
D. D. Grossman

Procedural Representation of Three-dimensional
Objects

Abstract: A system of PL/I procedures has been written that permits geometric objects to be described hierarchically. The objects
are themselves represented as P L / I procedures, allowing very general use of variables. By effectively intercepting subprogram calls,
the system provides a means of modifying the semantics associated with any object without modifying the object’s procedural descrip-
tion

Introduction
Substantial prior literature exists on methods of model-
ing geometric objects. In the field of artificial intelli-
gence, Gelernter [1] represented two-dimensional fig-
ures in the form of list structured numerical data. This
representation was used to generate proofs of theorems
in plane geometry. Roberts 121 tackled problems involv-
ing the three-dimensional scene analysis of polyhedra.
Binford 131 developed an alternative representation in
terms of “generalized cones.” In a different vein, the
research of Winston 141 was concerned with represent-
ing the structural rather than the spatial relationships in
scenes. Recently, Baumgart 151 has developed a topo-
logical representation for arbitrary polyhedra that is par-
ticularly well suited to constructing complex polyhedra
through a range of operations including set union and
intersection.

The field of graphics is concerned principally with the
appearance of geometrical objects. The high level of
complexity of three-dimensional objects that can be rep-
resented is exemplified by the architectural modeling
work of Greenberg [61. The modeling routines of Appel
[7] allowed component parts of an assembly to be juxta-
posed. Some systems have the capability of generating
pictures of articulated mechanisms. For example, in the
system described by Csuri 181, simple macros could be
written to draw an airplane with retractable landing gear
and wheels that turned. Catmull [9] modeled the articu-
lations of the human hand. However, representations
that are specifically suited for describing the appearance
of objects tend not to generalize easily to other applica-
tions. In particular, such systems cannot easily count the
number of windows on the second floor of a building,
compute their total surface area, or determine the height

582 of an aircraft’s wheels above a runway.

D. D. GROSSMAN

Another facet of graphics consists of systems intended
for computer assisted design, and the literature on this
topic is extensive [lo]. One of the earliest attempts at
designing three-dimensional objects was due to Luh
[1 1 1. From a description in the form of quartic bounding
surfaces, this system could draw a simple object, com-
pute its center of mass and moments of inertia, and even
generate a numerical control tape to manufacture the
object. Comba [12] worked on a geometry language
suited to determining whether or not two objects inter-
fered with each other. A system intended for architec-
tural design applications has been described by Wehrli
[131. This system included a language called SPACE-

FORM, which contained a set of primitive solids. Two
new design systems have been developed. The first, due
to Braid [141, is based on a set of six primitive solids,
i.e., cuboid, wedge, tetrahedron, cylinder, sector, and
fillet. The second, due to Voelcker [151, involves a lan-
guage called PADL, which is currently based on the cu-
boid and cylinder primitives. In both systems highly
complex objects are constructed as hierarchical combi-
nations of more primitive objects, under the operations
of set union and intersection. A unique aspect of PADL is
its ability to describe tolerances of mechanical parts.
Each PADL program is transformed by a parser-inter-
preter into an object file, which may, in turn, be ac-
cessed by output programs. Currently, the only output
program is one that generates graphics files for display
purposes.

Another field that relates to parts description is the
programming of numerically controlled machine tools
[161. The most widely used language for numerical con-
trol is APT. Each APT program is a representation of the
object that the program can physically generate. The

IBM J. RES. DEVELOP.

APT compiler transforms the source program into a tool
path sequence, which can drive a numerically controlled
machine tool. The compiler, therefore, is a program that
derives information about an object directly from its
APT representation. The complexity of this compiler is
an indication, however, that it is a formidable program-
ming job to extract information from an APT source pro-
gram in this manner. For example, it would be difficult
to compute the volume of an object from its AFT source
program.

This paper reports a new system for describing geo-
metric objects in the form of procedures. The system
can model any three-dimensional physical object that
can be represented as the sum or difference of subparts,
including mechanisms with rotational or linear joints. A
significant difference between this approach and that of
other procedural representations is the manner in which
information about objects is extracted from the repre-
sentation. In both the PADL and the APT approaches, in-
formation can be extracted from object procedures by
programs that syntactically process the procedures and
translate them into data structures. In the system de-
scribed here, the object procedures themselves are uc-
tually executed.

