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Determining the Three-dimensional Convex Hull of a

Polyhedron

Abstract: A method is presented for determining the three-dimensional convex hull of a real object that is approximated in computer
storage by a polyhedron. Essentially, this technique tests all point pairs of the polyhedron for convex edges of the convex hull and
then assembles the edges into the polygonal boundaries of each of the faces of the convex hull. Various techniques for optimizing this
process are discussed. A computer program has been written, and typical output shapes are illustrated. Finding the three-dimensional
convex hull is approximately the same computer burden as eliminating hidden lines.

Introduction

The determination of convex hulls and their properties
has been of continuous interest in linear programming
and pattern recognition [1-6]. Freeman has discussed
the use of the two-dimensional convex hull for the stock
cutting or allocation problem [7]; Balinski has described
a method for finding all vertices of an n-dimensional
convex polyhedral set defined by a system of linear in-
equalities [8]; and Nagy and Tuong have normalized
two-dimensional data by transforming the convex hull of
a pattern into a square [9, 10]. This paper describes a
method for determining the three-dimensional convex
hull of an object.

Two-dimensional solutions

A body is defined as being convex if a line joining any
two points on the n-dimensional figure is entirely con-
tained within the body. One can consider the polygon to

Figure 1 Typical polygon (a) and its convex hull (b).
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be a set of edge points, and the convex polygon can be
obtained from operations on this set; but it is more con-
venient, as in computer graphics, to consider the sets to
be ordered lists. When the order of points on a polygon
is given as a list, the lines on the polygon are drawn
between successive points in this list. A convex point in
a two-dimensional list can be defined as the intersection
of two lines that form an internal angle less than 180°. A
nonconvex point has an internal angle equal to or greater
than 180°.

A polygon with an interesting boundary and its two-
dimensional convex hull are shown in Fig. 1. A two-
dimensional convex hull is a polygon formed only of
convex points. Points on the original polygon list can be
inspected to delete all nonconvex points. The new list
must then be tested again for convex points since the
deletion of some points may create new nonconvex
points. The iterative nature of this procedure is illustrated
in Fig. 2.

The identification of the convex hull of unordered
two-dimensional points has been described by Graham
[11] and Jarvis [12]. Graham’s approach is to order the
original data set on the basis of polar angles about an
interior point and then use an angle measurement
scheme similar to that shown in Fig. 2. Jarvis contends
that this ordering procedure is itself expensive in terms
of comparison tests and that it is not necessary. With
reference to Fig. 3, Jarvis’s method is as follows:

1. Find a point definitely outside the point set. This is
the initial origin.
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Figure 2 Derivation of convex hull shown in Fig. 1. Points 11, 12, and 13 can be deleted immediately from original polygon shown at
(a) with the original point list. Polygon before second pass (b) has had points 3, 4, and 6 removed. Polygon before third pass (c) has
also had point 5 removed.

Step First pass Sccond pass Third pass

New origin

1
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Figure 3 Jarvis algorithm for two-dimensional convex hulls. At (a) the minimum A, is 4,, so point 1 is the first point on the convex
hull. Using the new origin at (b), 4, is the minimum A, so that point 6 is the second point on the convex hull. With point 6 as the new
origin at (c), 4, is the minimum A4, and point 7 is the third point on the convex hull. Because point 5 falls within the area described by
points 1, 6, and 7, it need not be considered any longer. At (d), with point 7 as the new origin, the minimum 4, is 4,, and point 2 is the
fourth point on the convex hull. Now points 3, 4, and 5, which fall in the area of points 1, 6, 7, and 2, can be ignored, and the convex

hull is complete.

2. For each point { in the set, calculate the polar angle
A, between a horizontal line through the origin and the
line connecting the origin and the point i.

3. Find a point j for which 4; is the minimum of all an-
gles 4,. Point j is to be listed as a point on the convex
hull.

4. Make point j the new origin, and repeat steps 2 and 3.
Each time a convex hull point is found, relocate the
origin for calculating A4,. Delete points from consider-
ation if: a) they have already been identified as being
on the convex hull, or b) they lie in the region so far
determined to be included in the convex hull.

