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Abstract:

Impedance distance relaying for fault-protection of a plurality of high-voltage lines has not been accomplished with a mini-

computer because of the burden of time placed upon these computers. A new method for computing impedance from data samples is
proposed, which would employ only the computer operations of Add, Subtract, and Shift. This is valuable because these operations are
one to two orders of magnitude faster on present day minicomputers than the operations of Multiply, Divide, Square, and Square Root.
The new method is based upon the use of Walsh functions. When compared with the best competitive method, this new method shows

superiority in speed and an accuracy that meets proposed objectives.

Introduction

Digital relaying is a new branch of the science of protec-
tive relaying of a power system. It attempts to perform,
with a digital computer, many and perhaps all of the
functions currently performed by electromechanical
and static (solid state) relays. One of the most difficult
and important of these functions is distance relaying
in which the apparent impedance of the line is sensed by
the relay. When a fault hits one or more of a plurality of
high-voltage lines protected by a bank of relays in a sub-
station, all the relays process the data simultaneously,
and a decision to trip the appropriate circuit-breakers is
made in about one cycle. The difficulty in doing this with
any single digital computer [ 1] suitable for substation
application lies in the sequential nature of all such com-
puters and the consequent burden of time placed upon
them,

Recently, for instance, the use of a single minicomputer
has been considered for the protection of a small num-
ber of high-voltage lines [2]. It must be programmed to
carry out a long sequence of operations which serve to
detect the fault; classify it as to type, severity, and line
number; calculate the appropriate impedances; and
finally make a decision whether or not to issue the trip-
signals. Mann and Morrison [3] did this for a single,
three-phase line and achieved a time of 5.4 ms from fault
to trip. That is, they almost achieved quarter-cycle re-
laying in a laboratory test. Furthermore, they did this
with standard computer techniques. Inasmuch as 4 ms
of this was used for detection and classification algori-
thms, it is problematic as to whether they could still do
this for six lines, as they so stated. There is even the
question of whether their method would suffice for pro-
tecting six lines in one cycle under field conditions. Rock-

efeller and Udren [ 4], using a modification of the method
of Mann and Morrison on a dedicated minicomputer
similar to Mann and Morrison’s, were only able to pro-
tect a single three-phase line under field conditions in
times ranging from one to three cycles. This experience
illustrates the burden of time in protecting only one three-
phase line. Consequently, we may regard the multiple-
line problem as far from solved at the present time, even
with a dedicated computer.

However, even if Mann and Morrison’s algorithms
could be speeded up by hardware improvements, for
example, they would still be questioned because of their
assumption of pure sine wave conditions. During the
immediate post-fault period, a dc¢ offset which invalidates
the sine wave assumption generally occurs. Mann and
Morrison would minimize this dc offset by compensatory
impedance. Rockefeller and Urden minimized dc¢ offset,
with apparent success, by using first and second deriva-
tives of the measured quantity in formulas in which Mann
and Morrison used its value and a first derivative. Al-
though one would have thought that the use of high-order
numerical derivatives by Rockefeller and Udren would,
because of noise, generate spurtous signals and cause
false tripping, interestingly enough, their installation did
not experience false-tripping during a period when 70
faults were correctly detected. In spite of this success,
it is the purpose of this paper to present a method which
does not assume sinusoidal conditions, but which is
nevertheless exceptionally fast because it requires only
addition and subtraction operations of the computer.
(There is no particular advantage for cases in which
addition and subtraction offer no significant time reduc-
tion over multiplication and division, but in present-day
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minicomputers the difference is typically one to two
orders of magnitude.) This method makes use of Walsh
functions which, in the past five years, have attained
considerable prominence in communications theory and
in image processing.

Through Walsh analysis, which is analogous to
Fourier analysis, the fundamental 60 Hz component of
current and voltage signals can rapidly be extracted and
measured for amplitude and phase. The apparent im-
pedance of the line is then calculated from these four
quantities. The speed and accuracy with which this is
done will be compared with a competitive algorithm
based upon 12-point Fourier analysis. Relevance of
the method to multiple-line relaying will be touched
upon.

Fourier-Walsh theory

Walsh analysis decomposes a function into a set of waves
which are square-waves and square-wavelike. Since im-
pedance of a linear system is defined in terms of funda-
mental-frequency voltage and current sine waves, it is
necessary —if one works in the Walsh domain—to es-
tablish a connection between the results of the Walsh
analysis and the fundamental sine waves of Fourier
analysis. In the following section we shall establish this
connection.

The methodology is called the Fourier-Walsh theory.
Note that it is perfectly proper for us to seek to calculate
impedance pre-fault and post-fault because the power
system has made a transition from one linear system to
another at the time of the fault. Of course, there are in-
stances in which the increase in fault-current drives
certain components into nonlinear regimes, but these
cases will not be considered here.

First, we consider the reason that Fourier analysis is
too slow for relaying on a real-time basis; i.e., the com-
putation of impedance as each new sample of data is
received will be briefly discussed. In what follows, we
shall confine our attention to one-cycle relaying primarily
because exposition of both Fourier and Walsh methods is
most convenient when the time interval chosen for
analysis equals the period of the signal. Also, one-cycle
relaying appears to be adequate for several large power
systems in the United States.

