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Determining the Three-dimensional Convex Hull of a 
Polyhedron 

Abstract: A method is presented  for determining the three-dimensional convex hull of a real object  that is approximated in computer 
storage by a  polyhedron.  Essentially,  this technique  tests all point pairs of the polyhedron for  convex edges of the  convex hull and 
then  assembles the edges into  the polygonal boundaries of each of the  faces of the  convex hull.  Various techniques  for optimizing  this 
process  are  discussed. A computer program has been written,  and typical output  shapes  are illustrated.  Finding the three-dimensional 
convex hull is approximately  the same  computer burden as eliminating hidden  lines. 

Introduction 
The  determination of convex hulls and their properties 
has been of continuous  interest in linear  programming 
and pattern recognition [ 1 - 61. Freeman has  discussed 
the use of the two-dimensional convex hull for  the  stock 
cutting or allocation  problem [7] ; Balinski has  described 
a method for finding all vertices of an n-dimensional 
convex polyhedral set defined by a system of linear in- 
equalities [8] ; and  Nagy and Tuong  have normalized 
two-dimensional data by transforming the  convex hull of 
a pattern  into a square [9, I O ] .  This  paper  describes a 
method for determining the three-dimensional convex 
hull  of an  object. 

Two-dimensional solutions 
A body is defined as being convex if a line joining  any 
two points on  the n-dimensional figure is entirely  con- 
tained within the body. One can  consider the polygon to 

Figure 1 Typical polygon (a) and its convex hull (b) .  
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be a set of edge points, and the  convex polygon can be 
obtained  from operations  on this set; but it is more con- 
venient,  as in computer  graphics,  to  consider  the  sets  to 
be ordered lists.  When the  order of points on a polygon 
is given as a  list, the lines on  the polygon are  drawn 
between  successive points in this  list. A convex point in 
a  two-dimensional list can  be defined as the intersection 
of two lines that  form  an internal  angle  less than 180". A 
nonconvex point has  an internal angle equal to  or  greater 
than 180". 

A polygon with an interesting  boundary  and  its  two- 
dimensional convex hull are  shown in Fig. 1 .  A two- 
dimensional convex hull is a polygon formed  only of 
convex points. Points  on  the original polygon list can be 
inspected to  delete all nonconvex  points. The new list 
must then be tested again for  convex points since  the 
deletion of some  points may create new nonconvex 
points. The iterative nature of this procedure is illustrated 
in Fig. 2. 

The identification of the  convex hull of unordered 
two-dimensional  points has been described by Graham 
[ 1 11 and Jarvis [ 121. Graham's  approach is to  order  the 
original data  set  on  the basis of polar angles about an 
interior point and  then use an angle measurement 
scheme similar to  that shown in Fig. 2.  Jarvis  contends 
that this  ordering procedure is itself expensive in terms 
of comparison tests and that it is not necessary. With 
reference  to Fig. 3,  Jarvis's method is as follows: 

1. Find a point definitely outside  the point set.  This is 
the initial origin. 
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Figure 2 Derivation of convex hull shown in Fig. 1. Points 11, 12, and 13 can be deleted immediately from original polygon shown at  
(a)  with the original point list. Polygon before second pass (b )  has had points 3 , 4 ,  and 6 removed. Polygon  before  third pass ( c )  has 
also had point 5 removed. 
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Figure 3 Jarvis algorithm for two-dimensional convex hulls. At ( a )  the minimum Ai is A , ,  so point 1 is the first point on  the  convex 
hull. Using the new origin at ( b ) ,  A ,  is the minimum A i ,  so that point 6 is the  second point on  the  convex hull. With point 6 as  the new 
origin at (c ) ,  A ,  is the minimum Ai, and  point 7 is the third point on the  convex hull. Because point 5 falls within the  area  described by 
points 1, 6, and 7, it need not be considered  any  longer. At  (d), with point 7 as  the new origin, the minimum A i  is A, ,  and point 2 is the 
fourth  point  on  the convex hull. Now points 3 ,  4, and 5 ,  which fall in the  area of points 1, 6, 7, and 2, can  be ignored, and  the  convex 
hull is complete. 

2. For  each point i in the  set, calculate the polar angle 
A i  between a  horizontal line through the origin and  the 
line connecting the origin and  the point i. 

