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Buffer  Overflow in a Store-and-Forward Network Node 

Abstract: Equilibrium  behavior of a  store-and-forward network  node with finite buffer capacity is studied  via  a  network-of-queues 
model. The positive  acknowledgment  protocol is explicitly modeled  and consumes  part of the buffer pool. The principal results  are  the 
buffer overflow probability,  the mean delays, and  the  distribution of queue lengths as  functions of the buffer capacity and traffic levels. 

Introduction 
Previous queuing analyses of store-and-forward (S&F) 
networks  assume node independence, Poisson  arrivals 
to  each  node, and infinite buffer capacity  at  each  node 
[ 1, 21. These  assumptions, justified for low traffic levels, 
lead to  convenient decoupled M / G /  1 queuing  models 
for  each line or channel. 

This  paper examines the  case of finite nodal buffer 
capacity. Since we retain the  assumptions of node in- 
dependence and  Poisson  arrivals to  each node, our re- 
sults  are valid for  moderate traffic levels or nodes  with 
several input lines. To relax these  assumptions  requires 
solution of various  network  functional dependencies. 

Our main results  are  the buffer overflow probability, 
mean delays,  and distribution of queue lengths  as func- 
tions of the buffer capacity and traffic levels at  the  S&F 
node. The main differences between  our model and 
models of finite-capacity  statistical  multiplexors or  de- 
multiplexors [3, 41 are  the incorporation of blocking by 
neighboring nodes  and explicit  employment of a por- 
tion of the buffer pool for  packet retention until receipt 
of positive  acknowledgment (ACK) ; numerical calcu- 
lations show  that  these  processes may contribute sig- 
nificantly to buffer usage.  A similar finite-capacity buffer 
allocation model without the  ACK protocol is under 
investigation by Irland [ 51. For a  detailed  description 
of one  set of protocols, and  for acknowledgment and flow 
control,  see  the  ARPANET  documentation [6, 71. 

Loss model description 
A node with a pool of N buffers (room  for N packets) is 
considered.  This  and  the  next section describe a “loss” 
model where any  arriving  messages are lost if all N buf- 
fers  are full. A subsequent section describes  the modi- 
fications needed for a “repeat” model, where  packets 
rejected  by  this  node are timed-out by their  senders  and 
retransmission is repeatedly attempted until ultimate 
acceptance. 542 
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We assume  that  there is only one  class of messages 
(no  priorities), and that all messages are single packets 
(no message  segmenting or message reassembly).  The 
buffer size  must  be sufficiently large that  there is negli- 
gible probability that a packet will not fit  in one buffer. 

The configuration is shown in Fig. 1. Node 0, under 
investigation, has  one  or more  input  lines  and L 1 1 
output lines. Lines  can be either common carrier facilities 
or channel attachments  to locally-connected  terminals 
and  hosts.  Thus,  some of the traffic at  the  node  can  have 
local origins and/  or  destinations,  and communication 
between a pair of local devices is permitted. A  neighbor- 
ing node or  attached  device may have both an input line 
to, and  an  output line from, node 0; when  this happens, 
the line and neighboring node or  attached  device  are 
assumed to be full duplex,  because  the model treats  every 
incoming and outgoing line from node 0 as independent. 

There  are Ai packets/s arriving at  node 0 for  output 
line i ,  i 5 i 5 L. We let A = hi +.  . . + A, denote  the  total 
offered traffic rate and Pi = h i /A  denote  the fraction of 
the traffic headed for line i. All arrivals are  assumed 
Poisson, and all packet lengths are assumed  indepen- 
dently  and  exponentially distributed.  The  assumption 
that inter-arrival  times and  packet lengths are statistically 
independent  rules out  the  case of very  heavy traffic where 
successive  packets  can  arrive contiguously. These  are 
the same  as Kleinrock’s independence  assumptions [ 11. 