Ramamoorty [5] was the first to propose the use of
Fourier analysis rather than the method of Mann and
Morrison. Sampling the waveform at 20 points per cycle
he finds the (best) sine wave through this data (42 Mul-
tiplies and 39 Adds are required). On the IBM Sys-
tem/7, for example, this takes 4.6 ms. Hence, such
computers cannot make this fit in real time because the
sampling interval is 0.8 ms.

The method is based on a Fourier analysis of the wave-
form. The ensemble of samples over a period of one
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cycle is assumed to repeat periodically, and Fourier
analysis is performed on the ensemble of samples. The
amplitude and phase-angle of the fundamental component
are obtained as follows:

2 (f,
“1:;<§0+f1 cos x + f, cos 2x

+ef 08 (m— 1) x+%">,

b, =r—2n(f1 sinx+f,sin2x+---f,_, sin (m—1) x), (1

where f,, f,, f,, - - f,, are sampled values of input signal
over a period of one cycle, and x is the sampling interval
given by 27/ m. The factors cos x, sin x, - - - cos mx, sin
(m — 1) x are constants and can be calculated and stored
in the computer a priori, as weighting functions on the
sample values. The fundamental quantity is given by

g(t) =Va'+ b? sin[wrt + arctan (b,/a,)].

If this computation is made for both voltage and current,
the impedance and phase-angle can be evaluated.
Ramamoorty claims excellent impedance results (better
results than using the Mann and Morrison method) for
faults on a model line in the laboratory. However, this
is only to be expected because he employs 20 points
(compared with 5 for Mann and Morrison) and uses a
longer sampling interval (0.8 ms to their 0.5 ms).
Ramamoorty is simply willing to trade time for accuracy.
According to the sampling theorem, 20 points per cycle
should yield good information at about the tenth harmon-
ic. However, this appears to be unwarranted detail. The
fifth harmonic could provide enough; i.e., it would be
sufficient to determine whether there was an arcing fault.
Hence, 10 points per cycle should be more than enough
for this method. Reducing the number of calculations by
half [6] can be achieved by noting that cos x = cos
(m — 1) x, etc., and that sin x = —sin (m — 1) x; hence,
we have for a, and b,, with m even.

1:—Z—J—f"-k(f1 + fo_y) cos x + (f, + f,,_,) cos 2x
4 ml| 2 oo

m Il

+'--<f%_l +f§+1> cos <3 + 1>x +3],

b, 22[%+ (fy =fup) sinx + (f, = f,,,) sin 2x

+"'(f%_;+f’2—"+1) sin(ng-—l)x]. (2)

This becomes a fairly fast algorithm for fitting the best
sine wave to the data. One might use 10 points per cycle;
compute a, and b,, with 5 Multiplies each and 5 Adds
each, plus one more Add for a,. This takes about 10 x 531
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wal(0, ') T o I
wal(l, ¢') +44++-+++
wal(2, t') 4+ R
wal(3, ¢') b+ FH++
wal(4, t') ++ F++ ++
wal(5, 1') ++ F+——t+++
wal(6, ') +——t+ bbbt
wal(7, ¢') b ——+——++——++
wal(8, 1') bt
wal(9, ') +——++ fe o ——
wal(10, t')  +——+—Ft——tt—t——o
wal(11, 7))  +——F—F+—F+——+—++—
wal(12,¢')  +—t+—F—F+—+—F—+
wal(13, 1)  +—+——F—t—t—t4—
wal(14, ') p = ——+—
wal(15,¢')  +—4+—+—F+—F+—+—+—+—
"o b 1

Figure 1. The first sixteen Walsh functions of integral index k.

100 = 1 ms on the IBM System/7 with its software
multiply/ divide time of 100 us. These times now seem
more practical. Significant improvements could be
achieved, especially for the System/7 and similar small
computers, if multiplications could be avoided. This
can be done by analyzing the function in terms of its
Walsh functions, wal(k, ¢), instead of its sine and cosine
functions. The a, and b, can be calculated from the ap-
propriate Walsh coefficients, W,.

The time-consuming multiplications, and even the
squaring and square-rooting operations, in the Fourier
analysis algorithm used by Ramamoorty, can be almost
entirely eliminated if the function g(¢) is analyzed into
its Walsh functions, wal(k, 7).

This is possible because wal(k, ¢) has only two values,
=*1, and so Walsh analysis can be performed by the op-
erations of addition and subtraction. The first 16 of these
functions are shown in Fig. 1. These functions resemble
“squared up” sine and cosine functions, and form a com-
plete orthonormal set. They are undefined at the points
at which they change from =1 to =1, but as these points
are a set of measure zero, this is of no consequence.

We shall use the notation and development of
N. Blachman [7] in what follows. Let ¢ = t/T. Let us
define a Fourier expansion of g(¢) in the interval
(0, T) as

g() =F,+V2F, sinsz-F\/sz cossz

. 4t
532 +V2F, sin == T (3)
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and a Walsh expansion as

g() =S W, wal(k, 1/ T). (4)

k=0

In these expansions
1 T
F0=7f0 g(t)y dt,

_Va [
T

]

_ﬁfT 27t
F,= T, g(1) COST dt,

g(1) sin 27 4,

F T

1

and
1 T

Wk=—f g(r) wal(k, t')ds. (5)
T 0

The set of components F, form a vector in Hilbert space
and so does the set W,. The two vectors are related by
the orthogonal matrix 4; thus,

W =AF.