Another difference between this system and the others
is the emphasis placed on the use of variables to charac-
terize arbitrury attributes of objects, not merely lengths
and angles. This emphasis was motivated by the desire
to represent objects of generic shape and even objects
that are mechanisms.

A good example of a generic shape is the machine
screw. Although all machine screws have essentially the
same shape, they may be individually classified by head
type, material, length, diameter, and pitch. Other exam-
ples of generic shapes are washers, nuts, screwdrivers,
wrenches, etc. Associated with each such shape is a set
of attributes that can be given values to specify a partic-
ular instance of that shape. The system described in this
paper is designed to allow variables to be used for these
attributes, so that an application program can refer, in
principle, to objects of the form

SCREW(HEAD,MATERIAL,LENGTH,DIAMETER,PITCH)

WASHER(THICKNESS,OUTERDIAMETER,
INNERDIAMETER)

TWOBARLINKAGE(ANGLEl,ANGLE2)

Application programs need to query the representation
to extract data of specific interest. For example an appli-
cation program might need to know the total volume of
an object, or the count of machine screws.

One of the simplest application programs is one that
just draws a picture of the object on a graphics output

device. This particular application has the pedagogical
advantage that it is immediately obvious from the output
whether or not the program and the underlying system
are working properly. For this reason, the examples given
in this paper relate to graphics applications. The reader
should appreciate, however, that the system is designed
for arbitrary applications and that much of the complexity
of the system is due to the need for generality.

System overview
The system for representing geometric objects is written
entirely in P L ~ . Writing the system in an existing high
level language has the great advantage that it is easy to
interface the system with application programs written
in the same language. On the other hand, one effect of
the decision to stay with PL/I is that application pro-
grams include a large number of CALLS to system sub-
programs, whereas in a special purpose language the
word CALL could have been eliminated and in many
cases generic operators could have replaced the subpro-
gram names. Also, some of the data type declarations in
this system could have been made transparent in a spe-
cial purpose language.

The system consists of three essentially independent
modules, as shown in Fig. 1 . The CREATE module over-
sees the hierarchical construction of geometric objects
out of their subparts. It is because this routine is called
recursively that the entire system was not coded in FOR-

TRAN. The PARTLIB module is a library of routines that
represent geometric objects. The COORD module is a
package of routines that provides transformations be-
tween the coordinate frames of different objects.

Of fundamental importance is the fact that geometric
objects are represented as PL/I procedures rather than
as numerical data. This representation makes it possible
for variables to specify attributes of objects. This repre-
sentation also has the advantage of having a natural
mechanism for describing the hierarchical construction
of an object, namely, by calls to subprograms represent-
ing the subobjects.

When objects are represented by numerical data in con-
ventional parts description systems, there is no funda-
mental impediment to writing arbitrary new application
programs that may access the data. When objects are
represented by procedures, however, these procedures
usually have some specific semantic content, i.e., they
actually do something. The difficulty that arises is that
different application programs frequently require dif-
ferent semantics. For example, an application program
that computes the volume of an object needs different
semantics from one that generates a drawing of the
object.

Clearly, any approach that requires a different repre-
sentation for each application is totally unsatisfactory. 583

NOVEMBER 1976 PROCEDURAL REPRESENTATION

CREATE: hierarchy construction

SOLID,HOLE,GHOST
EXEC,FLAG

CREATE SUBPART CALL SUBPART

POINT
LINE
RTRIANG
GLINE
CUBOID
CYLNDR
CONE
WEDGE
HEMISPH

I
INVOKE TRANSFORMATION

L

I
COORD: coordinate transformations

1
PARTLIB: library of parts procedures

XTRAN,YTRAN,ZTRAN,XYZTRAN
XROT,YROT,ZROT
XMIRROR,YMIRROR,ZMIRROR
DEFINE,RELATE,APPLY
STORE,RECALL
ORIGIN
BEGIN,END

Figure 1 System overview.

Instead, the system described here provides a special
means by which application programs may append their
own semantics to a given procedural representation of
objects. I t is this mechanism that renders the representa-
tion of objects by procedures feasible, and it is therefore
the essential new feature of the system described in this
paper.

