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Walsh  Functions  for  Digital  Impedance  Relaying 
of Power Lines 

Abstract: Impedance  distance relaying for fault-protection of a plurality of high-voltage lines has not  been  accomplished with a mini- 
computer  because of the  burden of time  placed  upon these  computers. A new  method for computing  impedance from  data  samples is 
proposed, which would employ  only the  computer  operations of Add,  Subtract, and  Shift. This  is valuable because  these  operations  are 
one  to two orders of  magnitude faster on present  day minicomputers  than the  operations of Multiply,  Divide, Square,  and  Square  Root. 
The new method is based  upon the  use of Walsh  functions.  When compared with the  best competitive method, this new method shows 
superiority in speed and an  accuracy  that  meets proposed  objectives. 

Introduction 
Digital relaying is a new branch of the  science of protec- 
tive relaying of a power  system. It  attempts  to perform, 
with a digital computer, many and  perhaps all of the 
functions currently performed by electromechanical 
and  static  (solid  state) relays. One of the most difficult 
and  important of these functions is  distance relaying 
in  which the  apparent  impedance of the line is sensed  by 
the relay.  When a fault  hits one  or more of a plurality of 
high-voltage lines protected by a bank of relays in a  sub- 
station, all the relays process  the  data simultaneously, 
and a decision to trip the  appropriate  circuit-breakers  is 
made in about  one cycle. The difficulty in doing  this  with 
any single digital computer [ 11 suitable for  substation 
application  lies in the sequential nature of all such  com- 
puters  and  the  consequent burden of time placed upon 
them. 

Recently,  for  instance,  the  use of a single minicomputer 
has been  considered for  the protection of a small num- 
ber of high-voltage lines [ 21. It  must be  programmed to 
carry  out a long sequence of operations which serve  to 
detect  the  fault; classify it as  to  type,  severity,  and line 
number; calculate the  appropriate  impedances;  and 
finally make a decision whether  or  not  to  issue  the trip- 
signals. Mann and  Morrison [ 31 did this for a single, 
three-phase line and achieved  a  time of 5.4 ms from fault 
to trip. That  is, they almost achieved quarter-cycle  re- 
laying in a laboratory  test.  Furthermore,  they did this 
with standard  computer  techniques.  Inasmuch  as 4 ms 
of this was used for  detection  and classification algori- 
thms, it is problematic as  to  whether they  could still do 
this for six lines, as they so stated.  There  is  even  the 
question of whether  their  method would suffice for pro- 

530 tecting  six  lines in one  cycle  under field conditions. Rock- 

efeller and  Udren [ 41, using a modification of the method 
of Mann  and  Morrison  on a  dedicated  minicomputer 
similar to  Mann  and Morrison’s,  were only able  to pro- 
tect a single three-phase line under field conditions in 
times ranging from  one  to  three cycles. This  experience 
illustrates the  burden of time in protecting  only one  three- 
phase line. Consequently, we may  regard the multiple- 
line problem as  far  from solved at  the  present time, even 
with a dedicated  computer. 

However,  even if Mann  and Morrison’s  algorithms 
could be  speeded  up by hardware  improvements,  for 
example,  they would still be  questioned because of their 
assumption of pure sine wave conditions.  During the 
immediate  post-fault  period,  a dc offset which invalidates 
the sine wave  assumption generally occurs.  Mann  and 
Morrison would minimize this dc offset by compensatory 
impedance.  Rockefeller  and Urden minimized dc offset, 
with apparent  success, by using first and  second deriva- 
tives of the measured quantity in formulas in which  Mann 
and  Morrison  used  its value and a  first  derivative. Al- 
though one would have thought that  the  use of high-order 
numerical derivatives by Rockefeller  and Udren would, 
because of noise, generate  spurious signals and  cause 
false  tripping,  interestingly  enough, their installation did 
not experience false-tripping  during  a  period when 70 
faults  were correctly  detected.  In spite of this success, 
it is the  purpose of this paper  to  present a  method  which 
does not assume sinusoidal conditions, but  which is 
nevertheless exceptionally fast  because it requires  only 
addition and  subtraction  operations of the  computer. 
(There is no particular advantage  for  cases in which 
addition and  subtraction offer no significant time  reduc- 
tion over multiplication and division, but in present-day 
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minicomputers the difference is typically one  to  two 
orders of magnitude.) This method makes  use of Walsh 
functions which, in the past five years,  have attained 
considerable  prominence in communications theory and 
in image  processing. 

Through Walsh analysis,  which is analogous to 
Fourier  analysis,  the fundamental 60 Hz component of 
current  and voltage signals can rapidly be extracted  and 
measured for amplitude  and phase.  The  apparent im- 
pedance of the line is then  calculated from these  four 
quantities. The speed and  accuracy with which this is 
done will be compared with a competitive algorithm 
based upon 12-point Fourier analysis. Relevance of 
the method to multiple-line relaying will be  touched 
upon. 

Fourier-Walsh theory 
Walsh  analysis decomposes a  function  into  a set of waves 
which are  square-waves and  square-wavelike. Since im- 
pedance of a linear system is defined in terms of funda- 
mental-frequency  voltage  and current sine waves, it is 
necessary -if one  works in the Walsh domain-to  es- 
tablish  a connection  between  the results of the Walsh 
analysis and  the fundamental  sine waves of Fourier 
analysis. In  the following section we shall establish  this 
connection. 

The methodology is called the Fourier-Walsh theory. 
Note  that it is perfectly proper  for us to seek to calculate 
impedance pre-fault and post-fault because  the power 
system  has made  a  transition  from one linear  system to 
another  at  the time of the fault.  Of course,  there  are in- 
stances in which the  increase in fault-current  drives 
certain  components  into nonlinear  regimes,  but these 
cases will not  be  considered here. 

