Communication

518

W. G. Tuel, Jr.

An Analysis of Buffer Paging in Virtual

Storage Systems

Abstract: Storage buffers are often used to hold temporary results or data that may be re-referenced in the near future. If these buffers
are pagable, searching the buffer may cause a high number of page exceptions. A model of this phenomenon is postulated, and compared

with experimental data.

Introduction

Storage buffers are often used to hold temporary results
or data that may be re-referenced in the near future. In
data base systems such as IBM’s Information Manage-
ment System [1], the buffers contain the most recently
used blocks of data retrieved from auxiliary storage.
Subsequent requests for data are answered by first
searching the buffer, returning the requested data if
therein contained; if the data are not in the buffer, the
record or block is retrieved directly from the auxiliary
storage device. The hope is that data will be found in the
buffer fairly often, and that the time taken to search the
buffer is more than offset by the time saved by not having
to retrieve the data from auxiliary storage.

Buffers of the type described are often rather large-
ranging from 20000 to 150000 bytes or more; the upper
limit is usually set by explicit constraints on the real
storage available, especially in systems without virtual
storage management. In systems with virtual storage
support, there is a temptation to increase the size of the
buffer, exploiting the large address space provided. How-
ever, this sets up a double paging environment [2], and
is self defeating because of the buffer paging induced by
the search process. In the next two sections, a model for
this phenomenon is postulated, and an analysis of the total
paging and data read I/0 activity is presented. The sec-
tion entitled Empirical confirmation presents the results
of a set of experiments demonstrating the phenomenon.

Buffer Management Model
Consider a buffer of N pages which is to be searched
whenever a request for data is made. If the requested
item is not in the buffer, an explicit data read is per-
formed to retrieve the record. Assume further that M
pages of main memory are available for the buffer.

Let p(/) be the probability that the requested item is
located in the ith buffer page searched, i =1, -:, N.

W. G. TUEL, JR.

(Independent, identically distributed data requests are
assumed. It is also assumed that these probabilities are
independent of the buffer size N, and independent of the
identity of the page searched.) Let Q(N) be the prob-
ability that the data are not found in the buffer, i.e., that
there is a ““‘miss” to the buffer. Clearly,

N
QIN)=1=Y3 p(i). (N
i=1
Finally, assume that the probability s that buffer page
i is in main memory is independent of { and is given by

s=1forN=M
=M/N for N > M.

This latter assumption states that buffer pages are as-
signed randomly in main memory.

It might be argued that these two assumptions are in-
compatible, because most virtual storage systems would
allocate main memory pages to the first portion of the
buffer pool, thus making the page fault probability non-
uniform. While this may be true to a certain extent, the
true situation is not simple to analyze, for a number of
reasons: The VS/2 paging supervisor uses an available
page list, rather than the LRU replacement algorithm;
the buffer pool page stack is updated by scanning and
altering the stack in software, rather than by hardware-
use bits; and the actual unit of transfer from the data
base disk to the buffer pool is variable length, thus re-
quiring buffer pool garbage collection and compaction
techniques which are not explicitly modelled. Because
the effect of these perturbations is unknown, uniform
probability was used.

Give the above assumptions, the expected number of
page faults, given that K buffer pages are searched, is

SK)=K(1—5) (2)

IBM J. RES. DEVELOP.




and the expected number of page faults per search is

E F(K)p(k) +f(N)Q(N)

N
= 1-9[3 b +NOW) |
k=1

where the second term above is due to searching the
buffer and not finding the requested data. This expression
may be further simplified using (1) to give

N-1
F=(1-s5)3 Q). (3)
k=0
The expected number of explicit data reads per search

is given by R = Q(N). Thus, the total 1/0 activity
T(N)=R+F

N-1
=Q(N)+(1—5) Y Q) =Q(N) for N= M,
k=0

N-1

=Q(N)+[(N=M)/N] 3 Q(k) for N> M.
k=0
(4)

For N > M, the change in total activity as the buffer size
is increased is:

AT(N) = T(N + 1) — T(N)

— QN+ 1) +[M/N] S Q(K)
k=0

1S 0k

k=0

—[M/(N+1

=0+ 1+ |ty

N-1
{3 tew -0 >o. (5)
k=0

since Q (k) is monotonically decreasing as a function of .

Thus, the total I/0O activity is an increasing function
of the buffer size for N > M, and making the buffer larger
than the available real storage causes an increase in total
1/0 work needed.

