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Abstract: Storage buffers are often used to hold temporary  results  or  data  that may be re-referenced in the  near  future. If these buffers 
are pagable,  searching the buffer may cause a high number of page exceptions. A model of this phenomenon is postulated, and compared 
with experimental data. 

Introduction 
Storage buffers are often  used to hold temporary results 
or  data  that may be  re-referenced in the  near  future.  In 
data  base  systems  such  as IBM’s  Information  Manage- 
ment System [ 11, the buffers contain the most  recently 
used  blocks of data retrieved from auxiliary  storage. 
Subsequent  requests  for  data  are  answered by first 
searching the buffer, returning the  requested  data if 
therein contained; if the  data  are not in the buffer, the 
record or block is retrieved  directly  from the auxiliary 
storage device. The  hope is that  data will be  found in the 
buffer fairly often, and  that  the time taken  to  search  the 
buffer is more  than offset by the time saved by not having 
to  retrieve  the  data from  auxiliary  storage. 

Buffers of the  type described are often rather large- 
ranging from 20000 to 1.50000 bytes or  more;  the  upper 
limit is usually set by explicit constraints on the real 
storage available,  especially in systems without virtual 
storage  management. In systems with virtual storage 
support,  there is a  temptation to  increase  the size of the 
buffer, exploiting the large address  space provided. How- 
ever, this sets up a double paging environment [ 2 ] ,  and 
is self defeating  because of the buffer paging induced by 
the  search  process. In the next two  sections, a model for 
this  phenomenon is postulated, and an analysis of the total 
paging and data read I / O  activity is presented.  The sec- 
tion entitled Empirical confirmation presents  the  results 
of a set of experiments  demonstrating  the phenomenon. 

Buffer Management  Model 
Consider a buffer of N pages which is to be searched 
whenever a request  for  data is made. If  the  requested 
item is not in the buffer, an explicit data read is per- 
formed to  retrieve  the record. Assume  further  that M 
pages of main memory are available for  the buffer. 

Let p ( i )  be the probability that  the  requested item is 

(Independent, identically  distributed data  requests  are 
assumed.  It is also assumed that  these probabilities are 
independent of the buffer size N, and  independent of the 
identity of the page searched.)  Let Q ( N )  be the prob- 
ability that  the  data  are not  found in the buffer, i.e., that 
there is a “miss” to  the buffer. Clearly, 

Q ( N )  = 1 - 2 p ( i ) .  (1)  

Finally, assume  that  the probability s that buffer page 
i is in main memory is independent of i and is given by 

s = l f o r N Z M  

Y 

i=l 

= M / N  for N > M. 

This  latter assumption states  that buffer pages are as- 
signed randomly in main memory. 

I t  might be  argued that  these  two  assumptions  are in- 
compatible, because most  virtual storage  systems would 
allocate main memory pages to  the first portion of the 
buffer pool, thus making the page  fault  probability non- 
uniform. While this may be true  to a  certain extent,  the 
true situation is not simple to  analyze,  for a number of 
reasons:  The VS/2 paging supervisor uses an available 
page  list, rather than the LRU replacement algorithm; 
the buffer pool page  stack is updated by scanning  and 
altering the  stack in software, rather than by hardware- 
use bits;  and the actual  unit of transfer  from  the  data 
base disk to  the buffer pool is variable  length, thus re- 
quiring buffer pool garbage  collection  and compaction 
techniques which are not explicitly modelled.  Because 
the effect of these  perturbations is unknown, uniform 
probability  was used. 

Give  the  above  assumptions,  the  expected number of 
page faults, given that K buffer pages are  searched, is 
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and the  expected  number of page  faults per  search is 

F = z f ( k ) p ( k )  + f ( N ) Q ( N )  
v 

k = l  

= ( 1  - s ) [ i  k p ( k )  + N Q ( N ) ] .  
k = l  

where  the second  term above is due  to searching the 
buffer and not finding the  requested  data.  This  expression 
may be further simplified using ( 1 )  to give 

F =  ( 1 - s )  Q ( k ) .  
.v- 1 

k=O 

The  expected  number of explicit data  reads  per  search 
is given by R = Q ( N ) .  Thus,  the total I / O  activity 

T ( N )  = R + F 

= Q ( N )  + ( 1  - s) Q ( k )  = Q ( N )  for N 5 M ,  
A- 1 

k=O 

x- 1 
= Q ( N ) + [ ( N - - ) I N ]   Q ( k ) f o r N > M .  

k=O 

(4)  

For N > M ,  the  change in  total  activity as  the buffer size 
is increased  is: 

A T ( N )  = T ( N  + 1 )  - T ( N )  
3-1 

= Q ( N  + 1 )  + [ M / N l  Q ( k )  
k=O 

Y 

- [ M / ( N  + 1 ) 1  Q ( k )  
k=O 

= + [ ( N  + l ) N ]  
M 

since Q ( k )  is monotonically  decreasing as a  function of k .  
Thus,  the total 1 /0  activity is  an increasing function 

of the buffer size for N > M ,  and making the buffer larger 
than the available real storage  causes  an  increase in total 
I / O  work  needed. 