First, we consider  the reason that  Fourier analysis is 
too slow for relaying on a real-time basis; i.e., the com- 
putation of impedance as each new sample of data is 
received will be briefly discussed.  In what  follows, we 
shall confine our  attention  to one-cycle relaying primarily 
because exposition of both  Fourier  and Walsh methods is 
most  convenient when  the  time  interval chosen  for 
analysis equals  the period of the signal. Also,  one-cycle 
relaying appears  to be adequate  for several  large  power 
systems in the  United  States. 

Ramamoorty [SI was  the first to  propose  the  use of 
Fourier analysis rather than the method of Mann and 
Morrison. Sampling the waveform at 20 points per cycle 
he finds the  (best) sine  wave  through  this data (42 Mul- 
tiplies and 39 Adds  are  required).  On  the IBM Sys- 
tem/7,  for example,  this takes 4.6 ms. Hence,  such 
computers  cannot make this fit in real time because  the 
sampling interval is 0.8 ms. 

The method is based on a Fourier analysis of the wave- 
form. The ensemble of samples over a  period of one 
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cycle is assumed to  repeat periodically,  and Fourier 
analysis is performed on the  ensemble of samples. The 
amplitude  and  phase-angle of the fundamental component 
are obtained as follows: 

+fl cos x +f, cos 2x 

+. . . fm-*  cos ( m -  1) 

sin x +fi sin 2x +. . .f,-, sin ( m  - 1) x 

where fo ,  f,, f,, . . ., fm are sampled  values of input signal 
over a  period of one  cycle,  and x is the sampling  interval 
given by 2 ~ /  m. The  factors  cos x, sin x; . . cos mx, sin 
( m  - 1) x are  constants  and  can be  calculated and  stored 
in the  computer a priori, as weighting functions on  the 
sample  values. The fundamental quantity is given by 

g(t)=-sin[wt+arctan ( b 1 / u l ) ] .  

If this  computation is made  for both  voltage  and current, 
the impedance  and  phase-angle can be  evaluated. 
Ramamoorty claims  excellent  impedance results  (better 
results than using the Mann and  Morrison  method)  for 
faults on a model line in the  laboratory.  However, this 
is only to be expected  because he employs 20 points 
(compared with 5 for Mann and  Morrison) and uses a 
longer sampling interval (0.8 ms to  their 0.5 ms). 
Ramamoorty is simply willing to  trade time for  accuracy. 
According to  the sampling theorem, 20  points  per cycle 
should yield good information at  about  the  tenth harmon- 
ic. However, this appears  to  be  unwarranted detail. The 
fifth harmonic could provide  enough; Le., it would be 
sufficient to  determine  whether  there was an arcing  fault. 
Hence, 10 points per  cycle should  be more than  enough 
for this  method.  Reducing the number of calculations by 
half [6] can  be  achieved by noting that  cos x = cos 
( m  - 1) x, etc.,  and that sin x = -sin ( m  - 1) x; hence, 
we have  for u, and b,, with m even. 

(f, -fm-,) sin x + ( f ,  -fmW2) sin 2x 

This becomes  a fairly fast algorithm for fitting the best 
sine  wave to  the  data.  One might use  10 points  per  cycle; 
compute a,  and b,, with 5 Multiplies each  and 5 Adds 
each, plus one more Add  for a,. This  takes  about 10 X 531 
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Figure 1. The first sixteen Walsh functions of integral index k .  

100 = 1 ms on  the  IBM  Systeml7 with its  software 
multiplyldivide time of 100 ps. These times now seem 
more practical. Significant improvements could be 
achieved, especially for  the  Systeml7  and similar small 
computers, if multiplications  could  be  avoided. This 
can be done by analyzing the function in terms of its 
Walsh functions,  wal(k, t ) ,  instead of its sine and  cosine 
functions. The a, and b, can be  calculated  from the  ap- 
propriate Walsh coefficients, W,. 

The time-consuming  multiplications, and  even  the 
squaring  and  square-rooting operations, in the  Fourier 
analysis algorithm  used by Ramamoorty,  can be almost 
entirely  eliminated if the function g ( t )  is analyzed into 
its Walsh functions,  wal( k, t )  . 

This  is possible because  wal( k ,  t )  has only two  values, 
21 ,  and so Walsh  analysis can be  performed by the op- 
erations of addition and  subtraction.  The first 16 of these 
functions  are  shown in Fig. 1 .  These  functions resemble 
“squared  up” sine  and cosine  functions,  and form  a com- 
plete  orthonormal set.  They  are undefined at  the  points 
at which  they change from k 1  to 71, but as these  points 
are a set of measure  zero, this is of no  consequence. 

We shall use  the notation  and development of 
N. Blachman [7] in what follows. Let t’ = t / T .  Let us 
define a Fourier  expansion of g ( t )  in the  interval 
(0 ,  T )  as 

g ( t )  =FO+mF, s i n x f + f i F , c o s k t  
T T 

and a Walsh expansion  as 
m 

g ( t )  = 2 W, wal(k, t / T ) .  

In  these  expansions 

k=O 

F, = ?loT g (  t )  sin - 2rrt dt, 
T 

F,  = $IOT g (  t) cos - 2rrt dt, 
T 

and 

W, = f JI’ g (  t )  wal( k, t’) dt. ( 5 )  

The  set of components F, form  a vector in Hilbert  space 
and so does  the  set W,. The  two  vectors  are related by 
the orthogonal  matrix A ;  thus, 

W = AF. 

Since A” = At where At is the  transpose of A ,  we also 
have 

F = A‘W. 

The matrix A has been  found to  be, in part, 

A =  

I 
0.900 0.300  0.180 

0.900 -0.300 0. I80 
0.900 

0.900 
-0.373  0.724 

M.373 
0.435 

0.724 
0.900 

4 . 4 3 5  

0.900 
-0.074 

4 . 0 7 4  
-0.484 

0.484 
0.650 

0.650 . 

NOW suppose g ( t )  is g ( t )  = V ~ F ,  sin 2at/  T. Ifwe were 
to  pass this  through  a  “Walsh filter” to  determine  its 
set of Walsh coefficients { W,}, k 5  10, we should measure 

W, = 0.900 F,, W, = -0.373 F,, 

W, = -0.074 F,. 