Since A" = A’ where A’ is the transpose of 4, we also
have

F=AW.

The matrix 4 has been found to be, in part,

M 7
0.900 0.300 0.180
0.900 —0.300 0.180
0.900
0.900
A=| 0373 0.724 0.435
+0.373 0.724 —0.435
0.900
0.900
—0.074 —0.484 0.650
L —0.074 0.484 0.650.

Now suppose g(1) is g(1) = \/5F1 sin 27t/ T. If we were
to pass this through a “Walsh filter” to determine its
set of Walsh coefficients { W, }, k=< 10, we should measure

w,=0.900 F,, W,=-0.373 F,,
W,=—0.074 F..
All other W, k= 10, are zero. Now, given W what is F?

It is F = A'W. We want only the sine and cosine coef-
ficients which are F, and F,, respectively. These im-
mediately are found to be

F,=0.900W, —0.373W,— 0.074W,,
F,=0.900W, + 0.373W,— 0.074W . (6)
Inserting the measured values of W, we find
F, =0.810F, + 0.139F, + 0.0055F ,
,=0. (7
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Consequently, if we use only W, and drop W, and W,,
we see from Eq. (7) that one makes an error of 19 per-
cent in calculating F,. If we use W, and W, dropping
W, we make an error of 5 percent in calculating F,.
Hence, onty W, W, W,, W, and W  seem to be needed
to represent (to 5 percent accuracy) an arbitrary sinu-
soid, plus some dc component, in the interval (0, T).
Very fast algorithms can be devised to calculate the W,.

Let us sample (m + 1) times in the interval (0, T) at
t=0,-t=j(At), -, and at t = m(Ar) = T. From the
definition of W, in Eq. (5), we must perform a numerical
integration which closely approximates the integral. We
shall use the trapezoidal rule, although Simpson’s rule,
which is more accurate, could also have been chosen.
Let I(j,, j,) denote the trapezoidal rule integral of the
integrand f(jAt) = g(jAr) wal(k, jAt') from ¢, = j At to
t, = j,At, in which interval f(r) is continuous and has
continuous derivatives. Then, from Eq. (5),

Wo=3 10y
j1<j2

j1=07”'7j2=a”'»m’ (8)

which simply means that we sum up the “pieces.” Each
piece is, according to the trapezoidal rule,

1y, Jy) =30) +70, + D+ fU,— 1) +4(,) (9)

Let us simplify the notation for discrete g(r) and
wal(k, t') as follows. Define

g = g(JAy,

w; (k) = wal(k, jAr'),
so that

=g wik).

Let us evaluate W, as each new sample of g(¢) is taken.
We must drop off g, (the “oldest” value) and add or
subtract g, (the “newest” value). As a general pro-
cedure, we imagine g(f) to be stepped leftwards s steps
corresponding to a time displacement sA¢z. The integrand

now becomes
f}+8=gj+3 Wj(k), S=0, 1’ 27

As an example, let m = 8, corresponding to double the
intervals shown in Fig. 1. Then, with the help of Fig. 1,
it is easy to show that

Wo(s) =438, + Zros ++ Bosen + Ene)

Hence, recursively,

8W (s + 1) = 8W (s) — 18, —18,,,
480 T 8mirne s=0,1,2,---

Also, recursively, it follows from Egs. (5), (8), and (9)
that
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W, (s+1)=8W,(s) —g,—3g,,, + 8uss T 851s
~ 38— %8 $=0,1,2--,
and
8W, (s + 1) =8W,(s) —ig,t3g, .+ 8ors + Laus
= Bors — Bras T 28urs T Loue
s=0,1,2,---

This is the same number of Adds as would be used when
calculating W, directly as

8W,(8) =38, + 810s ~ 85va ~ Bars — 8sus T Bray T H8sis
We find by direct application of the trapezoidal rule that

BW () =38, — 8oyt 8ovs — 38ayer $=0,1,2,-+
and, directly also, that
8W,(s) =38, — 8., + 124, s=0,1,2---

Note that except for the end points of the interval (0, 7),
application of the trapezoidal rule has the interesting and
valuable results of ‘“setting-to-zero” that value of the
integrand at which a jump occurs. The example shows
that 34 Adds serve to compute W, W, W,, W, and W
Division by 2 is a Shift Right operation. On the Sys-
tem/7, it takes 50 ns for each shift of one position; how-
ever, the Shift instruction takes an instruction cycle of
0.4 us. If we increase the number of samples taken from
9 to 17, only 8 more Adds occur (in W, and W ). Since
addition on the System/ 7 takes 0.8 us, these coefficients
are ready in 42 X 0.8 = 34 us.

o Impedance algorithm

In this study a one-cycle sampling interval or “window”
was used. It is not until the window is sampling one cycle
post-fault that a meaningful impedance value is calcu-
lated. At this time, if sinusoidal behavior is reestablished
(there may be a dc component), Walsh analysis is very
simple. It is only necessary to calculate W, and W, in
order to know F, and F,, the sine and cosine functions,
respectively. As we have shown, the only computer
operations needed in this calculation are addition, sub-
traction, and shift. If there is decaying ‘“‘dc offset” post-
fault (and there generally is), higher order Walsh co-
efficients may be necessary to attain the desired degree
of accuracy in impedance; also if third and fifth harmonics
are present {characteristic of arcing faults) the same re-
quirement may apply. The number of Walsh coefficients
needed to get F, and F, accurately is an important subject.
However, since this relies upon the field conditions and
the speed of relaying desired (one cycle, or two cycles,
etc.), we will not pursue it further here. Eventually all
post-fault transients do die out; sinusoidal conditions are
reestablished, and then W, and W, are sufficient to cal-
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Figure 2. Accuracy of Amplitude and Phase Theorem.

culate F', and F,. Our rule would be: calculate W, and W,
and then calculate as many W, (k > 2, = 15) as there is
time for.