PARTLIB: library of parts procedures
Every object in the system is represented by an entry in
the library of parts, called PARTLIB. In most cases the
body of the code for a part consists of calls to other en-
tries that represent subparts of the object. Those part
subprograms that do not call subparts are the primitive
objects of the system.

In the current implementation, the only primitive ob-
ject is POINT. The entire PL/I code that represents this
primitive is

POINT: ENTRY;

584 RETURN;

The only object immediately above POINT in the cur-
rent implementation is LINE. At this level a variable
appears that represents the length of the LINE.

LINE: ENTRY(LENGTH);

CALL SOLID(PO1NT);

CALL XTRAN(LENGTH1;

CALL SOLID(P0INT);

RETURN ;

The routine SOLID, which is invoked in the second and
fourth statements of this procedure, is in the module
CREATE, which is discussed in a later section of this pa-
per. At this point it is sufficient to consider that

CALL SOLID(P0INT);

is superficially equivalent to

CALL POINT;

The routine XTRAN, which is called in the third state-
ment of LINE, is in the module COORD and translates the
coordinate frame by LENGTH in the positive x direction.
Thus the LINE procedure says essentially that a LINE of
arbitrary LENGTH consists of one POINT at the origin and
another POINT a distance LENGTH away along the x axis.

Right triangles may be built out of three LINES, as
shown in the procedure

RTRIANG: ENTRY(BASE,ALTITUDE);

CALL YTRAN(ALT1TUDE);

CALL ZROT("90);

CALL SOLID(LINE,ALTITUDE);

CALL ZROT(90);

CALL YTRAN("ALT1TUDE);

CALL SOLID(LINE,BASE);

CALL XTRAN(BASE);

CALL ZROT(9OfATAND(BASE,ALTITUDE));
CALL SOLID(LINE,SQRT(BASE;::*:2+ALTITUDE:: * 2)) ;
RETURN ;

In this manner, successively more complicated objects
are constructed hierarchically from simpler ones. At the
volume level there are five basic procedures called cu-
BOID, CYLNDR, CONE, WEDGE, and HEMISPH. At still
higher levels, the objects proliferate rapidly and in ever
increasing complexity.

With the passage of time, more specialized shapes
may be added to the PARTLIB. It might be useful to have
such objects as camshaft levers, piston rods, motor
blocks, etc. The implementation of the system requires
only that each new object have a unique name with at
most seven alphanumeric characters. The current imple-
mentation ignores all problems related to program man-
agement facilities.

In the course of the preceding discussion, the reader
has probably become aware of the rather discomforting

D. D. GROSSMAN IBM J. RES. DEVELOP.

fact that in a certain sense the PARTLIB is devoid of se-
mantic content. This fact is particularly clear in the pro-
cedure for the POINT primitive, which immediately re-
turns control without doing anything. In the same spirit,
since LINE calls two POINTS, it essentially does nothing
twice. Nowhere in the PARTLIB is there any semantic
identification of POINTS with geometric points, LINES

with geometric lines, and so forth. In particular, no-
where in the PARTLIB are there any semantic routines
that generate graphics output. How then is any picture
generated?

The answer to this apparent paradox was alluded to in
the previous section. Since the semantic routines are
usually specific to a particular application program, a
mechanism is provided so that they may be coded as
part of the application program module. For example, an
application program to count the number of POINTS in an
OBJECT needs basically to make the semantic association
that a POINT is an object that causes a counter to be in-
cremented by 1 . To produce graphics’output, the seman-
tic association is basically that a LINE is an object that
causes a geometric line to be drawn between the origins
of the coordinate frames of two POINTS.

The mechanism for attaching semantics is provided in
the routine SOLID, which causes application program
routines to be invoked automatically as a preface and an
epilog to the execution of PARTLIB routines. The techni-
cal details of this mechanism are described in a subse-
quent section.

The fact that semantics are attached after the PARTLIB

is coded is essential to the generality of this method of
representing geometric objects. This feature permits a
single PARTLIB to represent a set of objects for a wide
and open-ended range of potential applications. New
applications may be added without modifying the PART-

LIB, and the PARTLIB can usually be expanded without
affecting old applications.