All other W,, k 5 10, are zero. Now, given W what is F? 

It is F = AtW. We  want only the sine  and cosine coef- 
ficients which are F, and F,, respectively. These im- 
mediately are found to be 

F, = 0.900 W ,  - 0.373 W, - 0.074 W,, 

F, = 0.900W2 + 0.373 W, - 0.074W1,. (6) 

Inserting  the  measured values of W, we find 

F, = 0.810F1 + 0.139F1 + 0.0055F1, 

F, = 0. (7) 
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Consequently, if we  use only W,,  and  drop W ,  and W,, 
we  see from Eq.  (7)  that  one  makes  an  error of 19 per- 
cent in calculating F , .  If we use W ,  and W,, dropping 
W,, we  make  an  error of 5 percent in  calculating F,.  
Hence, only W,, W,,  W,, W,, and W ,  seem  to  be needed 
to  represent  (to 5 percent  accuracy)  an  arbitrary sinu- 
soid, plus some  dc  component, in the interval (0, T ) .  
Very  fast algorithms can  be  devised  to calculate the W,. 

Let us sample ( m  + 1 )  times  in the interval (0, T )  at 
t = O ; . . , t = j ( A t ) ; . . , a n d a t t = m ( A t ) = T . F r o m t h e  
definition of W ,  in Eq. ( 5 ) ,  we must perform a numerical 
integration  which  closely approximates  the integral. We 
shall use  the trapezoidal  rule,  although  Simpson’s  rule, 
which is more  accurate, could also  have been chosen. 
Let Z ( j , ,  j,) denote  the trapezoidal rule integral of the 
integrand f ( j A t )  = g ( j A t )  wal(k, j A t ‘ )  from t ,  = j ,A t  to 
t ,  = j ,At,  in  which  interval f ( t )  is  continuous  and  has 
continuous derivatives. Then,  from  Eq. ( 5 ) ,  

W , =  2 I ( j , , j J ,  jl = O , . . .  , j ,  =; . ., m, (8) 

which simply means that  we  sum up the “pieces.” Each 
piece  is,  according  to  the trapezoidal rule, 

j ,+  

I(j17j,)  =+f(j,) +f(j, + 1 )  +... f(j,- 1 )  + + f ( j , )  (9) 

Let US simplify the notation for  discrete g ( t )  and 
wal(k, t ’ )  as follows. Define 

gj E g ( j A t ) ,  

wj ( k )  = wal ( k ,  jAt ‘  ) , 

so that 

f .  = g .  . W j ( k ) .  
I 1  

Let us evaluate W ,  as  each new  sample of g (  t )  is  taken. 
We must  drop off go (the  “oldest”  value)  and  add  or 
subtract g,+, (the  “newest”  value).  As a general  pro- 
cedure, we imagine g ( t )  to be stepped  leftwards s steps 
corresponding  to a time  displacement s a t .  The integrand 
now becomes 

f. ]+, = g .  ]+, W j ( k ) ,  s = o ,  1 ,  2 , . . .  . 

As  an  example,  let m = 8, corresponding  to  double  the 
intervals shown in Fig. 1 .  Then, with the help of Fig. 1 ,  
it  is  easy  to  show  that 

W,(S)  = t t g ,  + g,+ ,  + . . . + g,-,+,  + kg-.,). ( 
Hence,  recursively, 

~ W , , ( S  + 1 )  = 8W,(s) - kg, - k,+, 
+ kg,+, + k,+,+,’ s = 0, 1 ,  2 , .  . .. 

Also, recursively, it follows  from  Eqs. ( 5 ) ,  ( 8 ) ,  and (9) 
that 

8W,( s  + 1 )  = 8 W , ( s )  - k, - + g,+, + g5+, 

-+g*+s-+g,+s, s = o ,  1 , 2 . . . ,  

and 

8W,(s + 1 )  = 8 W 2 ( s )  - k, + k,,, + gZ+, + g3+, 
- 

gS+s - g7+s + +g8+s + g9+S, 

s = o ,  1 , 2 , . ” .  

This  is  the  same  number of Adds  as would be  used  when 
calculating W ,  directly as 

8 W , ( s )  = k, + g,+ ,  - g3+s - g,+, - g5+, + g 7 + ,  + ts,,,. 
We find by direct application of the trapezoidal  rule that 

8 W 5 ( s )  = +g8 - R , + ~  + g6+, - +g8+s, s = 0, 1 ,  2 , .  . ., 
and, directly also,  that 

8 W,(s) = 4gs - g,+, + Sg8+s, s = 0, 1 ,  2 .  . .. 
Note  that  except  for  the end points of the interval (0, T )  , 
application of the trapezoidal rule  has  the interesting and 
valuable results of “setting-to-zero” that  value of the 
integrand at which a jump  occurs.  The  example  shows 
that 34 Adds  serve  to  compute W,, W, ,  W,, W,, and W,. 
Division by 2 is a Shift  Right  operation. On  the  Sys- 
tem/7, it takes 50 ns  for  each shift of one position;  how- 
ever,  the Shift  instruction takes  an  instruction  cycle of 
0.4 ps. If we  increase  the  number of samples  taken  from 
9 to 17, only 8 more  Adds  occur  (in W ,  and W,) . Since 
addition on  the  System17  takes 0.8 ps, these coefficients 
are  ready in 42 X 0.8 = 34 ps. 

