E. B. Fernandez
T. Lang

Scheduling as a Graph Transformation

Abstract The scheduling of a set of tasks, with precedence constraints and known execution times, into a set of identical processors is
considered. Optimal scheduling of these tasks implies utilizing a minimum number of processors to satisfy a deadline, or finishing in
minimal time using a fixed number of processors. This process can be seen as a transformation of the original graph into another graph,
whose precedences do not violate the optimality constraints and has a unique basic schedule. Analysis of this transformation provides
insight into the scheduling process and also into the determination of lower bounds on the number of processors and on time for optimal

schedules.

1. Introduction

Consider the scheduling of a set of tasks, with arbitrary
precedence constraints and known execution times, into
a set of identical processors. Optimal scheduling of these
tasks implies utilizing a minimum number of processors
to satisfy a deadline, or finishing in minimal time using a
fixed number of processors. In this paper we look at this
process as a transformation of the original partial order
into another partial order, whose precedences do not
violate the optimality constraints and which has a unique
basic schedule.

A few algorithms for optimal scheduling of arbitrary
graphs have been presented [1-3]. One of them, based
on an idea of Barskiy [4], implies a transformation of
the graph by the addition of arcs between tasks in sets of
independent vertices of the graph [3].

To obtain insight into this type of graph transforma-
tion, the precedences associated with a schedule are an-
alyzed. This leads to the characterization of the set of
graphs associated with a given schedule. In particular, it
is found that the set of graphs that corresponds to a giv-
en schedule forms a Boolean lattice.

Scheduling, and the related problem of determining
lower bounds for optimal schedules, can be visualized as
a graph transformation, and the analysis of the changes
in the precedences of the corresponding graphs gives
insight into these processes. This leads to the suggestion
of improvements for the algorithm in [3].

The intention of this paper is to present a unified view
of some scheduling problems, which contributes to under-
standing them and guides one in the search for efficient
algorithms.

Section 2 introduces the model and some basic defini-
tions. The precedences associated with schedules, the

NOVEMBER 1976

pature of optimal scheduling, and the determination of
lower bounds as graph transformations are discussed in
Section 3. The conclusions of the previous sections are
applied in Section 4 to suggest improvements for the
scheduling algorithm of [3], and in Section 5 to under-
stand why a previous lower bound expression [5] is not
exact. Some conclusions are presented in the final sec-
tion.

2. Model and basic concepts

Asetof tasks T={T,, T,, -, T,}, is to be executed by a
set of identical processors P, (i= 1,2, -+, m). A partial
order < is given on T, and a non-negative integer d; rep-
resents the duration of execution of task T .

The partially ordered set (7, <) is described by a
finite, acyclic digraph G = (V, A), where V is a finite
set of vertices of cardinality n, and A is a set of arcs rep-
resented as vertex pairs. The tasks T, correspond to
the elements of 1, and the terms tasks or vertices are used
interchangeably. The arcs in A describe the precedences
among the tasks. We assume (without loss.of generality)
that this graph has only one entry vertex, i.e., a vertex
with no predecessors, and only one exif vertex, i.e., a
vertex with no successors; that every vertex is reachable
from the entry vertex; and that there exists at least one
path from it that reaches the exit vertex.

In the following sections we draw graphs as follows.

1. The arrows of the arcs are assumed to be directed
downward, and are not explicitly drawn.

2. The numbers outside the vertices are the task execu-
tion times; if no number is written the task time is
Zero.

551

GRAPHS FOR SCHEDULING

552

T, e Iy ey Iy
2 0 2 1 3
3 0 0 3 3
4 1 4 2 5
5 3 3 5 5
6 3 3 5 5
7 3 3 5 5

Figure 1 Basic concepts.

Once a processor begins to execute a task it cannot be
interrupted until its completion; that is, we have a non-
preemptive type of scheduling. 1t is assumed that tasks
are scheduled starting only at integer values of time.

