576

Data Organization in Magnetic Bubble Lattice Files

Abstract: In this paper, we discuss several aspects of data organization in the framework of a recently developed magnetic bubble
memory technology known as a bubble lattice file. A dynamic ordering scheme, different from those implemented in conventional T-1
bar bubble memories, is proposed. This ordering is particularly suited for bubble lattices. Some performance figures are included for

comparison.

Introduction

In the past few years, magnetic bubble memories have
become increasingly important due to their potential for
nonvolatile, large capacity storage. In addition to having
an access time that is two orders of magnitude faster
than the moving head disk, the bubble memory has fea-
tures that can lead to simpler designs in controlling soft-
ware /hardware and also to more sophisticated methods
of data organization. Although there is a large body of
literature (see, e.g., [1]) on techniques for making bub-
ble memories faster, cheaper, and higher in density,
there has been relatively little discussion of bubble
memory data organizations. (For some work in this
area, see [2-8].) Furthermore, most of the discussions
are restricted to T-1 bar bubble memories. In this paper,
we examine bubble memories in the light of bubble lat-
tices, which promise much higher density than the tradi-
tional T-I bar technology [1]. Our purpose is to contrast
the features of bubble lattices with other storage devices
and suggest ways to make use of these features.

Figure 1 Conventional BLF.

Access Access
channel channel

o T
XXX X00O0O0I0lo00OO00O0O000I00 00X XXX
XXX X000OIo 000000000 0 00X X X X
xxxxoooolloocoooocoolopoooxxxx
XX XXO 00000 0000000000 00X X X X
XX XX 00000 000 0000I0J0000X XXX
XX Xx000o0loloooo 00001010 000X XXX
XX XX0000bloooo0000I000 00X XXX
xxxxoooo'oloooooooopwoooxxxx

II [11
x-Buffer x-Buffer
zone zone

C. K. WONG AND P. C. YUE

Magnetic bubble lattices

Bubble lattice files (BLF) operate very differently from
T-1 bar memories. In BLFs, bit information is encoded
in the wall states of magnetic bubble domains, rather
than in the absence or presence of bubbles at certain
locations. Bit information is decoded by detecting the
direction of movement of bubbles at a sensor under a
deflecting field gradient.

Bubbles can be accessed through a combination of
two operations: 1) lattice translation and 2) column
shifting. As shown schematically in Fig. 1, the lattice file
consists of an array of bubbles that can be translated as
a whole, to the left or to the right, on a piece of magnetic
material with buffer zones on both ends. The driving
force is provided by an overlaid pattern of current con-
ductors. The pattern of conductors can be sparse com-
pared to that of T-I bar memories, because the lattice is
always full and magnetostatic interactions among bub-
bles tend to keep them aligned with each other. This is
one of the major reasons that high density can be
achieved in the BLF.

In addition to translation, bubbles in a single column
can be shifted out of the lattice at the read (R) end, one
at a time, sensed for wall state, and then recreated at
the write (W) end. Thus, a column of bubbles can be
operated as a shift register. However, shifting can take
place only when the column is under one of the access
channels. Each access channel consists of a pair of par-
allel current conductors and is terminated on one side by
a read station and the other by a write station (designed
R and W, respectively, in Fig. 1).

Data organization for bubble lattices
Given the type of devices just described, we now con-
sider how data are to be organized on bubbile lattices for

IBM J. RES. DEVELOP.

efficient retrieval. Conceptually, a bubble lattice is in
many ways analogous to a moving-head disk file. In a
disk, a track is the set of locations at a given head posi-
tion on a given disk surface, and a cylinder is the set of
locations at a given head position.

