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Satellite  Droplet  Formation  in a Liquid Jet 

Abstract: The  formation and behavior  of  satellite  droplets in a liquid jet is investigated  experimentally and theoretically.  The  satellite 
droplet  break-off distance is measured  stroboscopically  as a function of the  frequency  and  amplitude of  nozzle  vibration. A second-order 
analysis of spatial instability is developed,  which demonstrates  the  essential  features of satellite  formation  as it is observed.  Satellite 
formation is least  likely  to  occur  when  the  main-drop  spacing is five to  seven  times  the jet diameter. 

Introduction 
A liquid jet emanating  from a nozzle, excited by a small- 
amplitude axial vibration of appropriate  frequency, 
breaks  up  into uniformly spaced drops.  Such a jet, how- 
ever,  also  has a propensity  to  produce relatively small 
satellite droplets  interspersed among the main drops.  The 
existence  and behavior of these satellites  depend  upon 
conditions of the  jet. Satellite separation from a main 
drop  can  occur  on  the  fore side of the  droplet first, on  the 
aft side  first, or  on  both  ends simultaneously. In this latter 
case,  no momentum transfer  takes place between  the two 
main drops and the satellite- the interaction  time is zero. 
This is the so-called “infinite” satellite  condition and it is 
quite reproducible  experimentally. 

There  are,  perhaps,  some applications in which the 
existence of satellites in a liquid jet is of benefit. Printing 
with an ink jet is not one of them,  however. Therefore,  for 
that application, it is important to understand the condi- 
tions for  occurrence of these satellites in order  to learn 
how to  suppress  their formation. The relative  wavelength, 
Le., the spacing of the main drops relative to  the initial 
jet  diameter,  and  the amplitude of the perturbing  excita- 
tion are  the most important  parameters, although the 
liquid properties and the  jet velocity are  also significant. 

Existing  theories of drop formation do not suffice to 
explain  satellite  formation. The linear analyses of Ray- 
leigh [ 1,2] , Weber [ 31 , Keller et al. [ 41 , and Pimbley [ 51 
do not  predict the formation of satellite droplets  at all. 
On  the  other  hand, nonlinear  theories using a  temporal 
instability,  such as  those of Yuen [6] and, more recently, 
Lee [7], always  predict  the existence of satellites along 
with the main drops.  Furthermore,  those nonlinear theo- 
ries  always  predict  satellite  separation  from the main 
drops  at  both  ends  at  the  same time,  and  this  prediction 
disagrees with experimental observations. 

The principal effort of this paper is a  nonlinear analysis 
through second  order of the  drop formation  problem 
using a spatial instability. The one-dimensional model 
which has been  used  previously [ 5 - 71 is used again in 
this  analysis. This model makes the problem tractable 
in that only  nine  eigenfunctions are required.  Keller et al. 
[4] looked at  the spatial  instability  problem using a three- 
dimensional model and encountered  an infinity of eigen- 
functions. The one-dimensional model requires  the 
approximation that  the wavelength (drop  separation) be 
significantly greater  than  the radius of the  jet stream.  Lee 
[7] has shown that this  approximation is valid in a  linear 
analysis for  jets with  relatively large velocity. One must 
be cautious,  however, in applying the model to higher 
order  terms  where  shorter wavelengths are  encountered. 

Presented first in this paper  are  our experimental 
measurements  and  a  discussion of our  observations of the 
satellite  condition. Next  our spatial instability analysis 
is presented and applied to  the  separation point of the  jet 
to  consider satellite  formation  and  behavior.  Discussion 
and  summary  complete the paper. 

Measurement  and interpretation of satellite con- 
dition 
Observations of drop formation  from  a liquid jet were 
made using five differentjet-emitting  assemblies. The noz- 
zles  were all made of glass  and had, nominally, the  same 
dimensions;  the  diameter  was 63 pm,  and  the length of 
the  constant  diameter section  was 100 pm.  The assem- 
blies were all vibrated  magnetostrictively and although 
the mechanical structures of the assemblies  varied, these 
latter  characteristics  are not important  to  our  observa- 
tions of the  jet  stream itself. Except for one  set (G) of 
experiments in which distilled water  was  used,  the liquid 21 
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Figure 1 Stroboscopic.microphotograph of a liquid jet showing 
forward-rnerging  satellites. The nozzle diameter was 63  pm. the 
jet velocity 9.0 m/s ,  and h / d =  5 .3 .  