By deleting points from consideration as the convex
hull grows, the Jarvis algorithm finds new convex hull
points with increasing speed. The important observation
in Jarvis’s work is that ordering the point set is not nec-
essary and may even be misleading.
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Requirements of a three-dimensional solution
Several ways exist by which a convex hull may be de-
scribed, and the application of the convex hull pre-
scribes the description. Generally for two-dimensional
work, such as pattern fitting, an ordered list of points is
sufficient, but for picture scanning a region boundary
such as a line list or a parametric curve may be neces-
sary. The actual convex hull may be difficult to work
with, so a rectangle [7] or a circle may be used as an
approximation.

We consider objects that are generally encoded as
polyhedral approximations [ 13, 14, 15]. Such polyhedra
are usually specified by a vertex list and a topological
map such as shown in Fig. 4. A vertex list and topologi-
cal map suitably describe the convex hull. Therefore we
need to find which of the original set of vertex points on
the polyhedron description are vertex points of the con-
vex hull, and we need to know how these points can be
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Vertex list

4
f Point  x v z
1 1 0 2
2 0 0 2
3 0 1 1
4 1 1 1
5 0 2 1
6 1 2 1
7 0 0 0
Original 8 1 0 0
polyhedron 9 1 2 0
10 0 2 0
Topological map
Convex .
hull Surface Points
I 1,2,34
11 3,4,6,5
111 5,6,10,9
v 1,2,7,8
\" 7,8,9,10
VI 1,4,6,9,8
VII 2,3,5,10,7

Figure 4 Typical original data and required specification of a
convex hull. Points 3 and 4 have been deleted from the vertex
list, and surfaces I and II have been deleted from the topological
map. Surface VIII with connectivity 1, 2, 5, 6 must be added,
and surfaces VI and VII must be respecified.

Figure 5 Determination of convex edges from a projection
plane perpendicular to the edge. The point projection of lines
(1,2), (5,6), (7, 8), and (9, 10) are convex points, hence these
lines are convex edges. The point projection of line (3,4) is not
a convex point, and this line is not a convex edge.

Convex hull of Point projection

projection of ofline 1,2
original object
-
- - -

-
-
-

10_--

-

Point
projection
— of line 3,4

Original 7 Projection plane

object perpendicular to
line 1, 2 and line
3,4etc.
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connected together to form the boundaries of the plane
surfaces of the convex hull. In the two-dimensional con-
vex hull problem, points of the original data set had to
be eliminated and lines that were not part of the original
polygon had to be found. In the three-dimensional prob-
lem, points have to be eliminated, and new lines and
planes must be found.

Properties of convex polyhedra

Several properties of a convex polyhedron can serve as
a basis for determining the convex hull of points in
three-dimensional space. For example:

1. Any point inside the convex polyhedron is on the
material side of all planes of the polyhedron.

2. Each convex point of the convex hull is a vertex of a
convex cone of the convex polyhedron.

3. Each convex edge of the convex hull is the intersec-
tion of exactly two convex planes and has an internal
dihedral angle less than 180°.

4. The boundary of any plane surface is a convex
polygon.

5. Any projection of a convex polyhedron is a convex
polygon.

6. In any projection of a convex polyhedron, the edges
that produce the outline are a closed curve in three-
dimensional space.

7. A convex polyhedron encloses the given points in
space with minimum surface area.

Doubtless, this list of properties can be extended.
Properties 1 and 2 are most frequently used in linear
programming. Properties 1 and 6 can be used for hidden
line elimination [16]. Properties 3 and 4 are the only
characteristics that make it possible to delete some given
points on the basis of local measurements. All of the
other properties are characteristics of the entire object
and are expensive to determine.

Algorithm for determining the three-dimensional
convex hull

The algorithm to be described attempts to find the edges
of the convex hull. Identifying the edges of the three-
dimensional convex hull seems to be most appealing for
two reasons: 1) If the edges are known, vertex points on
the convex hull can be identified, and with small effort
the topological map can be constructed; 2) the probabili-
ty of wasteful testing for convex edges is less than the
probability of wasteful testing for convex planes. With
regard to this last reason, the number of two-combina-
tions of N things is usually smaller than the number of
three-combinations of N things:

CIN,r)=(NY/ () (N —r)!
C(6,2)=15,C(6,3)=20.
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The basic algorithm is as follows:

1. Test all possible pair combinations of the vertex list
to identify convex edges. The test for convex edges is
based on the property that if all points are projected
parallel to this edge, the edge projects as a convex
point on the polygon image. See Fig. 5. Convex edges
are not collinear.