An incoming packet is admitted if one of the N buffers 
is free;  otherwise it is lost. This  is  assumed  to be true  for 
both local  and remote  sources,  and  for all line speeds. 
Hence  the Pi  describe  the branching ratios  for both 
offered and admitted traffic, and 

denotes  the  number of packets/ s admitted to line i. Here 
B is the probability that  the node is blocked  (all N buffers 
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are full) ; its  calculation is one of the main results of this 
paper. The node throughput,  or total  admitted traffic, is 

Xu'' = A (  1 - B )  packets/ s. ( 2 )  

An admitted packet is stored in one buffer and queued 
(via  pointers)  for  service  at  the  node  processor.  Here 
the  checksum is verified, a  routing  decision is made, and 
the  header is revised. The  packet is then  queued  for  trans- 
mission over  the  appropriate  output line. The  processor 
operates  at a speed of S o  bits/ s, and  serves  the queued 
packets in a  first-come  first-served (FCFS) order. 

Output line i, 1 5 i 5 L,  operates  at  the speed of Si 
bits/ s and transmits the queued packets in FCFS order. 
When  a packet transmission is completed,  the buffer is 
not freed.  Instead, a copy of the  packet  is retained at 
node 0 until either a positive  acknowledgment (ACK) 
is received,  or until a pre-specified timeout  interval is 
exhausted.  These  outcomes  occur with probabilities 
1 - & > 0 and & < 1 ,  respectively, where& is assumed 
to be  known and  constant  for  every  packet  sent  over 
line i. 

It is assumed that  the  ACKs  sent  to  node 0 from its 
neighbors will always  be accepted by node 0 without 
blocking and  without  increasing the offered load. Con- 
sequently,  the probability 1 -8  of receiving an  ACK is 
the probability of three  events:  The  packet  was trans- 
mitted over line i without error;  the node or  device  at 
the receiving end of line i was  not  blocked,  and  generated 
the  ACK promptly  enough to  arrive before the timeout 
clock expired;  and  the  ACK  was transmitted to  node 0 
without line error.  These  three  events  are usually con- 
sidered independent;  consequently, their  probabilities 
multiply. The model, therefore,  computes  the blocking 
probability of node 0 in terms of the blocking probabili- 
ties of its neighboring nodes. 

We  let T y  denote  the mean timeout  interval  selected 
for line i, and TACK denote  the mean  time until an  ACK 
arrives, given that  an  ACK  rather than  a  timeout will 
occur.  The associated  random  variables may have arbi- 
trary  distributions, subject only to having  rational  La- 
place  transforms. In  practice,  the timeout  distribution 
will be highly concentrated  at T F ,  and the  ACK dis- 
tribution will be unimodal with support  on [0, TTO]. The 
result is  that  the main quantity of interest is 

T r  E [& T Y /  ( 1 -&)I + TACK, 

namely the mean  total holding time for all timeouts and 
the  one ultimate ACK. 

The times-till-ACK  for successive  packets  trans- 
mitted over line i are assumed to  be statistically  indepen- 
dent and identically distributed;  the mean ACK time 

if the  node  or  device receiving traffic from line i generates 
T Y K  1s ' therefore well-defined. This assumption is valid 
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Figure 1 Configuration: Node 0 with L output lines. 

ACKs promptly,  but if lags occur  under heavy traffic 
conditions, a  possible  correlation  phenomenon would 
require  study by a  two-node  model. 

If a packet transmitted over line i receives an  ACK,  the 
buffer is freed for  further  use. If the  packet is timed-out, 
it is then placed (by  pointer)  at  the tail of the  queue of 
packets awaiting  transmission over line i; the number of 
occupied buffers remains  unchanged. 