3 .  Find a  point j for which Aj is the minimum of  all an- 
gles A i .  Point j is to be listed as a  point on  the  convex 
hull. 

4. Make point j the new origin, and repeat  steps 2 and 3 .  
Each time  a convex hull point is found, relocate the 
origin for calculating Ai .  Delete points  from  consider- 
ation i f   a)  they have already  been identified as being 
on  the  convex hull, or  b) they lie in the region so far 
determined  to be included in the  convex hull. 

By deleting points from consideration  as  the  convex 
hull grows, the Jarvis algorithm finds new convex hull 
points  with  increasing speed.  The  important  observation 
in Jarvis's  work is that ordering the point set is not nec- 
essary  and may even  be misleading. 
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Requirements of a three-dimensional solution 
Several  ways exist by which  a  convex hull may be  de- 
scribed, and the application of the convex hull pre- 
scribes  the  description.  Generally for  two-dimensional 
work,  such  as  pattern fitting, an  ordered list of points is 
sufficient, but  for picture  scanning a region boundary 
such  as a line list or a parametric  curve may be  neces- 
sary.  The actual convex hull may be difficult to  work 
with, so a  rectangle [7] or a  circle may be  used as  an 
approximation. 

We consider  objects  that  are generally encoded  as 
polyhedral  approximations [ 13,  14, 151. Such  polyhedra 
are usually specified by  a vertex list and a topological 
map such  as  shown in Fig. 4. A vertex list and topologi- 
cal map suitably describe  the  convex hull. Therefore  we 
need to find which of the original set of vertex points on 
the polyhedron  description are  vertex  points of the  con- 
vex hull, and we need to know how these points can  be 591 
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Original 
polyhedron 

Vertex list 

Point x y z 

1 1 0 2  
2 0 0 2  
3 0 1 1  
4 1 1 1  
5 0 2 1  
6 1 2 1  
7 0 0 0  
8 1 0 0  
9 1 2 0  

10 0 2 0  

Topological  map 

Convex 
Surface  Points 

I 
I1 
111 
IV 
V 
VI 
VI1 

9 

Figure 4 Typical original data  and required  specification of a 
convex hull. Points 3 and 4 have been deleted  from  the  vertex 
list,  and  surfaces I and I1  have  been  deleted from the topological 
map. Surface VI11 with connectivity 1 ,  2, 5 ,  6 must be  added, 
and surfaces VI and VI1 must be respecified. 

Figure 5 Determination of convex  edges  from a projection 
plane  perpendicular to  the edge. The point  projection of lines 
( I ,  2 ) ,  ( 5 ,  6 ) ,  (7, 8), and (9,  10) are  convex points, hence  these 
lines are  convex  edges.  The point  projection of line (3,4) is not 
a convex point, and this line is not  a convex edge. 

3,4etc. 

connected  together  to form the boundaries of the plane 
surfaces of the  convex hull. In  the two-dimensional  con- 
vex hull problem, points of the original data  set had to 
be eliminated  and  lines that  were  not  part of the original 
polygon had to  be found. In  the three-dimensional prob- 
lem,  points have  to  be eliminated, and new lines and 
planes  must be  found. 

Properties of convex polyhedra 
Several properties of a convex  polyhedron can  serve  as 
a basis for determining  the convex hull  of points in 
three-dimensional space.  For example: 

1. Any point inside the  convex  polyhedron is on  the 
material  side of all planes of the polyhedron. 

2. Each  convex point of the  convex hull is a vertex of a 
convex  cone of the  convex  polyhedron. 

3. Each  convex edge of the  convex hull is the intersec- 
tion of exactly two  convex planes  and  has an internal 
dihedral angle less  than 180". 

4. The  boundary of any  plane surface is a convex 
polygon. 

5.  Any projection of a convex polyhedron is a convex 
polygon. 

6. In any  projection of a convex polyhedron, the edges 
that  produce  the outline are a  closed curve in three- 
dimensional space. 

7. A convex  polyhedron  encloses  the given  points in 
space with minimum surface  area. 

Doubtless, this  list of properties  can  be  extended. 
Properties 1 and 2 are most  frequently  used in linear 
programming. Properties 1 and  6 can be used for hidden 
line elimination [ 161. Properties 3 and 4 are  the only 
characteristics  that  make it possible to  delete some  given 
points  on the  basis of local  measurements. All of the 
other properties are  characteristics of the  entire  object 
and are  expensive  to  determine. 