Let us calculate the Walsh coefficients W, W,, W,,
W., W, W, and W, of the signal, g(¢} in the time in-
terval (¢, t + T). (In practice, all of these may not be
needed, as was noted in the preceding paragraph.) We
can then calculate its fundamental sine and cosine com-
ponents of amplitude, V2 F , and V2 F, respectively,
according to Eq. (6). The amplitude of the sinusoid is
V2 VF 12 + F22. The impedance is then, by definition,
VF’+F}

2 voltage

VF?+F,;

2 current

1Z| = (10)

On the System/7, multiplication takes 100 us; con-
sequently, even |Z| cannot be calculated in real time if
the sampling interval is 500 ws (4 multiplies plus one
divide = 5 X 100 us = 500 us). Also, it would take even
more time to do a phase-of-Z = arctan (F,/F,)
arctan (FI/FZ)current'

Another approach to this problem, which avoids the
square-root and squaring operations, is as follows. Given
the Walsh coefficients, we can represent the fundamental
sine wave g (¢) approximately as

voltage —

10
g(n =3 W, wallk, t/T).

k=1
The maximum of this function may then be expressed
as a sum of terms =W,, since wal(k, t/T) = =1. If g(1)
can be assumed sinusoidal, the question is, what is this
sum precisely? The solution to this problem is given in
the following theorem.

Amplitude and Phase Theorem Given a sinusoid g,(¢)
with period T, let the interval T be divided into 16 equal
sub-intervals of duration At, and let these sub-intervals
be numbered 1-16. Within 7 let g,(#) be expanded in
the set of Walsh functions wal(1l, ¢), wal(2, '),
wal(5, t'), wal(6, '), wal(9, '), wal(10, ¢'); thus, with
t=t/T,

10
g,(0 =3 W, wal(k,1).

k=1
Then to an accuracy of (+4.28%, —4.8%), the maximum
value of g (1), max g,(¢) is given in terms of |W,| and
|W,| as

max g, (1) = 1.0822 (|W | +|W,|)

+0.414|W,) — |W,|. (11)

The amplitude of the sine wave equals max g (7).

The time of occurrence of the maximum is that mth
sub-interval within which the functions in the set
[wal(1, ¢), wal(2, ¢'), wal(6, ¢'), wal(10, ¢)] assume
values given in terms of W, and W, according to the
following formulas:

wal(1, mAr') = S(W),
wal(2, mAr') = S(W,),
wal(6, mAr') = S(W,) S(|W,| — W],

wal(10, mAr') =—S(W,), (12)

where S(x) denotes a function which is “+” when x is
positive and “—” when x is negative; i.e., S(x) is the
“sign of x,” x > 0, x < 0. For x = 0 both + and — signs
are to be used, and the maximum is not unique.

Since the proof [ 8] is somewhat lengthy for inclusion
in this paper, we shall not give it. Furthermore, it is
straightforward to prove it numerically for all cases to
which it applies. Equation (11) can be checked against
the true value, true max g(z), which is the amplitude of
the sinusoid:

true max g, () = Amplitude = V2 VF*+ F% (13)

Again, for the sinusoid, it will be found that
W,=0.900 F,,
W,=0.900 F,.

These can be substituted into Eq. (11) to check against
Eq. (13).

The deviation from true max varies from +4.2 to —4.8
percent depending on the ratio of F,:F,. This ratio, in
turn, depends upon the time ¢ of the first sample relative
to the first (positive slope) zero-crossing of a sine wave.
The value of max g (¢) from Eq. (11) is plotted against
0=1360°% (¢/T) in Fig. 2.
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Figure 3 (a) Data for fault A; (b) impedance calculation for fault A

The accuracy of the expression in the Amplitude and
Phase Theorem for max g,(t) can be increased by
increasing the number of samples and the number of
Walsh functions, as shown in subsequent sections. In
the derivation of Eq. (11), Walsh functions up to and
including wal(9, ¢') and wal(10, ¢') were used to approxi-
mate the sinusoid. Greater accuracy required higher
sequency Walsh functions and therefore further sub-

division of the period T.
Using Eq. (10), the impedance is

| | — {10822(|W1| + |W2|) + 0414HW2| - |W1||}volt.
{Same}current '

(14)

It is important to note here that W, and W, are coeffi-
cients of g (), which is the best sine wave fit to g();
Eq. (14) presumes that g (t) is somehow available,
which is to say that F| and F, are somehow known. Then,
W, = 0.900 F,, and W, = 0.900 F,. We propose, using
Eq. (6) to find F, and F,, keeping only needed terms in
W,.. In Eq. (6) these are coefficients of g(¢), the raw
data. The two sets of W, should not be confused.
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Two useful forms of Eq. (11) that accurately rep-
resent Eq. (11) to an accuracy better than 1/2 per-

cent are

max gs(t) =4 W1! +%| W2| |W2| > |W1|’

=§w | +3w,| W [>W,

max ¢,(1) = oagay L2 +®) (Wil +IW,)

+HWzl _|W1H]

The last formula is especially suited for performing
the multiplication by Shift Left and Shift Right instruc-
tions, which take only 0.4 us each on the System/7.