The model assumes  that  each admitted packet is per- 
mitted an infinite number of retransmission attempts; 
hence, it is eventually  transmitted  successfully. The 
average  number of transmission attempts  over line i 
will be 1 / ( 1 -&) . The  assumption is reasonable if the 
failure  probability per  attempt& is less than,  for  example, 
0.6- 0.8. This is because,  on  the  average,  fewer than 2- 5 
attempts will suffice; any line with& exceeding  this mag- 
nitude would normally be  regarded as unusable. 

Analytic results for loss model 
The  above  processes in node 0 can  be modeled as  an 
open  network of queues [8] with 3L + 1 service  centers. 
The  state (k , ,  k , ,  . . ., k,, m,,  . . ., m,,, l , ,  . . ., /,) of the net- 
work is defined as follows. 

k ,  = Number of packets  queued  for  service  at  the proc- 
essor, which is modeled as a FCFS single expo- 
nential server with rate p,= S O I A  packets/ s, where 
A denotes  the mean number of bits per  packet. If 
k, 1 1 ,  the first packet is being processed; 

ki = number of packets queued for transmission over 
line i, 1 5 i 5 L, which is modeled as a FCFS single 
exponential server having rate pi = S i /  A packets/ s. 
If ki 3 1, the first packet is being transmitted; 

mi = number of packets  transmitted  over line i, 1 5 
i 5 L,  and  awaiting ACK, which in fact will be 
successfully ACKed.  This  service facility is mod- 
eled as  one without  queuing,  namely as  an infi- 
nite  number of parallel servers,  each with mean 
service time ~ 4 ' ~ ;  543 
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li = number of packets transmitted over line i, 1 5 i 5 
L, and  awaiting ACK, which is fact will be timed- 
out.  This service facility is also modeled as having 
an infinite number of parallel servers,  each with 
mean service time T T O .  

The following auxiliary  variables are also  needed. 

n, = mi + li = Number of packets  transmitted  over 
line i and  awaiting ACK  (only ni is observable, 
mi or li are not observable), 1 5 i 5 L ;  

k,9,, = ki = total number of packets  queued  at  the 
processor  and  output lines; 

nsum = ni = total number of packets awaiting ACK; 
s = k,,, + n,,, = number of occupied  buffers; 
B = Pr[s = N ]  = steady  state buffer overflow prob- 

ability for node 0. 

The transcription to  the network-of-queues  formulation 
operates  as follows. The arrival rate  to  the system is 

A 0 5 ~ 5 N - 1  
A(s) = 

0 s = N (arrivals  lost when blocked), 

and all arrivals appear  at  the  processor  queue. 
The branching  probabilities for  the model are  as fol- 

lows.  When finished at  the  processor, a packet  goes with 
probability Pi to  the  queue  for transmission line i :  k, 
drops by 1 and ki increases by 1 .  After transmission over 
line i ,  the probabilities are 1 -fi andJ  for  ACK  or  TO; 
ki drops by 1 and  either mi or l i ,  respectively,  increases by 
1 .  After arrival of an  ACK  from line i, mi drops by 1 and 
the  packet  leaves  the  system.  After expiration of the 
timeout  clock for line i ,  the  packet is re-queued  for trans- 
mission over line i :  /, drops by 1 and ki increases by 1 .  

Because each of the 3L + 1 service centers has either 
a FCFS exponential server  or an infinite number of par- 
allel servers whose service time  probability  density has 
a  rational Laplace  transform, local balance  condi- 
tions hold and the  steady-state  joint-state probability 
P [ k 0 ; .  ., k,, m,; . ., m,, l1;. ., /,I has  a product form [8]: 

ki, mi, li E 0; s 5 N ,  (3) 

where 
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The normalization factor P ( 0 )  , which is  the probability 
of an  empty  node, is determined by the normalization 
condition 

Note  that if all offered traffic were  accepted,  then po and 
pl ,  1 5 i 5 L,  would represent  the  server utilizations at 
the  processor and  ith output line. Since some of the of- 
fered traffic is rejected,  the p exceed  the  server utiliza- 
tions and  are permitted to  exceed unity. However, in 
practice  the offered traffic should  satisfy 