The particular PARTLIB implementation described here
was based on a decision to model three-dimensional ob-
jects as polyhedra. Curved lines and curved surfaces
were therefore omitted. This omission is not a fundamen-
tal limitation of the method, since curved lines and sur-
faces may be added to the PARTLIB. For example, a cir-
cular arc of radius RAD and angle THETA could be repre-
sented by the primitive code

CIRCLE: ENTRY(RAD,THETA);

RETURN;

The graphics application programs would then have to
be expanded to provide the necessary semantic routine
to draw circular arcs, and many other application pro-
grams might need similar additional semantics.

Other primitive objects that are substantially more
complex than circles could also be added. For example,

primitives could be provided for polynomial curves, con-
ic sections, Ferguson-Coons patches [171, and so forth.
In most applications, the supporting semantic routines
for primitive objects of these sorts would be rather com-
plicated.

CREATE: hierarchy construction
The principal entry point in the recursive module CRE-

ATE is called SOLID. The subsequent code oversees the
hierarchical construction of each object out of its con-
stituent subobjects. Entry at SOLID results in the follow-
ing consecutive steps:

1 . It dynamically allocates working storage for the par-
ticular subobject about to be created.

2. It performs “downward inference.” This step in-
volves copying data from the working storage of the
parent object into the working storage of the new
subobject. The data copied include the coordinate
frame.

3. It calls all semantic routines whose names appear in a

4. It calls the procedure for the subobject.
5. It calls all semantic routines whose names appear in a

table called FLAG.

table called EXEC.

The data in each object’s working storage include a
set of upward and downward pointers, a coordinate
frame matrix, and a polarity. The polarity is +1 for solid
objects, -1 for holes, and 0 for “ghost” objects. Ghost
objects are essentially the generalization of construction
lines in drafting; they are used to generate the final object,
but they have no semantic content. The entry point
SOLID creates subobjects with the same polarity as the
parent object, the entry point HOLE reverses the polar-
ity, and the entry point GHOST generates a 0 polarity
subobject. The system itself does not possess any physi-
cal model knowledge such as “Negative subparts must
be entirely contained within positive objects,” or “‘Two
positive subparts may not occupy the same region of
space.” The modeling of unphysical objects is therefore
not precluded.

All three of these entry points are written as PL/I
generic entries to allow an arbitrary number of parame-
ters to be passed from the parent object to the subobject.
For example, LINE calls SOLID(POINT), which at step 4
above calls POINT. In this case, no parameters are
passed to POINT. On the other hand, RTRIANG calls
SOLID(LINE,ALTITUDE), which at step 4 above calls LINE
(ALTITUDE). In this case, one parameter is passed to

The CREATE module also contains entries called FLAG

and EXEC, which manage entries in the FLAG and EXEC

tables referred to in steps 3 and 5. These routines pro-
vide the mechanism by which the application pro-

LINE.

585

PROCEDURAL REPRESENTATION NOVEMBER 1976

gram may attach semantic routines to the objects. For
example, suppose that PLOTX is the name of a semantic
routine for producing graphics output. A call to
EXEC(PLOTX) would cause PLOTX to be placed in the
EXEC table and be invoked at step 5 after each subobject
was completed. PLOTX could then check whether the
subobject just created was a LINE and, if so, plot it. A
call to EXEC with no parameters erases the EXEC table.
The entry point FLAG functions in a similar manner for
semantics that must be invoked prior to subobject
creation.

It can be seen that in essence CREATE intercepts sub-
program calls between parent objects and their subob-
jects. This interception makes possible the addition of
semantics without the need for changing the object pro-
cedures.

It is interesting to note that step 2 could be factored
out and be called instead as the first semantic routine in
the FLAG table. Actually, this step of SOLID is the only
portion of CREATE that is specific to the topic of geo-
metric construction. By replacing this step, it would be
possible to adapt this geometry system to other fields in
which it may be useful to intercept and interpret subpro-
gram calls.

COORD: coordinate transformations
The COORD module contains a set of coordinate transfor-
mation routines that may be invoked to modify the coor-
dinate frames of objects. These routines and the under-
lying data structures are very similar to those provided
in the automation language AL [181. All coordinate
frames are represented as 4 X 4 floating point matrices
with a top row of 1 , 0, 0, 0. The remainder of the matrix
can be partitioned into an origin vector and a 3 X 3 rota-
tion matrix. This method of representing frames is nor-
mally referred to as homogeneous coordinates [191.