Algorithm for determining the three-dimensional 
convex hull 
The algorithm to  be described attempts  to find the edges 
of the  convex hull. Identifying the edges of the  three- 
dimensional convex hull seems  to  be most  appealing for 
two reasons: 1 )  If the edges are known,  vertex  points on 
the  convex hull can be identified, and  with small effort 
the topological map  can  be constructed; 2) the probabili- 
ty of wasteful  testing for  convex edges is less than  the 
probability of wasteful  testing for  convex planes. With 
regard to this  last reason,  the number of two-combina- 
tions of N things is usually smaller  than the number of 
three-combinations of N things: 

C ( N ,  v )  = ( N ! ) / ( r ! ) ( N  - v ) !  

C(6, 2 )  = 15, C(6, 3 )  = 20. 
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The basic algorithm is as follows: 

Test all possible pair  combinations of the  vertex list 
to identify convex edges. The  test for convex  edges is 
based on the property that if all points are projected 
parallel to this edge,  the edge  projects as a convex 
point  on the polygon image. See Fig. 5. Convex edges 
are not  collinear. 

Typical external 
corners 

Typlcal inside 
corners 

L. Form  loops in three-dimensional space of convex 
edges. Each edge  must be used  twice, and all the 
edges used in any particular  loop  must lie on  the 
same convex  plane. A convex plane has  the  property 
that all points of the object in three-dimensional 
space lie in the plane or  are only on  one side of this 
plane (property 1) . 

For  objects  that  are known a  priori to be “well be- 
haved,”  a  preprocessing step may be added.  (Well be- 
haved is defined later).  This preprocessing deletes from 
the original vertex list any point that lies on  an edge that 
is an inside corner.  Such edges and any  points on them 
cannot  contribute  to  the description of the  convex hull 
(properties 3 and 4). Identifying inside corners is a com- 
mon capability of three-dimensional modeling programs 
[ 171. See Fig. 6. 

Determination of convex hull edges 
The problem now is to find pairs of points on  the  vertex 
list that  are end  points of lines in three-dimensional 
space  that  are, in turn, edges of the  three-dimensional 
convex hull. The key characteristic of a convex hull 
edge is shown in Fig. 7: If the  entire  set of points  on  the 
object is projected onto a plane  perpendicular to a  con- 
vex edge,  the convex  edge projects as a  point that is a 
convex point on  the projection. 

An alternative,  and  what has proved to be  a more  use- 
ful, definition of a convex edge is also  shown in Fig. 7. 
The  convex edge is seen  as projecting as a  point outside 
of the  two-dimensional convex hull of all the other 
points  projected onto  the projection  plane. Step 1 is 
therefore:  Choose pairs of vertex points,  project  ortho- 
gonally to them,  and  test for  containment. A test is then 
needed for  the  containment of a point in a  polygon. 

Polygon star test 
A useful property of three points on a plane is the sense 
of implied vorticity of these points [ 181. In  the matrix 
equation for  area of a triangle: 

Figure 6 Points 1 ,  2, 3, 4, 5, 6, 7,  8, 9, and 10 are obviously 
not  convex hull vertex points because they lie on inside cor- 
ners. 

Figure 7 A characteristic of convex edges. At  top line (3,4) is 
determined to  be a convex  edge,  since its point projection lies 
outside of the  convex hull of the projections of all the  other 
points  on the  object.  At bottom  line (5, 6 )  is not  a convex edge, 
since  its  point  projection lies inside the  convex hull of the 
projection of all the other points on the object.  Line ( 1   1 ,  12) did 
not have  to be projected because it is an inside corner, and 
points 1 1 and 12 need never  be  projected. 

Projectton plane Projection of points 1,2 
perpsdicular to 
line 34 -- also Projection point projection of points 3 , 4  

of line 34 

Projection of 
points 7, X 

Convex hull of 
all points except 3,4 

Projection plane 
perpendicular to line 

of line 56 
Point projection 

Convex hull of 
all points except 5 ,6  

0’ 

10 
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Y \ I.; VI,, = lo 1 0 1 11 1 = + I  

0 0  1 

0 0  1 
VI,, = 0 1 1 =-I  

1 1 0 4  

1 2 

Figure 8 Sense of implied vorticity and  the recognition of 
direction of rotation. 