2 - 1  0 

I ( l i n A )  

Figure 2 Data indicating  linear operation of the jet-emitting 
assembly at f= 33 kHz and h /  d = 5.1. 

was  an ink with the following properties:  surface  tension, 
T =  35 dynes/cm (0.035 N / m ) ;  density, p =  1.3 g/cm3 
( 1 . 3  x lo3 kg/m3);  and viscosity, 8.7 centipoise (0.0087 
Pa-s)  as  measured  on a Ferranti-Shirley  viscometer. 

Experimental observations were  made using a micro- 
22 scope  (about 6 0 ~ )  with a cross-hair reticle with the 

liquid jet being back-illuminated by a light-emitting diode 
strobed in synchronization with the  jet excitation  fre- 
quency.  The  entire jet-emitting  assembly was mounted on 
an x - y  table so that a  micrometer with calibration to 
0.0001 inch (0.0025 mm) could be  used to  measure dis- 
tance along the  jet.  The wavelength was obtained by 
measuring the  distances  between  the first ten  drops  after 
drop  separation. Also, the  drop separation distance was 
measured. These  data,  together with the excitation fre- 
quency  as  measured by an electronic counter, permitted 
us to calculate the  jet velocity and  then  the break-off 
time. 

The satellite  condition was recorded by first noting the 
presence  or  absence of satellite separation and  then, if 
separation had occurred,  the  distance  downstream  at 
which the satellite merged with a main drop. Whether 
the satellite  droplet merged forward with the  parent  drop 
previously  emitted or backward with the next main drop 
was also  noted. The infinite satellite  condition occurs 
when the satellite  moves with the  same velocity as  the 
main stream  parent  drops and no merging occurs.  This 
condition is quite sharp and  reproducible as  compared 
with other merge conditions. 

Figure 1 is a  photograph of a typical liquid jet viewed 
through  a  stroboscopically  illuminated  microscope. For- 
ward-merging satellites are formed which merge three 
wavelengths downstream from their point of formation. 

The linear  portion of Lee’s analysis using a temporal 
instability [ 7 ]  predicts the satellite break-off time  quite 
well. The relation between f,, and the initial velocity  per- 
turbation Au at  the nozzle  can  be expressed  as 

F Y i b  = rrAu/2hy, (1)  

where y is the Rayleigh instability factor.  Equation ( 1 )  
indicates  a logarithmic dependence between the break-off 
time and the  perturbation amplitude. If one  assumes  that 
the vibrating  jet-emitting  assembly is operated in the 
linear region so that  the velocity perturbation amplitude 
is proportiofial to  the exciting current amplitude,  then 
the  drop break-off time  should be linearly dependent  on 
the logarithm of the exciting current amplitude. Also, the 
slope of this  linear  relationship  should yield the value of 
the Rayleigh instability factor  for  the particular  situation. 
Figure 2 shows typical results from one  set of data in 
which only the  current amplitude was varied.  If  this 
amplitude is raised  much above the  values  shown in this 
figure, an overdrive situation occurs in which the  data 
depart from the straight line, i.e., from the linear region 
of operation. 

Figure 3 shows  the Rayleigh instability factors ob- 
tained  from all  of the  data  for  one of the jet-emitting  as- 
semblies. The solid curve is the instability factor  as pre- 
dicted by Rayleigh’s analysis [ I ]  for  an inviscid liquid. 
The  dashed  curve  shows the  prediction for a  viscous 
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Figure 3 The Rayleigh instability factor  as a  function off  and 
h / d .  The solid curve is Rayleigh's theoretical  result [ 11 for an 
inviscid liquid with parameters T = 0.035 N/m,  p = 1.3 g/cm3 
(1300 kg/m3), and a = 30 pm.  The dashed curve is Weber's 
theoretical result [3] for a liquid of viscosity 0.087 Pa-s. 

