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Scheduling  as  a  Graph  Transformation 

Abstract The scheduling of a set of tasks, with precedence  constraints  and known  execution  times,  into a set of identical processors is 
considered. Optimal  scheduling of these  tasks implies utilizing a minimum number of processors  to satisfy  a  deadline, or finishing in 
minimal time using a fixed number of processors.  This  process can be seen as a transformation of the original graph  into another  graph, 
whose  precedences  do not  violate the optimality constraints and has a  unique  basic schedule. Analysis of this  transformation  provides 
insight into the scheduling process and  also into the determination of lower bounds on  the number of processors  and  on time for optimal 
schedules. 

1. Introduction 
Consider  the scheduling of a set of tasks, with arbitrary 
precedence  constraints and  known execution times,  into 
a set of identical processors. Optimal  scheduling of these 
tasks implies utilizing a minimum number of processors 
to satisfy  a  deadline, or finishing in minimal time using a 
fixed number of processors.  In this paper we look at this 
process  as a transformation of the original partial order 
into  another partial order,  whose  precedences  do not 
violate the optimality constraints and  which has a unique 
basic  schedule. 

A few  algorithms for optimal  scheduling of arbitrary 
graphs  have been presented [ 1 - 31. One of them, based 
on an idea of Barskiy [4], implies a  transformation of 
the graph  by the addition of arcs  between  tasks in sets of 
independent  vertices of the graph [3]. 

To  obtain insight into this type of graph  transforma- 
tion,  the  precedences associated with a schedule are an- 
alyzed. This leads to  the  characterization of the  set of 
graphs  associated with  a given schedule. In particular, it 
is found that  the  set of graphs that  corresponds  to a giv- 
en  schedule  forms a Boolean lattice. 

Scheduling,  and the related  problem of determining 
lower bounds  for optimal schedules,  can be  visualized as 
a graph transformation, and the analysis of the  changes 
in the  precedences of the corresponding graphs gives 
insight into  these  processes.  This leads to  the suggestion 
of improvements  for the algorithm in [3]. 

The intention of this paper is to  present a unified view 
of some scheduling  problems,  which contributes  to  under- 
standing  them and guides one in the  search for efficient 
algorithms. 

Section 2 introduces  the model and some basic defini- 
tions. The  precedences associated  with schedules,  the 

nature of optimal  scheduling, and  the determination of 
lower  bounds as graph  transformations are discussed in 
Section 3. The conclusions of the previous sections  are 
applied in Section 4 to suggest improvements  for  the 
scheduling  algorithm of [3], and in Section 5 to  under- 
stand why a previous  lower  bound expression  [5] is not 
exact.  Some conclusions are  presented in the final sec- 
tion. 

2. Model and  basic concepts 
A set of tusks T = { T I ,  T,; . ., Tn}, is to be executed by a 
set of identical processors Pi ( i  = 1, 2 , .  . ., rn) . A partial 
order < is given on T ,  and a  non-negative  integer dj rep- 
resents  the duration of execution of  task T j .  

The partially ordered  set ( T ,  <) is described by a 
finite,  acyclic  digraph G = ( V ,  A ) ,  where V is a finite 
set of vertices of cardinality n, and A is a set of arcs  rep- 
resented  as  vertex pairs. The  tasks Ti correspond  to 
the  elements of V ,  and  the  terms  tasks or vertices  are used 
interchangeably. The  arcs in A describe  the  precedences 
among the  tasks. We assume  (without loss of generality) 
that this  graph has only one entry  uertex, i.e., a vertex 
with no  predecessors,  and only one exit  uertex, ;.e., a 
vertex with no  successors;  that  every  vertex is reachable 
from the  entry  vertex; and that  there  exists  at  least  one 
path from it that  reaches  the  exit  vertex. 

In the following sections  we  draw  graphs  as follows. 

1. The  arrows of the  arcs  are assumed to be  directed 
downward,  and  are  not explicitly drawn. 

2. The  numbers outside the  vertices  are  the task execu- 
tion times; if no number is written the  task time is 
zero. 551 
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Figure 1 Basic concepts. 

Once a processor begins to  execute a  task it cannot be 
interrupted until its completion;  that  is,  we  have a non- 
preemptive type of scheduling. It is assumed  that  tasks 
are scheduled  starting  only at integer  values of time. 