A < A* = min [ pu, min pi( 1 - A )  / P i ]  ( 5 )  

so that pi < 1 for i = 0, 1 ,  . . ., L. Otherwise  one of the 
FCFS servers  (processor  or line) will be  unable to handle 
all the traffic offered it,  and this will result in a  very high 
buffer overflow probability. 

l C i C L  

The  node  output  rate satisfies 

AoUt = A (  1 - B )  5 A* (if N is finite), (6) 

showing that A* is the maximum  possible  throughput 
of node 0, achievable  only when both N and A + m. 

Equation (6) is derived by noting that  the  processor 
serves A (  1 - B )  5 po packets/ s, while the ith line trans- 
mits P i (  1 - B )  / (1 - A) 5 pi packets/ s. However, a 
fraction 1 - f i  of these transmissions is successful. To- 
gether  these show that A (  1 - B )  5 A*. 

The  results tabulated  below, and  derived in the  Ap- 
pendix, assume  for simplicity that { 1, pu, pl,. . ., p,} are 
all distinct [ 91. If  confluence occurs,  one  has a choice 
of the following. 

1 .  Appropriate  derivatives of the analytic expressions 

2. recursive  computation of the quantities of interest 

3. deliberate  perturbation of the pi to avoid  confluence, 
and extrapolation of the numerical results  as  the  per- 
turbation  approaches  zero. 

given below [ 101 ; 

[ 10, 1 1 ,  121; 

The third approach  is  the simplest, and  perturbations  on 
the  order of 0.0 1 - 0.1 percent  have been  found to yield 
satisfactory  results. 

The  expressions given below are  sums  or  products  over 
the L output lines. The computational  effort is modest 
since 1 5 L 5 4 in practice,  and the  expressions  are well- 
behaved away from the confluence of { 1 ,  po, pl ,  . . ., p,}. 

It is frequently  possible to neglect the  queue  for  the 
processor,  because  the  processor  speed is usually sig- 
nificantly higher than  the  output line  speed. The follow- 
ing expressions  can be adapted  to  the  case of infinite 
processor speed  by  setting 
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k, +- 0,  po + 00, po + 0 ,  + X, n I1 L L 1. I' 

i-0 i = l  i=o i = l  

I. 

h( i )  ( 1  - p j / p i )  f o r i =  1 ; . . , L  
j=l 
3 f i  

(set h ( i )  = 1 if L =  1). 

factor P ( 0 )  is given by 
The main results are  as follows. The normalization 

where 

h( i )  (1 - p j / p i )  i = O ,  I;.., L 
L 

1 =p 
3 it1 

N .  

E,(x) = x ' / i !  N = 0,  1, 2; . .  
i = O  

I. 

y1 = n ( 1  - P i )  
i=O 

1, 

T" = Pi T y  = mean holding time. 
i = l  

The  joint distribution P [  k,, . . ., k,, n,; . ., n,] of packets 
awaiting  service or ACK is given by 

The  joint distribution of k = k,,, and n = nsum is given by 

P [ k ,  n] = P ( 0 )  [i ( ~ ~ ) ~ / h ( i ) ]  ( A T H ) n / n !  
i = O  

k , n ? O , k + n 5  N .  ( 9 )  

The probability that exactly s buffers are occupied is 

P [ s ]  = P ( 0 )  E,(AT"/pi) 
( p J S  

i=O M i )  

s = 0, 1, 2; . ., N .  (10) 

The  correct result P [ s  = 01 = P ( 0 )  follows  from 
1 / h( i) = 1, obtained by setting z = 0 in Eq. (A 1 ) .  Of 
special interest,  the  node blocking probability is 

1, (p.)" 
B = ~ r [ s  = N ]  = P ( O )  E , ( A T ~ / ~ ~ ) .  (11) 