Since bubble columns are accessed in shift register
fashion, each column is analogous to a track, but with la-
tency time and reading time appearing as shift time. The
set of columns under all access channels is analogous to
a cylinder, and the collection of access channels in a lat-
tice is analogous to the moving head but with seek time
appearing as lattice translation time. The BLF differs
from the disk in several respects. First of all, the shift is
electronically clocked and is thus effectively instantly
stoppable, as is a T-I bar memory. However, the shift
register is unidirectional as is a conventional disk. To
obtain bidirectionality, it is necessary to have a mecha-
nism capable of read and write functions on both ends of
the lattice. Another difference is that the records on dif-
ferent tracks of the same cylinder of a disk file move in
synchronism, whereas access channels on a BLF are
separately controllable. These features of the BLF give
rise to flexibility in choosing data organizations, as we
shall see below.

Figure 2 shows two kinds of memory organizations in
a BLF, namely, the noninterleaved organization and the
interleaved organization. In (a) data are stored serially in
columns, whereas in (b) a datum is stored in the set of all
columns that can be accessed simultaneously by the
access channels. Both schemes have similar average la-
tency times, but scheme (b) has shorter read time if a
whole block of contiguous data is to be accessed (e.g., in
sequential processing). On the other hand, scheme (a)
provides more parallel paths for queued requests. Fur-
thermore, if data request lookahead is possible, one can
take advantage of the separate control of individual col-
umns under ditferent access channels to line up data for
future requests. We refer to [7] for a detailed discussion
of anticipatory control features.

In addition to the issue of parallelism, the features of
BLF are also reflected in the way data are retrieved. We
distinguish between two cases:

1. Retrieval by address Because of the stoppability of
column shift, it is not necessary to store the address
in conjunction with each datum. Instead, we need
only a counter to keep track of the current address,
i.e., the stopped position of each column. The amount
of shift required for an access is then readily obtained
by a simple computation. Furtherfore, the risk of
over-shifting is negligible compared to the severe tim-
ing constraint of disk rotation.

2. Retrieval by key (associative retrieval) When the
exact address is not available (because of, say, the

NOVEMBER 1976

One access channel All access channels

I A

A O N N O

(a) (b)

Figure 2 Data organization in BLF. (a) Noninterleaved orga-
nization; (b) interleaved organization.

Compare i Compare

[~
[
[
l
17

BN

= E R E R

TR LT

(b)

o~
0
—

Figure 3 Data organization for associative retrieval (K de-
notes key, R denotes record). (a) Noninterleaved organization;
(b) interleaved organization.

cost of maintaining indices) or when the address is
available but the cost of address counters is not desir-
able, retrieval by key can be used. Then either the
key or the address must be imbedded into the data. In
this case, a comparator circuit is required for identify-
ing the datum to be retrieved (see Fig. 3). Note here
that although moving-head disks also contain key
fields and comparator circuits, one cannot interleave
effectively since the records on different tracks can-
not be read concurrently.

Dynamic ordering in bubble lattices

Another novel feature offered by magnetic bubble mem-
ories was first discovered by Beausoleil, Brown, and
Phelps [3] and by Bonyhard and Nelson [4] for T-1 bar

577

BLF DATA ORGANIZATION

578

(a)

1 2 3 4 5 6 7 —-*

(b)

Figure 4 Magnetic bubble memory (a) has seven locations;
after accessing the datum at location 1, remaining data can be
rotated in the clockwise direction (b).

c(n C(2) C(3) C(4) C(5) C(6) ()

C(3) () c(2) c4) C(5) C(6) a(m

Figure 5 Last Use Ordering.

P

c(C(2) C(3) e e |Ck-1D) | C(R) oo ol C(N)

N

Figure 6 Transposition Ordering.

implementations. Later variations are discussed in
[5, 6]. The basic idea is to recognize that bubble memo-
ries enable us to alter the relative positions of data with
ease. In particular, we can maintain some kind of dy-
namic ordering among data items in the memory so that
the more frequently accessed items are close to the ac-
cess position.