The length of the critical path of the  graph, t,,, is the 
minimum time to perform the  set of computations. I t  
would be  more general and  more useful to define a dead- 
line, D ,  i.e., a time within which the  set of computations 
must  be finished. Clearly, D 2 t,,. According  to  some 
possible schedule,  for  each task T j  we have a specific 
completion time which we  denote  as cj.  C is the comple- 
tion time vector,  whosejth  component  is cj. Of  particular 
interest  are  the  two  extreme  task completion  times  de- 
fined below. 

The earliest completion time,  ecj, of a  task Ti, is  the 
minimum time in which this task  can be finished given 
the  precedence  constraints of the  graph. 

The latest Completion time, lcj ,  of a task Tj,  indicates 
how long the completion  time of this task can  be  delayed 
without  exceeding the deadline. 

According to a  possible  schedule, there  exists also an 
552 initiation time ij for a given task T j .  Analogously, it is 

I 2 3 4 5 

then  possible to define for a task T j ,  an earliest initiation 
t ime,  ei j ,  and a latest initiation time, l i j .  

The partially ordered  set is represented by a  digraph 
in which no  redundant  precedences  are  drawn.  In  other 
words, if G contains  arc ( i ,  j )  and arc ( j ,  k ) ,  an  arc of 
the  form (i, k )  is not accepted  as  part of the  set of arcs. 
A  graph of this type is said to be in its r-minimal  form 
[6]. There  exist general  methods to  convert a  graph 
which is not in this form  to its minimal equivalent form, 
such as  the algorithms in [7, 81. For  the particular type 
of partial orders  corresponding  to  computational  graphs, 
however, a  simpler algorithm is possible [ 31. 

Two  tasks Ti ,  Tj  E T are Comparable if either Ti < Tj  
or Ti < Ti. A subset B of T is independent if every  two 
elements of B are  not comparable. An  independent sub- 
set  is  also called an antichain. A subset of T is a chain if 
every  two of its elements  are comparable. 

The activity of task Tj in graph G is defined as 

1, for t E [cj - 4 ,  cj] 

0, otherwise. 
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The load  density  function is defined by 
n 

F ( G ,  C )  = C . f ( C j ,  t ) .  
j = 1  

Then, f( G, c j )  indicates the activity of task Tj along 
time,  according to  some  schedule  that  does  not violate 
the  restrictions imposed by the  graph, and F ( G ,  C) indi- 
cates  the  total activity as a function of time.  Clearly, 
max,F(G, C) indicates the  number of processors re- 
quired for  the  schedule defined by F (  G, C) . 

If we call E, the  vector of the earliest  completion 
times of graph G ,  then F( G,  E,) is the earliest  load  den- 
sity  function, that  is, it corresponds  to a schedule  where 
all tasks  are  processed  as early as possible.  Similarly, 
calling LC the  vector of the  latest completion  times l c j ,  we 
can define a latest  load  density  function. We denote by 
F,,,( G, C) its  maximum along time. 

Due  to  the  precedences of the graph  not all the ver- 
tices in an antichain are simultaneously  active  according 
to  the load  density  function in consideration. If we use 
some specific load density function as  reference,  the  sets 
of simultaneously active  vertices will be  called active 
antichains. When  not  said otherwise, it  will be under- 
stood  that we use  the earliest load density  function as a 
reference. 

For a given schedule, we indicate as o the total  time 
to  process all the  tasks in T .  

A  graph G includes a  graph G’, denoted by G 2 G‘, if 
G possesses at  least all the  precedences of G’. In analogy 
with set  theory it is possible to define for  graphs  the op- 
erations of 1 ) precedence union, G ,U G,, denoting the 
set of the  precedences  either in G I  or G,; and 2 )  prece- 
dence  intersection, G I  1;1 G,, denoting the  set of prece- 
dences common to G I  and G,. Figure 1 illustrates some 
of these  concepts. 

3. Scheduling as a graph transformation 

3.1.  Precedences  of  the  original  graph 
Given a  graph G there  exist a set of precedences  corre- 
sponding to  the ordering of the  elements of V .  Some of 
these  precedences  are defined by an  arc of G, Le., an 
element of the  set A ,  and  others  are implicit due  to  the 
transitivity of the ordering  relation.  When the partial 
order  describes a set of computations  these  precedences 
correspond  to logical dependencies of the  vertices  and, if 
G is in its .r-minimal form  as  assumed earlier, no arc can 
be  removed  without violating some of the logical con- 
straints of the  computations.  Therefore, we assume  that 
G has  the minimum possible number of precedences 
consistent with the logical constraints of the  set of com- 
putations. 