The node  throughput A"" can be  calculated from  Eq. 

i = O  Mi) 

(2) or from the relationships 

I, 
Aout = po Pr[ko 2 11 = E pi( 1 - A )  Pr[k, 3 11. 

i = l  

The mean queue lengths are given by 

E[rn,] = a i  Pr[s 5 N - I ]  = APi T y K  ( 1  - B ) ,  

1 5 i 5 L ;  

E[/{] = hi Pr[s 5 N - 11 

= A P , & T ~ ' ( l - B ) / ( l " f i ) ,  

1 5 i Z L ;  

E[n,] = E[m, + 4 1  = (ui + b i )  Pr[s 5 N - 11 

= P i  Ty  (1  - B ) ,  1 5 i 5 L ;  

+ Ci E,_,(hTH/pi) + F i ] ,  0 5 i 5 L, 

where 

1, ( p j ) N + l  E , ( A T ~ / ~ J  

i = p  h ( . j ) ( l  - p j / p i ) ( l  - p j ) '  
F, = E 

If1 

The mean and mean square  number of occupied buf- 
fers  are given by 

A T H  
E,(ATH) +- y1 E,-,(ATH) 

E[.s2] = P ( 0 )  [ (ATH) '  E,-,(ATH) 

+ 2( 1 + y,)ATH E,-,(ATH) 

+ ( 3 ~ '  + Y,) E,(ATH)l/y, 

+ ( N 2  + 2N + 4) (pi)*'+' + ( N  + 1) (pi),+, 

h ( i )  ( p i  - u 3  1 

where y p  = X:=, pi /  ( 1  - p i ) ,  y 3  - ( y J 2  + X:=, [ p i /  ( 1 - 
p i ) ]  ', and E-, ( x )  = E-,(x) = 0. The buffer utilization 
may then be calculated as E[ s] / N .  

The  expected delay Di at  node 0 for a packet headed 
toward line i. measured from  admission to  node 0 until 545 
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Figure 2 Node  throughput vs offered  traffic. 

I Number of buffers 

Figure 3 Node  throughput vs buffer  capacity. 

completion of successful  transmission over line i, is 
given by Little's formula [ 131 as 

Di = E[ k,] / AUut + E[ ki] / Ayt + E[ 41 /Art, 1 5 i 5 L, 

where the throughput traffic rates Aout, AFt are defined 
by Eqs. ( 1 )  and ( 2 ) ,  and  the  expected  queue lengths 
are given by Eqs. ( 13 1 and ( 15).  The  three  components 
of the  delay, described  respectively, are 1 )  a processor 
delay  which, as mentioned above, may frequently be 
neglected, 2)  a  queuing  and  transmission  time for  an 
expected 1 / (1 - J ; )  A transmission attempts  over line i ,  
and  3) a wait E[ li] /A?' = TTo/ ( 1 - A)  for  an ex- 
pected A/  ( 1 - A )  timeouts. 

Buffer behavior as N -+ M is readily  obtained in the 
non-saturated  case  where A < A *  because  every (pi)" 
-+ 0 and EN(x) -+ e". We find P ( 0 )  -+ y1 exp(-ATH), 
B -+ 0. and 
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L I, 

E[s] -+ y p  + ATH = x p i /  (1  - pi )  + AiTiACK 
i = O  i = l  

L +x A i f i  T'0/(1 - A ) ,  
i= l  

E[s2] -+ (ATH)' + 2(  1 + y,) ATH + 3yz + yt, 

;'(s) E E[s*] -E[$]' -+ 2ATH 

The 3L + 1 contributions  to  E[s]  represent  the mean 
number of packets  at  each of the 3L + 1 service centers. 
This is consistent with E[m,] -+ ut, E[li] -+ bi, and 

