hedler
lutz

]
» w

Derivation of Miss Ratios for Merged Access Streams

Abstract:

An access stream is the sequence of storage accesses made by an executing program; a merged stream results from the multi-

programming of a number of individual access streams. Assuming that LRU (least recently used) miss ratio functions for individual
streams are known, we consider the problem of predicting the LRU miss ratio function for merged streams. Each access stream is
modeled as a sequence of independent, identically distributed LRU stack distances which evolves in time as a Poisson process and the
merged stream is taken to be the superposition of these processes. For an arbitrary number of such streams, a closed form expression

for the expected miss ratio function is obtained.

1. Introduction

Performance evaluation of computer systems often in-
volves the study of a formal (mathematical) model of
some portion of the system. For meaningful storage
system evaluation it is necessary to incorporate the ref-
erencing behavior of executing programs into the model.
This referencing behavior is conceptualized as an access
stream—a sequence of requests for data access. Often
a distinction is made between the specification of the
workload characteristics and the structure of the system,
yielding a *‘workload model” as a driver of a “storage
system model.” The apparent difficulty of obtaining an
adequate mathematical description of the time-varying
characteristics of a storage system workload has led to
the practice of using either actual access streams obtained
by tracing executing programs or over-simplified work-
load models. An example of the latter is the miss ratio
function for an access stream which tabulates the (long-
run) fraction of references made to the second level of
a two-level memory hierarchy as a function of the capac-
ity of the first level; this function depends implicitly on
many other parameters such as block size, replacement
algorithm, etc. [1].

Experience with the use of miss ratio functions, par-
ticularly in cache-main memory hierarchy design, has
shown them to be useful representations of workload
characteristics when the referencing activity of only a
single stream is considered and when only the number of
misses (not their occurrences in time) is important for
determining performance.

The relative simplicity of a miss ratio function inspires
its use for more complex workloads, such as for a con-
current set of executing programs. Such multistream
environments exist in current systems that utilize multi-
programming or multiprocessing but use a single mem-
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ory system. In this case the stream of accesses to a stor-
age device or subsystem is a composite stream arising
from several access streams, and the miss ratio function
depends not only on the individual streams but also on
the mechanisms that affect the mixing, e.g., the process
scheduler and the device timing parameters. The miss
ratio function is also affected if the separate streams
access common information, but this is not considered
here.

This paper is concerned with the prediction of miss
ratio functions for multistream environments from the
miss ratio functions of the individual streams. The pro-
posed basis for the prediction is the derivation of the
miss ratio fuhction for a stochastic merged stream. Each
access stream is taken to be a stochastic point process
(i.e., a series of events) evolving in time and the super-
position of these independent processes provides the
mixing or merging mechanism. For the case of J = 2
streams, each represented as independent, identically
distributed (i.i.d.) least recently used (LLRU) stack
distances (cf., [2]) evolving in time as a Poisson process,
a closed form solution for the expected miss ratio func-
tion of the merged stream is obtained. (An alternative
method for predicting miss ratios for multistream environ-
ments has been studied by MacDonald et al. [3].)

e Notation

M (A;) miss ratio function for stream 4, evalu-
ated at capacity i — 1

N{x:y) number of occurrences of symbol x in
set or sequence y

M, (¢) fraction of misses in first k references

for the merged stream for capacity ¢
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Figure 1 Merging of two access streams by superposition.

M(c) long-run expected miss ratio function
for the merged stream

r(4d) reference sequence for stream A

s(A4) (well formed) stack sequence for
stream A4

d(A4) (well formed) distance sequence for
stream A

r(4) = s(A) stack sequence s{A) is associated with

reference sequence r(A)

rd) < s(A4) reference sequence r(4) and stack
sequence s(4) are mutually as-
sociated

rd) = d(A) distance sequence d(A) is associated
with reference sequence r(A)

r(A) ~ r(A") equivalent reference sequences r(A)

- and r(4')

r(A4) reverse of sequence r(A4)