Table 1 Straight-line* parameters for the infinity condition 
data  shown in Figure 4. 
~~ 

Frequency 
Data set (kHz) Slope  Intercept 

A 3 3  0.29 4.3 
B 53  0.30 4.3 
C 5 1  0.27 4.4 
D 36 0.25 4.4 
E 40 0.30 4.1 
F 34 0.28 4.4 
G t  34 0.27 4.4 

'In 1, = a ( X / d )  + b. th in FLS. 
?Distilled water. 

liquid given by Weber's  analysis [ 31, the viscosity being 
8.7 centipoise (0.0087  Pa-s) in this case.  The  data taken 
at a perturbation  frequency of 53 kHz yield generally 
higher  instability factors, and represent a higher jet veloc- 
ity (v =fk), than  those  at 33 kHz.  This  seems  to indicate 
that  the liquid is acting in a  non-Newtonian manner-  the 
higher velocities  result in higher strain rates in the nozzle. 

Figure 4 shows the loci of points for  our  observations 
of the infinity condition. Each point gives the break-off 
time at which the infinity condition occurred  for a set of 
data in the  experiments. Six runs were  made with an ink 
and  the  seventh, G ,  with distilled water. Essentially all 
the  data  are superposable but each run has been  plotted 
separately by uniformly shifting the linear ordinate scale. 
As can be seen,  the  data form  straight  lines  when the 
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Figure 4 Data derived  from observations of the infinite Satellite 
condition. The  ordinate scale is shown  only  for data  set A; the 
other  scales  are the same  but  are displaced downward  as indi- 23 
cated;  see  Table 1 .  
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Figure 5 “Map” of the  satellite condition. 

logarithms of the derived break-off times are plotted 
against  wavelength (interdrop  spacing).  The slopes  and 
intercepts of these lines are listed in Table 1. Within ex- 
perimental error,  the slopes  and intercepts  are essentially 
equal.  Thus,  for  these  data, which  involved five different 
mechanical  assemblies, different vibration  frequencies, 
and two liquids, one empirical  relation seems  to suffice: 

- 76 e0,Z8A/d 
ttlm - (2)  

Figure 5 is a plot incorporating all  of the  data  taken. 
The  upper solid curve is the infinity condition as given by 
Eq. ( 2 )  . The lower solid curve gives the boundary below 
which no satellite  formation takes place. The “window” 
for ink jet printing is below this latter  curve which, how- 
ever, is not  nearly so well defined by the  data  as  the 
infinity condition is. A  lower  bound for  the print window 
is not shown,  but we have  observed  that when the  ex- 
citing current is increased  beyond the region of linear 

24 operation, satellite  formation again occurs.  For larger 

currents,  the  onset of the nonlinear operation of the vi- 
brating head would be  indicated by the  data departing 
from the straight-line  relationship  shown in Fig. 2. For 
ink jet printing, therefore,  one should operate in the linear 
region. 

Extending  upward from the peak of the no-satellite 
boundary is a  quasi-boundary for longer  wavelengths. 
Along and below this  curve satellite separation  does not 
always occur,  In this region either  two  to  four wave- 
lengths are required  before the ligament  rejoins the  parent 
drop  or, ultimately,  satellite separation  occurs  two  to four 
wavelengths downstream from the initial spreading. 
(These  latter semi-quantitative observations pertain to 
the relatively  viscous  ink,  whereas in distilled water  the 
satellite  separation occurs more  quickly. ) 

The  other  two  dashed  curves in Fig. 5 show  the ap- 
proximate parameter values at which  satellites  merge 
forward at four and  at ten  wavelengths downstream from 
their formation. The  actual  data-scatter  around  these 
representative  curves is considerable. 

The satellite  condition depends  upon  whether  the  fore 
or  the aft end of the satellite separates first and how much 
time exists  between  the  two separations.  We call this 
time  interval the satellite  interaction time. It  is within 
this  interval that momentum transfer  takes place, which 
results in the slowing down  or speeding  up of the satellite 
relative to  the  rest of the  stream. As mentioned previ- 
ously, no momentum transfer  takes place when the satel- 
lite separates  at both ends simultaneously (the infinite 
satellite condition). 

