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Data  Organization  in  Magnetic  Bubble  Lattice  Files 

Abstract: In this paper,  we  discuss several aspects of data organization in the framework of a recently developed magnetic  bubble 
memory  technology  known as a  bubble  lattice file. A dynamic ordering scheme, different from  those implemented in conventional T-I 
bar bubble  memories, is proposed. This ordering is particularly  suited for bubble  lattices. Some  performance figures are included  for 
comparison. 

Introduction 
In  the past few years, magnetic  bubble  memories have 
become  increasingly important  due  to  their potential for 
nonvolatile, large capacity storage. In addition to having 
an  access time that is two  orders of magnitude faster 
than  the moving head  disk,  the  bubble memory has fea- 
tures  that  can lead to simpler designs in controlling  soft- 
warelhardware and  also to more  sophisticated  methods 
of data organization.  Although there is a large  body of 
literature  (see, e.g., [ 11)  on techniques  for making bub- 
ble  memories faster,  cheaper,  and higher in  density, 
there  has been  relatively  little  discussion of bubble 
memory data organizations. (For  some work in  this 
area,  see [2- 81.) Furthermore, most of the  discussions 
are  restricted  to  T-I  bar bubble  memories. In  this  paper, 
we examine  bubble  memories in the light of bubble  lat- 
tices, which  promise much higher  density than  the tradi- 
tional T-I bar technology [ 13. O u r  purpose is to  contrast 
the  features of bubble  lattices with other  storage devices 
and suggest  ways to make use of these  features. 

Figure 1 Conventional BLF 
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Magnetic bubble lattices 
Bubble lattice files (BLF)  operate very differently from 
T-I  bar memories. In  BLFs, bit information is  encoded 
in the wall states of magnetic  bubble domains,  rather 
than in the  absence  or  presence of bubbles at  certain 
locations. Bit information is decoded by detecting  the 
direction of movement of bubbles at a sensor  under a 
deflecting field gradient. 

Bubbles can be accessed through  a  combination of 
two operations: 1)  lattice translation  and 2 )  column 
shifting. As shown  schematically in Fig. 1, the lattice file 
consists of an  array of bubbles  that  can  be  translated  as 
a whole, to  the left or  to  the right, on a piece of magnetic 
material  with  buffer zones  on  both  ends.  The driving 
force is provided  by an overlaid pattern of current  con- 
ductors.  The  pattern of conductors  can be sparse com- 
pared to  that of T-I bar memories, because  the  lattice is 
always full and magnetostatic  interactions among bub- 
bles  tend to  keep  them aligned with each  other.  This is 
one of the major reasons  that high density can be 
achieved in the BLF. 

In addition to  translation, bubbles in a single column 
can  be shifted out of the  lattice  at  the read (R) end,  one 
at a time,  sensed for wall state,  and then recreated  at 
the write (W) end.  Thus, a column of bubbles can be 
operated  as a shift  register. However, shifting can  take 
place  only  when the column is under  one of the  access 
channels.  Each  access channel consists of a pair of par- 
allel current  conductors and is terminated on  one side by 
a read  station and the  other by a write  station (designed 
R and W, respectively, in Fig.  1 ). 

Data organization for bubble  lattices 
Given  the  type of devices  just  described,  we now  con- 
sider  how data  are  to be  organized on bubble lattices  for 
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efficient retrieval.  Conceptually,  a  bubble  lattice is in 
many ways analogous to a moving-head disk file. In a 
disk, a track is the  set of locations at a  given  head  posi- 
tion on a given  disk  surface,  and a cylinder i s  the  set of 
locations at a given  head  position. 

Since bubble  columns are  accessed in shift  register 
fashion, each column is analogous to a track, but with la- 
tency  time and  reading  time  appearing as shift  time. The 
set of columns under all access  channels is analogous to 
a  cylinder,  and the collection of access  channels in a  lat- 
tice is analogous to  the moving head but with seek time 
appearing  as lattice translation  time. The  BLF differs 
from  the disk in several respects.  First of all, the shift is 
electronically  clocked and is thus effectively instantly 
stoppable,  as is a T-I  bar memory. However,  the shift 
register is unidirectional as  is a conventional disk. To 
obtain  bidirectionality, it is necessary  to  have a  mecha- 
nism capable of read and  write  functions on  both  ends of 
the lattice. Another difference is  that  the  records  on dif- 
ferent  tracks of the  same cylinder of a  disk file move in 
synchronism,  whereas  access  channels  on a BLF  are 
separately  controllable. These  features of the  BLF give 
rise  to flexibility in choosing data organizations, as we 
shall see below. 