The set of logical  precedences of G, PI, ,  is the  set of 
all the  precedences implied directly  by the  set of arcs, A ,  

precedence 
Time 

D=t,,=7 

5 eq ec, 10 Icj 

2 0 2 0 2  

3 0 1 1 2  
4 0 3 2 5  
5 2 1 2 7  

6 1 2 6 7  

7 3 5 5 7  

e precedence 

P, = j(2,4), (2,6), (2,7), (3,4), (4,6), (6,4), (6,5), (6,7), (7,6)[ 

Figure 2 Graph precedences 

and by the transitivity of the ordering  relation. Notice 
that PI,  = Gt,  the  transitive closure of G. Due  to  the 
earliest and  latest completion  times of each task in G, 
there  are  tasks which  always finish before others  start, 
which implies the  existence of time precedences. 

The set of time  precedences,  P,, is the  set of all those 
precedences (a ,  p )  g P,, such  that eip 1 lea. An all pre- 
cedence  graph, APG, is the graph  obtained by adding to 
G the time precedences P,, and eliminating the  redun- 
dant  precedences  (this is called in [4] a “complete in- 
formational graph”).  An  APG is clearly  equivalent to G 
with respect  to  the logical relationships of the  tasks,  and 
the  set P, only  makes  explicit precedences  that are im- 
plicit by the timing relationships of the  network. 

The set of e-precedences, P,, is the  set of precedences 
(a ,  p )  g P,, such  that eiS 1 eca. That  is,  the e-prece- 
dences  are  the implicit precedences which exist when all 
the  tasks  are in their earliest  positions. Notice  that Pe 2 
P,. Similarly, if all the  tasks  are in their  latest positions 
we have a set  of  I-precedences, P,, which are  those pre- 
cedences (a ,  p )  g PI,, such  that lib 1 Ice.  The  set of ad- 
missible  precedences, Pa, is the  set of those  precedences 
(a, j3) g P,, such  that I,? ece. That  is, Pa contains pre- 
cedences which  can  be added to G without its critical 
path exceeding D.  Clearly, Pa 2 P,. 

Figure 2 illustrates the  concepts  above.  Notice  that 
while P, and P, contain precedences which are mutually 
compatible, Pa contains  precedences which  could be 553 
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Figure 3 Relationship between optimal rn and optimal t. 

mutually  incompatible, i.e., adding one of them  could 
invalidate any of the  others.  The  reason  for this is that 
adding one of these  precedences  forces  the  task  at  the 
head of the  arc, y ,  to  be performed at a  time  which  could 
be  later  than  its earlier  starting  time, thus preventing the 
existence of some  precedences in P a  which have y as a 
tail vertex  (and which were defined assuming y to be in 
its earliest position). 

3.2. Basic  scheduling  and  optimal  scheduling 
Two of the  fundamental problems in scheduling theory 
are: 1 ) a deadline for  the execution  time of a  given set of 
tasks must be satisfied using a minimum number of pro- 
cessors; and 2) a fixed number of processors must be 
used to  execute a set of tasks in a minimum time. There 
are some dual  aspects in these  two problems  although 
they  are  not completely  symmetric. In this paper we 
consider  the first of them,  but most of the  considerations 
apply to  the  second  one as well. 

A basic  scheduling strategy [9] consists of assigning a 
task  whose predecessors  have been  completed to  the 
first available processor.  In  other  words, basic schedules 
contain no artificially idle processors,  that is, if a proces- 
sor is idle it is  because  no  task  can be  assigned to it. We 
denote  as S ( G )  the  set of all the basic schedules of G. 
S ( C )  may contain  many  schedules because  there could 
be  more than  one task ready  when a processor  becomes 
available. 

It is known that S (G)  may not  contain the optimal 
schedules of G [2], Le., allowing some idle time can  de- 
crease  the  number of processors  or  the execution  time 
with respect  to  the  best corresponding schedules in 
S (G) .  However, if G is transformed in the way discussed 
later, it can  be  shown  [4]  that it is then possible to  ob- 
tain the optimal schedules of G by determining  only the 

554 basic schedules of the  transformed  graph. 