Impedance  algorithm 
In this study a one-cycle  sampling  interval or “window” 
was used. It is not until the window is sampling one  cycle 
post-fault that a meaningful impedance value is calcu- 
lated. At this  time, if sinusoidal behavior  is reestablished 
(there may  be a dc  component), Walsh analysis is very 
simple. I t  is only necessary  to  calculate W ,  and W ,  in 
order  to know F ,  and F,, the sine and  cosine  functions, 
respectively. As we  have  shown,  the only computer 
operations needed in this  calculation are addition,  sub- 
traction,  and shift. If there is decaying “dc offset”  post- 
fault (and  there generally is), higher order Walsh  co- 
efficients may be  necessary  to  attain  the  desired  degree 
of accuracy in impedance;  also if third and fifth harmonics 
are  present  (characteristic of arcing faults)  the  same re- 
quirement may apply. The  number of Walsh coefficients 
needed to  get F ,  and F ,  accurately is an  important subject. 
However,  since this  relies upon  the field conditions and 
the  speed of relaying desired  (one  cycle,  or  two  cycles, 
etc.), we will not  pursue it further  here. Eventually all 
post-fault transients  do die out; sinusoidal  conditions are 
reestablished, and then W ,  and W ,  are sufficient to cal- 533 
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I B (degrees) 

Figure 2. Accuracy of Amplitude and Phase Theorem. 

culate F, and F,. Our rule would be: calculate W ,  and W,, 
and then calculate  as many W k ( k  > 2 , 5  15) as  there is 
time  for. 

Let us calculate  the Walsh coefficients Wo,  W, ,  W,, 
W,, W,, W,, and W,, of the signal, g ( t )  in the time in- 
terval ( t ,  t + ‘T) . ( In  practice, all of these may not  be 
needed,  as  was  noted in the preceding  paragraph.) We 
can  then calculate its  fundamental sine and  cosine  com- 
ponents of amplitude, fl F, and fl F, respectively, 
according to  Eq.  (6).  The amplitude of the sinusoid is 
a d F l 2  + F t .  The impedance is then, by definition, 

On  the  System/7, multiplication takes 100 ps; con- 
sequently,  even IZI cannot  be calculated  in real time if 
the sampling interval is 500 ps ( 4  multiplies  plus one 
divide = 5 X 100 ps = 500 ps) . Also,  it would take  even 
more time to  do a phase-of-Z = arctan (F, / FZ)vO,taPe - 
arctan (F1/F,lcurrent. 

Another  approach to this problem,  which avoids the 
square-root  and squaring operations,  is  as follows. Given 
the Walsh coefficients, we  can  represent  the fundamental 
sine  wave g , ( t )  approximately as 

10 

g , ( t )  = x W k  wal(k t /  T I .  
k= l  

The maximum of this function may then  be  expressed 
as a sum of terms k W k ,  since  wal(k, t /  T )  = *I.  If g ( t )  
can be assumed sinusoidal, the  question  is,  what  is this 
sum  precisely?  The solution to this  problem is given  in 

534 the following theorem. 

Amplitude  and  Phase  Theorem Given a  sinusoid g , ( t )  
with period T ,  let  the interval T be divided into  16  equal 
sub-intervals of duration At, and  let these sub-intervals 
be numbered 1 - 16. Within T let x,( t )  be expanded in 
the  set of Walsh functions wal( 1 ,  t ’ ) ,  wal(2, t ’ ) ,  
wal(5, t ’ ) ,  wal(6, t ’ ) ,  wal(9, t ‘ ) ,  wal(l0, t ’ ) ;  thus, with 
t’ = t /  T ,  

g , ( t )  = W k  wal(k, t ’ ) .  

Then to an  accuracy of (+4.28%, -4.8%), the maximum 
value of g,( t )  , max g,( t )  is given in terms of I W J  and 

10 

k = l  

I W,I as 

max g , ( t )  = 1.0822 (IW,l + IW,l) 

+ 0.4141 I W J  - I W,I I. ( 1 1 )  

The amplitude of the sine wave  equals max g,( t )  . 
The time of occurrence of the maximum is that mth 

sub-interval within which the functions in the  set 
[wal( 1 ,  t ’ ) ,  wal(2, t ’ ) ,  wal(6, t ’ ) ,  wal( 10, t ’ ) ]  assume 
values  given in terms of W ,  and W ,  according to  the 
following formulas: 

wal( 1 ,  mAt‘)  = S( W,) , 

wal( 2, mAt’) = S( W,) , 

waI(6, mAt’) = S( W,) S(l  W,I - I W,l), 

wal( 10, mAt’) = -S( W,) , (12)  

where S(x) denotes a function which is “+” when x is 
positive and “-” when x is negative; i.e., S(x) is the 
“sign of x,” x > 0, x < 0. For x = 0 both + and - signs 
are  to  be  used, and the maximum is not unique. 

Since  the proof [ 81 is somewhat lengthy for inclusion 
in this paper, we shall  not  give  it. Furthermore, it is 
straightforward to  prove it numerically for all cases  to 
which it applies. Equation ( 1 1 )  can  be  checked against 
the  true value, true max g,( t )  , which is the amplitude of 
the sinusoid: 

true  max g,( t )  = Amplitude = fi qFl2 + F;. ( 1 3 )  

Again, for  the sinusoid, it will be  found that 

W ,  = 0.900 F,, 

W ,  = 0.900 F,. 

These can  be substituted  into  Eq. ( 1 1 )  to  check against 
Eq. ( 1 3 ) .  

The deviation  from true max  varies  from f 4 .2  to -4.8 
percent depending on  the  ratio of F, : F,. This  ratio, in 
turn,  depends  upon  the time t of the first  sample  relative 
to  the first (positive  slope) zero-crossing of a sine wave. 
The value of max g , ( t )  from Eq. ( 1 1 )  is plotted  against 
13 = 360” X ( t / T )  in Fig. 2. 
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Figure 3 (a) Data for fault A; (b)  impedance calculation for fault A 
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The accuracy of the expression in the Amplitude and 
Phase  Theorem  for max g,( t )  can be increased by 
increasing the number of samples  and the number of 
Walsh functions, as shown in subsequent sections. In 
the derivation of Eq.  (1 l ) ,  Walsh functions up  to and 
including wal(9, t' ) and wal( 10, t' ) were  used to approxi- 
mate the sinusoid. Greater  accuracy required higher 
sequency Walsh functions  and  therefore further sub- 
division of the period T .  