Figure 9 Placement of two points  relative to  the  convex hull 
of a  given set of points. 

Typical polar angles 
using point A as origin 

4 . 8  
7 

9 
0 

5 6 
0 

Star polygon 

Figure 10 Generation of star polygon for point A. 

The value of area  can  be positive or negative,  depending 
on  the  order in which  points are  entered in the matrix; 
the  area is zero if the  three  points  are collinear or coinci- 
dent.  This  property  can be used to  sense  an implied rota- 
tion, as shown in Fig. 8. A  counterclockwise rotation 

594 has a  positive sense of vorticity, a clockwise rotation  has 

a  negative sense of vorticity,  and no  rotation  has a sense 
of zero. A useful characteristic of implied vorticity is 
that  any point inside a  triangle has  the same sense of 
vorticity  relative to  each of the lines of the triangle as 
the  three vertex points of the triangle. The implied vor- 
ticity can be  used to indicate  when  a  point lies inside or 
outside of the convex hull of a set of points. 

This  test can be called a star  polygon  test because of 
the general character of the polygons encountered in this 
application,  and  its value is that it avoids having to find 
the two-dimensional convex hull of the set of projected 
points. With reference  to Fig. 9, it is necessary  to  deter- 
mine whether  points A or B lie within the  convex hull of 
the given  points. A star polygon can  be  constructed  for 
the given set of points if they are  sorted  on the  basis of 
increasing  polar  angle, with the origin of polar angle 
measurement being the  test point. Star polygon  con- 
struction is shown for points  A  and B in Figs. 10 and 11, 
respectively.  When  the  point under examination is out- 
side the  star polygon, it is also  outside  the  convex hull of 
the  star polygon. In Fig. 10, the  sense of rotation of line 
(2,  3) relative to point  A is counterclockwise,  but  the 
sense of rotation of line (3, 4) is clockwise. In Fig. 11, 
the  sense of rotation of  all lines is counterclockwise 
about point B. Obviously,  any change in implied vortici- 
ty  indicates  that a point is outside of a star polygon. Fig- 
ure 12  illustrates  collinear possibilities that  are  detected 
when implied vorticity is zero. Possibility I or I1 can 
occur since  the  sorting of points is based  only on polar 
angle. In instances I and I1 and similar collinearities, the 
point  being tested is considered as being outside of the 
star polygon, whereas  for possibility I l l  the  point is con- 
sidered as being inside  the star polygon. 

In Fig. 13 an  object is shown having several  collinear 
points with the  same projection on the  orthographic 
projection  plane.  During the  construction of star poly- 
gons, such  occurrences  are easily detected  and points 
that form lines contained within other lines  can be delet- 
ed from the  vertex list immediately. For  example, in Fig. 
13,  the interior  points 2, 3, 6, and 7 should  be  deleted 
from the  vertex list. The calculation of orthographic 
projections is an  opportune time for  detecting interior 
points since  the  distance from the orthographic  projec- 
tion plane  can serve  as a basis for sorting. 

This  step in the algorithm enumerates pairwise  combi- 
nations of vertex points  and tests  for convexity. It is 
worth while considering techniques  that quickly delete 
from the list of vertices all points that  are not ends of a 
convex edge. Apart from  a  few specific tests  discussed 
in detail later, this is an  open  question  for  research. 

Finding surface loops 
At this  stage of processing, the three-dimensional  con- 
vex hull is essentially  known. All convex  edges have 
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Typical  polar  angles 
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Figure 11 Generation of star polygon for point B. 

I I1 111 

Figure 12 Collinear possibilities. Point C is the basis of con- 
struction of the  star polygons. In the first two cases point C is 
considered to be outside the star polygon, and  the edge that  pro- 
jects as point C is taken to be a convex  edge. In the  third case 
point C is taken to be inside the  star polygon and  is not treated 
as a convex edge projection. 

been  found  and  listed, and the original list of vertex 
points has been reduced to only those points that have 
been  found to be end points of a convex edge. A typical 
convex edge list is shown in Fig. 14. For some purposes, 
it may be necessary to find the polygonal boundary 
of each of the plane  surfaces of the  convex hull. Such 
boundaries  are formed by closed  loops of edges in three- 
dimensional  space. The key property used in forming 
such loops is that  each  convex edge is used in exactly 
two  loops, because  an edge is the intersection of only 
two  convex planes. A convex  plane  loop can be thought 
of as a list of edges  where the first and  last entries  have a 
common  end  point  and adjacent  entries  have a  common 
end  point. The plane  surface  bounded  by  a  loop  must 
also be a convex  plane; that is, there  are  no points on 
one side of the plane. 