Figure 3 shows the relationship, for a given graph G ,  
between rn, (the minimum number of processors re- 
quired to execute  the  set T within the deadline D )  and 
to, (the minimum time in which the  set T can  be  com- 
pleted with rn, processors).  The 0 ' s  represent  the mini- 
mum values of time for basic schedules using a given 
number of processors,  and  theO's  represent  the mini- 
mum number of processors  required  to  achieve a given 
deadline using basic  scheduling on G.   The two  basic  op- 
timization  problems  can  then  be expressed  as follows. 

1. For a given deadline D the  corresponding value of m, 
(given by the  nearest optimal point on  the  left), must 
be  determined. 

2. For a given value of m, say M ,  the  corresponding min- 
imal time, t,,, must be determined.  Notice  that in 
general,  basic  scheduling will not  be  optimal, in fact 
for time-optimal schedules  it  can give  times  almost 
twice as long as  those obtained  with  optimal sched- 
ules [2, 91. 

3.3. Graphs  associated  with  a  schedule 
Consider  an  arbitrary  schedule s, described by a Gantt 
chart in Fig. 4(a).  The sequencing of the  tasks in this 
schedule  determines implicit precedences among  them, 
i.e., if cj 5 ik, then Tj < Tk.  If we study all the graphs 
that satisfy  this schedule, i.e., whose scheduling does not 
violate the  precedences established by s, we obtain a set, 
which is characterized below. 

Associated with  a  given schedule s, there  exists a set 
of graphs, C,, where a  graph G,(s)  in C, has  the  same 
set of weighted vertices as G, and  does not contain any 
precedences  that violate the  precedences of s. The  set 
C, is composed of the following graphs. 

1. A total-precedence  graph, GtP, where all the prece- 
dences of the schedule appear  as logical precedences. 

2. A set of minimum-precedence  graphs, MPG,  where 
there  exist a minimum number of the logical prece- 
dences of Gt,, necessary  to maintain m chains  between 
the  entry and exit vertices. 

3 .  All the graphs G, such  that G,, 2 G, 2 G,,, where 
G,, is a graph in MPG. 

4. All the graphs G , ( s )  that  can  be obtained by deleting 
precedences  from  the  three  sets  above. 

The graphs  in l ) ,  2) ,  and 3)  have exactly m chains if s 
is a schedule  for m processors, while the  graphs in 4)  
have more than m chains. The  set in 4) includes I ,  the 
graph of independent  tasks.  Clearly, all the  schedules 
that  can be  obtained by permuting processors,  for exam- 
ple  switching the  processors  for T ,  and T ,  in Fig. 4 (a)  
have  the  same C,. Figure 4 shows  some of the  graphs in 
the C, of a given schedule. 

As the  set of graphs in C, is obtained by starting  from 
G,, and deleting precedences until the graph of indepen- 
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Figure 4 Graphs  associated with a schedule. 

dent  tasks is reached, it constitutes a  partial  ordering. 
Furthermore, C, is isomorphic to  the  set of subsets of a 
given set  (in this case  the original set is the  set of pre- 
cedences in s), therefore C ,  together with the  operations 
of precedence-union and  precedence-intersection (de- 
fined in Section 2 ) ,  constitutes a Boolean lattice [ lo]. 
Similarly, the partial orders  that  start  from  any G, in C, 
and go down  to I or  up  to G,,, by deletion or addition or 
precedences  are Boolean  lattices. Figure 5 shows  the 
general  form of the partial  ordering of C,, indicating the 
number of chains of its  graphs. 

9 3.4. Interprefation  of  the scheduling process 
The optimal  scheduling of a  graph G can  be  described as 
transforming G into a  graph G'  defined below, and per- 
forming basic scheduling on G'. 

For processor-optimal  schedules we have  the mapping 
K , : G  + G' such  that FmaX(G', E,) is a minimum and 
t,, (G' ) i D,  and for time-optimal  schedules the mapping 
is &:G + G' such  that Fmax(G', E,) 5 m and t,,(G') 
is a minimum. 