2. Form loops in three-dimensional space of convex
edges. Each edge must be used twice, and all the
edges used in any particular loop must lie on the
same convex plane. A convex plane has the property
that all points of the object in three-dimensional
space lie in the plane or are only on one side of this
plane (property 1).

For objects that are known a priori to be “‘well be-
haved,” a preprocessing step may be added. (Well be-
haved is defined later). This preprocessing deletes from
the original vertex list any point that lies on an edge that
is an inside corner. Such edges and any points on them
cannot contribute to the description of the convex hull
(properties 3 and 4). Identifying inside corners is a com-
mon capability of three-dimensional modeling programs
[17]. See Fig. 6.

Determination of convex hull edges

The problem now is to find pairs of points on the vertex
list that are end points of lines in three-dimensional
space that are, in turn, edges of the three-dimensional
convex hull. The key characteristic of a convex hull
edge is shown in Fig. 7: If the entire set of points on the
object is projected onto a plane perpendicular to a con-
vex edge, the convex edge projects as a point that is a
convex point on the projection.

An alternative, and what has proved to be a more use-
ful, definition of a convex edge is also shown in Fig. 7.
The convex edge is seen as projecting as a point outside
of the two-dimensional convex hull of all the other
points projected onto the projection plane. Step 1 is
therefore: Choose pairs of vertex points, project ortho-
gonally to them, and test for containment. A test is then
needed for the containment of a point in a polygon.

Polygon star test

A useful property of three points on a plane is the sense
of implied vorticity of these points [18]. In the matrix
equation for area of a triangle:

x, oy 1
AREA=4%|x, y, 1|.

Xy Y, |
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Typical external
corners

Typical inside
corners

Figure 6 Points 1,2, 3, 4,5, 6,7, 8,9, and 10 are obviously
not convex hull vertex points because they lie on inside cor-
ners.

Figure 7 A characteristic of convex edges. At top line (3, 4) is
determined to be a convex edge, since its point projection lies
outside of the convex hull of the projections of all the other
points on the object. At bottom line (5, 6) is not a convex edge,
since its point projection lies inside the convex hull of the
projection of all the other points on the object. Line (11, 12) did
not have to be projected because it is an inside corner, and
points 11 and 12 need never be projected.

Projection plane
perpendicular to
line 34

Projection of points 1,2
Projection of points 3, 4
also point projection

of line 34

Projection of
points 7, 8

Projection of
points 9, 10

Convex hull of
all points except 3, 4

Projectionplane
perpendicular to line 56

Point projection

5 " of line 56
‘ Convex hull of
all points except 5, 6
-

5
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Figure 8 Sense of implied vorticity and the recognition of
direction of rotation.

O»

Figure 9 Placement of two points relative to the convex huil
of a given set of points.

Typical polar angles
using point A as origin

4 b 8 9
[ ] [ ] [ ]
5 6
L ] [ ]

Star polygon

. Figure 10 Generation of star polygon for point A.

The value of area can be positive or negative, depending
on the order in which points are entered in the matrix;
the area is zero if the three points are collinear or coinci-
dent. This property can be used to sense an implied rota-
tion, as shown in Fig. 8. A counterclockwise rotation
has a positive sense of vorticity, a clockwise rotation has
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a negative sense of vorticity, and no rotation has a sense
of zero. A useful characteristic of implied vorticity is
that any point inside a triangle has the same sense of
vorticity relative to each of the lines of the triangle as
the three vertex points of the triangle. The implied vor-
ticity can be used to indicate when a point lies inside or
outside of the convex hull of a set of points.

This test can be called a star polygon test because of
the general character of the polygons encountered in this
application, and its value is that it avoids having to find
the two-dimensional convex hull of the set of projected
points. With reference to Fig. 9, it is necessary to deter-
mine whether points A or B lie within the convex hull of
the given points. A star polygon can be constructed for
the given set of points if they are sorted on the basis of
increasing polar angle, with the origin of polar angle
measurement being the test point. Star polygon con-
struction is shown for points A and B in Figs. 10 and 11,
respectively. When the point under examination is out-
side the star polygon, it is also outside the convex hull of
the star polygon. In Fig. 10, the sense of rotation of line
(2, 3) relative to point A is counterclockwise, but the
sense of rotation of line (3, 4) is clockwise. In Fig. 11,
the sense of rotation of all lines is counterclockwise
about point B. Obviously, any change in implied vortici-
ty indicates that a point is outside of a star polygon. Fig-
ure 12 illustrates collinear possibilities that are detected
when implied vorticity is zero. Possibility I or II can
occur since the sorting of points is based only on polar
angle. In instances I and II and similar collinearities, the
point being tested is considered as being outside of the
star polygon, whereas for possibility 111 the point is con-
sidered as being inside the star polygon.