Using Eq. ( l o ) ,  the impedance is 

IZI = 
{1.O822(lWll + IW,l) + 0.4141IW,I - l ~ l l l l " o , t  

{Samelcurrent 
(14) 

It is important to  note here that W ,  and W ,  are coeffi- 
cients of g,( t ) ,  which is the  best  sine  wave fit to g(  t )  ; 
Eq.  (14) presumes that g, ( t )  is somehow  available, 
which is to say that F ,  and F ,  are somehow known. Then, 
W ,  = 0.900 F , ,  and W ,  = 0.900 F,. We propose, using 
Eq. (6) to find F ,  and F,, keeping only needed terms in 
W,. In Eq. (6) these  are coefficients of g ( t ) ,  the raw 
data.  The  two  sets of W ,  should  not be confused. 

I Time (ms) 
(b) 

Two useful forms of Eq. ( 11)  that accurately  rep- 
resent Eq. (1  1)  to  an  accuracy  better  than 1 / 2  per- 
cent  are 

max g , ( t )  = $1 w,l + 21 w,I I W,I > I W,l, 

=2QIw,I ++IW,I lW,I ' lW,l. 

max g , ( t )  = ~ (0.414)  [(2+*)(lW,I + IW,l) 

+ OW,I - IWllII. 

The last  formula is especially  suited  for performing 
the multiplication by Shift Left and Shift Right instruc- 
tions, which take only 0.4 p s  each on the  System/7. 

Test of theory 
Figure (3a)  shows fault data taken from the literature 
( [3], Fig. 7).  We took  two 60-Hz periods  and  performed 
first a 16-point Fourier analysis  and then a 17-point 
Walsh analysis. We calculated  the following quantities: 
a) F ,  and F,  in 535 
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I Time (0.5 ms) 

Figure 4 (a) Data for Fault B;  (b)  impedance calculation for 
fault B. 

~ ( t ) = F , + ~ F , s i n 2 ? r l + ~ F , c o s ~ f + . ~ ~  T T 

from  a  16-point Fourier  analysis,  and  b) W,, W,, W,, 
and W ,  from a  17-point  Walsh  analysis. The  formulas 
for W,, W,,  W,, and W ,  are given in Appendix  A. 

For   a) ,  I ZI is calculated  from Eq. ( lo ) ,  and  for  b) 1 ZI 
is calculated from  Eq.  (14) using Eq. (6)  without  the 

536 terms W ,  and W,, to  get F,  and F,. 

The impedance  value is calculated each time the one- 
period "window" is stepped to  the right, one  step  at a 
time. At time t ,  the window is the interval [ t - T ,  t] . The 
results  are plotted in Fig. (3b). We see  that  the initial 
and final impedances, which were  arranged to be 20.0 
and 1.00, are  correctly calculated. The  Fourier values 
decrease monotonically, whereas  the Walsh values oscil- 
late, going below the final value by 30  percent.  It is not 
surprising that  there is an oscillation  since digital filters 
such  as  the Walsh  algorithm behave much like electrical 
filters in their  response  to a transient signal. This, in the 
present  case, is the discontinuity at  the fault. The inter- 
esting feature is that  the  Fourier method produces a 
monotonically  decreasing IZI, because this is a  more 
desirable - perhaps requisite - kind of behavior when 
thresholds of IZI are  set for tripping.  A  second  example 
is shown in Figs. 4(a) and (b) . Data  were  taken from 
[ 91. Here, note the  dc offset. 

Phase of impedance 
So far  we  have considered  only the modulus of Z .  How- 
ever,  the Walsh  function  method can be  used to  get  the 
phase-angle,  depending  upon the  number of points  used 
per cycle. For 16-sub-intervals per  cycle ( 17 points), 
the time of the maximum of the sinusoid can be  obtained 
to within 360'1 16 = 22.5'. Although requirements on 
the phase-angle have  not been discussed in relaying lit- 
erature,  it would seem  that  an  accuracy  to within 7" 
(achieved by Mann and Morrison) is a better target. 

A  very fast method of getting phase  to within 22.5", 
is to  use  the Amplitude and  Phase  Theorem,  Eq. (12), 
which yields the values of wal( 1, t ' )  , wal( 2, t ' )  , wal(6, t ' )  
and wal( 10, t ' )  when g , ( t )  assumes  its maximum  value. 
Reference  to Fig. 1 will permit one  to  decode this in- 
formation into a  time, or times, of occurrence. A 16- 
element table  can  be built up in this  way. Table look-up 
can  be  done in a few  microseconds on  most mini- 
computers;  hence  the  approximate  phase determina- 
tion is extremely  fast. However,  reference  to Fig. 3 (b) ,  
in which 4" and 4, are plotted for a  simulated  fault, 
shows  that  there is too much scatter in the  results  to 
make this  method  useful. The  reason  for this was 
investigated. 

We have found that by analyzing  sine waves by the 
Walsh  method, and then  plotting the  inverse Walsh  trans- 
form,  the original sine wave is poorly recovered,  even 
though the maximum value comes  out  quite well (as 
seen  also in Fig. 2).  An  example of this is shown in Fig. 
5, where Walsh functions  through  wal( 10, X )  are used 
to  represent sin x. The  trouble is that [ lo ]  we must take 
higher order Walsh  functions. In  fact, analysis shows 
that if 16  points are  sampled, 16 Walsh functions 
wal(0, t ' )  . . . wal( 15, t ' )  must  be  used in the transform 
and in the inverse  transform. This is generally true  for 
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Ix  

Figure 5. Approximate  representation of the sine  function by 
Walsh functions. 

any orthonorfilal set of functions  and not  just  for Walsh 
functions.  The 3uccess of this is shown in Fig. 6, wherein 
the  inverse transform is seen  to plot  smoothly as a sine 
wave.  Interestingly enough,  however, it is phase shifted 
by 11.25” because  the trapezoidal  rule is used in evalu- 
ating the W,; also, its  amplitude appears  to be  slightly 
reduced.  Nevertheless by taking all 16  Walsh functions, 
the original data  set is essentially recovered  and it seems 
that a table look-up  method for  phase would be success- 
ful, given the algorithm  aPpropriate to  the full set of 
Walsh  functions. This is supplied in the following 
theorem. 

