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Procedural  Representation of Three-dimensional 
Objects 

Abstract: A system of PL/I  procedures  has been  written that permits  geometric objects  to  be described  hierarchically. The objects 
are themselves represented as P L / I  procedures, allowing very  general use of  variables. By effectively intercepting  subprogram  calls, 
the system  provides a means of modifying the  semantics  associated with any  object without modifying the object’s  procedural  descrip- 
tion 

Introduction 
Substantial  prior literature  exists  on  methods of model- 
ing geometric  objects. In  the field of artificial intelli- 
gence,  Gelernter [ 1 ] represented two-dimensional fig- 
ures in the  form of list structured numerical data.  This 
representation  was used to  generate proofs of theorems 
in plane geometry.  Roberts 121 tackled  problems  involv- 
ing the three-dimensional scene analysis of polyhedra. 
Binford 131 developed an  alternative  representation in 
terms of “generalized cones.”  In a different vein, the 
research of Winston 141 was  concerned with represent- 
ing the  structural  rather than the spatial  relationships in 
scenes. Recently,  Baumgart 151 has  developed  a  topo- 
logical representation  for  arbitrary polyhedra that is par- 
ticularly well suited to constructing  complex  polyhedra 
through  a  range of operations including set union and 
intersection. 

The field of graphics is concerned principally with the 
appearance of geometrical  objects. The high level of 
complexity of three-dimensional objects  that  can be  rep- 
resented is exemplified by the  architectural modeling 
work of Greenberg [ 61. The modeling routines of Appel 
[7] allowed component  parts of an assembly to be juxta- 
posed.  Some  systems  have  the capability of generating 
pictures of articulated  mechanisms. For  example, in the 
system described by Csuri 181, simple macros could be 
written to  draw  an airplane  with retractable landing gear 
and wheels that  turned. Catmull [9] modeled the articu- 
lations of the human  hand. However,  representations 
that  are specifically suited for describing the  appearance 
of objects  tend not to generalize  easily to  other applica- 
tions.  In  particular,  such  systems  cannot easily count  the 
number of windows on  the  second floor of a building, 
compute  their  total  surface  area,  or  determine  the height 
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Another  facet of graphics consists of systems intended 
for  computer  assisted design,  and the  literature  on this 
topic is extensive [lo].  One of the earliest attempts  at 
designing three-dimensional objects was due  to  Luh 
[ 1  1 1. From a description in the form of quartic bounding 
surfaces, this system could draw a  simple object, com- 
pute its center of mass and  moments of inertia, and  even 
generate a numerical control  tape to manufacture the 
object.  Comba  [12] worked on a  geometry language 
suited to determining whether  or not two  objects inter- 
fered  with each  other. A system  intended for  architec- 
tural  design  applications has been  described by Wehrli 
[ 131. This  system included a language called SPACE- 

FORM, which  contained a set of primitive  solids. Two 
new design systems  have been  developed. The first, due 
to Braid [ 141, is based on a set of six  primitive  solids, 
i.e., cuboid, wedge, tetrahedron, cylinder, sector,  and 
fillet. The  second,  due  to  Voelcker [ 151, involves  a lan- 
guage  called PADL, which is currently based on  the cu- 
boid and  cylinder  primitives. In  both  systems highly 
complex objects  are  constructed  as hierarchical  combi- 
nations of more  primitive objects,  under  the  operations 
of set union  and  intersection.  A  unique aspect of PADL is 
its ability to  describe  tolerances of mechanical parts. 
Each PADL program is transformed by a parser-inter- 
preter  into an object file, which  may, in turn,  be ac- 
cessed by output programs. Currently,  the only output 
program is one  that  generates graphics files for display 
purposes. 

Another field that  relates  to  parts description is the 
programming of numerically controlled  machine  tools 
[ 161. The most widely used  language for numerical  con- 
trol is APT. Each APT program is a representation of the 
object that  the program can physically generate.  The 
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APT compiler transforms  the  source program  into a tool 
path  sequence, which can  drive a numerically controlled 
machine tool. The compiler, therefore, is a  program that 
derives  information about an object directly from its 
APT representation.  The complexity of this  compiler is 
an indication, however,  that it  is a formidable  program- 
ming job  to  extract information  from an APT source  pro- 
gram in this  manner. For example, it would be difficult 
to  compute  the volume of an  object  from its AFT source 
program. 