The  determination of processor-optimal schedules can 
be  visualized in terms of the  lattices of the  graphs  asso- 
ciated  with given schedules.  The  set of all the schedules 
of G defines  a set of C, lattices,  one  for  each  schedule 
as in Fig. 6 (considering  as one  schedule all the sched- 

ules  which can be  formed by permuting the  processors 
associated with  given tasks). All these lattices have a 
common part formed by G and all the  graphs  that  can  be 
obtained  deleting precedences from G, including I .  The 
sublattices  between G and  its G,,'s are all different. 
Some of these  schedules  are optimal, and  their C, lat- 
tices  then  contain one of the G'  as defined by K ,  above. 
To  go  from G to  any of the G'  requires addition of arcs, 
which  indicates a way of proceeding to  obtain optimal 
schedules  (indicated by  a double line in the  figure). A 
wrong choice of arcs  at a given  stage can lead to a 
schedule  where fcD(Gt,,) > D,  and backtracking is then 
necessary. Scheduling  algorithms, such  as  the  one given 
in [3]  and further discussed here  (Section 4), are  ways 
to guide the choice of arcs  to  add in the  search  for a G'. 
The  use of lower bounds  on  the number of processors 
[ 1 11, is of great value in this procedure  (Section 4). 

3.5. The number of processors 
We relate now the number of processors m to  the  struc- 
ture of the graph and its  basic  scheduling. 

The number  of processors  for  maximum parallelism, mp, 
is the  number of required processors so as  to  have a 
processor available for  every  executable  task in G, when 
a basic schedule is being constructed. 555 
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Figure 5 Lattice of the C, graphs of a schedule s. 

2. If rn, I rn 5 rnp, the C, are  such  that all graphs G,, 
G,, E Gi G,,, contain at least r - rn additional  pre- 
cedences (including e-precedences)  between  the ver- 
tices corresponding to  those  active antichains of G 
that  have cardinality  r > rn. 

I 
, m chains 

3. If rn < rn,, all graphs G, in C,, such  that G,, G, 

I Gt,, a. include at  least r - rn precedences (including e- 
precedences)  added  to all those  antichains of G 
with  cardinality  r > r n ;  

b. t,,(G,) > D. 
> m chains 

Proof 
1. If rn 2 r n p  as  soon  as  the  predecessors of a task  are 

completed  there is a processor  ready  for this task. 
Therefore,  no  precedences  are forced  upon the  tasks 
to  accommodate them into a  given  number of proces- 
sors.  There  exists  then a unique basic  scheduling for 
G. In  this basic  scheduling the  tasks  are scheduled as 
early  as possible, and  the  precedences in s are  the 
union of the logical precedences of G and  the e-pre- 
cedences of G. Removing precedences from s, that is 
from Gt, (s) , results in  graphs that  have critical paths 
at most as long as t,, [G,, ( s )  3 ,  which, since  there  are 
always  processors available, is  equal to t,, (G).  

2. When rn < r n p  some of the  tasks  have  to  be serialized 
to fit into a number of processors smaller than rnp.  

tasks  to  share  processors.  If in every  active antichain 
of cardinality  r > rn, r - rn precedences  are  added 
either explicitly or  as  the result of the  e-precedences 
of the transformed  graph, then  the graph will nowhere 
have more  than rn chains. 

3 .  Part a) is the  same  as 2).  Part  b)  is proved by noting 
that, since rn < rn,, there  are  not sufficient processors 
to finish the  tasks within D ,  so that t,, (G,) > D. 

G Arcs  have  to be added  to  the graph to  make some 

Figure 6 Optimal scheduling and schedule  lattices. 

Clearly,  because of the definition of F(E,, t )  the fol- 
lowing lemma is true. 

Lemma r n p  = F,,,(E,, t ) .  Notice  the difference between 
rnp, rn, (the minimum number of required processors so 
that w = D ) ,  and rn, the number of available processors. 
Also, r n p  1 rn,. 
Theorem  Consider a graph G to be  scheduled into rn 
processors.  The following cases according to  the value 
of rn exist. 

1 .  If rn E rnp, there  exists a  unique  basic schedule s ( G ) ,  
and  the C, are  such  that 
a. Gt, (s) is obtained  by  adding to G its  e-prece- 

dences, 
556 b. t,, (GJ 5 t,, (GI ,  VG, E C,. 