When the  drop formation in a jet  is stabilized at  the 
lowest possible  excitation, rear-merging satellites are 
observed.  In general, these satellites  merge within two  to 
four wavelengths downstream  from  the  separation point. 
As  the excitation  amplitude is increased,  the  distance 
for merging increases until the infinity condition is 
reached.  Thereafter, forward-merging  satellites are ob- 
served. As the excitation is further  increased,  the for- 
ward-merging satellites require less distance  to merge 
until the condition is reached in which  satellite  separation 
no longer takes place. Beyond this  point is thus  the 
desired drop condition, with no satellite  formation  oc- 
curring. Stated  somewhat differently, at higher  excitation 
amplitudes the satellite  interaction  time can  increase 
enough so that  the second  separation is entirely frus- 
trated, resulting in no  actual satellite  formation. 

The satellite  interaction  time is  dependent  on wave- 
length as well as  on excitation level. As can  be  discerned 
from Fig. 4, the  interaction time increases with increasing 
wavelength. Thus  at  shorter wavelengths  (from 3.2 to 
about 4.7 diameters), satellite  formation is quite  persis- 
tent  due  to  inadequate interaction time. 

That  observation might lead one  to  expect  better  drop 
formation at longer  wavelengths. However,  at the  longer 
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wavelengths (greater  interdrop  spacing)  the satellite 
droplets  tend  to be  much  larger  and the ligaments be- 
tween drops and impending satellite3  much longer. There- 
fore, relatively long satellite  interaction  times  become 
necessary in order  to  frustrate satellite  formation. 

We have essentially a maximum-minimum type of 
problem in that  there  are two  effects, each of which tends 
to insure  complete satellite  formation. At  shorter wave- 
lengths, an inadequate interaction  time does  not permit 
the  frustration of satellite  formation. At longer  wave- 
lengths,  larger  masses would have  to be  moved over 
longer distances in order  to  frustrate  the satellite forma- 
tion. As  it  turns  out,  the range of A from 5 to 6.5 diameters 
is the  best range for frustrating the formation of satellite 
droplets. 

Spatial instability  analysis 
The nonlinear differential equations  for  the one-dimen- 
sional  problem of drop formation have been presented 
previously [ 5 - 71 : 

- + u - = " -  a u  a u  I ap 
at az p az ' 

where p, the  pressure, is given by 

T 
P =  

The  dependent variables in these  equations  are r and u, 
respectively the radius of the column of liquid and  the 
axial velocity. These variables are  dependent  on time t 
and  axial  displacement z ;  T is the surface  tension of the 
liquid boundary,  and p is the density of the liquid. 

The solution is to be constrained by the following 
boundary  conditions at z = 0: 

r =  a, 

u = uo( 1 + v cos 2rrft) ,  ( 5 )  

where uo is the  jet velocity and v = A u /  uo is the relative 
amplitude of the velocity  perturbation  imposed thereon 
with frequency f. 

For this  analysis we make the following substitutions 
and definitions: 

r = a ( l  + 6 ) ,  u = u , ( l  + u ) ,  

z = a[ ,  

The boundary  conditions at 4 = 0 become 

u = v cos 07. 

The differential equations now take the form 

If v is very small, we can use it as an expansion parameter 
for  the solutions 6 and u: 

s = vs, + v26, + v36, + ' . .) 
u = vu1 + v2u2 + v3u3 +. . .. 
Then, through second  order, 

When Eqs. (9) and ( 10) are  substituted  into  Eq. ( 8 ) ,  we 
have, through second  order in v, 

where 

(12) 

The solution to  the first-order equations,  the first two 
of Eqs. (1 l ) ,  has been  given  previously [ 5 ] .  The linear 
solution, with Eqs. ( 7 )  as  the boundary conditions,  can 
be given in the form 
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where 

d j  E 2C j  ( W  - K j ) ;  

K~ = y + iu, 

K2 y - iU, 

K E- 3 Y+.P, 

K " y - p  

where y and p are real constants; 