This  paper  reports a new system for describing  geo- 
metric objects in the  form of procedures.  The  system 
can model any three-dimensional  physical object  that 
can be represented  as  the sum or difference of subparts, 
including mechanisms  with  rotational or linear joints. A 
significant difference  between  this approach and that of 
other procedural representations is the  manner in which 
information about  objects is extracted from the repre- 
sentation.  In  both  the PADL and the APT approaches, in- 
formation can  be  extracted from  object procedures by 
programs that syntactically process  the  procedures and 
translate them into  data  structures.  In  the  system de- 
scribed here, the object procedures  themselves  are uc- 
tually executed. 

Another difference  between  this system  and  the  others 
is the emphasis  placed on  the  use of variables to  charac- 
terize arbitrury  attributes of objects,  not merely lengths 
and angles. This  emphasis was  motivated by the  desire 
to  represent  objects of generic shape  and  even  objects 
that  are mechanisms. 

A  good example of a generic shape is the machine 
screw. Although all machine screws  have essentially the 
same  shape, they may be individually classified by head 
type, material,  length, diameter,  and pitch. Other exam- 
ples of generic shapes  are  washers,  nuts,  screwdrivers, 
wrenches,  etc.  Associated with each  such  shape is a set 
of attributes  that  can be  given values  to specify a  partic- 
ular instance of that  shape.  The  system  described in this 
paper is designed to allow variables to be  used for  these 
attributes, so that  an application  program  can refer, in 
principle, to  objects of the form 

SCREW(HEAD,MATERIAL,LENGTH,DIAMETER,PITCH) 

WASHER(THICKNESS,OUTERDIAMETER, 
INNERDIAMETER) 

TWOBARLINKAGE(ANGLEl,ANGLE2) 

Application  programs  need to  query  the  representation 
to  extract  data of specific interest.  For  example  an appli- 
cation  program might need to know the total  volume of 
an object,  or  the  count of machine screws. 

One of the simplest  application  programs is one  that 
just  draws a  picture of the object on a  graphics output 

device. This particular  application has  the pedagogical 
advantage that it is immediately  obvious  from the  output 
whether  or not the program and  the underlying system 
are working  properly. For this reason,  the examples  given 
in this paper  relate  to graphics  applications. The  reader 
should appreciate,  however,  that  the  system is designed 
for  arbitrary applications and  that much of the complexity 
of the  system is due  to  the need for generality. 

System  overview 
The  system  for representing geometric  objects is written 
entirely in P L ~ .  Writing the  system in an existing high 
level  language has  the great advantage  that it is easy to 
interface  the  system with application  programs  written 
in the  same language. On  the  other  hand,  one effect of 
the decision to  stay with PL/I is that application  pro- 
grams include  a large number of CALLS to  system sub- 
programs, whereas in a  special purpose language the 
word CALL could have been  eliminated  and in many 
cases generic operators could have replaced the subpro- 
gram names. Also,  some of the  data  type  declarations in 
this system could have been made  transparent in a spe- 
cial purpose language. 

The  system  consists of three essentially  independent 
modules,  as  shown in Fig. 1 .  The CREATE module over- 
sees  the hierarchical construction of geometric objects 
out of their  subparts.  It is because this routine is called 
recursively that  the  entire  system was  not coded in FOR- 

TRAN. The PARTLIB module is a  library of routines  that 
represent geometric  objects. The COORD module is a 
package of routines  that provides transformations be- 
tween  the  coordinate frames of different objects. 

Of  fundamental importance is the  fact  that geometric 
objects  are  represented  as PL/I procedures  rather than 
as numerical data.  This  representation  makes it possible 
for variables to specify attributes of objects.  This repre- 
sentation also has  the  advantage of having a  natural 
mechanism for describing the hierarchical construction 
of an  object, namely, by calls to  subprograms  represent- 
ing the subobjects. 

When objects  are  represented by numerical data in con- 
ventional parts description systems,  there is no funda- 
mental  impediment to writing arbitrary new application 
programs that may access  the  data. When objects  are 
represented by procedures,  however,  these  procedures 
usually have  some specific semantic  content, i.e., they 
actually do something. The difficulty that  arises is that 
different  application  programs  frequently require dif- 
ferent semantics. For  example,  an application  program 
that  computes  the volume of an  object  needs different 
semantics from one  that  generates a drawing of the 
object. 