In Fig. 13 an object is shown having several collinear
points with the same projection on the orthographic
projection plane. During the construction of star poly-
gons, such occurrences are easily detected and points
that form lines contained within other lines can be delet-
ed from the vertex list immediately. For example, in Fig.
13, the interior points 2, 3, 6, and 7 should be deleted
from the vertex list. The calculation of orthographic
projections is an opportune time for detecting interior
points since the distance from the orthographic projec-
tion plane can serve as a basis for sorting.

This step in the algorithm enumerates pairwise combi-
nations of vertex points and tests for convexity. It is
worth while considering techniques that quickly delete
from the list of vertices all points that are not ends of a
convex edge. Apart from a few specific tests discussed
in detail later, this is an open question for research.

Finding surface loops
At this stage of processing, the three-dimensional con-
vex hull is essentially known. All convex edges have
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Typical polar angles
using point B as origin

LI B

*

Figure 11 Generation of star polygon for point B.

cQO cO

1 I 111

Figure 12 Collinear possibilities. Point C is the basis of con-
struction of the star polygons. In the first two cases point C is
considered to be outside the star polygon, and the edge that pro-
jects as point C is taken to be a convex edge. In the third case
point C is taken to be inside the star polygon and is not treated
as a convex edge projection.

been found and listed, and the original list of vertex
points has been reduced to only those points that have
been found to be end points of a convex edge. A typical
convex edge list is shown in Fig. 14. For some purposes,
it may be necessary to find the polygonal boundary
of each of the plane surfaces of the convex hull. Such
boundaries are formed by closed loops of edges in three-
dimensional space. The key property used in forming
such loops is that each convex edge is used in exactly
two loops, because an edge is the intersection of only
two convex planes. A convex plane loop can be thought
of as a list of edges where the first and last entries have a
common end point and adjacent entries have a common
end point. The plane surface bounded by a loop must
also be a convex plane; that is, there are no points on
one side of the plane.

The procedure for finding surface loops is basically to
start a list of edges on a single convex plane by finding
two edges that intersect and lie on a unique plane of the
convex hull and then add coplanar connected edges to
this list until the loop closes. A new surface loop list can
now be started. A count of the number of times an edge
is used is made and continually updated, and as soon as
an edge is used twice it is no longer considered. When
all edges have been used twice, all loops should have
been found and this phase of processing stops.
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Projection of
points 5,6,7, 8

Projection of \
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e
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Projection plane

X

Figure 13 An object with coincident edge projections.

The topological map can be derived from a loop list by
listing the vertex points that are shared by adjacent edge
entries. A more detailed description of loop finding is
given in the appendix.

Preprocessing to speed execution

It is worthwhile applying preprocessing to reduce the
number of projections and star polygon tests. The pre-
processing algorithm alluded to previously involves the
determination of inside corners, since they could not
contribute to the convex hull of a well behaved object.
The attractive feature of this idea is that the test is well
known in computer graphics and is a comparatively di-
rect and inexpensive method of reducing the original
vertex list. There are instances where this procedure
using an inside corner fails, as shown in Fig. 15. How-
ever, such instances are extremely rare, since points are
almost always the intersection of three planes. If an ob-
ject is known to have points with no more than three in-
tersecting planes, then it may be considered to be well
behaved and this preprocessor may be used. For well
behaved objects, any point on an inside corner can be
deleted from the original vertex list. For optimum reli-
ability where the objects are very complex, points need
not be eliminated unless they are the intersection of two
inside corners. Another test for points that lie on an in- 595
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Typical convex edge list

Line label First Second
point point 4
L LC1(L) LC2(L) 1
1 i 2 6
2 1 3
3 1 4 3
4 2 3
5 2 6
6 3 5 2
7 4 5 Convex hull
8 4 6
9 S 6

Figure 14 A convex edge list for a single convex polyhedron.
The line label is L, and the ends of the line are LC1 and LC2
indexed by L.

Inside corner 3

il

(b)

Figure 15 Instances where a point of an inside corner should
not be deleted. At (a) point 2 can be deleted but point 1 should
not be deleted. There are many inside corners at (b), and point
3 should not be deleted.