Extension for parametrized data base miss ratios
Equations (3)-(5) represent general expressions for
expected number of page faults and total 1/0 activity.
It is difficult to estimate, however, the magnitude of the
effect of double paging without a more specific character-
ization. The empirical confirmation data in the next

where b(i) and a(i),i=1, -, r are parameters, 0 < a (i)
< 1. Define Q_=1—37_ b(i). Equation (4) becomes
o a b(i)
F=(1—s) [NQw+§—[1_a(i)]

(N—M) b (i)
N 2T—a@]

[1—a(i)"]]

=(N—-M)Q_+

X [1—a()"] for N> M
=0for N= M. (6)

For large N and Q_ +# 0, T increases linearly with N.
If @ =0, (in which case all references are contained in
the buffer), T increases to an asymptotic value

" b(l
g 1—a()]’

which represents entirely paging activity.

Empirical confirmation

A set of experiments was conducted to demonstrate the
phenomenon described above, and to assess how well
the model of the previous two sections explains the ob-
servations. The application consisted of a batch program
executing a sequence of 1100 queries against a data base
management system, IMS Version 2.4 [1]. IMS manages
a buffer pool similar to that described above. Its size is
adjustable by the user at each invocation of the applica-
tion program. The queries caused a total of 9700 searches
of the buffer, an average of 8.8 searches/query. The
operating system environment was VS/2 Release 1.6,
and the machine an IBM System/370 Model 145 with
512K bytes of main memory.

Page exceptions for the IMS functions and buffer pool
searching were measured using a hardware counter
gated by a signal turned on when IMS is invoked. Data
on total reads to the data base were obtained from the
IMS-maintained buffer statistics.

Figure 1 shows the measured average number of data
base reads/search, Q(N), and the measured average
number of page exceptions/search, F, as a function of
the specified buffer pool size. The smooth curve is the
result of fitting Q(N) to the sum of two exponential
terms, and obtaining the corresponding values of a(1),
a(2), and b(1), b(2).

Using 4096 bytes (4K) as 1 page, the empirical fit
for Q(N) is

Q(N)=1—b(1)[1—a(1)"]—b(2)[1 —a(2)"],

section suggest that O (N) may be modeled by a sum of Where
exponentials. Let Q. = 0.1406,
r ! b(1) =0.67726, a(1) =0.3742,
QIN)=1=3 b)) [1—ad"],
i=1 b(2) =0.18214, a(2) =0.9586. 519

SEPTEMBER 1976

BUFFER PAGING




520

0.5~ /—1,0

Reads per search Q (N)
I
X
-
Page exceptions per search F

0 10 20 30

Buffer size N (pages)

Figure 1 Average number of reads per search and average
number of page exceptions per search as a function of specified
buffer pool size.

01—
0.05 —
s -
o L—
£
= 0 |
0 10 20 30
Buffer size N (pages)

Figure 2 Average elapsed time per search as a function of
buffer pool size.

Equation (6) then becomes
F = {.1406 + N"'[1.074(1 — 0.3742")
+4.41(1 —09586") ]} (N —M) for N > M.

This is indicated by the dashed line in Fig. 1, for a value
of M = 30 pages.

W. G. TUEL, JR.

Figure 2 presents the average elapsed time/search as
a function of buffer pool size. These values reflect the
total /0 activity. It is seen from both figures that the
paging effect is highly significant, and that performance
substantially deteriorates as the buffer pool size is in-
creased past N = M.

The agreement between the calculated and observed
values of page exceptions in Fig. 1 is good, allowing for
the fact that the threshold value, M, is not known ac-
curately. Note that only buffer paging is modeled and
measured; total paging activity also includes paging of
program code. In the experiment described, the latter
adds about 30% to the total page exception count.

Fitting a functional form to Q(k) is not always re-
quired. Equation (3) indicates that semi-graphical meth-
ods for summing observed values would also be ap-
propriate,

Conclusions

A model for buffer paging in a virtual storage system has
been presented. It explains the observed sudden increase
in paging activity and elapsed time for a query when the
specified buffer size exceeds the number of page frames
available.

Analysis of the model indicates that the total /0 ac-
tivity increases with increasing buffer size if the buffer
is allowed to page. Thus, optimum performance is
achieved by reducing the buffer size to fit the number of
page frames available. This is the strategy presently
used for IMS /360 running under OS/VS.

Acknowledgment

The author gratefully acknowledges the technical assis-
tance of D. Hildebrand, R. Krampetz, and M. Smyly
in providing the data base environment and measurement
facilities for this study.

References

1. Information Management System 360, Version 2, General
Information Manual, GH20-0765, IBM Corporation, White
Plains, NY 1973.

2. Goldberg, R. and Hassinger, R., “The Double Paging
Anomaly,” Proc. 1974 National Computer Conference,
Chicago, May 6-8, 1974,

Received February 2, 1975; revised March 4, 1975

The author is located at the IBM Research Division
Laboratory, 5600 Cottle Road, San Jose, CA 95114.

IBM J. RES. DEVELOP.