Figure 2 shows  two kinds of memory  organizations in 
a BLF, namely, the noninterleaved  organization  and the 
interleaved  organization. In  (a)  data  are stored  serially in 
columns,  whereas in (b) a datum is stored in the  set of all 
columns that  can be accessed simultaneously  by the 
access channels. Both schemes  have similar average la- 
tency  times, but scheme  (b)  has  shorter read  time if a 
whole  block of contiguous  data is to  be  accessed (e.g., in 
sequential processing).  On  the  other  hand,  scheme  (a) 

/' provides  more parallel paths  for queued requests.  Fur- 
thermore, if data  request lookahead is possible, one  can 
take  advantage of the  separate  control of individual col- 
umns  under different access  channels  to line up data  for 
future  requests. We refer  to [7] for a  detailed  discussion 
of anticipatory control  features. 

In addition to  the  issue of parallelism, the  features of 
BLF  are also reflected in the way data  are retrieved.  We 
distinguish between two cases: 

, 

/ 

I .  Retrieval  by  address Because of the stoppability of 
column  shift, it is not necessary to  store  the  address 
in conjunction  with  each datum.  Instead,  we need 
only a counter  to keep  track of the  current  address, 
i.e., the  stopped position of each column. The  amount 
of shift  required for  an  access is then readily  obtained 
by a simple computation.  Furtherfore,  the risk of 
over-shifting is negligible compared to the  severe tim- 
ing constraint of disk rotation. 

2 .  Retrieval by key  (associative  retrieval) When the 
exact  address is not  available (because of, say,  the 

One access channel 

4 
All access channels 

" 

Figure 2 Data organization in BLF. (a)  Noninterleaved orga- 
nization; (b) interleaved  organization. 
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Figure 3 Data organization for  associative retrieval ( K  de- 
notes key, R denotes  record).  (a)  Noninterleaved organization; 
(b) interleaved  organization. 

cost of maintaining indices)  or when the  address is 
available but  the  cost of address  counters is not desir- 
able,  retrieval by key can be  used. Then  either  the 
key or  the  address must be imbedded into  the  data.  In 
this case, a comparator circuit is required for identify- 
ing the  datum  to  be  retrieved  (see Fig. 3 ) .  Note  here 
that although moving-head disks also contain key 
fields and comparator circuits, one  cannot interleave 
effectively since  the  records  on different tracks  can- 
not  be  read concurrently. 

Dynamic ordering in bubble lattices 
Another novel feature offered by magnetic  bubble mem- 
ories was first discovered by Beausoleil,  Brown, and 
Phelps [ 3 ]  and by Bonyhard and  Nelson [4] for  T-1  bar 577 
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Figure 4 Magnetic  bubble  memory (a)  has  seven locations; 
after accessing the  datum  at location 1 ,  remaining data  can  be 
rotated in the clockwise  direction (b) .  

Figure 5 Last  Use  Ordering. 
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Figure 6 Transposition  Ordering. 

implementations. Later variations are  discussed in 
[5, 61. The basic  idea is to recognize that bubble memo- 
ries  enable us to  alter  the relative  positions of data with 
ease.  In particular, we can maintain some kind of dy- 
namic  ordering  among data items in the memory so that 
the  more frequently accessed items are  close  to  the ac- 
cess position. 

The  scheme proposed in [3, 41 can  be explained as 
follows: Suppose a  magnetic  bubble  memory were  repre- 
sented by a  loop with location 1 as  the  access position, 578 
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and two  operations  are available as shown in Fig. 4. The 
cyclic operation of moving all data  to their adjacent loca- 
tions in a  counterclockwise  direction is represented  at 
( a ) ,  whereas  (b)  represents  the  operation in which the 
datum  at location 1 remains intact, but all other  data  are 
being circulated in the clockwise  direction. 

The  dynamic ordering to be  maintained is graphically 
described in Fig. 5 ,  where C ( i )  denotes  the  datum  at 
location i. After  an  access  to  datum C (  k )  ( k  = 3 in Fig. 
3 ,  the  datum C (  i)  , 1 5 i 5 k - I ,  is found at location 
i + I ,  C ( k )  at location 1 ,  and C ( i ) ,  i 3 k f  1, at location 
i. As a consequence,  the most  recently accessed  data 
move closer  to location 1. This kind of dynamic ordering 
is referred to  as Last Use Ordering. If the recently  ac- 
cessed  data  are  the most likely to be reaccessed, then 
Last  Use  Ordering will improve  access time. 

Note  here  that bidirectionality is essential for imple- 
menting such a  scheme. Due  to  the  features of the bub- 
ble lattices described previously, last  use ordering is not 
feasible for reordering data within a  column or  for reor- 
dering  columns  among  themselves.  We demonstrate, 
however,  that  another kind of ordering, which is referred 
to  as Transposition  Ordering, can be used to  advantage 
for reordering  among  bubble columns so that lattice 
translation  time can be  greatly reduced. 