Figure 16 Two checking techniques for points that are detect-
ed as being on inside corners: 1) Any point that lies on the in-
tersection of two inside corners and only one outside corner
cannot be a convex hull vertex. 2) A point that is on an inside
corner should also be a concave point on a polygon face in or-
der to be deleted.

Point 1 is a convex
point on surface A

Point 2 is
aconcave point
onsurface B (in back)

Point 1 is intersection
of two inside corners

Surface A
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side edge is to determine whether the point is a concave
point on any polygonal face of the object. Checking
techniques are illustrated in Fig. 16 but are assumed to
be unnecessary for most objects.

It may be argued that no point should be kept in the
vertex list if it does not lie on a convex plane of the
original polyhedron. To the contrary, Fig. 17 illustrates
three instances in which convex points do not lie on any
convex planes of the original object.

We assume it is not worthwhile to form the convex
hull of each polygonal face of the original polyhedron
because such a procedure is indirect and for some points
would be at least triply redundant. There does not seem
to be any simple relation between the two-dimensional
convex hull of points on each face of the original poly-
hedron and the three-dimensional convex hull of the
total polyhedron. Whereas a given polyhedron has a
unique convex hull, an infinitude of polyhedra can have
the same convex hull.

Automatic identification of inside corners

As illustrated in Fig. 3, the minimum data required to
specify a polyhedron is a vertex list and a topological
map of vertex connectivity. The topological map is a
list of which points are on each surface and also is a series
of points connected by lines. Say that a typical line i
connects point (x,, y,, 2,) to point (x,, ¥,, 2,). The para-
metric equations of each line i are calculated and stored:

x=x tat,
y=y, b,
z=z +ct,
where

a= (o, —x) /1,
b= (y,—y) /I
6= (2, —2) /1,
=[x, —x)+ (3, = ) + (2, ~ 21"

Parameters a;, b;, c;, /; are stored and indexed by the line
label. The equation of each plane surface j of the poly-
hedron is calculated and stored:

ax +by+cz+d =0,

where a;, b;, c; are found from the cross product of any
two lines on plane j that intersect with an angle less than
180° as determined by the condition:

a,a,+b,.b+c,c,>0,

where & and [ are the intersecting line labels. The normal
to surface j has the parametric equation

x=da;t +x,

IBM J. RES. DEVELOP.



y=bit+,

z=c;t + 2,

where x,, y,, and z, are any point on the plane j, and
af + bj2 + cj2 = 1.

Also,

di=—(a; x, + b; y,+ ¢; 7).

It is important that each surface normal should point into
the volume enclosed by the polyhedron. If not, the signs
of a;, bj, and c; must be reversed. A method for ensuring
the correct sign has been described previously [ 19]. Each
line of the polyhedron can be taken as a vector (a,, b;,
¢;), and a normal vector (g;, b;, c;) can be found for each
surface. If line / is the intersection of two surfaces, say
k and [, line i is an inside corner when the scalar triple
product of the line i, the normal vector £, and the normal
vector [ is negative:

I =a,b,c,
K=a b, c,
L=a,b,c,

a; a, a

[IKL] =|b, b, b,|

C; ¢, C

Some simple instances are illustrated in Fig. 18.

Details of implementation
The techniques described have been reduced to practice

with a FORTRAN program operating under VM /370 on_

an IBM System /370, model 168. A series of polyhedra
and their convex hulls is shown in Fig. 19. Inside corners
are found during hidden line elimination by the previously
described program LEGER [18]. The convex hulls are
drawn as soon as the edge list is known. It is not pos-
sible to measure the convex hull calculation times exact-
ly because of the operating system overhead, but in
general the convex hull determination takes about as
much time as a hidden liné elimination. Convex hull
determination for the test figures shown varied from 0.20
to 0.84 second total CPU time, including drawing a wire
frame picture and listing intermediate results. Time re-
quired increases approximately with the length of the
convex point list and the number of surface loops in
the convex hull, but we cannot yet show or estimate
time requirements. A complex original object does not
necessarily imply a complex convex hull. It has been
observed that a simple object with a complex convex
hull took more time for analysis than a complex object
with a simple convex hull.
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Figure 17 Three polyhedra in which a convex hull vertex is
initially not on any polygon face that is a convex plane. There
are no points of the object on the spatial side of a convex plane.