The explicit coordinate transformations provided in
COORD perform translations, rotations, and reflections
with respect to the object’s frame [20]. In this frame,
translations along the axes are called XTRAN(X),

YTRAN(Y), and ZTRAN(Z). In addition there is a composite
translation XYZTRAN(X,Y,Z). Rotations about the co-
ordinate axes of the object’s frame are called XROT-

along the coordinate axes are called XMIRROR, YMIRROR,
and ZMIRROR.

In addition to the explicit coordinate transformations
itemized above, COORD provides a set of implicit trans-
formations that can be used to attach one object to an-
other. The routines that effect these implicit transforma-
tions are called DEFINE, RELATE, and APPLY.

(THETA), YROT(THETA), and ZROT(THETA). Reflections

The statement

586 CALL DEFINE(name,subaddress)

is used to assign a unique name to any subobject that
has already been created. The subaddress vector is used
to specify the relationship of the subobject in the hier-
archy. The addressing method chosen relies on the natu-
ral ordering of subpart procedure calls within any given
object’s procedure. For example, in the RTRIANG pro-
cedure, subaddress (3 ,1) would refer to the third LINE,
first POINT.

Specification of an object’s subaddress requires detailed
knowledge of the entire structure of which that object is
a part. If the system described here were provided with
some form of interactive graphics, the pointing of a light
pen could cause an automatic determination of an ob-
ject’s subaddress. If a pointing were ambiguous, the sys-
tem would have to provide the user with some means of
indexing through alternate subaddresses to resolve the
ambiguity.

Returning from these speculations to the description
of the actual implementation, the unique name assigned
by DEFINE can be used to refer to the origin of the coor-
dinate frame of the relevant object. The statement

CALL ORIGIN (name,vector)

may be used to return the origin vector associated with
the object of any particular name.

A composite new frame may be constructed from
three such origin vectors in the following manner provid-
ed there is no degeneracy: The new frame’s origin coin-
cides with origin 1 . The new frame’s x axis points in the
direction of origin 2. The new frame’s XY plane includes
origin 3 .

The statement

CALL ~~~~~~(namel,name2,name3,name4,name5,
name6,matrix)

computes the 4 X 4 transformation matrix that brings the
composite frame specified by name 1 , name2, and name3
into coincidence with the composite frame specified by
name4, name5, and name6. There are also two-dimen-
sional and one-dimensional versions of this procedure.

The final stage of the implicit transformations is ac-
complished with the statement

CALL APPLY (matrix)

which applies the transformation matrix computed by
RELATE to the current frame.

COORD also supplies several utility routines to allow
programs more direct access to coordinate transforma-
tions and frames. These include the statements

CALL STORE (matrix)
CALL RECALL (matrix)

which, respectively, save the current frame in a matrix
and restore a matrix to be the current frame. In addition,

D. D. GROSSMAN IBM .I. RES. DEVELOP.

routines MATMPY and MATINV are provided for direct
multiplication and inversion of frames and transforma-
tions.

Finally, there are routines in COORD that initiate and
terminate the hierarchy of objects. The statement

CALL BEGIN(S1ZE)

allocates a storage area of the specified SIZE in which
CREATE subsequently dynamically allocates working
space to objects. BEGIN also causes the first working
storage space to be allocated and initialized to be at the
top of the hierarchy, have the identity frame, and have
polarity f l . Lastly, BEGIN clears the FLAG and EXEC ta-
bles. The statement

C A L L END

frees the storage area allocation performed by BEGIN.

The only reason that BEGIN and END are in COORD rather
than in CREATE is so that they may serve as models for
users who wish to write application programs that
themselves contain the storage area for dynamic alloca-
tion.

Application programs

Semantics for graphics
The technique of writing application programs is best
demonstrated by means of an example. The example
chosen for this purpose is graphics output.