The  procedure  for finding surface  loops  is basically to 
start a list of edges on a single convex plane by finding 
two edges  that  intersect and lie on a  unique  plane of the 
convex hull and then add  coplanar connected edges to 
this list until the  loop  closes. A new surface  loop list can 
now  be started. A count of the  number of times an edge 
is used is made and continually  updated, and as soon as 
an edge is used twice it is no longer considered. When 
all edges have been  used  twice, all loops  should have 
been found and this phase of processing stops. 

I 
J 

Figure 13 An object with coincident edge projections. 

The topological map can be  derived from a  loop list by 
listing the vertex points that  are shared by adjacent edge 
entries. A more detailed description of loop finding is 
given in the appendix. 

Preprocessing to speed execution 
It  is worthwhile applying preprocessing to  reduce  the 
number of projections  and star polygon tests.  The pre- 
processing algorithm alluded to previously  involves the 
determination of inside corners, since  they  could  not 
contribute  to  the  convex hull of a well behaved object. 
The  attractive  feature of this idea is that the  test is well 
known in computer graphics and is a  comparatively  di- 
rect and  inexpensive  method of reducing the original 
vertex list. There  are  instances where this procedure 
using an inside corner fails, as shown in Fig. 15. How- 
ever,  such  instances  are extremely rare,  since points are 
almost  always the intersection of three planes. If an  ob- 
ject is known to  have points with no more  than three in- 
tersecting planes, then it may be  considered to be well 
behaved  and  this preprocessor may be used. For well 
behaved objects, any  point on  an inside corner  can be 
deleted  from the original vertex list. For optimum reli- 
ability where the  objects  are very  complex,  points need 
not  be  eliminated  unless  they are  the  intersection of two 
inside corners.  Another  test  for points that lie on an in- 595 
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Typical convex edge  list 

Line label First Second 
point point 4 

L Lc2(L) 

1 1 2 6 
2 1 3 
3 1 
4 

4 3  
2 3 

5 2 6 
6 3 5 
7 4 5 Convex hull 
8 4 6 
9 5 6 

lQ 

Figure 14 A convex edge list for a single convex polyhedron. 
The line label is L, and the ends of the line are  LC1 and LC2 
indexed by L. 

Inside corner 3 

( a )  (b) 

Figure 15 Instances where a point of an inside comer should 
not be deleted. At (a)  point 2 can be deleted but point 1 should 
not be deleted. There  are many inside corners at (b), and point 
3 should not be deleted. 

Figure 16 Two checking techniques for points that are detect- 
ed as being on inside comers: 1 )Any point that lies on the in- 
tersection of two inside comers and only one outside corner 
cannot be a convex hull vertex. 2 )  A point that is on an inside 
corner should also be a concave point on a polygon face in or- 
der  to be deleted. 

Point 1 is intersection 
of two inside comers 

Point 1 is a convex 
point on surface A 

Point 2 is 
a concave point 
on surface B (in  back) 
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side edge is to  determine  whether the point  is a concave 
point on  any polygonal face of the object.  Checking 
techniques are illustrated in Fig. 16 but  are  assumed  to 
be  unnecessary  for most  objects. 

I t  may be  argued that  no point  should  be  kept in the 
vertex list if it  does  not lie on a convex plane of the 
original polyhedron. To the  contrary, Fig. 17 illustrates 
three  instances in  which convex  points  do  not lie on any 
convex planes of the original object. 