42y6  - 2E2 ( 1 + 2 )  y4 

+ [a( 1 + E 2 y  + WZE2]y2 - $wZ = 0. (14 )  

To determine the  particular  solution of the  second- 
order  equations,  the  last  two of Eqs. ( 1 1 ), the F and G of 
(12 )  must be evaluated. Upon substituting the  linear 
solution into ( 12) ,  

F = 2 f j j  sin 2 8 ,  
4 

j = l  

4 3  

+ 2 Ujn sin (e j  + e,) +x, sin (ej - e,)], 
j + l  
n= j - 1  

4 

G = g j j  sin 2 e j  
j = l  

where 

With F and G as given by ( 15),  the pair of second- 
order  equations  separates  into 16 independent  equations. 
The 16 solutions which form the particular  solution to  the 
equations  can be written as 

The 32 constants of Eqs. (17) are obtained by substi- 
tuting  this  solution into  the differential equations. As a 
result,  the following three  sets of equations  are used to 
calculate these  constants: 

As with the  presentation of the linear  solution [ 5 1 ,  this 
second-order solution is presented in complex  form. The 
solution,  however, is real;  the complex factors  and  terms 
exist in conjugate  pairs that combine to form a real 
solution. 

The linear  portion of the problem  already satisfies the 
boundary  conditions. Therefore,  the general  second- 
order solution  must  cancel the values of the particular 
second-order solution at  the boundary. The boundary 
values for  the general  solution at 5 = 0 are 

uZg = R,  COS 207 + R,, 
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where  the  seven real constants  are given by 

j + l  
n= j = 1  

4 4 3  

R,= - B j j  - 2 Bj,,, 
j = 1  

j + l  
n= j = ,  

R, = - B j , .  

,,= j = l  
j +1 

4 3  

(20) 

The general second-order solution  can be considered in 
two  parts, the  time-independent part satisfying the con- 
stant  terms of the boundary  conditions ( 19) and  the  other 
part obeying the time-varying terms of (19). The time- 
independent part of the solution is 

826 = R, + >( 1 - COS k t ) ,  
R 
k 2  

The solution to the time-dependent  part is analogous 
to  the linear  solution  presented  previously. However, o 
must  be  changed to 2w and the matrix equation  that 
determines  the coefficients becomes  more  complicated. 
The solution may be written as 

4 -  I 

uZg = dj COS ej. 
j= l  

In this solution, G j ,  c i j ,  K j ,  6, ,% and 7 are all defined in a 
manner analogous to the  definitions ( 1 4 ) .  The only 
difference is that 2 0  replaces w in those equations. The 
constants Cj, however, take the following form  because 
of the more  complicated  boundary  conditions: 

w ( R ,  + Z R , )  + G,[i'G; - ( I  +ti)]/?, + i 'K ;R ,  + K j i P R q  
c, = 2 [ (  I + t P J K :  - 6wKJ + XW'] ( 2 3 )  

3 

I I 

Figure 6 Regions for satellite droplet formation in parameter 
space. 

The total  solution to  the spatial  instability  problem 
may now be written  through  second order  as 

6 = us, + YZ (6,,, + s,, + s,,, , 
u = vu1 + U2(UZl, + u,, + Liz,), ( 2 4 )  

using appropriate  substitutions from ( 13) ,  ( 17) ,  (2  1 ), 
and (22).  

Discussion 
For various  values of the  parameters w2 and E', the solu- 
tion can  grow in an exponential  fashion, leading to drop 
formation  and separation.  The ranges of these  parameters 
for such  formation to  occur  for  the linear terms have been 
discussed  previously [ 5 ] .  In Fig. 6, region 1 shows the 
range of parameters in which all four of the controlling 
eigenvalues K~ are real. Hence, all of the functions are 
circular; no  drop formation takes place. In regions 2 and 27 
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3,  however,  the first two eigenvalues are complex. As a 
result, hyperbolic functions  appear in the solution,  and 
drop growth  ensues. 

The particular  second-order  solution, Eq. ( 17),  is 
controlled by the  same  four eigenvalues. There  is  no  drop 
formation in region 1 of Fig. 6,  whereas  drop formation 
does proceed in regions  2 and 3. 