D*(4) distance process for stream A

d*(A4) deterministic distance sequence or
realization of distance process
D*(4)

d' (A4) twin of distance sequence d(A4)

d*'(4) twin of realization d*(A4)

p*(M) merged distance sequence

p(M) (well formed) merged distance se-
quence

r(M) merged reference sequence

s(M) (well formed) merged type stack

~ sequence

d(M) M-distance sequence or well formed
distance sequence associated with a
merged reference sequence

t(M, c) (well formed) merged type stack se-
quence

P*(M) merged distance process

T(M, c) merged type stack process

Z(M, c) set of recurrent states for merged type

stack process
V(z) set of finite length merged reference
sequences that yield type stack z
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Q(z) set of finite length, well formed, merged
distance sequences associated with
the reverses of the sequences in ¥ (z)

H(z) Markov chain based on P*(M)

Q(k,,--+ k;: c) long-run probability that a merged type
stack for capacity ¢ contains &,
entries from stream 4;, 1= j=J

2. Definition of the multistream environment

An access stream A is taken to be a sequence of ref-
erences occurring in continuous time to data items called
blocks. If a reference is viewed as an event, an access
stream is a (multivariate) stochastic point process [4].
Thus, there is an increasing sequence of epochs of times-
to-events {7,(A)}, r,(4) <1, (4),k=1,2;-}, and at
each epoch #,(4) a reference r,(4) is made to one of
a finite set of blocks & = {qa,, ' a,}. It is assumed
throughout that the sets of blocks referenced by separate
access streams are mutually disjoint. The sequence
{r,(4); k=1,2,--} is called a reference sequence and
is sufficient to determine any miss ratio function for the
access stream. (In this paper only the LRU miss ratio
function is considered.)

The mechanism considered here for mixing several
access streams to create a multistream environment is
the superposition of the individual (point process) access
streams. The theory of the superposition of point pro-
cesses is discussed by Cinlar [5]. Figure 1 illustrates
this type of merging for two access streams A4 and B.
The resulting composite reference sequence is called
a merged reference sequence and determines the miss
ratio function of the multistream environment. Observe
that the reference sequences of the individual access
streams are primarily determined by the respective exe-
cuting programs, but the times of reference (and thus
the merged reference sequence) are primarily determined
by the system environment.

Determination of the LRU miss ratio function for a
given reference sequence, either for an individual stream
or for a merged stream, is given next. For a finite ref-
erence sequence r,(A4), -, r,(A4) of length L. an LRU
stack distance of &, 1 = k = m, is associated with r,(4)
if and only if r,(4) = a,, and for the largest j < i, where
r].(A) = a,, exactly k distinct blocks are referenced by
r(Ad), - ri(A). If r,(4) = q, is the first reference to
block a,, then the stack distance is undefined. Also, let
Q(k), 1 = k= m, be the number of associated stack dis-
tances equal to £ in the finite reference sequence.

Recall that an LRU stack distance equal to £ signifies
that a miss would occur to a first-level memory if and
only if it is of capacity in blocks ¢ > k; then the LRU
miss ratio function is given by 1 — Lilizle(k) for
1=c=m—1,and by 1 = L'S}" Q(k) for ¢ = m.
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For a stochastic reference sequence generated by
iid. LRU stack distances (with distribution {e;} as
given in following sections), the long-run expected frac-
tion of misses for first-level capacity ¢ approaches
3" o for e=1,-- m—1, and approaches 0 for
¢ = m. Thus, if the miss ratio function for an actual refer-
ence sequence is known, probabilities {«,} can be easily
determined such that the expected fraction of misses for
capacity ¢ for the (i.i.d.) distance-generated stochastic
reference sequence approaches the miss ratio function as
the number of generated references becomes large.

3. Probabilistic assumptions and statement of main
result
The derivation of the expected LRU miss ratio function
formed by merging J = 2 individual access streams A,
-+, A, is made under the following probabilistic assump-
tions.