We assume  it is not worthwhile to  form  the  convex 
hull of each polygonal face of the original polyhedron 
because  such a procedure  is  indirect  and  for  some points 
would be at  least triply redundant.  There  does  not  seem 
to be  any simple relation between  the two-dimensional 
convex hull of points on  each  face of the original poly- 
hedron and the three-dimensional convex hull of the 
total polyhedron. Whereas a  given  polyhedron has a 
unique convex hull, an infinitude of polyhedra  can have 
the  same  convex hull. 
Automatic identification of inside corners 
As illustrated in Fig. 3, the minimum data  required  to 
specify a polyhedron is a vertex  list  and a topological 
map of vertex connectivity. The topological map  is a 
list of which  points are  on  each  surface  and  also is a series 
of points  connected by lines. Say  that a typical line i 
connects point (x,, yl, zl) to point (xz, y, ,  2,). The para- 
metric  equations of each line i are calculated and  stored: 

x = x , + a , t ,  

Y =y1+ bit, 

z=z,+c,t, 

where 

Parameters ai, bi, ci, li are stored  and indexed  by the line 
label. The  equation of each plane surface j of the poly- 
hedron is calculated and  stored: 

ujx + bjy + cjz + dj = 0, 

where aj,  bj ,  cj are found from  the  cross  product of any 
two lines on plane j that  intersect with an angle less than 
180" as determined  by the condition: 

a, ul + b, 6, + c, el > 0, 

where k and 1 are  the intersecting line labels. The normal 
to  surface j has  the  parametric  equation 

x = ujt +x,, 
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y = bjr + yo ,  

2 = Cjf + Z0’ 

where xo, yo ,  and zo are any point on the plane j ,  and 

a j ”+b j”+c j”=I .  

Also, 

d j = - ( a j  X,, + bj y o  + cj z0) .  

It is important  that  each surface  normal  should  point  into 
the volume enclosed by the polyhedron.  If not,  the signs 
of a j ,  bj , and cj must be reversed. A method for ensuring 
the correct sign has  been  described previously [ 191. Each 
line of the  polyhedron  can  be  taken  as a vector (ai,  bi, 
c i ) ,  and a normal vector ( a j ,  b j ,  cj ) can  be found for  each 
surface. If line i is the intersection of two  surfaces,  say 
k and 1, line i is an inside corner  when  the  scalar triple 
product of the line i ,  the normal vector k ,  and  the normal 
vector 1 is negative: 

I = ai, bi, ci, 

K = a,, bk, ck, 

L = a,, b,, cl, 

‘i ‘k  ‘ 1  

[ IKL]  = . bi bk 6, 

‘i ‘k  ‘ 1  

Some simple instances  are illustrated in Fig. 18. 

Details of implementation 
The  techniques  described  have been  reduced to practice 
with a FORTRAN program  operating under  VM/370  on 
an  IBM  System/370, model 168. A series of polyhedra 
and  their  convex hulls is shown in Fig. 19. Inside  corners 
are found  during  hidden line elimination by the previously 
described  program LEGER [ 181. The  convex hulls are 
drawn  as soon as  the edge  list is known. It is not pos- 
sible to  measure  the  convex hull calculation  times exact- 
ly because of the operating system  overhead,  but in 
general  the  convex hull determination takes  about  as 
much  time as a hidden line elimination. Convex hull 
determination for  the  test figures shown varied from 0.20 
to 0.84 second  total CPU time, including drawing a wire 
frame picture  and listing intermediate  results. Time re- 
quired increases approximately with the length of the 
convex point list and  the  number of surface  loops in 
the  convex hull, but we  cannot  yet  show or estimate 
time requirements. A complex original object  does not 
necessarily imply a complex convex hull. It has  been 
observed  that a  simple object with a complex convex 
hull took more  time for analysis  than a complex object 
with  a simple convex hull. 

Figure 17 Three polyhedra in which a convex hull vertex is 
initially not on any polygon face that is a convex plane. There 
are no points of the object on the spatial side of a convex plane. 

on surface k .  
-1  0 0 

[512] = 0 0 -1  = 1 outsidecorner 
[ o - 1  ol 

-1  0 0 
[ 7231 = 0 -1 0 = “1 inside corner 

[ o  0-11 

= 1 outside comer 

Figure 18 Use of scalar  triple  product to detect inside (con- 
cave) corners. 

Summary 
We  have  described  some  techniques for determining the 
three-dimensional convex hull of real  objects.  Finding 
the  convex  edges of the  convex hull issthe essential step 
in this procedure.  Toward this end,  we  have  introduced 
the  concept of identifying convex edges  by  projecting 
the  entire  object parallel to an  edge  and observing 
whether  the  point projection of the  edge fell outside its 
associated  star polygon. The  star polygon test  avoids 
the problem of having to find the two-dimensional convex 597 
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Figure 19 Computer  generated examples of convex hulls. 

hull of the projection of the original object.  It is interest- 
ing that  no two-dimensional convex  hulls  were ever re- 
quired for this  three-dimensional  problem. Tactics  for 
minimizing computation by culling the oi-iginal vertex 
list have been  presented  but have been  implemented to 
only a limited extent.  Use of the  present program for 
the determination of the three-dimensional  convex hull 
of real objects presents no logistical burden in computer 
storage or time. Solving for a convex hull of a simple 
object is apparently as costly in total computational 
overhead  as eliminating hidden lines. 