2
4——-0/ (3
! 7
1
1
p Sy
/, } 4
’ -} —e

a; A, A/ | where line i is
[IKL] =|b, B, B, | oriented to run
¢; C, C,] counterclockwise
on surface k.
-1 0 0
[512] =] 0 O —1|[= 1 outside corner
0—-1 0
-1 0 O
[723] =| 0—1 O|=-—1 inside corner
0 0-—1
1 0 0
[643]1=| 0—1 O0{= 1 outside corner
0 0-1

Figure 18 Use of scalar triple product to detect inside (con-
cave) corners.

Summary

We have described some techniques for determining the
three-dimensional convex hull of real objects. Finding
the convex edges of the convex hull is,the essential step
in this procedure. Toward this end, we have introduced
the concept of identifying convex edges by projecting
the entire object parallel to an edge and observing
whether the point projection of the edge fell outside its
associated star polygon. The star polygon test avoids
the problem of having to find the two-dimensional convex
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e
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Figure 19 Computer generated examples of convex hulls.

hull of the projection of the original object. It is interest-
ing that no two-dimensional convex hulls were ever re-
quired for this three-dimensional probletn. Tactics for
minimizing computation by culling the ofiginal vertex
list have been presented but have been implemented to
only a limited extent. Use of the present program for
the determination of the three-dimensional convex hull
of real objects presents no logistical burden in computer
storage or time. Solving for a convex hull of a simple
object is apparently as costly in total computational
overhead as eliminating hidden lines.

Appendix: Finding plane surface loops of a convex
polyhedron given the edges of the polyhedron

The task of finding the bounding loops of each plane
surface of the three-dimensional convex hull given a
complete list of convex edges is similar to certain prob-

A. APPEL AND P. M. WILL

5 B
=
ln

lems in graph theory [20-22]. The edge list of a convex
polyhedron can be used to construct a graph that is ob-
viously isomorphic to a planar graph. The set of circuits
that outline each face of this planar graph is the surface
loop description of the convex hull. It is possible to find
the faces of a planar graph without specific dimensional
knowledge of the vertex points in space, but a description
of this technique is beyond the scope of this paper. Our
approach is more mechanistic. That is, while assembling
edges to form surface loops, the convex edges being
joined together are continually tested for coplanarity
in three-dimensions. It has not been necessary to check
that the loops are convex polygons.

1. Initialize an edge use array 1UC(L) to all zeros. Every

time an edge is used in a loop its corresponding IUC
entry is increased by 1. As soon as a particular 1UC
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attains a value of 2, the associated edge cannot be
used for any other loops. As soon as all elements in
the array 1UC(L) attain a value of 2, processing should
stop.

2. Take an edge L1 from the list of edges. If the edge has
an associgtég IUC(L1) = 2, take another edge. Pro-
cessing stops when all 1UC elements attain a value of
2 or all edges were addressed in this step once.

3. Choose some other edge 12 from the list of edges
where 1UC(L2) is less than 2.

4. Check each end point of edge L1 and edge L2 for a
common vertex point. If edge 1.2 does not have an
end point that is also on L1, go back to step 3. When
edge L and edge L2 have a common vertex point,
obviously these two edggs intersect and form a plane
in space.

5. The vertex point common to edges L1 and L2 and the
other two points on these edges should not coexist
simultaneously on any other loop, since this would
imply coplanar loops, which is not possible on a
convex polyhedron. Check that the three vertex
points on L1 and L2 do not coexist on any other loop
if any are yet identified. If coexistence occurs, go
back to step 2.

6. Calculate the equation of the plane P in space formed
by the intersecting edges L1 and L2.

7. Make certain that points on the vertex list lie either
in or are to only one side of plane P. A convex plane
can have no points on its spatial side. If points are
found to lie on both sides of plane P, this indicates
that P is not a convex plane so go back to step 2. A
list of points in plane P can be stored at this time to
speed up later steps in this procedure.

8. Classify the intersection of edges L1 and L2 accord-
ing to type as shown in Fig. 20. At this time, two
entries can be made in the loop table as shown in
Fig. 21, and two vertex points have been identified:
1) the starting points Sp of the loop, 2) the next
match point MP on the loop. The starting point of the
loop is the first point on the loop and is used to de-
termine when a loop is finished. The match point is
used to find the next line on the loop. Entries in
the loop table are positive or negative and indicate
the direction a line takes as it is used in a loop. When
the line runs from LC1 to LC2, the direction is taken
to be positive.