1. Access streams A4,, A,," -, A, are independent.

2. Access stream A; evolves as a Poisson process of rate
A > 0, de. {1,(4;) —1,_,(4,)} is a sequence of in-
dependent and identically distributed random vari-
ables having an exponential distribution with rate
parameter A;; 1.e.,

Pr{t,(4;) =1, (A) =t} =1—¢ N 1=0.

3. The LRU stack distance sequence {Dk*"(Aj)} for
access stream A; is a sequence of i.i.d. random vari-
ables with distribution {e,(4;) }, i.e., Pr{D*(4;) =i}
=ad;),1=i= m;.

It follows from the Poisson assumptions that the stream
identity of a reference in a merged sequence is deter-
mined by an independent trials process, i.e., for all i the
probability that the ith reference in the merged stream
. . J .
is from stream A, is A;/3;_\\,. Forj=1,--J let
I'lj
> (4, 1=i=m,
k=i

Mi(Aj) =
0,i> m,

denote the miss ratio function for the separate streams
and let 8, = \;/3,_\,. Also, for x a symbol, ¢ a non-
negative integer, and v a set or a sequence, let N(x:y)
denote the number of occurrences of x in y and let {v}¢
denote all c-tuples over y.

Theorem 3.1

Let A, - A, be access streams referencing mutually
disjoint sets of blocks and satisfying the probabilistic
assumptions above, For a first-level capacity ¢, denote
by M,(¢) the fraction of misses in the first & references
for the merged stream. Then the long-run expected miss
ratio function M (¢) = !L‘?l E{M, (c)} is given by
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where Z(M,c) ={z;2 € {4, U A, U---UAJ}C,N(Aj:z)
<m,i=1,++J} and for each z= (z," -, 2,) EZ(M, ),

J
E AijSiIJ‘(Ai)
G(Z,j) — 3:1 N(A;:z. 7)) ’j——’ 1o
81‘/““(’41')
i=1 N(A;z o z)+ 14
where
1, if z;=A,

Y 0, otherwise.

This theorem is the main result of the paper. The com-
putation of M(c¢) using Theorem 3.1 requires time of
the order of J°. Since direct application is impractical,
in Section 7 a second expression for M(c¢) is given that
requires computational time of the order of ¢’.

In the next three sections the theorem is proved for the
case J = 2 and the extension to J > 2 is outlined. Section
4 introduces precise notions of reference, stack, and
distance sequences. This is necessary because finite
length sequences are considered during which the LRU
stack (initially empty) undergoes a ““filling up” phase.
Notions of reverse sequences, used in the proof to follow,
are also introduced. The extensions of these definitions
to merged sequences are given in Section 5. The main
proof is contained in Section 6 and it involves viewing
the sequence of LRU stacks for the merged reference
string as a Markov chain. The basic idea is that a par-
ticular stack z will exist at time ¢ if and only if the reverse
of the merged reference sequence (actually the merged
distance sequence) up to time ¢ has a particular property.
This property is related to the limiting distribution of
another Markov chain A (z) that is easily calculated.

4. Preliminaries

For notational convenience in treating the case of J =2
streams, the two streams are denoted by 4 and B, the
respective disjoint sets of blocks referenced by & =
{a,,- . a,} and B={b,, -, b,}, and the respective LRU
stack distance probability distributions by {e;} and {B,}.
The independent probability of referencing stream A,
equal to A,/ (A, + A,), where A, and A, are the Poisson
rate parameters, is denoted by 6.

In this section definitions are given (along with con-
sequent properties) of “well formed” LRU stack and
stack distance sequences that can be associated with a
reference sequence. The well formed stack distance
sequence is related to the usual stack distance sequence
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[1] and is used subsequently in the derivation of the
miss ratio function for merged reference sequences.

For access stream A4 denote the associated reference
sequence by

r(A)={r].(A);j21},whererj(A)EJzZ'.