Second  Amplitude  and  Phase  Theorem Given a sinusoid 
g,(t)  with period T ,  let the interval T be  divided  into 
16 equal  sub-intervals. Within T let g,(t)  be  expanded 
in the  set of Walsh  functions wal( 1, r ’ ) ,  wal(2, t’) . . . 
wal( 15, t ’ ) ,  so that 

Then  to  an  accuracy  k2.6  percent,  the maximum  value, 
max g, ( t )  , is given in terms of W ,  and W ,  by two dif- 
ferent formulas, max, g,( t )  and max, g , ( t )  , depending 
upon  which region of the ( 1  W,l, I W,I)-space the point 
[lW,l, IW,J) lies within, 

m a x , f i , ( t ) = ( a - r ) I A I + ( I + p ) S  

when (a - y )  \AI  5 PC, 

I x  
Figure 6.  Exact  representation of the sine function by Walsh 

( 16) 

functions. 

or 

maXzg,(t) = ( a+y) IAI  + ( 1  -PIX 
when ( a  - y )  1A1 > PC. 

The maximum lies in the sub-interval for which 

wal( 1 ,  mAt’) = S( W,) , 

wal( 2, mAt’) = S( W,) , 

wal(6, mAt’) = S ( W , )  S(A), 

wal( lO,mAt’)=-S(W,) ,   i f [a-y) lAl5PC, 

but 

wal( 10, mAt’) = S 

Here 

A -1 W,I + I W,I. 

and 

(Y = 0.414, y = 0.198, P = 0.0823 

The function S(x) has  the meaning already given to  it 
in the previously given theorem. Again, it would take  too 
much space  to give the proof here, but  this is not nec- 
essary  since it may be  adequately  checked by moving a 
sine wave through the sampling window in 16  equal phase 
increments of 22.5” each. 537 
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A scheme  for getting an  accurate  phase angle  would 
then be to  use  the  above  theorem  to  get  the  approximate 
time( s )  , and  hence  phase( s )  , of the maximum and  then 
calculate g,( t )  , the sinusoid that  best fits g (  t )  , near  the 
expected zero-crossing. The time of this is known im- 
mediately by incrementing or  decrementing t ,  by a 
quarter-period. For  example,  we seek the value of 7 
when 

One way of doing  this is to  compute g, ( t )  on  both 
edges of the sub-interval [ t,,  to] in which the zero-cross- 
ing is expected. By comparing (g,( fa) + g,( t , ) )  / ( 2  and 
4 )  with g, ( t , )  and g s ( t b ) ,  the crossing can  be localized 
to  one-quarter of the  interval,  hence within 5.6”. This 
requires 18 Adds,  four Multiplies,  and four  Compares. 

The  12-point Fourier analysis 
By deciding to divide the  Fourier  analysis period T into 
12 parts, data-weighting factors  such as sin x, sin 2x, 
etc.  and  cos x, cos 2x, become  either & 1 /  2 or k f i /  2. 
Since  fast ( 2 0  ps on  the  System/  7) multiplying programs 
can  be  devised  for fixed constant multiplication, and 
since  division by 2 is a Shift  Right operation  (requiring 
only 400 ns  on  the  System/7), this  method  could  be  com- 
petitive  with  Walsh  analysis. The method analyzes  the 
waveforms as [ 1 11 

g ( t )  = a, + a, COS x + a, COS 2x +. . . a6 COS 6x 

+ 6, sin x + b, sin 2x +. . . b, sin 5x, 

- ...- Tr 2.n ll7r 
’ 6 ’   6 ’  6 ’ 

Data points are  denoted  as u,, u,, u,, . . . u,,. We are 
interested in a,, a,, and b,. These  are 

and  where 

u, = u, + U,,’ w, = u1 - U l l ,  

u, = u, + U,,’ w, = u, - U,,’ 

u3 = u3 + ug, w3 = u3 - ug, 

u4 = u4 + us, w, = u4 - 

u, = us + u,, w, = us - UT. 

The  important  point  to  notice is that  there  are only 
two multiplications by e; each would take  about 20 ps 
on  the  System/7. All other  operations  take  less than 1 ps. 
Time  to  do  Eqs. ( 18)  and ( 19) ,  “preparation time,” is 
45.2 ps. Time required for 6a,  is 23.6 ps (this includes 
one multiplication by fi), and time for 6b,  is also 
23.6 ps. 

Hence,  the time to  go  from  data {u , }  to 6a,  and  also 
6b,  is 82.8 ps. A Walsh  analysis requires  the following: 

0.460 F ,  = [ ( 2  + &) W ,  - W,] : 2.8 ps; 

0.460 F ,  = [ ( 2  + A) W ,  + W,] : 2.8 ps. 

To get W,, W,, W,, and W, from  data requires: 

for  both W, and W,: 12 ps, and 

for  both W ,  and W,: 14.8 ps. 

Hence,  to  get 0.460 F ,  and 0.460 F ,  requires: 

(0 .460)   F,:  2.8 + 12 = 14.8 ps; 

(0 .460)  F,: 2.8 + 14.8 = 17.6 ps. 

Thus,  the difference between  the Walsh- and  Fourier- 
analysis  times on  the  System/7 is 

Walsh: 0.460  F, and 0.460 F,: 32.4 ps; 

Fourier: 6a,  and 6b,:  84.8 ps. 

If, in the  Fourier  method, - is represented  as e 
2 

and Shift Right and  Add  operations  are used in the  Sys- 
tem/ 7, then a multiplication time closer  to 4 ps than 20 
ps will be obtained. Also, instead of 84.8 ps, the time  for 
6a,  and 6b,  would be 52.8 ps. Hence,  the Walsh  method 
is at  least 50 percent  faster  than  the  Fourier method. 
However,  it may be more  inaccurate if there  are signifi- 
cant  deviations from the sinusoid. The Walsh  algorithm 
should  be  tested  when there  are  some third and fifth har- 
monics present,  as  for  an arcing fault. 