Clearly, any approach  that  requires a different  repre- 
sentation  for  each application is totally  unsatisfactory. 583 
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CREATE: hierarchy  construction 

SOLID,HOLE,GHOST 
EXEC,FLAG 

CREATE SUBPART CALL SUBPART 

POINT 
LINE 
RTRIANG 
GLINE 
CUBOID 
CYLNDR 
CONE 
WEDGE 
HEMISPH 

I 
INVOKE TRANSFORMATION 

L 

I 
COORD: coordinate  transformations 

1 
PARTLIB: library of parts procedures 

XTRAN,YTRAN,ZTRAN,XYZTRAN 
XROT,YROT,ZROT 
XMIRROR,YMIRROR,ZMIRROR 
DEFINE,RELATE,APPLY 
STORE,RECALL 
ORIGIN 
BEGIN,END 

Figure 1 System  overview. 

Instead,  the system described  here provides  a  special 
means by  which  application  programs may append  their 
own  semantics  to a given  procedural representation of 
objects. I t  is this  mechanism that  renders  the  representa- 
tion of objects by procedures feasible, and  it is therefore 
the essential  new feature of the system  described in this 
paper. 

PARTLIB: library of parts  procedures 
Every  object in the  system is represented by an  entry in 
the library of parts, called PARTLIB. In most cases  the 
body of the  code  for a part  consists of calls to  other en- 
tries  that  represent  subparts of the  object.  Those  part 
subprograms  that  do not call subparts  are  the primitive 
objects of the  system. 

In  the  current implementation, the only  primitive ob- 
ject is POINT. The  entire PL/I code  that  represents this 
primitive is 

POINT:  ENTRY; 

584 RETURN; 

The only object immediately above POINT in the  cur- 
rent implementation is LINE. At this  level  a  variable 
appears  that  represents  the length of the LINE. 

LINE:  ENTRY(LENGTH); 

CALL  SOLID(PO1NT); 

CALL  XTRAN(LENGTH1; 

CALL  SOLID(P0INT);  

RETURN ; 

The  routine SOLID, which is invoked in the  second  and 
fourth  statements of this procedure, is in the module 
CREATE, which is discussed in a later section of this pa- 
per.  At this  point it is sufficient to  consider  that 

CALL  SOLID(P0INT);  

is superficially equivalent to 

CALL  POINT; 

The  routine XTRAN, which is called in the third state- 
ment of LINE, is in the module COORD and  translates  the 
coordinate frame by LENGTH in the positive x direction. 
Thus  the LINE procedure  says essentially that a LINE of 
arbitrary LENGTH consists of one POINT at  the origin and 
another POINT a distance LENGTH away along the x axis. 

Right triangles may be built out of three LINES, as 
shown in the  procedure 

RTRIANG:  ENTRY(BASE,ALTITUDE); 

CALL  YTRAN(ALT1TUDE); 

CALL ZROT("90); 

CALL  SOLID(LINE,ALTITUDE); 

CALL  ZROT(90); 

CALL  YTRAN("ALT1TUDE); 

CALL  SOLID(LINE,BASE); 

CALL  XTRAN(BASE); 

CALL ZROT(9OfATAND(BASE,ALTITUDE)); 
CALL SOLID(LINE,SQRT(BASE;::*:2+ALTITUDE:: * 2 ) ) ;  
RETURN ; 

In this manner, successively more complicated objects 
are  constructed hierarchically from simpler ones.  At  the 
volume  level there  are five basic procedures called cu- 
BOID,  CYLNDR, CONE, WEDGE, and HEMISPH. At still 
higher levels, the  objects proliferate  rapidly  and in ever 
increasing  complexity. 

With the passage of time, more specialized shapes 
may be  added  to  the PARTLIB. It  might be useful to  have 
such  objects  as  camshaft  levers, piston rods,  motor 
blocks, etc.  The implementation of the  system  requires 
only that  each new object  have a unique name with at 
most seven alphanumeric characters.  The  current imple- 
mentation  ignores all problems related  to program man- 
agement facilities. 