Test of theory
Figure (3a) shows fault data taken from the literature

([3], Fig. 7). We took two 60-Hz periods and performed
first a 16-point Fourier analysis and then a 17-point
Walsh analysis. We calculated the following quantities:

a) F,and F, in
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Figure 4 (a) Data for Fault B; (b) impedance calculation for
fault B.

gty=F,+V2F, sinsz%-\/fF2 cosz—;—t—i—- i
from a 16-point Fourier analysis, and b) W,, W,, W,
and W, from a 17-point Walsh analysis. The formulas
for W, W,, W, and W, are given in Appendix A.

For a), | Z| is calculated from Eq. (10), and for b) |Z|
is calculated from Eq. (14) using Eq. (6) without the
terms W, and W, to get F| and F,.

J. W, HORTON

The impedance value is calculated each time the one-
period “window” is stepped to the right, one step at a
time. At time ¢, the window is the interval [t — T, t}. The
results are plotted in Fig. (3b). We see that the initial
and final impedances, which were arranged to be 20.0
and 1.00, are correctly calculated. The Fourier values
decrease monotonically, whereas the Walsh values oscil-
late, going below the final value by 30 percent. It is not
surprising that there is an oscillation since digital filters
such as the Walsh algorithm behave much like electrical
filters in their response to a transient signal. This, in the
present case, is the discontinuity at the fault. The inter-
esting feature is that the Fourier method produces a
monotonically decreasing |Z|, because this is a more
desirable —perhaps requisite—kind of behavior when
thresholds of | Z| are set for tripping. A second example
is shown in Figs. 4(a) and (b). Data were taken from
[9]. Here, note the dc offset.

* Phase of impedance

So far we have considered only the modulus of Z. How-
ever, the Walsh function method can be used to get the
phase-angle, depending upon the number of points used
per cycle. For 16-sub-intervals per cycle (17 points),
the time of the maximum of the sinusoid can be obtained
to within 360°/16 = 22.5°. Although requirements on
the phase-angle have not been discussed in relaying lit-
erature, it would seem that an accuracy to within 7°
(achieved by Mann and Morrison) is a better target.

A very fast method of getting phase to within 22.5°,
is to use the Amplitude and Phase Theorem, Eq. (12),
which yields the values of wal(1, #'), wal(2, '), wal(6, t')
and wal(10, t) when g (¢) assumes its maximum value.
Reference to Fig. 1 will permit one to decode this in-
formation into a time, or times, of occurrence. A 16-
element table can be built up in this way. Table look-up
can be done in a few microseconds on most mini-
computers; hence the approximate phase determina-
tion is extremely fast. However, reference to Fig. 3(b),
in which ¢, and ¢, are plotted for a simulated fault,
shows that there is too much scatter in the results to
make this method useful. The reason for this was
investigated.

We have found that by analyzing sine waves by the
Walsh method, and then plotting the inverse Walsh trans-
form, the original sine wave is poorly recovered, even
though the maximum value comes out quite well (as
seen also in Fig. 2). An example of this is shown in Fig.
5, where Walsh functions through wal( 10, X) are used
to represent sin x. The trouble is that [10] we must take
higher order Walsh functions. In fact, analysis shows
that if 16 points are sampled, 16 Walsh functions
wal(0, ') - - - wal(15, #') must be used in the transform
and in the inverse transform. This is generally true for
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Figure 5. Approximate represéntation of the sine function by
Walsh functions.

any orthonortifal set of functions and not just for Walsh
functions. Th# 8uccess of this is shown in Fig. 6, wherein
the inverse transform is seen to plot smoothly as a sine
wave. Interestingly enough, however, it is phase shifted
by 11.25° because the trapezoidal rule is used in evalu-
ating the W,; also, its amplitude appears to be slightly
reduced. Nevertheless by taking all 16 Walsh functions,
the original data set is essentially recovered and it seems
that a table look-up method for phase would be success-
ful, given the algorithm appropriate to the full set of
Walsh functions. This is supplied in the following
theorem.

Second Amplitude and Phase Theorem Given a sinusoid
g,(1) with period T, let the interval T be divided into
16 equal sub-intervals. Within T let g, (f) be expanded
in the set of Walsh functions wal(1, ¢'), wal(2, ¢') ---
wal(15, ¢'), so that

15

g,(t) = W, wal(k, 1'). (15)

k=1

Then to an accuracy *2.6 percent, the maximum value,
max g,(f), is given in terms of W, and W, by two dif-
ferent formulas, max, g (¢) and max, g (¢), depending
upon which region of the (|W,|, |W,|)-space the point
(IW,l, IW,]) lies within,

max, g(f) = (e —y)|Al + (1 +B)2
when (« — y){Al = g5,
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Figure 6. Exact representation of the sine function by Walsh
functions.

or
max, g,() = (e +y)|A] + (1= B2

when (a —y)|A] > 83. (16)
The maximum lies in the sub-interval for which
wal(1l, mAr) =8§(W)),
wal(2, mAr) =S(W,),
wal(6, mAr) =S(W,) S(A),
wal(10, mA?') =—=S(W,),  if (a—y)|A| = B3,
but

wal(10, mAr') = S(W,),  if (@ — y)|A| > BS.