An impedance  calculation on a System17 using the 
amplitude and  phase formula, Eq.  (1  l),  for  both Walsh 
and  Fourier  methods (i.e.,  obtaining F,  and F, by Fourier 
analysis and then using W ,  = 0.9 F ,  and W, = 0.9  F, 
in ( 1   1 ) )  takes 

Impedance 17-point Walsh: 

35.2 (numerator) + 35.2 (denominator) 

+ 100 (divide) = 170.4 ps, 
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12-point Fourier: 

55.6 (numerator) + 55.6 (denominator) 

+ 100 (divide) = 21 1 ps, 

accuracy: k 8 percent in IZI (Walsh) . 

Hence, both these  methods  are competitive. The 17- 
point  Walsh accuracy is not  very good; k 5  percent is a 
better  target figure. The k 8  percent  inaccuracy is as- 
signed on  the basis of the  stated inaccuracy of the am- 
plitude and  phase formula, Eq. ( 1 1) , used to  obtain  the 
voltage and  current amplitudes. 

To  better illustrate the  speed  advantages of the new 
method, it  is instructive to  a) calculate a, and b, (pro- 
portional to F ,  and F,, respectively)  from 12-point 
Fourier analysis, as  we  have  just  done, and then  to use 
these  values in the usual  impedance  formula, Eq. ( 10) ; 
and  b)  to obtain F ,  and F ,  by 17-point Walsh  analysis, 
as  we  have  just  done, but to use the more accurate 
( 5  percent)  formulas  for I ZI given in Appendix B, 
which are derived  from the Second  Amplitude  and Phase 
Theorem.  On a  machine having a 1.6 ps Add  (Subtract), 
20 ps Multiply, 30 ps Divide,  the straight Fourier 
method takes  410 ps, whereas  our method takes 160 
ps. We  presume  that  for  the  former,  the square-root-of-c 
iteration, x,,, = ( x n  + c/x,) / 2,  takes  four  steps. 

Early  warning of a fault 
For early  warning, the  fastest impedance  algorithm we 
know, in the  absence of a fast  hardware multiply and 
divide, is the following. Since  we  are monitoring an im- 
pedance threshold lZRefl and will signal an  Alert when 
I Z1 5 I ZRefl, we can  then monitor the voltage  amplitude 
P and signal when 

P 5 il ZRefl . (20) 

lZRefl is a fixed constant, and its multiplication by f can 
be  done with  a  relatively fast  (20 ps) program involving 
Shift Operations  on i. With the  use of the Amplitude  and 
Phase  Theorem  for and i, Eq.  (20)  can be verified in 
about  40 ps. Also, with the phase-algorithm  given in the 
Second Amplitude  and Phase  Theorem,  the  phase of Z 
can  be found to  k11.25” in about  10 ps. Now  we  ask, 
how  many lines can be  monitored using this  algorithm 
alone? 

Multiple-line problem 
Assume all corresponding  voltage buses  for n lines are 
common. There  are now three voltages to be  measured. 
There  are six impedances to  be calculated for  each line, 
and  the  data must  be converted  into digital form and 
stored  for quick access.  Each line should  be  looked at 
every ms to  catch  the fault at  once.  The computation 
and processing  times add  as follows: 
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(Convert  and  store) + Calculate impedance = 1000 ps. 

Let  CS,  denote  the time to  convert  and  store  one  data 
point, then 

(3  + 3n) CS, + 6 X 40 X n = 1000, 

and  therefore 

333 - cs, 
n =  

80 + CS, ’ 

For  the  System/7,  the  conversion time alone is at 
least 50 ps; hence n, at most, is 2. However, it would 
be more desirable if n = 4 or 6. 

We  could speed up the impedance  calculation and 
decrease  the  conversion time. By using a Direct  Memory 
Access  (DMA) channel and a I-ps ADC unit  and com- 
mutator,  the  conversion  and  storage time per point might 
be brought down  to a  few microseconds, in which case 
n = 4. Thus,  we would not need to  alter  the  cycle time 
of the  computer  nor find new  algorithms for P, f, and 
ilZRefl. Nevertheless,  some  improvement  here would 
be  necessary  to  reach n = 6. 

It  appears,  then,  that  the early  warning aspect of the 
multiple-line problem can  perhaps  be solved  with  pres- 
ently  available equipment  and algorithms.  A device  that 
could both  scan analog input lines and  convert  the  ana- 
log value  to a digital number in 2 ps is not really a “stan- 
dard”  feature,  but it is available.  A DMA channel is 
available  only on  some machines. The  cost of these  de- 
vices is well justified,  however,  considering the improve- 
ment  from n = 2 to n = 4. 

Using the Walsh and 12-point Fourier algorithms 
(given in the preceding paragraphs),  and high-speed 
data-input devices,  we  can begin to feel that  the multiple- 
line problem can  be solved  with a single minicomputer, 
and  without special-purpose  peripheral  gear. 

Discussion 
The objective of this paper  has been to perform an im- 
pedance calculation from  raw  data using only the  opera- 
tions of Add,  Subtract,  and Shift. Reference  to  Eq.  (14) 
for impedance  modulus, and  to  Eq. ( 16) ff. for  phase of 
impedance shows  that this  plan  has  been quite  success- 
ful. Why  this is so, and  when  it may cease  to  be so is 
made  clearer with reference  to Fig. 7, a flow chart of 
our method. Along the  top of the diagram the  customary 
Fourier method of obtaining F ,  and F,, the fundamental 
sine  and  cosine  components of g ( t ) ,  is indicated. The 
Walsh “route” to F ,  and F ,  proceeds through the Walsh 
coefficients W,, then through the  transformation F = A‘W 
represented by the vertical arrow.  What  we  have  shown 
in this paper is that  the “long-cut,”  via the Walsh  coef- 
ficients, can  be much faster than the  fastest  Fourier 
method in obtaining the modulus of impedance,  with 539 
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Figure 7. Flow chart of Fourier and  Walsh methods for ob- 
taining the fundamental of a function with  period T .  

