleigh, “On the Instability of Jets,” Proc. London
Math. Soc. 10, 4 (1878).

2. J. W. S, Rayleigh, Scientific Papers, Vol. 1, Cambridge Uni-
versity Press, London, 1899, p. 361.

W. T. PIMBLEY AND H. C. LEE

3. C. Weber, “Zum Zerfall eines Flussigkeitsstrahles,”
Zeitschrift fur Angewandte Mathematik und Mechanik 11,
136 (1931).

4. J. B. Keller, S. I. Rubinow, and Y. O. Tu, “Spatial Instability
of a Jet,” Physics of Fluids 16, 2052 (1973).

5. W. T. Pimbley, ‘‘Drop Formation from a Liquid Jet: A Linear
One-dimensional Analysis Considered as a Boundary Value
Problem,” IBM J. Res. Develop. 20, 148 (1976).

6. M. C. Yuen, “Non-Linear Capillary Instability of a Liquid
Jet,” J. Fluid Mech. 33, 151 (1968).

7. H. C. Lee, “Drop Formation in a Liquid Jet,” IBM J. Res.
Develop. 18, 364 (1974).

Received May 26, 1976

The authors are located at the IBM System Communica-
tions Division laboratory, P.O. Box 6, Endicott, New
York 13760.

IBM J. RES. DEVELOP,