9. Take an edge 1.3 from the list of convex edges with
1UC(L3) less than 2 and where L3 is not L1 or L2.

10. Determine whether any end point of L3 is Mp. If
no end of L3 is MP, repeat step 9. If an end of L3 is
MpP, determine whether the other end point (LE3)
of L3 is sP, and if it is, add L3 to the loop table, end
the current loop, increase the TuC value by one for
each line used in the loop, and start another ioop at
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o — SP=LC2(L1)
LI
Type 1 « LCOM = LCI(L1) = LC1(L2)
L2
— MP=LC2(L2)
« SP=LC2(L1)
LI
Type 2 s « LCOM = LC1(L1) = LC2(L2)
L2
{e MP=LCI1(L2)

t < SP=LCI(L])

L1
Type 3 « — LCOM = LC2(L1) = LC1(L2)
L2
{« MP=LC2(L2)
< SP=LCI(LI)
L1
Type 4 . <~ LCOM = LC2(L1) = LC2(L2)
L2

¢ < MP=LCI1(L2)

Figure 20 Classification of the intersection of edges L1 and
L2. The common point is LCOM, SP is the starting point, and
MP is the current match point.

—L1 —L1

Type 1 Type 2
L2 —-L2
L1 L1

Type 3 Type 4
L2 —-L2

Figure 21 Initial entries in the loop table based on the type of
initial intersection. First loop table entry for the object shown in
Fig. 14 would be type 1.

step 1. If LE3 is not Sp, ascertain that point LE3 is
in the plane of L1, L2; if it is not, go back to step 9.
If point LE3 is in the plane of L1, L2, add line L3 to
the list of lines in the current loop. If LC1(L3) = MP,
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First loop Second loop Third loop
N LUP(1,N) N LUP(2,N) N LUP@3,N)
1 -1 1 -1 1 2
2 2 2 3 2 6
3 —4 3 8 3 -7
4 -5 4 -3
L IUC (L) L IUC (L) L IUC (L)
1 1 1 2 1 2
2 1 2 1 2 2
3 0 3 1 3 2
4 1 4 1 4 1
5 0 5 1 5 1
6 0 6 0 6 1
7 0 7 0 7 1
8 0 8 1 8 1
9 0 9 0 9 0
Fourth loop Fifth loop

N LUP(4,N) N LUP(5N)

1 4 1 —7

2 6 2 8

3 9 3 —-9

4 -5

L 1UC(L) L IUC (L)

1 2 1 2

2 2 2 2

3 2 3 2

‘5‘ % ‘5‘ % All 2's indicate
6 > 6 > end of processing
7 1 7 2

8 1 8 2

9 1 9 2

J

Figure 22 Growth of loop table for the object shown in Fig. 14.

the entry is positive, and if LC2(L3) = MP, the entry
is negative. Reset the label MP to the vertex point
LE3, and go back to step 9 to find a new line on the
current loop.

The growth of a loop table for a simple object is shown
in Fig. 22. 1t is advisable during debugging and in antici-
patidn of calculation errors to prevent indefinite process-
ing by limiting the number of times step 9 can be executed
for a particular set of L1 and L2. In general, the entire
list of convex edges should not be searched more often
than the number of lines in the list.

A. APPEL AND P. M. WILL

Given convex

edge list
L LCI(L) LC2(L)
1 1 2 3
2 1 5
3 1 6 A 2
4 1 7 1
5 2 3
6 2 5 3
7 2 8
8 3 4 6
9 3 8 7
10 4 5
11 4 6
12 6 7
13 7 8

Figure 23 Evolution of a convex edge list (above) to a
loop table (facing page) to a topological map. If LUP
(K, N)=+, then SURFACE(K, N) = LC1(LUP(K, N)). If
LUP(K, N)=—, then SURFACE(K, N) =LC2(LUP(K, N)).

After all edge loops of the convex planes have been
found, a topological map can be easily derived from the
loop table. The topological map is a list of all points on
a surface in the order in which these points are con-
nected together. Such a map is a listing of end points of
the loop table where one point is taken from each line.
When the entry is positive, the first point on the line is
taken, LC1(L), and where the line entry is negative, the
second point on the line is taken, LC2(L). A typical topo-
logical map is shown in Fig. 23.
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