sufficient accuracy.  However, it is clear  from Fig. 6 that 
this  result is contingent upon  not having to  take  too many 
W ,  terms  because  the  transformation to F and W re- 
quires non-integer type multiplications,  which are usually 
much slower  than  additions and  subtractions.  In this 
paper,  we  have used W ,  and W ,  for F,,  and W ,  and W ,  
for F,. The  number of Walsh coefficients needed to  get 
F ,  and F,  depends  on  the  amount of harmonic and non- 
harmonic content of g( t )  . The significance of this content 
has  not  yet  been  settled  by field experience,  and is cur- 
rently being debated.  Phadke  et al. [ 121 say  that  the 
typical, observed, faulted  waveform (analog filtered) 
is about  as  smooth as those exhibited  in  Figs. 3 (a)  and 
4(a).  This  observation  supports  the formulas  given. 
Phadke  et al. caution,  however,  that  the  raw  data should 
be  corrected before use in the  impedance algorithms  dis- 
cussed  above  for  an exponentially decaying  “dc offset” 
which is to  be  expected in faulted  waveforms. They  have 
devised  an algorithm to  do this, and  have used it with the 
12-point Fourier method to  more  accurately  obtain  the 
impedance modulus from  laboratory  data. 

Accurate calculation of phase using only the  Add, 
Subtract,  and Shift operations  has  proved to be  the  more 
difficult problem. The  second amplitude and  phase theo- 
rem permits an extremely fast  determination of phase by 
table look-up to an  accuracy of k11.25”;  however, this 
operation  must be preceded by a Compare  operation 
using one multiplication by ( (Y - y )  / p, a constant.  Hence, 
the Walsh  method does yield a good approximate value 
of phase in essentially the time for  one fixed-constant 
multiply. Based  upon  this approximate value, several 
algorithms look feasible for getting an  accurate  value in 
a time  less  than  the  customary, slow, arctangent  opera- 
tion. However,  rather  than  develop  these algorithms, 
which do  not  appear  to be an  order of magnitude faster 
than  the  arctangent,  we  note  that  the  current  practice 
[ 121 seems  to  be moving away  from  the  use of phase  as 
a  decision parameter.  Use  tends  to  be  made of the real 

540 and imaginary components of fault  impedance, Rf and 

I,., respectively, since  these define  a  quadrilateral relay 
characteristic in the complex Z-plane.  In  the notation 
of this  paper,  the  current  and voltage phasors  and  the 
impedance  are 

I = V ? f ( F , + j F , ) ,  

V = V ? f ( F l f + j F , r )  

Hence, 

Z,= Rf + j If, 
- - 

F, ’F ,  + F,’F, F , ’ F ,  - F,’F, 
+ j  

F,’ + F,, F, ‘+  F; ‘ 

While the Walsh  method has been shown  to be  con- 
siderably faster  than  even  the  fastest  Fourier method 
under  the  assumptions  made in this paper,  the  1Zpoint 
Fourier method is certainly  competitive from  the  stand- 
point of speed,  and “naturally” recommends itself to 
the problem because  the  end  result  has  to be the  Fourier 
coefficients F ,  and F,. Furthermore, it has been sug- 
gested that, by analog scaling of the  input signals, the 
12-point Fourier algorithm (see  also [ 121) can  be im- 
plemented so much more  quickly that it is  comparable 
to  the Walsh  algorithms. Whether  the  introduction of 
an analog device  to  do  the scaling would seriously  de- 
grade  the high reliability expected of the digital algo- 
rithms is still a question  to  be  answered. 

An  area  not  touched by  this paper is the  use of mul- 
tiple processors for protective relaying; rather,  we  have 
chosen  to  explore  the possibilities in fully utilizing a 
single minicomputer. The  computer  architecture most 
appropriate  for  substation  control, monitoring, and pro- 
tection is also a subject of much  current investigation. 

Summary 
A new  method for computing impedance  has been  elab- 
orated.  This method appears  to be a suitable candidate 
for  impedance relaying  applications. Its  advantage  over 
methods based on  Fourier  analysis lies in its  superior 
speed within acceptable limits of accuracy.  The saving 
in time for this  function can be well utilized by a  sub- 
station  computer  either  to perform other substation  func- 
tions or to  protect additional lines. Tests of one im- 
pedance algorithm using 17  samples per  cycle exhibit a 
response  to fault  conditions that is at  least  as satisfactory 
as  an equivalent  algorithm  based on  standard  Fourier 
analysis. The method leads  to  an  extremely  fast (50 p s )  
“early-warning”  impedance-algorithm  which offers an 
alternative  approach  to  the multiple-line problem. 
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Appendix A: 17-point Walsh coefficients 
Let g ( t )  be  sampled  at  17  equally  spaced  points  and 
denote  these  samples  by g,, . . ., g17. Denote  the W ,  for 
this  interval as W,( 1) , and  let W,( 2) be  the  Walsh co- 
efficients  for  the  interval  defined  by  samples g,, . . ., gin, 
etc.  The  following  formulas  for W , ( f )  in  terms  of  the  17 
points  in  the  sampling  “window”  are  obtained  from  Eq. 
(5) using  the  trapezoidal  rule  for  numerical  integration. 
Note  that W ,  and W ,  are done  by  recursion  to  reduce  the 
number  of  terms. 

Appendix B: impedance algorithm  using  formulas 

Depending  upon  which  of  the  two  formulas  for  max V 
or max I are applicable  (cf.,  Eq. ( 16) ) there are then  four 
possible  formats  for  the  impedance  calculation.  These 
can  be  shown  for  maxl/maxl,  max,/max,,  maxZ/max,, 
and  max,/ rnax,, respectively, 

(1 6)  

The  approximations are better  than  one  percent.  With 
the  cruder  approximations of 0.848 = 1 - ( 1 / 8 ) ,  1.27 = 
1 + ( 1/4),   and  3.54 = 3 + ( 1 / 2) ,  Shift  operations can 
be  employed  but, in the  worst  case,  accuracy  falls to 
3 percent.  Other  formulas are possible,  of  course,  but 
these are quite  fast. 
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