The scheme proposed in [3, 4] can be explained as
follows: Suppose a magnetic bubble memory were repre-
sented by a loop with location 1 as the access position,

C. K. WONG AND P. C. YUE

and two operations are available as shown in Fig. 4. The
cyclic operation of moving all data to their adjacent loca-
tions in a counterclockwise direction is represented at
(a), whereas (b) represents the operation in which the
datum at location 1 remains intact, but all other data are
being circulated in the clockwise direction.

The dynamic ordering to be maintained is graphically
described in Fig. 5, where C(i) denotes the datum at
location i. After an access to datum C(k) (k= 3 in Fig.
5), the datum C(i), 1 = i = k — 1, is found at location
i+ 1, C(k) atlocation 1, and C(i), i = k + 1, at location
i. As a consequence, the most recently accessed data
move closer to location 1. This kind of dynamic ordering
is referred to as Last Use Ordering. If the recently ac-
cessed data are the most likely to be reaccessed, then
Last Use Ordering will improve access time.

Note here that bidirectionality is essential for imple-
menting such a scheme. Due to the features of the bub-
ble lattices described previously, last use ordering is not
feasible for reordering data within a column or for reor-
dering columns among themselves. We demonstrate,
however, that another kind of ordering, which is referred
to as Transposition Ordering, can be used to advantage
for reordering among bubble columns so that lattice
translation time can be greatly reduced.

Transposition Ordering is an algorithm that approxi-
mates ordering by frequency of usage. Suppose we have
a list of n items. The one located in the access position is
called C(1), the next C(2), then C(3), etc. Transposi-
tion Ordering means that every time an access is made to
C(k), it changes position with C(k — 1) unless k = 1.
(See Fig. 6.) As a result, the more frequently an item is
accessed, the closer it is to the access position. Thus,
the average access time tends to be small.

To implement this ordering in BLF, we propose the
following modifications to the conventional BLF. First
of all, the access channel consists of a shift register that
can propagate two adjacent bubble columns at the same
time. (See Fig. 7.) Propagation can be accomplished with
the same technology as in a conventional BLF (see [12])
by isolating two columns instead of one from the rest of
the lattice. Secondly, the access channel is terminated at
one end by a pair of write stations (W, W’) and at the
other by a pair of read stations (R, R’). The write sta-
tions are connected to a switch that has two modes: SET
and RESET. In RESET mode, the bubble sensed at R is re-
generated at W, thus operating in a manner similar to the
conventional BLF (and likewise for R’ and W'). In SET
mode, however, the roles of W and W’ are reversed so
that the bit that is shifted out through R is shifted back
through W’ into the adjacent column, and similarly for
R’ and W (see Fig. 8). Thus, in the time taken to shift
the full length of a column, the two adjacent columns un-
der the access channel are automatically transposed.

IBM J. RES. DEVELOP.

Using the above access mechanism, we specify the
operation of a self-organizing BLF as follows.

Addressing scheme The address of each column consists
of a sector address and a displacement (Fig. 9).

The sector address, §, is given by the higher-order
bits. A sector is defined as the set of bubble columns in a
lattice that are accessible by an access channel using a
left shift or a right shift. By convention, we assign an
even address to sectors on the right hand side of a chan-
nel. Therefore, S, the lowest order bit of §, provides the
translation direction control, whereas the remainder of §
identifies the channel.

The displacement d is given by the number of columns
between the one being addressed and the one under the
channel. Thus the column under the channel has a dis-
placement of zero. Figure 10 is an example of a lattice
with two access channels and 16 columns. The addresses
of columns from left to right are as shown in the figure.

Access control Every storage reference is serviced in
two phases: a translation and an input/output phase. In
the translation phase, the desired column is shifted d
columns to the left is §,= 0 and d columns to the right if
S, = 1. The possible operations of the input/output
phase are shown in Table 1. At the end of the second
phase, the translation is reversed so that the zero-dis-
placement columns are returned to the channel posi-
tions. (This last step may not be necessary. If elimi-
nated, however, the translation in the first phase will be
given by either the difference or the sum of the new and
old values of d depending on whether the value of S, has
changed. The direction of shift also has to be changed
accordingly.)