If one ignores all consideration of having the graphics
output look aesthetically pleasing, it is extremely easy to
write a naive graphics semantic routine to produce an
output file that can be used to draw a picture of any ob-
ject. This simplistic routine is shown below:

PLOTX. PROCEDUREINODEI; / * S1MPI.E GRAPHICS SEMANTICS * /
DECLARE NODE ENTRY, lPTI.PT?) POINTER,(A(3),B(31) FLOAT;

IF NODE=LINE THEN DO: /' IS OBJECT A LINE'? * /
CALL DEFINE(PTI,I): / * NAME OF FIRST POINT * /
CALL DEFINE(PT221: / * N A M E O F S E C O N D P O I N T * /
CALL ORIGIN(PTI,Al; / * ORIGIN OF FIRST POINT * /
CALL ORIGIN(PTZ.BI: / * ORIGIN OF SECOND POINT * /
PUT SKIP DATA(A.BI: / * OUTPUT BOTH ORIGINS ' /

E N D ;

E N D ;

Not shown in this code is a standard set of declara-
tions that resolve references to system entry points. The
IF statement checks whether or not the object just created
is a LINE. If it is a LINE, the DEFINE statements assign
the names PTl and PT2 to the subaddresses of the LINE

that correspond to its first and second POINTS. The calls
to ORIGIN then extract the origins of the coordinate
frames of these two points, and the PUT statement pro-
duces these vectors. An independent graphics package
may subsequently use the output file to control the gen-
eration of a picture.

More aesthetic graphics
A more advanced graphics routine PLOT directly gener-
ates the LINES of each of the five basic volume shapes. In
addition, PLOT produces an output file of objects as seen
in the frame of the camera so that perspective views may
be generated. The camera frame is taken to be the frame
that was current when PLOT was originally called. Thus
the viewpoint and orientation may be altered by moving
the initial frame.

Polyhedral topology
Semantics have been written by Lieberman [21] that
permit this system to be used as a parametric preproces-
sor that generates topological files compatible with avail-
able programs involving polyhedral topology [7]. Algo-
rithms have been added to perform the operations of set
union, intersection, and difference. This method for gen-
erating descriptions of complex mechanical parts has
been described elsewhere.

Example
The example of this section demonstrates how a very
short procedure can represent a very complex object and
demonstrates some semantics other than graphics. The
recursive PL/I procedure shown below represents a two-
dimensional botanical tree.

BRANCH ENTRYILENGTHI RECURSIVE; / * BRANCH BUII.DER */
BEGIN;

DECLARE(SPACE,SAVEl4.4)) FLOAT, (I J,IMAX) BIN FIXED:

CALL SOLID(LIMR.I.ENGTH): / ' GENERATE LIMB '/
SPACE= SQRTILENGTH); / - SPACING OF BRANCH PAIRS * /
IMAX=lLENGTH-NSPACE; / * NUMBER OF BRANCH PAIRS * /
IF IMAX<I THEN RETURN; /* DOES LIMB HAVE BRANCHES'! * /
ELSE CALL STORE(SAVE1: /* FRAME OF CURRENT LIMB ' i
D O I=I TO IMAX; /* SETS OF BRANCH PAIRS '/

CALL RECALL(SAVE1; / * FRAME OF LAST PAIR * /
CALL ZTRAN(SPACE); / * AT INTERVALS OF SPACE * /
CALL STOREISAVE); /* FRAME OF CURRENT PAIR * /
DO J=I TO 2 ; / * PAIR OF BRANCHES * /

CALL RECALL(SAVE); /* FRAME OF CURRENT PAIR * /
CALL ZROTI180'J); / * ROTATIONAL SYMMETRY * /
CALL YROT(60*lI-I/lIMAX~2)));i' SPREAD ANGLE * /
CALL SOI.IDlBRANCH.~I.ENGTH-I*SPACEl/2I;/*RECURSION*/

E N D .
E N D ;

E N D ;
RETURN,

The first action of BRANCH is to generate the main
LIMB of the tree. Next it determines that pairs of second-
ary limbs will occur along this limb at intervals of
SPACE equal to the square root of LENGTH. It executes a
loop over these pairs, and nested within this loop it exe-
cutes a loop over the two secondary limbs of each pair.
Inside this loop, a recursive call via SOLID to BRANCH

generates a secondary limb that is shorter than the main 587

NOVEMBER 1976 PROCEDURAL REPRESENTATION

t

Figure 2 Picture of recursive tree.

limb. The recursion continues until the LENGTH of each
limb is shorter than one and there are no further off-
shoots.