Appendix:  Finding plane surface loops of a  convex 
polyhedron given the edges of the polyhedron 
The task of  finding the bounding loops of each plane 
surface of the three-dimensional convex hull given a 

598 complete  list of convex edges  is  similar  to  certain  prob- 

m 

lems in graph  theory [20-  221. The edge  list of a convex 
polyhedron can  be used to  construct a graph that is ob- 
viously isomorphic to a planar  graph. The  set of circuits 
that outline each face of this planar  graph is the surface 
loop  description of the convex hull. It is possible to find 
the  faces of a  planar  graph  without specific dimensional 
knowledge of the  vertex points in space, but a description 
of this technique is beyond the  scope of this  paper. Our 
approach is  more  mechanistic. That is, while assembling 
edges  to form  surface  loops, the  convex edges being 
joined together are continually tested for  coplanarity 
in three-dimensions. It  has  not been necessary to check 
that  the loops are convex polygons. 

1. Initialize  an  edge use  array IUC(L) to all zeros.  Every 
time an edge is used in a loop  its  corresponding IUC 
entry is  increased by 1 .  As soon as a  particular IUC 
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attains a  value of 2 ,  the  associated  edge  cannot be 
used for any other loops. As soon as all elements in 
the  array IUC(L) attain a  value of 2, processing  should 
stop. 

2. Take  an edge L I  from the list of edges. If the edge has 
an associ$,$ Iuc(L1) = 2 ,  take  another edge. Pro- 
cessing stops when all IUC elements  attain a value of 
2 or all edges  were addressed in this step  once. 

3. Choose some other edge ~2 from  the list of edges 
where I U C ( L ~ )  is less than 2. 

4. Check each end point of edge LI  and  edge ~2 for a 
common  vertex  point. If edge ~2 does not have  an 
end  point that is also 09 LI ,  go back  to  step 3. When 
edge L! and edge ~2 hqYe a  common vertex point, 
obviously these  two edgGp intersect and  form  a  plane 
in space. 

5. The vertex  point  common to  edges L I  and ~2 and  the 
other  two points on these edges  should not coexist 
simultaneously on any other  loop, since  this would 
imply coplanar loops, which is not  possible on a 
convex polyhedron. Check  that the three  vertex 
points on LI  and ~2 do not coexist  on any other loop 
if any are  yet identified. If coexistence  occurs, go 
back to step 2 .  

6. Calculate  the  equation of the plane P in space formed 
by the intersecting  edges L I  and LZ. 

7. Make certain that points on  the  vertex list lie either 
in or  are to only one side of plane P. A convex plane 
can  have  no  points  on  its spatial side. If points are 
found to lie on  both sides of plane P, this  indicates 
that P is not a convex plane so go back to  step 2 .  A 
list of points in plane P can  be  stored at this  time to 
speed  up  later  steps in this procedure. 

8. Classify the intersection of edges L I  and ~2 accord- 
ing to  type as shown in Fig. 20. At this  time,  two 
entries can be made in the loop  table as shown in 
Fig. 21, and two  vertex points have been identified: 
1)  the starting  points SP of the loop, 2 )  the next 
match  point MP on the loop. The starting  point of the 
loop is the first point on  the loop and is used to  de- 
termine when a loop is finished. The match  point is 
used to find the next line on  the loop. Entries in 
the loop  table are positive or negative  and  indicate 
the direction  a line takes  as it is used in a  loop.  When 
the line runs  from LC1 to L C ~ ,  the direction is taken 
to be  positive. 