Note that in this scheme, columns in one half of a sec-
tor do not mingle with those in the other half. In each
half, Transposition Ordering is maintained. Also, if the
column to be accessed is under the access channel (i.e.,
d=0), then no transposition occurs. Thus if a column is
being accessed consecutively, it remains under the chan-
nel and no translation of columns is needed.

On the other hand, one can eliminate all the switches
and connect the access channels such that they are
permanently in the ST mode. If this is the case, then
whenever a column is accessed, a transposition between
it and an adjacent column always occurs (even for a
column with d = 0). Consequently, columns in the two
halves of a sector mingle, and the more frequently ac-
cessed columns are clustered in the middle of the sector.

Some performance figures

Suppose we have an array of n column locations and a
set of n data columns with access probabilities p, = p, =
CEZ P 2:':1 p;= 1, where p, is the probability for column
i. If the exact sequence of accesses is not known before-

NOVEMBER 1976

Access - - Access
channel R|R R[R channel

] R T N I

y 110 10, 00 1 D 00
XXX X00000000000'00000X XXX
XXXX0 0000000000000 00 XX XX
XXX X0000000000000000 XX XX
" XXXX000000000000:0000 X X XX
XXX X000 00000000:0:00000 X X XX
X XXX 00 o0 OOOOOOOOOOOOXXXX
X XX X O 0o0: OOOOOOOOOOOXXXX
XXXXIOOO O«OOOO'XXXX

(: I

Wiw
Switch Switch

Output Output

]

J

Input Input

Figure 7 Self-reorganizing bubble lattice file.

Reset

[R]
[a1a]aTa]a] R]

Figure 8 Switching modes.

Figure 9 Address format.

hand, then the optimal way to allocate data in order to
minimize the average access time is to place the column
with p, at the ith location from the access channel, for
i= 1, n, and constantly maintain that order. In this
case, the average access time is given by 21.:1 p; (i —
1). Another extreme is to place the data randomly
among the n locations. Then the expected access time is
(n—1)/2.

In the case of Transposition Ordering, the initial allo-
cation is not important if one is interested in asymptotic
average access time, i.e., after a large number of storage
references.

579

BLF DATA ORGANIZATION

Channel 1 Channel 2
A A
r g N
S=11 S=10 §=01 §=00
A A A A
r 24 ' Y ™
1111
1110 1011
1101 1010
1100 1001
1000
Figure 10 Addressing scheme example.
Table 1 Input/output phase operations.
Output Input
d S, Operation Switch Operation Switch
mode mode
0 0 read out RESET write in RESET
through R’ through W’
1 read out RESET write in RESET
through R through W
0 read out through SET write in RESET
R’ while trans- through W'

posing

not
zero
1 read out through
R while trans-
posing

transpose SET

SET write in RESET
through W

transpose SET

Table 2 Anticipated performance.

Columns Random Transposition Optimal
in sector Ordering Ordering Ordering
8 35 2.226 1.940

16 7.5 4.058 3.733

32 15.5 7.253 6.885

64 31.5 13.048 12.491
128 63.5 23.281 22.505

580

C. K. WONG AND P. C. YUE

In many data processing applications, the following
assumption is valid [9, 10]: p, « 1/i, i.e., the probabilities
obey Zipf’s law. In this case ([9], p. 398), 3., p,(i— 1)
~ n/lnn.

We include in Table 2 some numerical comparisons
that give an indication of the performance merits of the
self-organizing BLF. The access time averaged over a
simulation period of 100000 storage references, with
Zipf’s law as the access probability distribution, is seen to
be much smaller than random ordering and is close to the
optimal. (Access time is measured by the number of
columns translated.)