The length of the critical path of the graph, ¢, is the
minimum time to perform the set of computations. It
would be more general and more useful to define a dead-
line, D, i.e., a time within which the set of computations
must be finished. Clearly, D = ¢ . According to some
possible schedule, for each task T, we have a specific
completion time which we denote as ¢ ;+ C s the comple-
tion time vector, whose jth component is ¢ ;- Of particular
interest are the two extreme task completion times de-
fined below.

The earliest completion time, €y of a task T, is the
minimum time in which this task can be finished given
the precedence constraints of the graph.

The latest completion time, |, of a task Tj, indicates
how long the completion time of this task can be delayed
without exceeding the deadline.

According to a possible schedule, there exists also an
initiation time i; for a given task T;. Analogously, it is

E. B. FERNANDEZ AND T. LANG

2 4 6
&
L 3 5
ha | | l
0 1 2 3 4 5
3
AL Fnax(G, l)
3
R
<)
~ 1 i |] |
0 1 2 3 4 5

then possible to define for a task T;, an earliest initiation
time, e;;, and a latest initiation time, I;.

The partially ordered set is represented by a digraph
in which no redundant precedences are drawn. In other
words, if G contains arc (i, j) and arc (j, k), an arc of
the form (i, k) is not accepted as part of the set of arcs.
A graph of this type is said to be in its 7-minimal form
[6]. There exist general methods to convert a graph
which is not in this form to its minimal equivalent form,
such as the algorithms in [7, 8]. For the particular type
of partial orders corresponding to computational graphs,
however, a simpler algorithm is possible [3].

Two tasks T,, T; € T are comparable if either T, < T;
or T; < T, A subset B of T is independent if every two
elements of B are not comparable. An independent sub-
set is also called an antichain. A subset of T is a chain if
every two of its elements are comparable.

The activiry of task T} in graph G is defined as

1, for t € [cj— dj, cj]
f(G,¢) =

0, otherwise.

IBM J. RES. DEVELOP.

The load density function is defined by
F(G,C) =Y flc, 0.
j=1

Then, f(G, cj) indicates the activity of task 7; along
time, according to some schedule that does not violate
the restrictions imposed by the graph, and F(G, C) indi-
cates the total activity as a function of time. Clearly,
max F(G, C) indicates the number of processors re-
quired for the schedule defined by F(G, C).

If we call E, the vector of the earliest completion
times of graph G, then F(G, E,) is the earliest load den-
sity function, that is, it corresponds to a schedule where
all tasks are processed as early as possible. Similarly,
calling L the vector of the latest completion times / ;, we
can define a latest load density function. We denote by
F..(G, C) its maximum along time.

Due to the precedences of the graph not all the ver-
tices in an antichain are simultaneously active according
to the load density function in consideration. If we use
some specific load density function as reference, the sets
of simultaneously active vertices will be called active
antichains. When not said otherwise, it will be under-
stood that we use the earliest load density function as a
reference.

For a given schedule, we indicate as w the total time
to process all the tasks in T.

A graph G includes a graph G', denoted by G 2 G', if
G possesses at least all the precedences of G'. In analogy
with set theory it is possible to define for graphs the op-
erations of: 1) precedence union, G,U G,, denoting the
set of the precedences either in G, or G,; and 2) prece-
dence intersection, G, M G,, denoting the set of prece-
dences common to G, and G,. Figure | illustrates some
of these concepts.

3. Scheduling as a graph transformation

e 3.1. Precedences of the original graph
Given a graph G there exist a set of precedences corre-
sponding to the ordering of the elements of V. Some of
these precedences are defined by an arc of G, i.e., an
element of the set 4, and others are implicit due to the
transitivity of the ordering relation. When the partial
order describes a set of computations these precedences
correspond to logical dependencies of the vertices and, if
G is in its 7-minimal form as assumed earlier, no arc can
be removed without violating some of the logical con-
straints of the computations. Therefore, we assume that
G has the minimum possible number of precedences
consistent with the logical constraints of the set of com-
putations.