The general second-order  solution,  Eqs. (21)  and 
(22),  is controlled by a different set of eigenvalues, the 
kj and k .  All five of these  values  are real  in  regions 1 and 
2. The first two  eigenvalues are complex, however, in 
region 3. Therefore, in region 1, no  drop formation takes 
place; in region 2, only  linear terms  and particular 
second-order  terms  contribute  to  drop  formation;  and it 
is only in region 3 that  terms of the general second-order 
solution  grow in an exponential  fashion. 

Let us consider  the solution at  drop separation  only 
for values of E' which are much less than  one. In this so- 
called Rayleigh range,  which  has  been  discussed  previ- 
ously [ 5 ] ,  the  jet velocity is significantly greater  than  the 
capillary  velocity  in the  jet.  The experiments reported in 
this paper,  as well as  most of the experimental  work  re- 
ported in the  literature,  were performed in this  range of 
small E'. 

Many of the  terms in the theoretical  solution do not 
contribute significantly to  the  answer  and  can be  ignored. 
In fact, at  least  for small E', our calculation shows  that 
terms which  contain the eigenvalues K ~ ,   K ~ ,  K 3 ,  K4,  and k 
may be neglected. By approximating  hyperbolic functions 
as exponential ones  near  the  drop  separation point, one 
can  write 

p E  904 - 100' + 1 
803( 1 - 40') ' 

Q E -  E' 1 4 0 ~  - 32w4 + 2113' - 3 
161 40'(40' - 1) ' 

and u is defined in Eqs. ( 14).  In  these  equations, tb is  the 
28 separation  distance predicted by the linear theory [ 5 ] :  

The  terms from the general  solution  in  Eqs. (26)  are 
given in a  form that  is valid for region 2 where  these  terms 
do  not grow  exponentially. In region 3, a  different  form 
that includes  hyperbolic functions is required. 

Calculations  from the  second-order spatial  instability 
analysis  show satellite droplet  formation  for  perturbation 
wavelengths greater  than  about 5.5 jet  diameters.  For 
shorter wavelengths, and  for small perturbation ampli- 
tudes and small values of c2, no satellite  formation is 
predicted. This conflicts  with  experimental  evidence, 
which  shows that  persistent satellite  formation exists  at 
shorter wavelengths. This  same situation exists in a 
second-order temporal  instability analysis, developed in a 
similar way, wherein the  second-order solution predicts 
a  wavelength boundary  at  about 5.4 diameters, below 
which  satellites will not  form,  whereas  the  complete non- 
linear  solution, as presented by Lee [7], shows satellite 
formation for all wavelengths. Clearly,  the higher order 
terms  are required to give  a complete  picture of satellite 
droplet formation. 

A  look at  the exponential factors in Eqs.  (26)  shows 
that,  for  both  the first- and  the  second-order solutions, 
these  factors grow to  the  order of one  as  drop  separation 
occurs.  From  the form of the analysis, it can  be seen  that 
higher order  terms  also  exist, which approach  the  order of 
one  at  drop separation. These higher order  terms  can, 
therefore,  contribute significantly to  the  complete so- 
lution. 

Figure 7 shows the effect of perturbation amplitude on 
the  drop formation. For a perturbation wavelength of six 
diameters  and  for E' = 0.002, these  drop formation shapes 
in the vicinity of the  separation point  were  calculated 
from  the first of Eqs.  (24).  This "pinching" of the jet 
column shows  the  same  shape  tendencies  as  are  observed 
experimentally. For small perturbations  (long break-off 
distances [J the first separation  occurs on the  fore side 
of the satellite; a slightly lower satellite  velocity and rear- 
merging result. For a single critical perturbation ampli- 
tude corresponding to tb = 90, the satellite separates  at 
both ends simultaneously,  which is  the infinite satellite 
condition. At higher excitation  amplitudes (shorter 
break-off distances), forward-merging  satellites are 
formed. 

The  second-order  theory  predicts  the infinite satellite 
condition for a break-off length tb = 90. The empirical re- 
lation (2) gives  a corresponding value of [ = 185 when 
E' is  set  equal  to 0.002. It  can  be  seen,  therefore,  that  the 
second-order  theory gives a good  qualitative  description 
of the effect. 