In  the  course of the preceding  discussion, the  reader 
has probably become  aware of the  rather discomforting 

D. D. GROSSMAN IBM J. RES. DEVELOP. 



fact  that in a certain  sense  the PARTLIB is devoid of se- 
mantic content.  This  fact is particularly clear in the pro- 
cedure  for  the POINT primitive,  which  immediately  re- 
turns control  without doing anything. In  the  same spirit, 
since LINE calls two POINTS, it essentially does nothing 
twice. Nowhere in the PARTLIB is there any semantic 
identification of POINTS with geometric  points, LINES 

with  geometric  lines, and so forth.  In particular, no- 
where in the PARTLIB are  there  any  semantic  routines 
that  generate graphics output.  How then is any  picture 
generated? 

The  answer  to this apparent paradox  was alluded to in 
the previous  section. Since  the  semantic  routines  are 
usually specific to a  particular  application  program,  a 
mechanism is provided so that they may be  coded  as 
part of the application  program  module. For example,  an 
application  program to  count  the  number of POINTS in an 
OBJECT needs basically to make the  semantic association 
that a POINT is an  object  that  causes a counter  to be in- 
cremented by 1 .  To produce graphics’output, the  seman- 
tic  association is basically that a LINE is an  object  that 
causes a  geometric line to  be  drawn  between  the origins 
of the  coordinate  frames of two POINTS. 

The mechanism for attaching  semantics is provided in 
the  routine SOLID, which causes application  program 
routines to  be invoked  automatically as a preface and  an 
epilog to  the execution of PARTLIB routines. The techni- 
cal  details of this  mechanism are described in a subse- 
quent section. 

The  fact  that  semantics  are  attached  after  the PARTLIB 

is coded is essential to  the generality of this  method of 
representing  geometric  objects. This  feature permits a 
single PARTLIB to  represent a set of objects  for a  wide 
and  open-ended  range of potential  applications. New 
applications may be added without modifying the PART- 

LIB, and  the PARTLIB can usually be expanded  without 
affecting old applications. 

The particular PARTLIB implementation described  here 
was  based on a  decision to model three-dimensional  ob- 
jects  as polyhedra. Curved lines  and curved  surfaces 
were  therefore omitted. This omission is not a fundamen- 
tal limitation of the method, since  curved lines  and sur- 
faces may be added  to  the PARTLIB. For example, a cir- 
cular  arc of radius RAD and angle THETA could  be repre- 
sented by the primitive code 

CIRCLE: ENTRY(RAD,THETA); 

RETURN; 

The graphics  application  programs would then  have  to 
be  expanded  to  provide  the  necessary  semantic  routine 
to  draw circular arcs,  and many other application  pro- 
grams might need similar additional semantics. 

Other primitive objects  that  are substantially  more 
complex than circles could also  be added.  For  example, 

primitives  could be provided for polynomial curves, con- 
ic sections,  Ferguson-Coons  patches [ 171, and so forth. 
In  most applications, the supporting semantic  routines 
for primitive objects of these sorts would be rather  com- 
plicated. 

CREATE: hierarchy construction 
The principal entry point in the  recursive module CRE- 

ATE is called SOLID. The  subsequent  code  oversees  the 
hierarchical construction of each  object  out of its  con- 
stituent subobjects. Entry  at SOLID results in the follow- 
ing consecutive  steps: 

1 .  It dynamically  allocates  working storage  for  the par- 
ticular subobject  about  to  be  created. 

2. It performs  “downward  inference.” This  step in- 
volves  copying data  from  the working storage of the 
parent  object into the working storage of the new 
subobject. The  data copied  include the  coordinate 
frame. 

3. It calls all semantic  routines  whose  names  appear in a 

4. It calls the  procedure  for  the  subobject. 
5. It calls all semantic  routines  whose names appear in a 

table called FLAG. 

table called EXEC. 

The  data in each object’s  working storage include  a 
set of upward and  downward pointers,  a coordinate 
frame matrix, and a  polarity. The polarity is +1 for solid 
objects, -1 for  holes, and 0 for “ghost”  objects. Ghost 
objects  are essentially the generalization of construction 
lines in drafting;  they are used to  generate  the final object, 
but they  have no semantic content.  The  entry  point 
SOLID creates  subobjects with the  same polarity as  the 
parent object, the  entry point HOLE reverses  the polar- 
ity, and  the  entry point GHOST generates a 0 polarity 
subobject. The system itself does not possess  any physi- 
cal model knowledge  such as  “Negative  subparts must 
be  entirely  contained within positive objects,” or “‘Two 
positive subparts may not occupy  the  same region of 
space.” The modeling of unphysical objects is therefore 
not precluded. 