The set of logical precedences of G, P, is the set of
all the precedences implied directly by the set of arcs, A4,

NOVEMBER 1976

D=tep=T7
T ey by iy
2 0 2 0 2
30 11 2
4 0 3 2 5
5 2 1 2 7
6 1 2 6 1
703 5 5 1

Time e precedence

B ={2,7.(65,6,7}

B =12,4,2.6),2,7),3,4),4,6).(6,4,(6.5).(6,7),(7,6)t

Figure 2 Graph precedences.

and by the transitivity of the ordering relation. Notice
that P, = G, the transitive closure of G. Due to the
earliest and latest completion times of each task in G,
there are tasks which always finish before others start,
which implies the existence of time precedences.

The set of time precedences, P,, is the set of all those
precedences (a, 8) € Py, such that e, =/ . An all pre-
cedence graph, APG, is the graph obtained by adding to
G the time precedences P,, and eliminating the redun-
dant precedences (this is called in [4] a “complete in-
formational graph”). An APG is clearly equivalent to G
with respect to the logical relationships of the tasks, and
the set P, only makes explicit precedences that are im-
plicit by the timing relationships of the network.

The set of e-precedences, P,, is the set of precedences
(a, B) € P, such that e,s = e, That is, the e-prece-
dences are the implicit precedences which exist when all
the tasks are in their earliest positions. Notice that P, D
P,. Similarly, if all the tasks are in their latest positions
we have a set of l-precedences, P, which are those pre-
cedences (a, 8) € P,, such that ll.ﬁ =1 .. The set of ad-
missible precedences, P, is the set of those precedences
(a, B) € P, such that liﬁ = e,,. That is, P, contains pre-
cedences which can be added to G without its critical
path exceeding D. Clearly, P, D P,.

Figure 2 illustrates the concepts above. Notice that
while P, and P, contain precedences which are mutually
compatible, P, contains precedences which could be

553

GRAPHS FOR SCHEDULING

554

?
mop e +®
[N P -l—%
5 | Q
e R
. bl
-1 @ 1
A
______ T e T;Q
g |1 @ j
Tep D tom
Iy

Figure 3 Relationship between optimal m and optimal ¢.

mutually incompatible, i.e., adding one of them could
invalidate any of the others. The reason for this is that
adding one of these precedences forces the task at the
head of the arc, v, to be performed at a time which could
be later than its earlier starting time, thus preventing the
existence of some precedences in P, which have y as a
tail vertex (and which were defined assuming v to be in
its earliest position).

e 3.2. Basic scheduling and optimal scheduling

Two of the fundamental problems in scheduling theory
are: 1) a deadline for the execution time of a given set of
tasks must be satisfied using a minimum number of pro-
cessors; and 2) a fixed number of processors must be
used to execute a set of tasks in a minimum time. There
are some dual aspects in these two problems although
they are not completely symmetric. In this paper we
consider the first of them, but most of the considerations
apply to the second one as well.

A basic scheduling strategy [9] consists of assigning a
task whose predecessors have been completed to the
first available processor. In other words, basic schedules
contain no artificially idle processors, that is, if a proces-
sor is idle it is because no task can be assigned to it. We
denote as S(G) the set of all the basic schedules of G.
S(G) may contain many schedules because there could
be more than one task ready when a processor becomes
available.

It is known that S(G) may not contain the optimal
schedules of G [2], i.e., allowing some idle time can de-
crease the number of processors or the execution time
with respect to the best corresponding schedules in
S(G). However, if G is transformed in the way discussed
later, it can be shown [4] that it is then possible to ob-
tain the optimal schedules of G by determining only the
basic schedules of the transformed graph.

E. B. FERNANDEZ AND T. LANG

Figure 3 shows the relationship, for a given graph G,
between m, (the minimum number of processors re-
quired to execute the set T within the deadline D) and
t,, (the minimum time in which the set T can be com-
pleted with m processors). The &’s represent the mini-
mum values of time for basic schedules using a given
number of processors, and the ©’s represent the mini-
mum number of processors required to achieve a given
deadline using basic scheduling on G. The two basic op-
timization problems can then be expressed as follows.

1. For a given deadline D the corresponding value of m,
(given by the nearest optimal point on the left), must
be determined.