Here

=—|Wl+IW,), Z=|W]|+|W,,
and
a=0414, y=0.198, B =10.0823

The function S(x) has the meaning already given to it
in the previously given theorem. Again, it would take too
much space to give the proof here, but this is not nec-
essary since it may be adequately checked by moving a
sine wave through the sampling window in 16 equal phase
increments of 22.5° each.
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A scheme for getting an accurate phase angle would
then be to use the above theorem to get the approximate
time(s), and hence phase(s), of the maximum and then
calculate g (7}, the sinusoid that best fits g(¢), near the
expected zero-crossing. The time of this is known im-
mediately by incrementing or decrementing f, by a
quarter-period. For example, we seek the value of 7
when

(¢ Ly ) S w ik 2er4g) =0 a7
glt,t—+7)= wallk, 2 +4+4+=]=0.
: 4 k=1 g T T

One way of doing this is to compute g,(f) on both
edges of the sub-interval [z,, #,] in which the zero-cross-
ing is expected. By comparing (g,(¢,) + g,(2,))/(2 and
4) with g (r)) and g(r,), the crossing can be localized
to one-quarter of the interval, hence within 5.6°. This
requires 18 Adds, four Multiplies, and four Compares.

e The 12-point Fourier analysis

By deciding to divide the Fourier analysis period T into
12 parts, data-weighting factors such as sin x, sin 2x,
etc. and cos x, cos 2x, become either =1/2 or £V3/2.
Since fast (20 us on the System/ 7) multiplying programs
can be devised for fixed constant multiplication, and
since division by 2 is a Shift Right operation (requiring
only 400 ns on the System/7), this method could be com-
petitive with Walsh analysis. The method analyzes the
waveforms as [11]

g(t) = a,+ a, cos x + a, cos 2x +- - a, cos 6x

+ b, sin x + b, sin 2x +- - b, sin 5x,

x=07 2w A=
b 6 b 6 I 6 .

Data points are denoted as u,, u,, u,, - u,,. We are
interested in a,, a,, and b,. These are
12a,=p,+p, +p, + P,

V3
6a1 = q0+~2_ q, +%q2’
6b=4r + L3 4 (18)
=zl ) Fy T Iy
where
Po=Uy+ g, o= Uy~ Ug, r=w tw,
Py =0, Ty, 9 =0, 7 VU rp=w,tw,
Py =1U, T U, q,= U, — U, ry = Wy, (19)
and where
v, = Uy Ty, W =Up— Uy
Uy = Uy + Uy, Wy, = Uy — Uy,
538 U, = Uyt oug, Wy = Uy — Uy,
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U= Uyt U, W= U, Uy

Uy = Uy + Uy, We = Uy — U,

The important point to notice is that there are only
two multiplications by V'3; each would take about 20 us
on the System/7. All other operations take less than 1 us.
Time to do Eqs. (18) and (19), “preparation time,” is
45.2 us. Time required for 6qa, is 23.6 us (this includes
one multiplication by V3), and time for 6b, is also
23.6 us.

Hence, the time to go from data {u,} to 6a, and also
6b, is 82.8 us. A Walsh analysis requires the following:

0460 F,=[(2+75) W, — W,]: 2.8 us;

0.460 F,=[(2+ %) W,+ W.]: 2.8 ps.

To get W,, W,, W, and W, from data requires:
for both W, and W: 12 us, and

for both W, and W 14.8 us.

Hence, to get 0.460 F, and 0.460 F, requires:

(0.460) F,: 2.8 + 12 = 14.8 us;
(0.460) F,: 2.8+ 14.8 = 17.6 us.

Thus, the difference between the Walsh- and Fourier-
analysis times on the System/ 7 is

Walsh: 0.460 F, and 0.460 F,: 32.4 us;
Fourier: 6a, and 6b,: 84.8 us.

If, in the Fourier method, _\/?f is represented as

V3/2=i+i+i-1hs

and Shift Right and Add operations are used in the Sys-
tem/ 7, then a multiplication time closer to 4 us than 20
us will be obtained. Also, instead of 84.8 us, the time for
6a, and 6b, would be 52.8 us. Hence, the Walsh method
is at least 50 percent faster than the Fourier method.
However, it may be more inaccurate if there are signifi-
cant deviations from the sinusoid. The Walsh algorithm
should be tested when there are some third and fifth har-
monics present, as for an arcing fault.

An impedance calculation on a System/7 using the
amplitude and phase formula, Eq. (11), for both Walsh
and Fourier methods (i.e., obtaining F, and F, by Fourier
analysis and then using W, = 0.9 F, and W, = 09 F,
in (11)) takes

Impedance 17-point Walsh:
35.2 (numerator) + 35.2 (denominator)

+ 100 (divide) = 170.4 pus,
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12-point Fourier:
55.6 (numerator) + 55.6 (denominator)

+ 100 (divide) = 211 pus,
accuracy: = 8 percent in |Z| (Walsh).

Hence, both these methods are competitive. The 17-
point Walsh accuracy is not very good; =5 percent is a
better target figure. The *8 percent inaccuracy is as-
signed on the basis of the stated inaccuracy of the am-
plitude and phase formula, Eq. (11), used to obtain the
voltage and current amplitudes.