Another way of appraising the asymptotic average
access time is to compare it with Last Use Ordering,
which has an access time equal to

(ST

i j

PPy
ptp

It is shown in [11] that for any given access probability
distribution p,, p,, -, p,, Transposition Ordering always
has a smaller asymptotic average access time than Last
Use Ordering, although no simple closed-form expres-
sion is available for the former. In the case of Zipf's law,

Pp;
Pt p

1

—$ R~ 2n/log,n.

i, j

Thus, if t(n) denotes the asymptotic average access time
for Transposition Ordering, then n/In n = t(n) =
2n/log,n. Note that the upper bound is about 1.386 times
as large as the lower bound. Therefore, Transposition
Ordering is always within 38.6% of the optimal. Itis easy
to demonstrate that the advantage of reordering is even
more pronounced if the reference probabilities are more
skewed than Zipf’s law.

Concluding remarks

In this paper, we discuss some aspects of data organiza-
tion in BLF. A self-organizing feature based on Trans-
position Ordering is introduced to suit the special re-
quirements of BLF. This scheme can also be implement-
ed in T-I bar bubble memories without much difficulty.
Many variations of Transposition Ordering are possible.
For example, instead of interchanging whole columns,
one can interchange only portions of columns. This
would be particularly suitable for the noninterleaved
memory organization described earlier. On the other
hand, one could interchange columns at a fixed distance
as well as adjacent columns. In this way, one could ap-
proximate the ordering by usage frequency much more
quickly through a compromise between Transposition
Ordering and Last Use Ordering.

IBM J. RES. DEVELOP.

References
1. H. Chang, Magnetic Bubble Technology: Integrated-Cir-

cuit Magnetics for Digital Storage and Processing, IEEE
Press, New York, 1975.

. O. Voegeli, B. A. Calhoun, L. L. Rosier, and J. C.
Slonczewski, “The Use of Bubble Lattices for Information
Storage,” Proc. 20th Ann. Conf. on Magnetism and Mag-
netic Materials, San Francisco, 1974.

. W. F. Beausoleil, D. T. Brown, and B. E. Phelps, ‘“Magnet-
ic Bubble Memory Organization,” IBM J. Res. Develop.
16, 587 (1972).

. P. 1. Bonyhard and T. J. Nelson, “Dynamic Data Reloca-
tion in Bubble Memories,” Bell Syst. Tech. J. 52, 307
(1973).

. C. Tung, T. C. Chen, and H. Chang, “A Bubble Ladder
Structure for Information Processing,” IEEE Trans. Mag-
netics Mag-11, 1163 (1975).

. C. K. Wong and D. Coppersmith, “The Generation of
Permutations in Magnetic Bubble Memories,” I[EEE
Trans. Computers Com-25, 254 (1976).

. C. K. Wong and P. C. Yue, “The Anticipatory Control of a
Cyclically Permutable Memory,” IEEE Trans. Computers
Com-22, 481 (1973).

NOVEMBER 1976

10.

11.

12.

. D. P. Bhandarkar, “On the Performance of Magnetic Bub-
ble Memories in Computer Systems,” IEEE Trans. Com-
puters Com-24, 1125 (1975).

. D. Knuth, The Art of Computer Programming, Sorting and

Searching 3, Addison-Wesley Publishing Co., Reading,

MA, 1973, Sec. 6.1.

M. C. Easton, “Model for Interactive Data Base Reference

String,” IBM J. Res. Develop. 19, 550 (1975).

R. L. Rivest, ““‘On Self-Organizing Sequential Search Heu-

ristics,” Commun. ACM 19, 63 (1976).

B. A. Calhoun, J. S. Eggenberger, L. L. Rosier, and L. F.

Shaw, “Column Access of a Bubble Lattice: Column Trans-

lation and Lattice Translation,” IBM J. Res. Develop. 20,

368 (1976).

Received March 22, 1976

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598.

581

BLF DATA ORGANIZATION