We present now an example to illustrate these ideas. 
Consider  the graph C of Fig. 4 (c). A schedule  into r n p  = 4 
processors is shown in Fig. 7 (a) ,  which also  shows  the 
C,, corresponding  to this  schedule. I t  can  be  seen  that  the 
G,, does  not  have  any  precedences which are  not  also in 
G,  and  that tc,(Gt,)  = t c , ( G ) .  Figure 7(b)  shows a 
scheduleforrn=rn0=3.Herew=t,,(C),andarc(4,5) 
was  added  to  the antichain { 2, 3,4,  5) of G. Figure 4(a)  
shows a schedule  for rn = 2 < rn, processors.  Here w = 
6 > t,,( G ) .  Finally, Fig. 7 (c )  shows  the  case of one 
processor.  Here w = 1 1. When we only have  one  proces- 
sor,  we  have  to  convert G into a linear  ordering, of which 
two possible  configurations are shown. There  are  as 
many possible  linear  orderings as “topological  sortings.” 
The problem of topological  sorting consists of embed- 
ding a partial order in a linear order  such  that  prece- 
dences  are not  violated [ 121. 
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4. Application to a scheduling algorithm 
The  study of the  precedences  associated with schedules 
gives  insight into defining new optimal  scheduling algo- 
rithms, in order  to  improve existing  algorithms or  to  de- 
fine heuristic  scheduling  algorithms. In this  section we 
analyze  an algorithm based on  the addition of prece- 
dences [ 3 ] ,  and we study  ways of improving  its  perfor- 
mance.  Scheduling of arbitrary  graphs  seems  to be an 
essentially enumerative problem [9] and it is then  hope- 
less to look for algorithms  which are efficient in a  general 
sense.  However,  improvements  on existing  algorithms 
can  make a difference from a  practical  point of view. 

A processor-optimal scheduling process is started by 
assuming  some  value for  the  number of processors, m, 
and  then applying a scheduling  algorithm. If no  adequate 
schedule  is  found,  the  process  is  repeated  after increasing 
b'y one  the number of processors, and so on until a suc- 
cessful schedule is found. As the initial value for rn it is 
convenient  to  use a lower  bound  since no optimal sched- 
ule requires a  smaller  number of processors  than this 
value. A sharp  lower bound is valuable,  and an  expres- 
sion more  accurate  than earlier ones is given in [ 1 I ] .  Its 
efficient evaluation is discussed in [ 51, and  some of its 
characteristics  are  discussed in Section 5. 

The algorithm under consideration is a generalization 
of an  idea of Barskiy [4].  For  the  case of processor-op- 
timal  scheduling, it consists of adding arcs  into  the  ac- 
tive antichains of the graph that  have a cardinality  great- 
er than the  number of processors initially assumed.  In 
order  to obtain  a  graph  whose  basic  scheduling is  the 
optimal  scheduling, the earliest load density  function is 
used as a reference in this process.  The graph is trans- 
formed so that  its load density  function never  exceeds 
the  estimated  number of processors.  Then it suffices to 
perform  basic  scheduling on  the  transformed graph to 
obtain a processor-optimal  schedule.  When there is no 
way of adding arcs  at some active antichain  without 
exceeding the deadline, it is necessary  to  backtrack  to 
the previous active antichain, add a new set of arcs  there 
and  continue  the  process. Barskiy proved that if the  car- 
dinality of an active  antichain is r (  >m) it suffices to  add 
r - m arcs in m chains  to  obtain processor-optimal 
schedules. This  was generalized in [3]  where it was 
proved that  to  obtain time-optimal schedules this  result 
is still valid. 

The  process of balancing the load density function as 
described above  corresponds  to moving from G to a G'  
in the C ,  lattice of an optimal schedule s ( G ) .  It suffices 
to  reach any  graph G' between G,, and G,, in the  corre- 
sponding  lattice, to  have a  graph whose basic  scheduling 
is optimal. The algorithms in [3] and [4]  are practical 
realizations of the  abstract  process  described in Fig. 6. 

The  advantages of adding only one  arc  at a  time (in- 
stead of a set of r - rn arcs)  have been  pointed out in 
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Figure 7 Relation between  number of processors,  prece- 
dences,  and  schedules. 

[ 31. Proceeding in this way also  allows the  improvement 
proposed below. 