To  determine buffer behavior as  the offered load A 
approaches 0 or infinity, assume  that  the  proportions 
P, ,  . . ., P ,  and  the mean holding times TF remain  con- 
stant.  Put pi = gih, where go = l / p o ,  and  where gi = 
P i /  (p i (  1 - A ) ) ,  1 5 i 5 L.  Note  that  the gi and h ( i )  are 
independent of A,  and that  Eq. ( 10) implies 

a 4 1  -+ P i /  ( 1  - P i ) .  

where q, (s i ) ,  E,( T H / g i )  / h( i) is independent 
of A and N.  In particular, the  ratios P [  s] / P [  s']  scale  as 
As-". For light loads  this  yields,  since qo = I ,  

B = q N A K  + O (  A""), 

Since N is usually large, Eq. (18) suggests that blocking 
is negligible if A is below a threshold, but that  saturation 
is rapidly approached  as A advances beyond  this thresh- 
old. Figures 2 and 4, discussed in the following section, 
illustrate  this behavior. 

As A -+ m, only s = N and s = N - 1 have  appreciable 
probabilities, so that 

B = P r [ s = N l = 1 - U N / A + O ( l / A 2 ) ,  

Pr[s = N - 13 = U N / A  + O (  1 / A 2 ) ,  (19)  

where 

The  node throughput is 

A o U t = A [ l - B ] = U N + O ( l / h ) .  (21) 

Thus, U ,  packets/s is the maximum  possible  through- 
put from an N-buffer node,  and is achievable  only  when 
A -+ m. Equation (6) may be extended  to 

A U U ' = h ( l - B ) 5  U N 5 A *  
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(if N is  finite). Also, it follows from Eq. (20)  that [ 141 

Note  also  the lower  bounds B 3 1 - U,/A 1 1 - A * / A  
on  the blocking probability. 

Numerical  example 
Numerical  calculations  were  performed for a node with 
L = 4 output lines,  whose blocking probabilities  and 
branching  probabilities are given byf; =f, =f,=f,= 0.05, 
and ( P , ,  P, ,  P,, P4) = (0.15, 0.18, 0.40, and 0.27).  An 
infinitely fast  processor is assumed,  and line speeds  are 
given by (p,, p2,  p3, p4) = (9.6,  9.6, 19.2, and 50)  
packets/s;  these  correspond  to 1000-bit packets  sent 
over (9600, 9600,  19200, and 50000) bps lines, with 
the  last possibly representing  a  channel connection.  Mean 
timeout  intervals  were taken as ( T y )  = (0.6,0.6,0.3,0) 
s ,andmeanACKtimesas  (T~"K)=(0.12,0.12,0.06,0) 
s, roughly the reciprocals of the linespeeds.  Maximal 
possible  throughput of the node is given by Eq. ( 5 )  as 
A* = 45.6 packets/ s. 

Figure 2 plots A O U t  against A,  with N as  the  parameter; 
the  computations  are based on Eqs. (2)  and ( 1 1 ) .  The 
curves show that  no  more than 60- 80 buffers are justi- 
fied, because linespeed rather than buffering becomes 
the  dominant bottleneck.  Each curve has an asymptote 
U,, given by Eq. (20).  Note  the  sharp  turnover in each 
curve in the vicinity of A = U,: for N moderately  large, 
the  behavior is AuUt - A for A < 0.7 - 0.8 of U,, and A''' - U ,  for h > 1.3 U,. 

Figure 3 plots hUUt vs N ,  with h as a parameter.  The 
upper  envelope,  where A + 30, corresponds  to U ,  of 
Eq. (20). This  presentation is convenient  for selecting 
buffer sizes; e.g., at most 15 buffers are needed if A = 20 
packets/s. Nothing is gained by using more than  about 
60 buffers. 

Figures 4 and 5 plot the node blocking probability 
B vs N and A .  Figure 4 exhibits the  same  turnover be- 
havior as Fig. 2: B << l provided A < 0.7 U,, and B - 
(1 - U,/A)  for A > 1.3 CJ,. Figure 5 has  the  same  con- 
venience as Fig. 3 for  the buffer design, e.g., to  accom- 
modate A = 20 packets/ s. At most, about 13 buffers 
are needed. 