9. Take an edge ~3 from the list of convex  edges with 
I U C ( L ~ )  less  than 2 and  where ~3 is not L I  or ~ 2 .  

10. Determine  whether any  end  point of ~3 is MP. If 
no end of ~3 is MP,  repeat  step 9. If an end of ~3 is 
MP,  determine  whether  the  other end  point (LE3) 
of ~3 is SP,  and if it is, add ~3 to  the loop table, end 
the  current loop, increase  the IUC value by one  for 
each line used in the loop, and  start  another ioop at 
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+ SP = LC2(LI) 

Type 1 LCOM=  LCI(L1) = LCl(L2) 

+ MP = LC2(L2) 

Type 2 + LCOM = LCI(L1) = LC2(L2) 

* + M P = L C l ( L 2 )  

+ SP = LCl(L1) 

Type 3 LCOM = LC2(LI) = LCl(L2) 

+ MP = LC2(L2) 

Type 4 

+ MP = LCl(L2) 

Figure 20 Classification of the intersection of edges L1 and 
L2. The common  point is LCOM, SP is the starting  point, and 
MP is the  current match  point. 

L1 

“L2 

Figure 21 Initial entries in the loop  table  based on  the  type of 
initial intersection. First loop table  entry for the  object shown in 
Fig. 14 would be  type 1. 

step 1 .  If  LE^ is not SP, ascertain  that  point LE3 is 
in the plane of L I ,  ~ 2 ;  if it is not,  go  back  to  step 9. 
If point LE3 is in the plane of L I ,  ~ 2 ,  add line ~3 to 
the list of lines in the  current loop. If L C I ( L ~ )  = MP, 599 
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First loop 

N LUP(1, N)  

1 -1 
2 2 
3 -4 

L IUC  (L) 

1 1 
2 1 
3 0 
4 1 
5 0 
6 0 
7 0 
8 0 
9 0 

Fourth loop 

N LUP(4, N)  

1 4 
2 6 
3 9 
4 -5 

L IUC(L) 

1 2 
2 2 
3  2 
4 2 
5 2 
6 2 
7 1 
8 1 
9 1 

Second loop 

N LUP(2,  N) 

1 -1 
2 3 
3 8 
4 -5 

L IUC (L) 

1 2 
2 1 
3 1 
4 1 
5 1 
6 0 
7 0 
8 1 
9 0 

Fifth loop 

N LUP(5, N) 

1 
2 

-7 
8 

3 -9 

Third loop 

N LUP(3, N) 

1 2 
2 6 
3 -7 
4 -3 

L IUC  (L) 

1 2 
2 2 
3 2 
4 1 
5 1 
6 1 
7 1 
8 1 
9 0 

L IUC  (L) 

1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 2 
8 2 
9 2 

All 2’s indicate 
end of processing 

Figure 22 Growth of loop table for the object shown in Fig. 14. 

the  entry is positive, and if L C ~ ( L ~ )  = MP, the  entry 
is negative. Reset  the label M P  to the  vertex  point 
LE3, and go  back  to  step 9 to find a new line on  the 
current loop. 

The growth of a  loop table for a  simple object is shown 
in Fig. 22. I t  is advisable during debugging and in antici- 
pation of calculation errors  to  prevent indefinite process- 
ing by limiting the  number of times step 9 can  be  executed 
for a particular set of LI and ~ 2 .  In general, the  entire 
list of convex edges  should not be searched  more  often 
than  the number of lines in the list. 

Given convex 
edge list 

L LCI(L)  LC2(L) 

1 1 2 
2 1 5 
3 1 6 
4 1 7 

6 2 5 
7 2 8 
8 3 4 
9 3 8 

5 2 3 ,,t - - - - 
6 

I 
10 4 5 
1 1  4  6 
12 6  7 
13 7 8 

Figure 23 Evolution of a convex edge list (above)  to a 
loop table (facing page) to a topological map.  If LUP 
(K, N)=+, then SURFACE(K,  N) = LCl(LUP(K,  N)) .  If 
LUP(K, N)=-, then SURFACE(K,  N) = LC2(LUP(K,  N)).  

After all edge loops of the  convex planes have been 
found, a topological map  can be easily  derived  from the 
loop  table. The topological map is a list of all points on 
a surface in the  order in which these points are  con- 
nected together.  Such a map is a listing of end  points of 
the loop  table where  one  point is taken from each line. 
When the  entry  is positive, the first point on  the line is 
taken, LCI(L), and  where  the line entry is negative, the 
second  point  on  the line is taken, LC~(L) .  A typical  topo- 
logical map is shown in Fig. 2 3 .  
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