If we look at  the  arcs  that  can be added  at a given 
moment, i.e., at a particular  antichain, we can classify 
them as follows. There  exists a set of arcs  such  that 
the addition of any  Qne of these  to  the  graph will not 
make the  total completion  time exceed  the deadline. 
This  set  consists of all the admissible precedences Pa.  A 
subset of these, P,, is the  set of arcs  such  that addition 
of one of them will not  change  the value of the  lower 
bound. Notice  that P ,  varies  according to  the  lower 
bound expression  used. The  set of arcs which are 
part of optimal schedules, PC, is a subset of P,. There- 
fore,  as a way of improving  this  scheduling  algorithm 
we  propose  to  recalculate  the lower  bound on  the 
number of processors  after addition of an  arc. If the ad- 
dition of (a ,  p )  makes the previous  lower  bound to be 
exceeded,  then (a, p )  is not added  to  the  graph and an- 
other  arc is tried. 

If the lower bound of [ 111 is  used, and the calculation 
is performed  incrementally [ 51, computational  speed 
can be  improved in this test by considering the following 
aspects. 557 
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1 .  If the  active antichain where  the  arc is being added 
starts  at t = t i ,  only the  intervals  between ti and D 
must be  considered. 

2 .  As  soon  as  the previous  lower  bound is exceeded  at 
any  interval,  the calculation  can  be stopped and the 
corresponding  arc  discarded. 

3. Lower bounds  can  be  calculated in an incremental 
manner, starting from  the previous  values and con- 
sidering only the changes  produced by adding a given 
arc. 

4. If arc ( a ,  /3) fails this test, it means  that /3 cannot  be 
delayed as given by arc (a ,  /3). This eliminates from 
consideration  any other  arcs  that would delay /3 by 
this amount  or more. Also, choosing those  arcs  that 
will produce  the smallest  delay on /3 will increase  the 
probability of finding an  arc  that will pass  the  lower 
bound test. 

5. Consider  two  consecutive  active  antichains of cardi- 
nality greater  than rn at ti and tj. If the addition of 
arcs  to  reduce  the width of the antichain at ti does not 
delay  any tasks  past tj ,  then it can be  proved that  the 
antichain at ti can be bypassed in the backtracking 
procedure.  Moreover, if only a subset of the  tasks in 
the antichain at ti delays  tasks  past ti, then  for  the 
backtracking procedure  it suffices to  consider only 
that  subset of tasks. If this  condition occurs,  there is 
a reduction  in the  number of arcs  to be considered  for 
possible  addition. 

It is necessary  to  take into account,  however,  the 
following concerns. 

Arcs  that satisfy lower bound test might still make 
scheduling fail. This  occurs  because  the minimum 
number of processors may be  higher than  the  lower 
bound and  because previous arcs  added may not be 
part of optimal schedules. 
The complexity of using these  lower bound tests  to 
select  arcs should be less than  the  extra work  per- 
formed because  an  arc  that should have  been rejected 
by this test,  was  chosen.  This is difficult to  evaluate, 
although improvements should  be reasonably  expect- 
ed since the  amount of wasted computation when the 
wrong arc is chosen, is high. 
The selection  criterion of 4) above is in conflict with 
the heuristics proposed in [3], which selects  those 
tasks with the smallest latest completion  times. Both 
heuristics, however, could be combined as follows. 

a. Choose  arc  according  to previous  heuristics  and 
perform  lower  bound test. 

b. If arc so chosen fails lower bound test eliminate 
from  consideration for addition all arcs  that  produce 
the  same  or  greater delay on  the  end  task of this 
arc.  Select  another  arc using criterion 4) and per- 
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When  there is no way to add arcs in an antichain with- 
out exceeding D ,  backtracking to  the previous  anti- 
chain is necessary.  This implies the need to  save all 
the partial values  for all the intervals of previous 
graphs.  An  alternative is to apply the incremental 
lower  bound  algorithm in reverse Y - rn times. 
When the lower  bound of a given  graph is known  and 

an  arc is added to  the  graph,  the  lower bound of the modi- 
fied graph  can  be  evaluated efficiently starting from  the 
set of values  used in the calculation of the previous  lower 
bound. A method to perform  this  evaluation, together 
with some improvements  to  the general  calculation of 
lower  bounds is described in another  paper [ 131. 