To better illustrate the speed advantages of the new
method, it is instructive to a) calculate a, and b, (pro-
portional to F, and F,, respectively) from 12-point
Fourier analysis, as we have just done, and then to use
these values in the usual impedance formula, Eq. (10);
and b) to obtain £, and F, by 17-point Walsh analysis,
as we have just done, but to use the more accurate
(=5 percent) formulas for |Z| given in Appendix B,
which are derived from the Second Amplitude and Phase
Theorem. On a machine having a 1.6 us Add (Subtract),
20 ws Multiply, 30 us Divide, the straight Fourier
method takes 410 us, whereas our method takes 160
us. We presume that for the former, the square-root-of-¢
iteration, x,,, = (x, + ¢/x,) /2, takes four steps.

Early warning of a fault

For early warning, the fastest impedance algorithm we
know, in the absence of a fast hardware multiply and
divide, is the following. Since we are monitoring an im-
pedance threshold |Z, | and will signal an Alert when
1Z] = |Z,,, we can then monitor the voltage amplitude
¥ and signal when

V=1Z,,. (20)

|Z,. is a fixed constant, and its multiplication by I can
be done with a relatively fast (20 xs) program involving
Shift Operations on /. With the use of the Amplitude and
Phase Theorem for V and 7, Eq. (20) can be verified in
about 40 us. Also, with the phase-algorithm given in the
Second Amplitude and Phase Theorem, the phase of Z
can be found to *11.25° in about 10 us. Now we ask,
how many lines can be monitored using this algorithm
alone?

s Multiple-line problem

Assume all corresponding voltage buses for » lines are
common. There are now three voltages to be measured.
There are six impedances to be calculated for each line,
and the data must be converted into digital form and
stored for quick access. Each line should be looked at
every ms to catch the fault at once. The computation
and processing times add as follows:
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(Convert and store) + Calculate impedance = 1000 us.

Let CS, denote the time to convert and store one data
point, then

(3+3n) CS, + 6 X 40 X n = 1000,
and therefore

333 — CS,

"T80FCS,

For the System/7, the conversion time alone is at
least 50 ws; hence n, at most, is 2. However, it would
be more desirable if n = 4 or 6.

We could speed up the impedance calculation and
decrease the conversion time. By using a Direct Memory
Access (DMA) channel and a 1-us ADC unit and com-
mutator, the conversion and storage time per point might
be brought down to a few microseconds, in which case
n = 4. Thus, we would not need to alter the cycle time
of the computer nor find new algorithms for ¥, I, and
11z,,]. Nevertheless, some improvement here would
be necessary to reach n = 6.

It appears, then, that the early warning aspect of the
multiple-line problem can perhaps be solved with pres-
ently available equipment and algorithms. A device that
could both scan analog input lines and convert the ana-
log value to a digital number in 2 us is not really a “stan-
dard” feature, but it is available. A DMA channel is
available only on some machines. The cost of these de-
vices is well justified, however, considering the improve-
ment from n=2to n=4.

Using the Walsh and 12-point Fourier algorithms
(given in the preceding paragraphs), and high-speed
data-input devices, we can begin to feel that the multiple-
line problem can be solved with a single minicomputer,
and without special-purpose peripheral gear.

Discussion

The objective of this paper has been to perform an im-
pedance calculation from raw data using only the opera-
tions of Add, Subtract, and Shift. Reference to Eq. (14)
for impedance modulus, and to Eq. (16) ff. for phase of
impedance shows that this plan has been quite success-
ful. Why this is so, and when it may cease to be so is
made clearer with reference to Fig. 7, a flow chart of
our method. Along the top of the diagram the customary
Fourier method of obtaining F, and F,, the fundamental
sine and cosine components of g(?), is indicated. The
Walsh “route” to F, and F, proceeds through the Walsh
coefficients W,, then through the transformation F =A'W
represented by the vertical arrow. What we have shown
in this paper is that the “long-cut,” via the Walsh coef-
ficients, can be much faster than the fastest Fourier
method in obtaining the modulus of impedance, with
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Figure 7. Flow chart of Fourier and Walsh methods for ob-
taining the fundamental of a function with period 7.

sufficient accuracy. However, it is clear from Fig. 6 that
this result is contingent upon not having to take too many
W, terms because the transformation to F and W re-
quires non-integer type multiplications, which are usually
much slower than additions and subtractions. In this
paper, we have used W and W, for F, and W, and W,
for F,. The number of Walsh coefficients needed to get
F, and F, depends on the amount of harmonic and non-
harmonic content of g(¢). The significance of this content
has not yet been settled by field experience, and is cur-
rently being debated. Phadke et al. {12] say that the
typical, observed, faulted waveform (analog filtered)
is about as smooth as those exhibited in Figs. 3(a) and
4(a). This observation supports the formulas given.
Phadke et al. caution, however, that the raw data should
be corrected before use in the impedance algorithms dis-
cussed above for an exponentially decaying ‘“‘dc offset”
which is to be expected in faulted waveforms. They have
devised an algorithm to do this, and have used it with the
12-point Fourier method to more accurately obtain the
impedance modulus from laboratory data.