Transposition  Ordering is an algorithm that approxi- 
mates  ordering by frequency of usage. Suppose we have 
a list of n items. The  one located in the  access position is 
called C (  l ) ,  the  next C ( 2 ) ,  then C ( 3 ) ,  etc.  Transposi- 
tion Ordering  means that  every time an  access is made  to 
C ( k )  , it changes  position with C (  k - 1) unless k = 1. 
(See Fig. 6.) As a result,  the  more frequently an item is 
accessed,  the  closer it is to  the  access position. Thus, 
the  average  access time tends  to be small. 

To  implement  this  ordering in BLF, we propose  the 
following modifications to  the conventional BLF.  First 
of all, the  access channel consists of a  shift  register that 
can propagate two adjacent  bubble columns at  the  same 
time. (See Fig. 7.) Propagation can  be accomplished  with 
the  same technology as in a conventional BLF  (see [ 121 ) 
by isolating two columns  instead of one from the  rest of 
the lattice. Secondly,  the  access channel is terminated at 
one  end by a pair of write stations  (W,  W’)  and  at  the 
other by a  pair of read stations (R,  R’) . The write  sta- 
tions are  connected  to a  switch that  has  two modes: SET 
and RESET. In RESET mode,  the bubble sensed  at R is re- 
generated  at W, thus operating in a manner similar to  the 
conventional BLF  (and likewise for R’ and W’).  In SET 
mode,  however,  the roles of W and W’ are  reversed so 
that  the bit that is shifted out through R is shifted  back 
through W‘ into  the  adjacent column,  and similarly for 
R‘ and W (see Fig. 8 ) .  Thus, in the time taken  to shift 
the full length of a  column, the two adjacent columns  un- 
der  the  access channel are automatically transposed. 
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Using the  above  access mechanism, we specify the 
operation of a self-organizing BLF as follows. 

Addressing scheme The  address of each column consists 
of a sector  address  and a  displacement (Fig. 9).  

The  sector  address, S ,  is given by the higher-order 
bits.  A sector is defined as  the  set of bubble  columns in a 
lattice that  are  accessible by an  access channel using a 
left  shift or a  right  shift. By convention,  we assign an 
even  address  to  sectors  on  the right  hand  side of a chan- 
nel. Therefore, So, the lowest order bit of S, provides the 
translation  direction control,  whereas  the remainder of S 
identifies the channel. 

The displacement d is given by the  number of columns 
between  the  one being addressed and the  one  under  the 
channel. Thus  the column under  the channel has a dis- 
placement of zero.  Figure 10 is an example of a lattice 
with two  access  channels and 16 columns. The  addresses 
of columns  from  left to right are  as  shown in the figure. 

Access control Every  storage  reference is serviced in 
two  phases: a  translation  and an  input/output  phase.  In 
the translation phase,  the desired  column is shifted d 
columns to  the left is S o  = 0 and d columns to  the right if 
So = 1 .  The possible operations of the  input/output 
phase  are shown in Table 1 .  At  the end of the second 
phase,  the translation is reversed so that  the zero-dis- 
placement  columns are  returned  to  the channel posi- 
tions. (This last step may not be necessary. If elimi- 
nated,  however,  the translation in the first phase will be 
given by either  the difference or  the  sum of the new and 
old values of d depending on whether  the value of So has 
changed. The direction of shift also  has  to  be changed 
accordingly.) 

Note  that in this scheme, columns in one half of a sec- 
tor  do  not mingle with those in the  other half. In  each 
half, Transposition Ordering is maintained. Also, if the 
column to be accessed is under the  access channel (Le., 
d = 0) , then  no transposition occurs.  Thus if a  column is 
being accessed  consecutively, it remains under  the  chan- 
nel and  no translation of columns is needed. 

On  the  other hand, one can  eliminate all the switches 
and  connect  the  access  channels  such  that they are 
permanently in the SET mode. If this is the  case, then 
whenever a  column is accessed, a  transposition between 
it and  an  adjacent column  always occurs  (even  for a 
column  with d = 0). Consequently, columns in the  two 
halves of a sector mingle, and the more frequently ac- 
cessed columns are clustered in the middle of the  sector. 

output   output  

Some  performance  figures 
Suppose  we  have  an  array of n column  locations  and  a 
set of n data columns  with access probabilities p1 1 p 2  1 
. . .1 pn, & pi = 1 ,  where pi is  the probability for column 
i .  If the  exact  sequence of accesses  is  not known  before- 

I 1 1  : :  101' 01 : j ' 00 
. .  

x x x x o o o o : o ' o o o o o o : o ' o : o o o x x x x  
x x x x o o o - o : o ' o o o o o o : o : o . o o o x x x x  
x x x x o o o ' o : o . o o o o o o : o . o ' o o o x x x x  
x x x x o o o o o : o o o o o o : o : o ~ o o o x x x x  
x x x x 0 0 0.o:o:o 0 0 0 0 0:o:o.o 0 0 x x x x 
x x x x 0 0 0:o:o:o 0 0 0 0 0:o:o.o 0 0 x x x x 
x x x x o o o : o : o . o o o o o o . o : o : o o o x x x x  
x x x x,o 0 oio-0:o 0 0,o 0 0: 0:o:o 0 0,x x x x 

c-.) 