The semantic routine COUNTL, shown below, may be
used to count the number of LIMBS in a trec ;; this form.
For instructional purposes, some deliberate Ldrnplica-
tions have been included in the program: Rather than
counting all the LIMBS, COUNTL counts only those that
have a length greater than an arbitrary threshold LMIN

and that start with a z coordinate height greater than
HMIN.

COUNTL: PROCEDURE(NODE,LENGTH);

DECLARE NODE ENTRY, PTLIMB PTR, (LENCiTHA(3)) FLOAT;
IF NODE=LIMB THEN DO;/* ONLY COUNT LIMBS * /

CALL DEFINE(PTLIMB);/* NULL SUBADDRESS * /
CALL ORIGIN(PTLIMB,A);/* ORIGIN OF LIMB FRAME * /
IF LENGTH>LMIN & A(3)>HMIN THEN NLIMB=NLlMB+I;

END;
END;

Not shown in this code are the declarations and initial
assignments of LMIN, HMIN, and NLIMB. The sixth state-
ment of COUNTL increments NLIMB only when the speci-
fied thresholds are exceeded. It should be noted that
LENGTH, which is a parameter of LIMB, is also a parame-
ter of COUNTL. In general, all parts parameters are also

588 available to the semantic routines.

D. D. GROSSMAN

With graphics semantics attached, a call to SOLID
 BRANCH,^^) generates the picture shown in Fig. 2. The
tree in this picture consists of 747 distinct limbs. By
putting a call to SOLID(BRANCH,N) inside a loop over N
it would be possible to make a movie of the tree as it
grows.

Limitations
This approach to representation of objects does raise
two significant problems.

The first problem, which may limit the utility of this
method in many potential applications, is its high con-
sumption of computer resources. For example, in one
program modeling a real object of moderate complexity,
about 200 K bytes of working storage was required. To
provide the large amount of memory needed, it was run
under VM/370 on an IBM System/370, model 168. On
this machine, execution of the program required about 3
seconds of virtual CPU time. Although these numbers
are rather high, it should be noted that no attempt was
made to minimize them. This storage requirement could
be cut approximately in half by using a more compact
method for encoding hierarchical pointers and coordi-
nate frame data. The execution time could be cut by
about one third if routines were provided to avoid the
redundant computation of trigonometric functions.

The second problem associated with the use of PL/I

procedures to represent objects is the difficulty of mak-
ing the system interactive. This difficulty could have
been avoided by writing the system in APL or LISP in-
stead of PL/I, but then performance would have suf-
fered. In the current system the effective turn-around
time for debugging application programs is about 5 min-
utes. For the PL/I system to be made truly interactive,
it would be necessary for a running application program
to generate PL/I source code, compile it, load it, and ex-
ecute it. Under VM/370 it is actually possible for a
running program to invoke the PL/I compiler as a sub-
program. It seems likely, however, that many nontrivial
complications would arise in this sort of undertaking. In
addition the performance would probably still be unde-
sirably slow. For these reasons the system described in
this paper is currently not interactive, although hope
of someday making it interactive has not been totally
abandoned.

Summary
A new method of modeling three-dimensional objects
has been described. The system has the capability of
describing any object that can be represented as the sum
or difference of other objects. Each object is represented
as a PL/I procedure, which in turn can invoke pro-
cedures representing the subparts. The use of variables
makes it possible to describe generic shapes and mecha-

IBM J. RES. DEVELOP.

nisms. A technique of essentially intercepting calls to
subpart procedures enables the user to supply semantic
routines in the application programs, without modifying
any object’s representation.

The system described here is being used for the para-
metric generation of polyhedral topology files for com-
plex mechanical parts. Currently, work is underway to
apply the procedural system to Monte Carlo simulations
of tolerancing and other forms of imprecision in discrete
parts assembly.