2. For a given value of m, say M, the corresponding min-
imal time, f,,, must be determined. Notice that in
general, basic scheduling will not be optimal, in fact
for time-optimal schedules it can give times almost
twice as long as those obtained with optimal sched-
ules [2, 9].

e 3.3. Graphs associated with a schedule

Consider an arbitrary schedule s, described by a Gantt
chart in Fig. 4(a). The sequencing of the tasks in this
schedule determines implicit precedences among them,
ie., if ¢; = i, then T, < T,. If we study all the graphs
that satisfy this schedule, i.e., whose scheduling does not
violate the precedences established by s, we obtain a set,
which is characterized below.

Associated with a given schedule s, there exists a set
of graphs, C,, where a graph G,(s) in C, has the same
set of weighted vertices as G, and does not contain any
precedences that violate the precedences of s. The set
C, is composed of the following graphs.

1. A total-precedence graph, G, where all the prece-
dences of the schedule appear as logical precedences.

2. A set of minimum-precedence graphs, MPG, where
there exist a minimum number of the logical prece-
dences of G, necessary to maintain m chains between
the entry and exit vertices.

3. All the graphs G such that G, 2 G, 2 G
G, is a graph in MPG.

4. All the graphs G,(s) that can be obtained by deleting
precedences from the three sets above.

where

mp’

The graphs in 1), 2), and 3) have exactly m chains if s
is a schedule for m processors, while the graphs in 4)
have more than m chains. The set in 4) includes I, the
graph of independent tasks. Clearly, all the schedules
that can be obtained by permuting processors, for exam-
ple switching the processors for T, and T, in Fig. 4(a)
have the same C,. Figure 4 shows some of the graphs in
the C, of a given schedule.

As the set of graphs in C, is obtained by starting from
G,, and deleting precedences until the graph of indepen-

IBM J. RES. DEVELOP.

(8) O,
Gails)
O

©

Figure 4 Graphs associated with a schedule.

dent tasks is reached, it constitutes a partial ordering.
Furthermore, C, is isomorphic to the set of subsets of a
given set (in this case the original set is the set of pre-
cedences in s), therefore C, together with the operations
of precedence-union and precedence-intersection (de-
fined in Section 2), constitutes a Boolean lattice [10].
Similarly, the partial orders that start from any G, in C,
and go down to / or up to G, by deletion or addition or
precedences are Boolean lattices. Figure 5 shows the
general form of the partial ordering of C,, indicating the
number of chains of its graphs.

e 3.4. Interpretation of the scheduling process

The optimal scheduling of a graph G can be described as
transforming G into a graph G’ defined below, and per-
forming basic scheduling on G'.

For processor-optimal schedules we have the mapping
K,:G — G' such that F__ (G', E,) is a minimum and
t,(G') = D, and for time-optimal schedules the mapping
is K.:G — G’ such that F_, (G',E,) = mand t_(G')
is a minimum.

The determination of processor-optimal schedules can
be visualized in terms of the lattices of the graphs asso-
ciated with given schedules. The set of all the schedules
of G defines a set of C_ lattices, one for each schedule
as in Fig. 6 (considering as one schedule all the sched-

max

NOVEMBER 1976

ules which can be formed by permuting the processors
associated with given tasks). All these lattices have a
common part formed by G and all the graphs that can be
obtained deleting precedences from G, including I. The
sublattices between G and its G, s are all different.
Some of these schedules are optimal, and their C, lat-
tices then contain one of the G’ as defined by K above.
To go from G to any of the G’ requires addition of arcs,
which indicates a way of proceeding to obtain optimal
schedules (indicated by a double line in the figure). A
wrong choice of arcs at a given stage can lead to a
schedule where ¢, (G,,) > D, and backtracking is then
necessary. Scheduling algorithms, such as the one given
in [3] and further discussed here (Section 4), are ways
to guide the choice of arcs to add in the search for a G’.
The use of lower bounds on the number of processors
[11], is of great value in this procedure (Section 4).

e 3.5. The number of processors
We relate now the number of processors m to the struc-
ture of the graph and its basic scheduling.

The number of processors for maximum parallelism, m,
is the number of required processors so as to have a
processor available for every executable task in G, when
a basic schedule is being constructed.