Figure 6 plots buffer utilization E(s) / N vs A with N 
as  the  parameter;  the  computations  are based on Eq. 
( 16). Note  that  the buffer utilization approaches unity, 
regardless of N ,  as A approaches A". For  an N = 20-buffer 
node with 40 packets/ s of oKered traffic, Fig. 6 .shows  a 
buffer utilization of 60 percent.  This  consists of a buffer 
utilization (see Eq. ( 14) and  Fig. 4)  of 

I 

- 

I Node input rate (packets/s) 

Figure 4 Overflow  probability  vs  offered  traffic. 

Figure 5 Overflow  probability vs buffer capacity. 
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I Node input rate (packets/s) 

Figure 6 Buffer  utilization vs offered traffic. 

due  to  packets awaiting  acknowledgments, and a re- 
maining buffer utilization of 44 percent  for  packets await- 
ing transmission. Note  that  the positive  acknowledg- 
ment protocol contributes significantly to  the buffer 
usage. 

Repeat model 
In  the  above loss model, incoming packets rejected by 
node 0, because of buffer saturation,  are permanently 
lost. In practice,  the sending node will timeout  and later 
(repeatedly)  attempt retransmission to  node 0. If it is 
assumed  that  the timeout  interval is long compared  to all 
relaxation  times at  node 0, the effect of the retransmis- 
sion attempts is to magnify the Poisson  arrival stream  to 
node 0 by a factor of 1/ ( 1 - B ) .  

The following procedure  can then  be  used to  determine 
B and  the offered traffic, so that  the loss model may still 
be employed. 

1 .  Given N and  the  desired  net  throughputs A Y t ,  1 5 
i 5 L, on  each line emerging  from node 0, compute 
Anut = Ayt and  each Pi = Ayt/ A'''; 

2. check  that AnUt < U,; if not,  the desired throughputs [Art] cannot be  achieved  with an N-buffer  node. 
3 .  solve  the equation AnUt = A (  1 - B )  , where  Eq. ( 1 1) 

shows  that  the right hand  side is a function of A, for 
A,  and  then compute 1 - B = A o u t / A .  

4. the incoming offered traffic for  the loss model will be 
A = Anut/ ( 1  - B), of which a  fraction 1 - B will be 
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Model extensions and  generalizations 
1 .  The  present model analyzes  one  node,  and  assumes 

that  the overflow probabilities of the neighboring 
nodes  are known. But these in fact  depend upon the 
overflow probability of the node under investigation. 
In  order  to  analyze a network of nodes, with  given 
traffic rates  on  every line, an iterative procedure is 
needed to  ensure  that all overflow probabilities are 
self-consistent. A Newton-Raphson  procedure,  de- 
scribed in [ 121, has been  found satisfactory, and 
employs  the single-node  formulation given above.  The 
single-node  formulation  may  be  used in isolation, 
however, if one is investigating the minimal buffer 
capacities  needed to  keep all overflow probabilities 
under a  given  threshold. 

2 .  Real networks  can  have non-exponential  inter-node 
arrival patterns, non-exponentially  distributed mes- 
sage  lengths, multiple message classes with distinct 
priorities,  reassembly of multipacket  messages, adap- 
tive  routing, and local or end-to-end data flow con- 
trol  protocols. St appears unlikely that  these phe- 
nomena  can be incorporated within the network-of- 
queues formulation. 

3 .  The  present  one-node model attempts  to  capture  the 
congestion at neighboring nodes by static average 
blocking probabilities fl, f z ,  . . ., fL. In reality, buffer 
contents  at  adjacent  nodes  are positively correlated, 
and tend to rise  and fall together in response  to peaks 
and  valleys in the traffic patterns. A multiple-node 
model is needed for studying such  dynamic proc- 
esses,  and determining  when the  use of static  average 
blocking probabilities will yield adequate predictions. 