Switch  Switch 

Input  Input 

Figure 7 Self-reorganizing  bubble  lattice file. 

Set Reset 

Figure 8 Switching  modes. 

S d 
h 

I A v 1 

Figure 9 Address  format. 

hand,  then the optimal way to allocate data in order  to 
minimize the  average  access time is to place the column 
with p i  at  the ith  location from  the  access  channel,  for 
i = 1 ,  . . ., n, and constantly maintain that  order.  In this 
case,  the  average  access time is given by pi  ( i  - 
1 ) .  Another  extreme is  to place the  data randomly 
among the n locations. Then  the  expected  access time is 
( n  - 1 )  /2. 

In  the  case of Transposition Ordering, the initial allo- 
cation is not important if one is interested in asymptotic 
average  access time, Le., after a large number of storage 
references. 579 
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Figure 10 Addressing scheme example. 

Table 1 Input/output phase operations. 

1 1 
Output 

Operation  Switch 
mode 

Input 
Operation  Switch 

mode 

0 0  

1 

0 

not 
zero 

1 

read out RESET 
through R' 

read out RESET 
through  R 
read out through SET 
R' while trans- 
posing 

read out through SET 
R while trans- 
posing 

write in RESET 
through W' 
write in RESET 
through W 
write  in RESET 
through W' 

transpose SET 

write  in RESET 
through W 

transpose SET 

Table 2 Anticipated performance. 

Columns Random Transposition Optimal 
in  sector Ordering Ordering Ordering 

8 3.5 2.226 1.940 
16 7.5 4.058 3.733 
32 15.5 7.253 6.885 
64 3 1.5 13.048 12.49 1 

128  63.5  23.281  22.505 
580 

In many data processing  applications, the following 
assumption  is valid [9, 101: pi a 1 / i ,  Le., the probabilities 
obey  Zipf s law. In this case  ([9], p. 398), p i ( i  - 1) 
M n l l n  n .  

We include in Table 2 some numerical comparisons 
that give an indication of the performance  merits of the 
self-organizing BLF.  The  access time averaged over a 
simulation period of 100000 storage  references, with 
Zipf's law as  the  access probability distribution, is seen  to 
be much smaller than  random  ordering  and  is  close to the 
optimal. (Access time is measured by the number of 
columns translated.) 

Another way of appraising the asymptotic  average 
access time is to  compare it with Last  Use Ordering, 
which has  an access time equal to 

It is shown in [ 111 that for any given access probability 
distribution pl, p z , .  . ., pn,  Transposition  Ordering  always 
has a smaller asymptotic  average access time  than Last 
Use Ordering,  although no simple closed-form  expres- 
sion is available  for  the  former. In  the  case of Zipf s law, 

PiPj 
Pi + Pj 

C-"" N 2n/logzn. 
i ,  j 

Thus, if t ( n )  denotes  the asymptotic  average access time 
for Transposition  Ordering,  then nl ln  n 5 t ( n )  5 
2n/logzn.  Note  that  the  upper bound is about 1.386 times 
as large as the  lower bound. Therefore, Transposition 
Ordering  is  always within 38.6% of the optimal. It is  easy 
to  demonstrate  that the  advantage of reordering is even 
more  pronounced if the reference probabilities are more 
skewed  than Zipf's law. 

Concluding remarks 
In this paper,  we  discuss  some aspects of data organiza- 
tion in BLF. A self-organizing feature based on  Trans- 
position Ordering is introduced to suit  the  special re- 
quirements of BLF.  This scheme can also be implement- 
ed in T-I  bar bubble memories without much difficulty. 
Many  variations of Transposition  Ordering are possible. 
For example,  instead of interchanging whole columns, 
one  can interchange  only  portions of columns. This 
would be particularly suitable for  the noninterleaved 
memory organization  described  earlier. On the other 
hand, one could interchange  columns at a fixed distance 
as well as adjacent  columns. In this way, one could ap- 
proximate  the  ordering by usage frequency  much  more 
quickly through  a  compromise  between  Transposition 
Ordering  and Last  Use Ordering. 
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