5§55

GRAPHS FOR SCHEDULING

556

C:

A sublattice

of C, m chains

> m chains

Figare 5 Lattice of the C, graphs of a schedule s.

th(si)
Gip(s3) wee ces

Figure 6 Optimal scheduling and schedule lattices.

Clearly, because of the definition of F(E,, t) the fol-
lowing lemma is true.

Lemma m,=F_, (E_, t). Notice the difference between
my,, m, (the minimum number of required processors so
that w = D), and m, the number of available processors.
Also, m, = m,,

Theorem Consider a graph G to be scheduled into m
processors. The following cases according to the value
of m exist.

1. If m = m,, there exists a unique basic schedule s(G),
and the C are such that
a. G, (s) is obtained by adding to G its e-prece-
dences,
b.t, (G)=1t,(G), VG, EC,.

E. B. FERNANDEZ AND T. LANG

2. If my= m = m,, the C, are such that all graphs G,
G,, € G, ¢ G,,, contain at least » — m additional pre-
cedences (including e-precedences) between the ver-
tices corresponding to those active antichains of G
that have cardinality r > m.

3. If m < my, all graphs G, in C,, suchthat G G G, G
th’

a. include at least r — m precedences (including e-
precedences) added to all those antichains of G
with cardinality r > m;

b. t,(G,) > D.

Proof

1. If m = m, as soon as the predecessors of a task are
completed there is a processor ready for this task.
Therefore, no precedences are forced upon the tasks
to accommodate them into a given number of proces-
sors, There exists then a unique basic scheduling for
G. In this basic scheduling the tasks are scheduled as
early as possible, and the precedences in s are the
union of the logical precedences of G and the e-pre-
cedences of G. Removing precedences from s, that is
from G, (s), results in graphs that have critical paths
at most as long as 1. [G, (s)], which, since there are
always processors available, is equal to 7_ (G).

2. When m < m,, some of the tasks have to be serialized
to fit into a number of processors smaller than m,.
Arcs have to be added to the graph to make some
tasks to share processors. If in every active antichain
of cardinality » > m, r — m precedences are added
either explicitly or as the result of the e-precedences
of the transformed graph, then the graph will nowhere
have more than m chains.

3. Part a) is the same as 2). Part b) is proved by noting
that, since m < m,, there are not sufficient processors
to finish the tasks within D, so that ¢, (G,) > D.

We present now an example to illustrate these ideas.
Consider the graph G of Fig. 4(c). A schedule into m,=4
processors is shown in Fig. 7(a), which also shows the
G, corresponding to this schedule. It can be seen that the
G, does not have any precedences which are not also in
G, and that ¢ (G,) = 1.,(G). Figure 7(b) shows a
schedule for m = m;=3. Here w=1,,(G), and arc (4, 5)
was added to the antichain {2, 3, 4, 5} of G. Figure 4(a)
shows a schedule for m = 2 < m, processors. Here w =
6 > 1,,(G). Finally, Fig. 7(c) shows the case of one
processor. Here @ = 11. When we only have one proces-
sor, we have to convert G into a linear ordering, of which
two possible configurations are shown. There are as
many possible linear orderings as ‘“‘topological sortings.”
The problem of topological sorting consists of embed-
ding a partial order in a linear order such that prece-
dences are not violated [12].

IBM J. RES. DEVELOP.

4. Application to a scheduling algorithm

The study of the precedences associated with schedules
gives insight into defining new optimal scheduling algo-
rithms, in order to improve existing algorithms or to de-
fine heuristic scheduling algorithms. In this section we
analyze an algorithm based on the addition of prece-
dences [3], and we study ways of improving its perfor-
mance. Scheduling of arbitrary graphs seems to be an
essentially enumerative problem [9] and it is then hope-
less to look for algorithms which are efficient in a general
sense. However, improvements on existing algorithms
can make a difference from a practical point of view.

A processor-optimal scheduling process is started by
assuming some value for the number of processors, m,
and then applying a scheduling algorithm. If no adequate
schedule is found, the process is repeated after increasing
By one the number of processors, and so on until a suc-
cessful schedule is found. As the initial value for m it is
convenient to use a lower bound since no optimal sched-
ule requires a smaller number of processors than this
value. A sharp lower bound is valuable, and an expres-
sion more accurate than earlier ones is given in [11]. Its
efficient evaluation is discussed in [5], and some of its
characteristics are discussed in Section 5.