4. The  present model assumes  that  for a given  message, 
the inter-arrival  time, service time at  the  processor, 
and service time for  each  successive transmission 
attempt  are independently-distributed random vari- 
ables. This ignores the  fact  that  these random vari- 
ables all involve  a  common  message  length, hence  are 
dependent.  The range of validity of these  assumptions 
must  be ascertained, akin to  the validation of Klein- 
rock's independence assumption [ 11 at low traffic 
levels and/  or  under mixing conditions. 
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Appendix: derivation of analytical results 
To derive  Eq. (8),  add  Eq. (3 )  over all mi and li with 
mi + li = ni.  To derive  Eq. ( 9 ) ,  note  that  Eq. (8) implies 
P [ k ,  n] = P ( 0 )  x(k)y(n)  where 

L 

x(k) = n (pi)% 
k; ..k,EO i=o 
k,+. .+k,=k 
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Thus  x(k) is the coefficient of z' in the Maclaurin series 
expansion of 

L 

where  the last step employs  a  partial  fraction expansion, 
and  shows 

x(k) = - 
I, (Pi)' 

i = O  
h ( i )  ' 

Similarly, y ( n )  is  the coefficient of z" in the Maclaurin 
expansion of 

= exp ( A T ~ z ) .  

Thus y ( n )  = (ATH)"/  n! ,  completing the  derivation of 

For  later  use,  we  tabulate  the value of (Al) and its 
Eq. (9). 

first two  derivatives  at z = 1: 

where yl, y 2 ,  and y3  are defined in the section on analytic 
results  for loss model. 

Equation (10) follows  from Eq. (9) because 
S 

P[s] = P [ s  - n, nl 
n=O 

Equation (7) follows  from Eqs. (4) and (A6) because, 
after interchanging the summation on n and s, 

The innermost  sum is X!=, ( P ) ~  = (p" - pN+') / ( 1 - p ) .  
Therefore, 

NOVEMBER 1976 

- (pi)Nf1 EN(hTH/ pi)]. 

The coefficient of EN(hTH) is simplified via Eq. (A3), 
yielding Eq. ( 7 ) .  

Similarly, to  derive  Eqs. (16) and ( 17), employ Eq. 
(A6) and put 

E[s'] = sr P [ s ]  
N 

s=o 

The innermost  sum is,  for Y = 1 and Y = 2 
N (N + 1)p Nfl - npn + p"+' - PN+2 
sps= 

(P - s=n P -  1 
(A8) 

N 

s2 ps = 
(N + 1)2pN+z - n2pn 

s=n P- 1 

+ (n + l)p"+l - ( N  + 2)PN+2 
(p - 

Insertion of Eqs. (A8) or (A9) into  Eq. (A7), summing 
over n, and  employing Eqs. (A3)-(A5) leads  to 
(16) and (17). 

The  expected  queue lengths, Eqs. (12) and (13), 
are obtained from  Eq. (3), as follows: 

Elmj] = mj P[ko, . . ., kL., m,, . . ., mL, I,,  . . ., I,.]. 
k,rn,liZO 

s 5  N 

UsingmjP[k,m,l]=ujP[kO;~~,k,,ml;~~,mj~,,mj-l, 
mj+' , .  . ., mL, I , ,  . . ., I,] for mj 2 1, one finds 

E[mj] = uj Pr[s 5 N - 11 = a j [  1 - B] 15j5 L. 

Similarly, E[lj] = b j [  1 - B] and  E[nj] = cj[ 1 - B] for 
15jZ L. 

Equation (15) is obtained as follows: 

1 1 1  

s 5  N 

Insertion of Eq. ( 7 )  yields Eq. ( 15) after  extended 
manipulations. 549 
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