All three of these  entry  points  are written as PL/I 
generic entries  to allow an  arbitrary  number of parame- 
ters  to be  passed  from the  parent  object  to  the subobject. 
For example, LINE calls SOLID(POINT), which at  step 4 
above calls POINT. In this case,  no  parameters  are 
passed  to POINT. On  the  other  hand, RTRIANG calls 
SOLID(LINE,ALTITUDE), which at  step 4 above calls LINE 
(ALTITUDE). In this case,  one  parameter  is  passed  to 

The CREATE module also  contains  entries called FLAG 

and EXEC, which manage entries in the FLAG and EXEC 

tables  referred to in steps 3 and 5. These  routines  pro- 
vide the mechanism by which the application  pro- 

LINE. 
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gram may attach  semantic  routines  to  the  objects.  For 
example,  suppose  that PLOTX is the  name of a semantic 
routine  for producing  graphics output. A call to 
EXEC(PLOTX) would cause PLOTX to be placed in the 
EXEC table and  be  invoked at  step 5 after  each  subobject 
was  completed. PLOTX could then check  whether  the 
subobject  just  created was  a LINE and, if so, plot it. A 
call to EXEC with no  parameters  erases  the EXEC table. 
The  entry point FLAG functions in a similar manner  for 
semantics  that must  be  invoked  prior to  subobject 
creation. 

It  can  be  seen  that in essence CREATE intercepts sub- 
program  calls between  parent  objects  and  their  subob- 
jects.  This  interception  makes possible the addition of 
semantics  without  the need for changing the  object  pro- 
cedures. 

It is interesting to  note  that  step 2 could  be factored 
out  and  be called  instead as  the first semantic  routine in 
the FLAG table.  Actually,  this step of SOLID is the only 
portion of CREATE that is specific to  the topic of geo- 
metric construction. By replacing  this step,  it would be 
possible to adapt this  geometry system to other fields in 
which it may be useful to  intercept  and  interpret  subpro- 
gram  calls. 

COORD: coordinate  transformations 
The COORD module contains a set of coordinate  transfor- 
mation routines  that may be invoked to modify the  coor- 
dinate  frames of objects. These  routines  and  the under- 
lying data  structures  are very similar to  those provided 
in the  automation language AL [ 181. All coordinate 
frames  are  represented  as 4 X 4 floating point  matrices 
with  a top row of 1 ,  0, 0, 0. The  remainder of the matrix 
can be  partitioned into  an origin vector  and a 3 X 3 rota- 
tion  matrix. This method of representing frames is nor- 
mally referred to as homogeneous coordinates [ 191. 

The explicit coordinate  transformations provided in 
COORD perform translations,  rotations,  and reflections 
with respect  to  the object’s frame [20]. In this frame, 
translations along the  axes  are called XTRAN(X), 

YTRAN(Y), and ZTRAN(Z). In addition there is a composite 
translation XYZTRAN(X,Y,Z). Rotations  about  the co- 
ordinate  axes of the object’s frame  are called XROT- 

along the  coordinate  axes  are called XMIRROR,  YMIRROR, 
and ZMIRROR. 

In addition to  the explicit coordinate  transformations 
itemized above, COORD provides  a set of implicit trans- 
formations that  can  be used to  attach  one  object  to an- 
other.  The  routines  that effect these implicit transforma- 
tions  are called DEFINE, RELATE, and APPLY. 

(THETA), YROT(THETA), and ZROT(THETA). Reflections 

The  statement 

586 CALL DEFINE(name,subaddress) 

is used to assign  a  unique name to any  subobject  that 
has already been  created.  The  subaddress  vector is used 
to specify the relationship of the  subobject in the hier- 
archy.  The  addressing method chosen relies on  the natu- 
ral ordering of subpart  procedure calls within any given 
object’s procedure.  For  example, in the RTRIANG pro- 
cedure,  subaddress (3 ,1)  would refer  to  the third LINE, 
first POINT. 