The algorithm under consideration is a generalization
of an idea of Barskiy [4]. For the case of processor-op-
timal scheduling, it consists of adding arcs into the ac-
tive antichains of the graph that have a cardinality great-
er than the number of processors initially assumed. In
order to obtain a graph whose basic scheduling is the
optimal scheduling, the earliest load density function is
used as a reference in this process. The graph is trans-
formed so that its load density function never exceeds
the estimated number of processors. Then it suffices to
perform basic scheduling on the transformed graph to
obtain a processor-optimal schedule. When there is no
way of adding arcs at some active antichain without
exceeding the deadline, it is necessary to backtrack to
the previous active antichain, add a new set of arcs there
and continue the process. Barskiy proved that if the car-
dinality of an active antichain is r(>m) it suffices to add
r — m arcs in m chains to obtain processor-optimal
schedules. This was generalized in [3] where it was
proved that to obtain time-optimal schedules this result
is still valid.

The process of balancing the load density function as
described above corresponds to moving from G to a G’
in the C| lattice of an optimal schedule s(G). It suffices
to reach any graph G’ between G and G, in the corre-
sponding lattice, to have a graph whose basic scheduling
is optimal. The algorithms in [3] and [4] are practical
realizations of the abstract process described in Fig. 6.

The advantages of adding only one arc at a time (in-
stead of a set of r — m arcs) have been pointed out in

NOVEMBER 1976

P[i Pl —_——
3 6 3 6
& 4 & 4
Py > Py a—
5 7
Py

oYe

N

Pll | - 1 T i 1

2 1

3 246 5 7 1 2
Pt

381

~2

whB
—_
(=

©

Figure 7 Relation between number of processors, prece-
dences, and schedules.

[3]. Proceeding in this way also allows the improvement
proposed below.

If we look at the arcs that can be added at a given
moment, i.e., at a particular antichain, we can classify
them as follows. There exists a set of arcs such that
the addition of any one of these to the graph will not
make the total completion time exceed the deadline.
This set consists of all the admissible precedences P,. A
subset of these, P, is the set of arcs such that addition
of one of them will not change the value of the lower
bound. Notice that P, varies according to the lower
bound expression used. The set of arcs which are
part of optimal schedules, P, is a subset of P,. There-
fore, as a way of improving this scheduling algorithm
we propose to recalculate the lower bound on the
number of processors after addition of an arc. If the ad-
dition of («, B) makes the previous lower bound to be
exceeded, then (a, B8) is not added to the graph and an-
other arc is tried.

If the lower bound of [11] is used, and the calculation
is performed incrementally [5], computational speed
can be improved in this test by considering the following
aspects.

557

GRAPHS FOR SCHEDULING

558

1. If the active antichain where the arc is being added
starts at ¢ = ¢,, only the intervals between ¢, and D
must be considered.

2. As soon as the previous lower bound is exceeded at
any interval, the calculation can be stopped and the
corresponding arc discarded.

3. Lower bounds can be calculated in an incremental
manner, starting from the previous values and con-
sidering only the changes produced by adding a given
arc.

4, If arc (a, B) fails this test, it means that 8 cannot be
delayed as given by arc («, 8). This eliminates from
consideration any other arcs that would delay 8 by
this amount or more. Also, choosing those arcs that
will produce the smallest delay on 8 will increase the
probability of finding an arc that will pass the lower
bound test.

5. Consider two consecutive active antichains of cardi-
nality greater than m at 7; and ¢;. If the addition of
arcs to reduce the width of the antichain at ¢, does not
delay any tasks past ¢, then it can be proved that the
antichain at f, can be bypassed in the backtracking
procedure. Moreover, if only a subset of the tasks in
the antichain at ¢, delays tasks past 7, then for the
backtracking procedure it suffices to consider only
that subset of tasks. If this condition occurs, there is
a reduction in the number of arcs to be considered for
possible addition.