Accurate calculation of phase using only the Add,
Subtract, and Shift operations has proved to be the more
difficult problem. The second amplitude and phase theo-
rem permits an extremely fast determination of phase by
table look-up to an accuracy of =11.25°; however, this
operation must be preceded by a Compare operation
using one multiplication by (a—1v) /8, a constant. Hence,
the Walsh method does yield a good approximate value
of phase in essentially the time for one fixed-constant
multiply. Based upon this approximate value, several
algorithms look feasible for getting an accurate value in
a time less than the customary, slow, arctangent opera-
tion. However, rather than develop these algorithms,
which do not appear to be an order of magnitude faster
than the arctangent, we note that the current practice
[12] seems to be moving away from the use of phase as
a decision parameter. Use tends to be made of the real
and imaginary components of fault impedance, R, and

I, respectively, since these define a quadrilateral relay
characteristic in the complex Z-plane. In the notation
of this paper, the current and voltage phasors and the
impedance are

1 =V2(F,+jF,),
V=V2(F'+jF,)).

Hence,
Z,=R,+jl,
_F11F1+F2,F2 F/F,— F)'F, (21)
F’+F/} F?+F

While the Walsh method has been shown to be con-
siderably faster than even the fastest Fourier method
under the assumptions made in this paper, the 12-point
Fourier method is certainly competitive from the stand-
point of speed, and “naturally” recommends itself to
the problem because the end result has to be the Fourier
coefficients F, and F,. Furthermore, it has been sug-
gested that, by analog scaling of the input signals, the
12-point Fourier algorithm (see also [12]) can be im-
plemented so much more quickly that it is comparable
to the Walsh algorithms. Whether the introduction of
an analog device to do the scaling would seriously de-
grade the high reliability expected of the digital algo-
rithms is still a question to be answered.

An area not touched by this paper is the use of mul-
tiple processors for protective relaying; rather, we have
chosen to explore the possibilities in fully utilizing a
single minicomputer. The computer architecture most
appropriate for substation control, monitoring, and pro-
tection is also a subject of much current investigation.

Summary

A new method for computing impedance has been elab-
orated. This method appears to be a suitable candidate
for impedance relaying applications. Its advantage over
methods based on Fourier analysis lies in its superior
speed within acceptable limits of accuracy. The saving
in time for this function can be well utilized by a sub-
station computer either to perform other substation func-
tions or to protect additional lines. Tests of one im-
pedance algorithm using 17 samples per cycle exhibit a
response to fault conditions that is at least as satisfactory
as an equivalent algorithm based on standard Fourier
analysis. The method leads to an extremely fast (50 us)
“early-warning” impedance-algorithm which offers an
alternative approach to the multiple-line problem.
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Appendix A: 17-point Waish coefficients

Let g(r) be sampled at 17 equally spaced points and
denote these samples by g,, -+, g,,. Denote the W, for
this interval as W, (1), and let W (2) be the Walsh co-
efficients for the interval defined by samples g,, -, g4
etc. The following formulas for W, () in terms of the 17
points in the sampling ‘“window” are obtained from Eq.
(5) using the trapezoidal rule for numerical integration.
Note that W, and W, are done by recursion to reduce the
number of terms.

W,(1) =05g,+g,+ - +g,+0.5g,,

W.(1)=05g,+g,+g,tg, +e,+g +8&&,
T 810 811 8127 Bis T 81a 815 L6
—0.5g,,

W,(1) =05g, +g,+ g, +g,
T 86 87 83 89 819 811 812
+g,+ g5+ 8g,s+ 058,

In the following, I =2, 3,---

Wo(l) =W, (I—1)—05¢g,_,—0.5g,
+0.5g,,,5 +0.5g,, .6

W) =W({I—1) —05g,_, —0.5g,+g,,.,% &
—0.5g,,.,5 = 0.5g,,.6

W, (I) =W({I— 1) —05g,_, —0.5g,+ 8,4+ 8144
— 811 &rare T 0.58,,,5 + 0.5, 6

In the following, /=1, 2,---

W.(I) =05g,+ 8, 813 8r.s— 8145
t 8 8o T B T Bt &
~ 81415 7 8rv1e0

W) =058+ 81,3 = 815+ 81us — 8o 8ras — 14w
+ &t &reis t €ris T 058,465

W) =0.5¢,—80% 81ra Erre T &rero — Eranz
+ 81— 0.5, 160

Wioll) = 0.5, ~ 81s + 8146~ 8ris T 81110 — 8rins
+ 0.5, 160

W (1) =058, — g4t 81— 0581110

W, (I) =05g,— g, 058,16

W) =0.5¢,~0.5¢,,,
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Appendix B: impedance algorithm using formulas
(16)

Depending upon which of the two formulas for max V
or max [ are applicable (cf., Eq. (16)) there are then four
possible formats for the impedance calculation. These
can be shown for max,/max;, max,/max,, max,/ max,,
and max,/ max,, respectively,

1zl _|A[+5% 3JAl+ (1+ D3 or
|A] + 53 (0.848)|A| + 1.273
_2/Al +3% 2|A| + 33
2A| + 33 7|A) + 3.543°

The approximations are better than one percent. With
the cruder approximations of 0.848 = 1— (1/8), 1.27 =
1+ (1/4), and 3.54 = 3 + (1/2), Shift operations can
be employed but, in the worst case, accuracy falls to
3 percent. Other formulas are possible, of course, but
these are quite fast.
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