Acknowledgments
My interests in this research were motivated in large
part by P. Will. R. Evans contributed substantially to
the coding of the coordinate transformations. Useful
suggestions concerning the allocation of storage were
made by L. Lieberman. M. Lavin improved on some of
the initial data structures. Both Lieberman and Lavin
have applied this system to the parametric generation of
polyhedral topology files. I also profited from a general
interchange of ideas with these three people as well as
with A. Appel, D. Bantz, W. Burge, and M. Wesley.
The graphics figures were plotted using a system provided
by M. Loughlin and A. Stein. Finally, L. Junker helped
teach me PL/I and assisted in correcting some of the more
esoteric bugs.

References
1. H. Gelernter, J. R. Hansen, and C. L. Gerberich, “A For-

tran-Compiled List Processing Language,” J . Assoc. Com-
put . Mach. 7,87 (1960).

2. L. G. Roberts, “Machine Perception of Three-Dimensional
Solids,” Ph.D. Thesis, Massachusetts Institute of Technol-
ogy, May 1963.

3. G . J. Agin and T. 0. Binford, “Computer Description of
Curved Objects,” Third International Joint Conference on
Artijicial Intelligence, Stanford University, Stanford, CA,
August 1973, p. 629.

4. P. Winston, Ph.D. Thesis, Massachusetts Institute of Tech-
nology, 1970 (reprinted as MIT Project MAC Report
MAC-TR-76, September 1970).

5. B. G. Baumgart, “Winged Edge Polyhedral Representa-
tion,” Stanford Artijcial Intelligence Laboratory Memo
AIM-1 79, STAN-CS-320, Stanford University, Stanford,
CA, October 1972.

6. D. P. Greenberg, “Computer Graphics in Architecture,”
Scientijk American 230,98 (1974).

NOVEMBER 1 916

7. A. Appel, “Modeling in Three Dimensions,” IBM Syst. J .
7,310 (1968).

8. C. Csuri, “Real-Time Film Animation,” Annual Report fo
the NSF from the Computer Graphics Research Group,
Ohio State University, Grant No. GJ-204, January 1972 to
January 1973, p. 76.5.

9. E. Catmull, “A System for Computer Generated Movies,”
Proc. ACM Ann. Conf. Boston, MA, August 1972, p. 422.

10. W. Newman and R. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill Book Co., Inc., New
York, 1973, Part Four, “Three Dimensional Computer
Graphics,” p. 233.

11. J. Y. S. Luh and R. J. Krolak, “A Mathematical Model For
Mechanical Part Description,” Commun. ACM 8, 125
(1965).

12. P. G . Comba, “A Language For Three-Dimensional Ge-
ometry,” IBM Syst. J . 7, 292 (1968).

13. R. Wehrli, M. Smith, and E. Smith, “ARCAID: The
ARChitect’s computer graphics AID,” University of Utah
Report ITEC-CSc-70-102, Salt Lake City, UT, June
1970.

14. I. C. Braid, Designing With Volumes, Cantab Press, Cam-
bridge, England, 1974; also I. C. Braid, “The Synthesis of
Solids Bounded by Many Faces,” Commun. ACM 18, 209
(1975).

15. “An Introduction to PADL,” Production Automation Pro-
,ject Technical Memorandum 22, University of Rochester,
December 1974.

16. Numerical Control Users’ Handbook, edited by W. H. P.
Leslie, McGraw-Hill Book Co. Inc., New York, 1970.

17. J. C. Ferguson, “Multivariable Curve Interpolation,” J .
Assoc. Comput. Mach. 11,221 (1964).

18. R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman,
“AL, A Programming System for Automation,” Stanford
Artijicial Intelligence Laboratory Memo AIM-243, STAN-
(3-74-456, Stanford University, Stanford, CA, November
1974.

19. W. Newman and R. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill Book Co., Inc., New
York, 1973, Appendix 11, “Homogeneous Coordinate
Techniques,” p. 467.

20. H. S. M. Coxeter, “Introduction To Geometry,” John
Wiley and Sons, Inc., New York, 1961, Chapters 3 and 7.

21. M. A. Lavin and L. I . Lieberman, “A System for Modeling
Three-Dimensional Objects,” Research Report RC-5765,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1970.

Received June 23, 1975; revised January 2, 1976

The author is located at the IBM Thomas J . Watson
Research Center , Yorktown Heights , N Y 10598.

589

PROCEDURAL REPRESENTATION