It is necessary to take into account, however, the

following concerns.

e Arcs that satisfy lower bound test might still make
scheduling fail. This occurs because the minimum
number of processors may be higher than the lower
bound and because previous arcs added may not be
part of optimal schedules.

e The complexity of using these lower bound tests to
select arcs should be less than the extra work per-
formed because an arc that should have been rejected
by this test, was chosen. This is difficult to evaluate,
although improvements should be reasonably expect-
ed since the amount of wasted computation when the
wrong arc is chosen, is high.

¢ The selection criterion of 4) above is in conflict with
the heuristics proposed in [3], which selects those
tasks with the smallest latest completion times. Both
heuristics, however, could be combined as follows.

a. Choose arc according to previous heuristics and
perform lower bound test.

b. If arc so chosen fails lower bound test eliminate
from consideration for addition all arcs that produce
the same or greater delay on the end task of this
arc. Select another arc using criterion 4) and per-
form lower bound test and go to b) ; else go to a).

E. B. FERNANDEZ AND T. LANG

e When there is no way to add arcs in an antichain with-
out exceeding D, backtracking to the previous anti-
chain is necessary. This implies the need to save all
the partial values for all the intervals of previous
graphs. An alternative is to apply the incremental
lower bound algorithm in reverse r — m times.

When the lower bound of a given graph is known and
an arc is added to the graph, the lower bound of the modi-
fied graph can be evaluated efficiently starting from the
set of values used in the calculation of the previous lower
bound. A method to perform this evaluation, together
with some improvements to the general calculation of
lower bounds is described in another paper [13].

H. O. Levy has studied the performance of the heu-
ristics proposed in [3] as the basis of an approximate
algorithm for time-optimal scheduling. In such an algo-
rithm, whenever the load density function exceeds the
given number of processors m, arcs are added so that this
load density does not exceed m, but no backtracking is
done [14]. Empirical results show this to be a promising
heuristics, but more conclusive tests are needed. The
same improvement suggested here for the exact algo-
rithm, i.e., the use of the lower bound to test arcs to be
added, can be applied to the heuristic method.

5. Lower bounds as graph transformations

A lower bound for the minimum number of processors
and for the minimal time required for the scheduling
problems considered here was presented in [5, 11] and
proved to be more precise than previous bounds. The
expression for the lower bound on the minimum number
of processors required to perform the computations of G
in time D is

m, = max[L_ S min(e, (1, 1,), [(1, 12))],

lep 0 Ll — 4

where ej(tl, t,) is the number of units of task T, that lie
in the interval [1,, t,] if all the tasks are in their earliest
possible positions, and /(#,, t,) is a similar concept but
with the tasks in their latest positions.

By interpreting this éxpression as a transformation on
the graph to which it is applied, it is possible to find out
why the lower bound expression does not provide the
exact value of the minimum number of processors. The
reasons are (Fig. 8) as follows.

1. The position of a task within a given interval does
not affect deadlines of the other tasks. This implies
that all tasks are considered as independent tasks with
initiation and completion constraints. In other words,
the calculation of the bound transforms the original
graph G into a graph G, where the tasks of G be-
come independent tasks with time constraints. In the

IBM J. RES. DEVELOP.

particular case where D =1t _, (shown in Fig. 8), if the
tasks of the critical path are decomposed into unit
length tasks, the critical path can be used as a time
marker to define the initiation and completion times of
the other tasks.

2. As intervals are considered independent of each
other, tasks that have a portion that has to be done in
interval [¢,, 7,] and a portion that can be processed
out of this interval are considered as if the portion
inside the interval could be processed at any time
within [z,, ¢,]. This effect can be described by split-
ting tasks as shown in G of Fig. 8 for interval [2, 5].

3. As the bound considers the average of the activity
that has to be processed in interval [z,, 1,], if r is the
number of time units of task ¢, that have to be pro-
cessed in [t,, #,]. This part of T, is assumed to consist
of r independent unit-length tasks (G, in Fig. 8).