Specification of an object’s subaddress  requires detailed 
knowledge of the  entire  structure of which that  object is 
a  part. If the  system described here were  provided  with 
some form of interactive graphics, the pointing of a light 
pen could cause  an  automatic  determination of an ob- 
ject’s  subaddress. If a pointing were  ambiguous, the sys- 
tem would have  to  provide  the  user with  some means of 
indexing through alternate  subaddresses  to  resolve  the 
ambiguity. 

Returning from  these  speculations  to  the description 
of the  actual implementation, the unique name assigned 
by DEFINE can  be used to  refer  to  the origin of the coor- 
dinate frame of the  relevant  object.  The  statement 

CALL ORIGIN (name,vector) 

may be used to  return  the origin vector  associated with 
the  object of any  particular name. 

A composite new  frame may be  constructed from 
three  such origin vectors in the following manner provid- 
ed  there is no degeneracy:  The new frame’s origin coin- 
cides  with origin 1 .  The new frame’s x axis  points in the 
direction of origin 2. The new frame’s XY plane  includes 
origin 3 .  

The  statement 

CALL ~~~~~~(namel,name2,name3,name4,name5, 
name6,matrix) 

computes  the 4 X 4 transformation  matrix that brings the 
composite  frame specified by name 1 ,  name2, and  name3 
into coincidence  with the  composite  frame specified by 
name4, name5, and name6. There  are  also two-dimen- 
sional and one-dimensional versions of this procedure. 

The final stage of the implicit transformations is ac- 
complished  with the  statement 

CALL APPLY (matrix) 

which  applies the transformation  matrix computed by 
RELATE to  the  current  frame. 

COORD also supplies several utility routines  to allow 
programs more  direct  access  to  coordinate  transforma- 
tions and frames.  These include the  statements 

CALL STORE (matrix ) 
CALL RECALL (matrix) 

which, respectively, save  the  current  frame in  a  matrix 
and  restore a  matrix to  be  the  current frame. In addition, 
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routines MATMPY and MATINV are provided for  direct 
multiplication and  inversion of frames and  transforma- 
tions. 

Finally, there  are routines in COORD that initiate and 
terminate  the hierarchy of objects. The  statement 

CALL BEGIN(S1ZE) 

allocates a storage area of the specified SIZE in which 
CREATE subsequently  dynamically  allocates  working 
space  to objects. BEGIN also causes  the first  working 
storage  space  to  be allocated and initialized to be at  the 
top of the  hierarchy,  have  the identity frame, and have 
polarity f l .  Lastly, BEGIN clears the FLAG and EXEC ta- 
bles. The  statement 

C A L L  END 

frees  the  storage  area allocation  performed by BEGIN. 

The only reason  that BEGIN and END are in COORD rather 
than in CREATE is so that they may serve  as models for 
users who wish to write  application  programs that 
themselves  contain the  storage  area  for  dynamic alloca- 
tion. 

Application programs 

Semantics  for graphics 
The  technique of writing application  programs is best 
demonstrated by means of an example. The example 
chosen  for this purpose is graphics output. 

If one ignores all consideration of having the graphics 
output look  aesthetically pleasing, it is extremely easy  to 
write  a naive graphics  semantic routine  to  produce  an 
output file that  can be  used to  draw a  picture of any  ob- 
ject.  This simplistic routine is shown below: 

PLOTX.  PROCEDUREINODEI; / *  S1MPI.E GRAPHICS  SEMANTICS * /  
DECLARE  NODE  ENTRY,  lPTI.PT?)  POINTER,(A(3),B(31)  FLOAT; 

IF NODE=LINE  THEN  DO: /' IS OBJECT  A  LINE'? * /  
CALL  DEFINE(PTI,I):  / *  NAME  OF  FIRST  POINT * /  
CALL  DEFINE(PT221:  / *  N A M E   O F   S E C O N D   P O I N T  * /  
CALL  ORIGIN(PTI,Al;  / *  ORIGIN  OF  FIRST  POINT * /  
CALL  ORIGIN(PTZ.BI: / *  ORIGIN  OF  SECOND  POINT * /  
PUT  SKIP  DATA(A.BI:  / *  OUTPUT  BOTH  ORIGINS ' /  