H .  0. Levy  has studied the performance of the heu- 
ristics  proposed in [3]  as  the basis of an  approximate 
algorithm for time-optimal  scheduling. In  such  an algo- 
rithm, whenever  the load density function exceeds  the 
given  number of processors rn, arcs  are  added so that this 
load density does not exceed m, but  no backtracking is 
done [ 141. Empirical results  show this to be a promising 
heuristics,  but  more  conclusive tests  are  needed.  The 
same improvement  suggested here  for  the  exact algo- 
rithm, i.e., the  use of the lower  bound to  test  arcs  to be 
added, can  be  applied to  the heuristic  method. 

5. Lower bounds as  graph transformations 
A lower  bound for  the minimum number of processors 
and for  the minimal time  required for  the scheduling 
problems considered  here  was  presented in [ 5, 1 1 1  and 
proved to be more precise than previous bounds.  The 
expression  for  the lower  bound on  the minimum number 
of processors  required  to perform the  computations of G 
in time D is 

r 1 

where ej ( t , ,  t z )  is the  number of units of task Tj  that lie 
in the interval [t,,  t2 ]  if all the  tasks  are in their earliest 
possible  positions, and $ ( t l ,   t z )  is a similar concept but 
with the  tasks in their  latest positions. 

By interpreting  this  kxpression as a transformation  on 
the graph to which it is applied, it is possible to find out 
why the lower  bound expression  does not provide  the 
exact value of the minimum number of processors.  The 
reasons  are  (Fig. 8)  as follows. 

1. The position of a  task within a given interval does 
not affect deadlines of the  other  tasks.  This implies 
that all tasks  are considered as  independent  tasks with 
initiation and completion constraints.  In  other  words, 
the calculation of the bound transforms  the original 
graph G into a  graph G,, where  the  tasks of G be- 
come independent tasks with  time constraints.  In  the 
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particular case  where D = t,,, (shown in Fig. 8 ) ,  if the 
tasks of the critical  path are  decomposed  into unit 
length tasks,  the critical  path  can  be  used as a time 
marker  to define the initiation  and  completion  times of 
the  other  tasks. 

2 .  As intervals are considered  independent of each 
other,  tasks  that  have a  portion that  has  to be done in 
interval [ t,, t z ]  and a portion that can  be processed 
out of this  interval are considered as if the portion 
inside the interval could be processed  at any  time 
within [t,,   t ,]. This effect can  be described by split- 
ting tasks  as  shown in G, of Fig. 8 for interval [ 2 ,  51. 

3. As  the bound considers  the  average of the activity 
that  has  to be processed in interval [t,, t ,] ,  if r is the 
number of time  units of task ti that  have  to be pro- 
cessed in [ t,, t z ]  . This part of Ti is assumed to  consist 
of r independent unit-length tasks ( G  in Fig. 8 ) .  

In  the particular case when the  tasks of G are all of 
unit length, the graph  transformation  indicated above 
converts G into a set of unit length tasks with predeter- 
mined initiation and completion  times.  Only for  graphs 
of the  class of the transformed  graph is it known that  the 
lower  bound is  exact [ 151. 

6. Conclusions 
Characterization of the graphs that satisfy the  prece- 
dences of a given schedule is  of theoretical  interest al- 
though it does not  lead  directly to  better scheduling algo- 
rithms. On  the  other hand,  analysis of the  precedences 
(explicit or  implicit),  that  are  present in a given computa- 
tional graph, is of great  value to  understand  the  process 
of scheduling the  tasks of this graph.  It gives  insight in- 
to means of improving  existing  scheduling  algorithms and 
formulating  new  heuristic methods  for scheduling. 
Based on this study, a few ways of improving  a  previous 
scheduling  algorithm have been proposed.  As  their effect 
depends largely on  the  structure of the graph being 
scheduled, a theoretical  analysis of the improvement is 
very difficult. The  enumerative  nature of the scheduling 
process suggests  this approach  as promising, but  an 
empirical  evaluation would be  needed to  ascertain  the 
computational effect of the proposed  ideas. 

Analysis of the  process of determining  lower bounds 
as a  graph  transformation  also  helps to improve  calcula- 
tion of these lower bounds.  An algorithm for this  pur- 
pose is given in another  paper [ 131. 
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