In the particular case when the tasks of G are all of
unit length, the graph transformation indicated above
converts G into a set of unit length tasks with predeter-
mined initiation and completion times. Only for graphs
of the class of the transformed graph is it known that the
lower bound is exact [15].

6. Conclusions

Characterization of the graphs that satisfy the prece-
dences of a given schedule is of theoretical interest al-
though it does not lead directly to better scheduling algo-
rithms. On the other hand, analysis of the precedences
(explicit or implicit), that are present in a given computa-
tional graph, is of great value to understand the process
of scheduling the tasks of this graph. It gives insight in-
to means of improving existing scheduling algorithms and
formulating new heuristic methods for scheduling.
Based on this study, a few ways of improving a previous
scheduling algorithm have been proposed. As their effect
depends largely on the structure of the graph being
scheduled, a theoretical analysis of the improvement is
very difficult. The enumerative nature of the scheduling
process suggests this approach as promising, but an
empirical evaluation would be needed to ascertain the
computational effect of the proposed ideas.

Analysis of the process of determining lower bounds
as a graph transformation also helps to improve calcula-
tion of these lower bounds. An algorithm for this pur-
pose is given in another paper [13].

References
1. V. S. Linskiy and M. D. Kornev, “Construction of Opti-
mum Schedules for Parallel Processors,” Eng. Cybernetics
(USSR) 10, 506 (1972).
2. C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzilez,
“Optimal Scheduling Strategies in a Multiprocessor Sys-
tem,” IEEE Trans. Comput. C-21, 137 (1972).

NOVEMBER 1976

Figure 8 Interpretation of the lower bound.

3. B. Bussell, E. B. Fernandez, and H. O. Levy, “Optimal
Scheduling for Homogeneous Multiprocessors,” Informa-
tion Processing 74, 286, North Holland Publishing Co.,
Amsterdam, 1974,

4. A. B. Barskiy, “Minimizing the Number of Computing
Devices Needed to Realize a Computational Process With-
in a Specified Time,” Eng. Cybernetics (USSR) 6, 59
(1968).

5. E. B. Fernandez and T. Lang, “Computation of Lower
Bounds for Multiprocessor Schedules,” IBM J. Res. De-
velop. 19, 435 (1975).

6. B. Roy, Algébre Moderne et Théorie des Graphes, Vol. 1,
Dunod, Paris, 1969.

7. V. V. Martynyuk, “Transitively Equivalent Directed

_ Graphs,” Cybernetics (USSR) 9, 45 (1973).

8. H. T. Hsu, “An Algorithm for Finding a Minimal Equiva-
lent Graph of a Digraph,” J. Assoc. Comput. Mach. 22, 11
(1975).

9. R. L. Graham, “Bounds on Multiprocessing Anomalies and
Related Packing Algorithms,” AFIPS Conf. Proc. 40, 205,
AFIPS Press, Montvale, NJ 1972,

10. R. R. Stoll, Sets, Logic, and Axiomatic Theories, W. H.
Freeman & Co., San Francisco, 1961.

11. E. B. Fernandez and B. Bussell, “Bounds on the Number
of Processors and Time for Multiprocessor Optimal Sched-
ules,” IEEFE Trans. Comput. C-22, 745 (1973).

12. D. E. Knuth, The Art of Computer Programming, Vol. 1,
Addison-Wesley Publishing Co., Inc., Reading, MA 1969.

13. E. Fernandez and T. Lang, “Improving the Computation of
Lower Bounds for Optimal Schedules,”” submitted to /BM J.
Res. Develop.

14. H. O. Levy, Application of Graph Transformations to
Scheduling, M. S. Thesis, Univ. of California, Los Angeles,
1973.

15. T. Lang and E. Fernandez, “Scheduling of Unit-Length
Independent Tasks with Execution Constraints,” /nforma-
tion Processing Letters 4,95 (1976).

Received January 20, 1976

E. B. Ferndndez is located at the IBM Scientific Center,
Data Processing Division, 1930 Century Park West, Los
Angeles, CA 90067. T. Lang is with the Computer Sci-
ence Department, University of California, Los Angeles,
CA 90024.

559

GRAPHS FOR SCHEDULING