E N D ;  

E N D ;  

Not  shown in this code is a standard  set of declara- 
tions  that resolve references to system  entry points. The 
IF statement  checks  whether  or  not  the  object  just  created 
is a LINE. If it is a LINE, the DEFINE statements assign 
the  names PTl and PT2 to  the  subaddresses of the LINE 

that  correspond  to its  first  and  second POINTS. The calls 
to ORIGIN then  extract  the origins of the  coordinate 
frames of these  two points,  and the PUT statement pro- 
duces  these  vectors.  An independent  graphics  package 
may subsequently use  the  output file to  control  the gen- 
eration of a picture. 

More  aesthetic graphics 
A  more  advanced  graphics routine PLOT directly  gener- 
ates  the LINES of each of the five basic  volume shapes.  In 
addition, PLOT produces  an  output file of objects  as  seen 
in the frame of the  camera so that  perspective views may 
be generated. The  camera  frame is taken to be the  frame 
that  was  current when PLOT was originally called. Thus 
the viewpoint and orientation may be  altered by moving 
the initial frame. 

Polyhedral topology 
Semantics  have been written by Lieberman [21] that 
permit this system  to be used as a parametric  preproces- 
sor  that  generates topological files compatible with avail- 
able programs involving polyhedral  topology [7]. Algo- 
rithms have been added  to perform the  operations of set 
union, intersection, and  difference. This method for  gen- 
erating descriptions of complex  mechanical parts  has 
been  described elsewhere. 

Example 
The example of this  section demonstrates how a very 
short  procedure  can  represent a  very  complex object and 
demonstrates  some  semantics  other than  graphics. The 
recursive PL/I procedure shown below represents a two- 
dimensional  botanical tree. 

BRANCH  ENTRYILENGTHI  RECURSIVE; / *  BRANCH BUII.DER */  
BEGIN; 

DECLARE(SPACE,SAVEl4.4)) FLOAT, (I J,IMAX) BIN FIXED: 

CALL  SOLID(LIMR.I.ENGTH): / '  GENERATE LIMB '/ 
SPACE=  SQRTILENGTH); / -  SPACING  OF  BRANCH  PAIRS * /  
IMAX=lLENGTH-NSPACE; / *  NUMBER  OF  BRANCH  PAIRS * /  
IF IMAX<I  THEN  RETURN; /*  DOES LIMB HAVE  BRANCHES'! * /  
ELSE  CALL  STORE(SAVE1: /* FRAME OF CURRENT LIMB ' i  
D O  I=I TO IMAX; /* SETS OF  BRANCH  PAIRS '/ 

CALL  RECALL(SAVE1; / *  FRAME OF LAST PAIR * /  
CALL  ZTRAN(SPACE); / *  AT  INTERVALS  OF  SPACE * /  
CALL  STOREISAVE); /*  FRAME  OF  CURRENT PAIR * /  
DO J=I TO 2 ;  / *  PAIR OF  BRANCHES * /  

CALL  RECALL(SAVE); /* FRAME  OF  CURRENT PAIR * /  
CALL ZROTI180'J); / *  ROTATIONAL  SYMMETRY * /  
CALL YROT(60*lI-I/lIMAX~2)));i' SPREAD  ANGLE * /  
CALL SOI.IDlBRANCH.~I.ENGTH-I*SPACEl/2I;/*RECURSION*/ 

E N D .  
E N D ;  

E N D ;  
RETURN, 

The first action of BRANCH is to  generate  the main 
LIMB of the tree. Next it determines  that pairs of second- 
ary limbs will occur along this limb at intervals of 
SPACE equal  to  the  square  root of LENGTH. It  executes a 
loop over  these  pairs,  and nested within this  loop it exe- 
cutes a  loop over  the two secondary limbs of each pair. 
Inside this loop, a recursive call via SOLID to BRANCH 

generates a secondary limb that is shorter  than  the main 587 
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Figure 2 Picture of recursive  tree. 

limb. The  recursion  continues until the LENGTH of each 
limb is shorter  than  one  and  there  are  no  further off- 
shoots. 