Extension for parametrized  data  base miss ratios 
Equations  (3 ) - (5 ) represent general expressions  for 
expected number of page  faults and total 1 /0  activity. 
I t  is difficult to  estimate,  however,  the magnitude of the 
effect of double paging without  a  more specific character- 
ization. The empirical  confirmation data in the next 
section  suggest that Q ( N )  may be  modeled by a  sum of 
exponentials. Let 

Q ( N )  = 1 - 2 b(i)[ l  - ~ ( i ) ” ] ,  
i = l  

where b (i) and a (i) , i = 1 , .  . ., r are  parameters, 0 < a ( i )  
< 1 .  Define Q ,  = 1 - CL,b ( i ) .  Equation (4 )  becomes 

x [ I  - a ( i ) ” ]  for N > M 

= 0 for N 5 M .  (6 )  

For large N and Q ,  # 0, T increases linearly with N .  
If Q ,  = 0, (in which case all references  are  contained in 
the  buffer), T increases  to  an  asymptotic value 

‘ b( i )  T==z  [ I - a ( ; ) ] ’  

which represents entirely paging activity. 

Empirical confirmation 
A set of experiments  was  conducted  to  demonstrate  the 
phenomenon  described above,  and  to  assess how well 
the model of the previous two  sections explains the ob- 
servations.  The application consisted of a batch program 
executing  a sequence of 1100 queries against  a data  base 
management system,  IMS  Version 2.4 [ 11. IMS manages 
a buffer pool  similar to  that  described  above.  Its size is 
adjustable by the  user  at  each invocation of the applica- 
tion  program. The  queries  caused a  total of 9700 searches 
of the buffer, an  average of 8.8 searches/query.  The 
operating system  environment  was VS/2 Release 1.6, 
and the machine an  IBM  System/370 Model 145 with 
5 12K bytes of main  memory. 

Page  exceptions  for  the  IMS functions  and buffer pool 
searching were measured using a hardware  counter 
gated by a signal turned on when IMS is invoked. Data 
on total reads  to  the  data  base were  obtained  from the 
IMS-maintained buffer statistics. 

Figure 1 shows  the measured average number of data 
base  reads/search, Q ( N ) ,  and the measured average 
number of page exceptions/search, F ,  as a  function of 
the specified buffer pool size. The  smooth  curve is the 
result of fitting Q (  N )  to  the  sum of two exponential 
terms, and  obtaining the corresponding  values of a(  l ) ,  
a ( 2 ) ,  and b( l ) ,   b ( 2 ) .  

Using 4096 bytes (4K) as 1 page, the empirical fit 
for Q ( N )  is 

Q ( N )  = 1 - b ( l ) [ l  - ~ ( l ) ” ]  - b(2) [1  - a ( 2 ) ” ] ,  

where 

Q ,  = 0.1406, 

b( 1 )  = 0.67726, a(  1 )  = 0.3742. 

b(2) = 0.18214, a ( 2 )  = 0.9586. 51 9 
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Figure 2 presents  the  average elapsed timelsearch  as 
a  function of buffer pool size. These values reflect the 
total 1 / 0  activity. It is seen  from both figures that  the 
paging effect is highly significant, and  that performance 
substantially deteriorates  as  the buffer pool size is in- 
creased  past N = M .  

The  agreement between the calculated  and observed 
values of page exceptions in Fig. 1 is good, allowing for 
the fact that  the threshold  value, M ,  is not known  ac- 
curately.  Note  that only buffer paging is modeled and 
measured; total paging activity  also  includes paging of 
program code.  In  the  experiment  described,  the  latter 
adds  about  30%  to  the total  page  exception count. 

Fitting  a  functional  form to Q ( k )  is not always  re- 
quired. Equation (3)  indicates that semi-graphical meth- 
ods  for summing observed  values would also  be ap- 

Figure 1 Average  number of reads per search  and  average propriate. 
number of page exceptions per search  as a function of specified 
buffer pool size. 

Conclusions 

I Buffer size N (pages) 

A model for buffer paging in a virtual storage  system has 
been presented. I t  explains the  observed sudden increase 
in paging activity  and  elapsed  time for a  query  when the 
specified buffer size exceeds  the number of page  frames 
available. 

Analysis of the model indicates that  the total 110 ac- 
tivity increases with increasing buffer size if the buffer 
is allowed to page. Thus, optimum performance  is 
achieved by reducing the buffer size to fit the  number of 
page  frames  available. This is the strategy  presently 
used for  IMS/360 running under OS/VS. 
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