In  the  Appendix of Ref. 5, the slowing down of the  jet 
during drop formation  was  predicted using gross momen- 
tum considerations. This phenomenon is  not  predicted 
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by linear  analyses.  A  time-independent  term in Eq. (17) 
brings in this effect: 

i%,, cos (0, - e,) M k Z (  3wz - 5 )  eZU(", ( 2 8 )  

where the approximation  is  for small E*. At  the separation 
point, 

u = U o [ l - E 2 ( & - 9 w 2 ) l .  (29) 

Previously [ 51, we obtained the more accurate expres- 
sion u = uo( 1 - E').  Again, it  can  be  seen  that  our second- 
order theory  describes the effect qualitatively, although 
the complete  nonlinear  equations are needed to develop 
quantitative  accuracy. 

Summary 
A liquid jet, breaking up into drops,  tends  to form  satellite 
droplets interspersed among the main drops of the stream. 
Depending  upon  various  conditions,  satellite  separation 
can  occur on the fore side of the droplet first, on  the  aft 
side first, or  at both ends simultaneously. 

The satellite  interaction time, defined as  the time be- 
tween  the break-offs of the two ends of a satellite, allows 
a momentum  transfer  between the satellite droplet and a 
main drop of the  stream. This transfer  alters the velocity 
of the satellite so that it merges with a main drop: Satellite 
separation  occurring first on the  fore side of the droplet 
results in rear-merging satellites;  separation first on the 
aft side causes a forward-merging situation. 

The two  most  relevant  parameters that control  satellite 
droplet formation are  the amplitude of the perturbation 
and the wavelength-to-diameter ratio of this perturbation. 
Very small perturbation  amplitudes  result in rear-merging 
satellites. At a higher value of this amplitude the infinity 
condition occurs; i.e., both  ends of the droplet separate 
simultaneously. As  the amplitude  is  increased above this 
value, forward-merging occurs and the satellite  inter- 
action  time  also  increases. 

An investigation of the infinity condition  has  revealed a 
relation  between  perturbation  amplitude  and wavelength 
as shown by Eq. ( 2 )  and Fig. 4. Shorter wavelengths re- 
quire a stronger  perturbation to  cause this condition. For 
the forward-merging satellite condition [perturbation 
amplitudes greater than given by Eq. ( 2 ) ] ,  larger  pertur- 
bation  amplitudes are required at  the  shorter wavelengths 
to  produce equal  satellite  interaction times. 

For wavelengths of about five to seven jet diameters, 
the satellite  interaction time can become  large enough to 
frustrate  the second  droplet  separation,  and no satellite 
formation results. At  shorter wavelengths, the requisite 
interaction times are more difficult to achieve. At longer 
wavelengths,  the  larger  droplet volumes and longer liga- 
ments work against the frustration of the second  droplet 
separation; i.e., they  make  separation  more likely. 

Figure 7 Theoretical drop  formation  shapes  near  the  separa- 
tion  point.  Plotted  symmetrically  in  the  vertical  direction  are  the 
jet column  radii r ( z )  or r ( 5 )  at  an  instant of time.  The effect of 
excitation  amplitude is shown through  the  parameter tb; A /  d =  6 
and E* = 0.002. 29 
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Linear  theories  and  theories using temporal  instabilities 
are  inadequate  to  describe satellite droplet  formation; a 
nonlinear  spatial  instability  analysis is required. The 
second-order analysis made in  this paper gives  a  qualita- 
tive  description of the  process.  For  an  accurate  quantita- 
tive description, the inclusion of higher order  terms, or 
the  complete solution of the nonlinear equations, is 
needed. 

In this paper,  the  jet excitation was purely  sinusoidal. 
I t  is known, however,  that  the  use of combinations of 
frequencies or harmonics in the excitation influences sat- 
ellite droplet formation. The nonlinear  spatial  instability 
analysis  could be used as a  powerful  tool to investigate 
this influence. In addition, the analysis could be  used to 
predict the  best combinations of exciting frequencies  for 
use in a particular application. 
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