The semantic routine COUNTL, shown  below, may be 
used to  count  the  number of LIMBS in a trec ;; this form. 
For instructional purposes,  some  deliberate Ldrnplica- 
tions have been  included in the program: Rather  than 
counting all the LIMBS, COUNTL counts only those  that 
have a length greater  than  an  arbitrary threshold LMIN 

and  that  start with  a z coordinate height greater than 
HMIN. 

COUNTL:  PROCEDURE(NODE,LENGTH); 

DECLARE  NODE  ENTRY, PTLIMB PTR, (LENCiTHA(3))  FLOAT; 
IF NODE=LIMB THEN  DO;/*  ONLY  COUNT LIMBS * /  

CALL  DEFINE(PTLIMB);/*  NULL  SUBADDRESS * /  
CALL  ORIGIN(PTLIMB,A);/*  ORIGIN OF LIMB FRAME * /  
IF LENGTH>LMIN & A(3)>HMIN  THEN  NLIMB=NLlMB+I; 

END; 
END; 

Not shown in this code  are  the declarations  and initial 
assignments of LMIN,  HMIN, and NLIMB. The sixth state- 
ment of COUNTL increments NLIMB only  when the speci- 
fied thresholds  are  exceeded.  It should  be  noted that 
LENGTH, which is a parameter of LIMB, is also a  parame- 
ter of COUNTL. In general, all parts parameters  are  also 

588 available to  the semantic  routines. 

D. D. GROSSMAN 

With  graphics semantics  attached, a call to SOLID 
  BRANCH,^^) generates  the  picture shown  in  Fig. 2. The 
tree in  this picture  consists of 747 distinct limbs. By 
putting  a call to SOLID(BRANCH,N) inside a loop over N 
it would be  possible to  make a  movie of the  tree  as it 
grows. 

Limitations 
This  approach to representation of objects  does raise 
two significant problems. 

The first problem,  which may limit the utility of this 
method in many  potential  applications, is its high con- 
sumption of computer  resources.  For  example, in one 
program modeling a real object of moderate complexity, 
about 200 K bytes of working storage was  required. To 
provide  the large amount of memory needed, it was run 
under VM/370  on  an  IBM  System/370, model 168. On 
this  machine, execution of the program  required about 3 
seconds of virtual CPU time.  Although these  numbers 
are  rather high, it should be  noted  that  no  attempt was 
made  to minimize them.  This  storage  requirement could 
be  cut approximately in half by using a more compact 
method for encoding  hierarchical  pointers and coordi- 
nate  frame  data.  The  execution time could be cut by 
about  one third if routines  were provided to avoid the 
redundant  computation of trigonometric  functions. 

The second  problem associated with the  use of PL/I 

procedures  to  represent  objects  is  the difficulty of mak- 
ing the  system interactive. This difficulty could have 
been  avoided by writing the  system in APL or LISP in- 
stead of PL/I, but  then  performance would have suf- 
fered.  In  the  current  system  the effective turn-around 
time for debugging application  programs is  about 5 min- 
utes.  For  the PL/I system  to  be  made truly interactive, 
it would be  necessary  for a running application  program 
to  generate PL/I source  code, compile  it,  load  it, and ex- 
ecute it. Under  VM/370 it is actually  possible for a 
running  program to invoke the PL/I compiler as a  sub- 
program. It  seems likely, however,  that many nontrivial 
complications would arise in this sort of undertaking. In 
addition the  performance would probably still be unde- 
sirably  slow. For  these  reasons  the  system  described in 
this paper is currently not interactive, although hope 
of someday making it interactive  has  not been  totally 
abandoned. 

Summary 
A new  method of modeling three-dimensional objects 
has been described.  The  system  has  the capability of 
describing  any object  that can be  represented  as  the  sum 
or difference of other objects. Each  object is represented 
as a PL/I procedure, which  in turn  can  invoke pro- 
cedures representing the  subparts.  The  use of variables 
makes it possible to  describe generic shapes  and mecha- 
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nisms. A technique of essentially  intercepting  calls to 
subpart  procedures  enables  the  user  to supply semantic 
routines in the application  programs,  without modifying 
any object’s representation. 

The  system  described here is being used for the  para- 
metric  generation of polyhedral  topology files for  com- 
plex mechanical parts.  Currently, work is underway to 
apply the procedural system  to  Monte  Carlo simulations 
of tolerancing  and other  forms of imprecision in discrete 
parts  assembly. 
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