Also, denote an LRU stack sequence (or stack sequence)
for access stream A by s(4) = {s;(4); j = 0}, where
each s].(A) is an ordered subset of .. Thus, for j = 0,
sj(A) has the form 8; (A)= [s] (A), (A 1, where
s; (4) € # and 8 (A) # 5; (A) for k % land 1=
k = ;. The quantity y;, 0=y, = = m, is the size of 5;(4).
If Y; =0, s].(A ) is the empty set denoted by . Certain
stack sequences are associated with reference sequences
as follows.

Definition 4.1 Given a reference sequence r(A4), an as-
sociated stack sequence s(4) = {sj (A4);j = 0} denoted
by r(A) — s(A4) is defined recursively forj = 0 as follows:

1. j=0:5,(A)=0,v,=0.
2. FOI‘_]> 0, given r;,,(A4) ands(A)'
a. if for some k, 1 = k= Vs J+1(A) =3 . x(4) then

sj+1(A) [S k(A) S,I(A) S5, k- 1(A)
Sj, kea(A)y 55 (4)]
and y;,, =v;.

b. otherwise,
§;01(A) = [r;,,(4), 5;(4)] and y;,, = y; + 1.

Definition 4.2 Given a stack sequence s(A4), a reference
sequence r(A) is associated with s(A4), denoted by
s{A) = r(A), if r(4) = s(A). If at least one r(A4) is
associated with s(A4), then s(A4) is said to be well formed.

The observation in Definition 4.1 that for »(4) — s(A4),
55, (4) = r; (A4) for all j = 1 leads to the following prop-
osition.

Proposition 4.3 Given r(A), there is a unique s(A4) such
that r(A4) — s(A). Given s(4) well formed, there is a
unique r(A4) such that s(4) — r(A4).

It follows that the set of reference and well formed
stack sequences can be partitioned into mutually as-
sociated pairs (denoted by r(4) «> s(A4)). These associ-
ations are next extended to include distance sequences.

For access stream A4 denote an LRU distance se-
quence (or distance sequence) by d(A4) = {dj(A);j =1}
where dj(A) € {1,---, m} U {1, -+, m}. Distances of the
form j correspond to the first reference to a block in a
reference sequence.

Definition 4.4 Given a reference sequence r(4) and a
well formed stack sequence s(A) where r(4) < s(A),
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an associated distance sequence d(A) = {dj(A);j =1},
denoted by r(4) — d(A4) or s(4) — d(A), is defined
recursively for j = 1 as follows:

1. If for some &k, 1 =k = Vo1 r].(A) =5_, «(4), then
d,(4) = k.

2. If for all k, 1<k<'yj p () #
d].(A) =vy,+ L

8y, x(4), then

Definition 4.5 A distance sequence d(A) is said to be
a well formed distance sequence if the following condi-
tions are satisfied:

1. Denote by K = {k,;{= 1} where k, < kl+1 the sequence
of indices of d(A) such that d, (A) =jfor some j. Then
dl(A) =lfori=1,2,-

2. Forallk = 1,if d,(4) =, then there exists /| < k such
that d,(4) =J.

Table 1 illustrates these definitions for a particular
reference sequence r(A4) over & = {a,," ", a,}.

Proposition 4.6 Given r(A) (or s(4) where r(4) <
s(A)), there is a unique d(A4) such that r(4) — d(4) and
d(A) is well formed. Given d(A4) well formed, there ex-
ists a reference sequence r(4) (not necessarily unique)
such that r(4) — d(4). This association is denoted
d(A4) — r(A4).

The first statement in. Proposition 4.6 follows from
Definition 4.4 and the second statement can be derived
by an inductive proof in which an associated reference
sequence is constructed. To see that the association
d(A) — r(A) is not unique, observe in Table 1 that if
rg(4) and r, (A4) are both changed from a, to a, the
associated distance sequence is unchanged. Thus, the
unique mutual association between a reference sequence
and a well formed stack sequence does not directly ex-
tend to well formed distance sequences. There is, how-
ever, a unique mutual association between well formed
distance sequences and classes of “‘equivalent” reference
sequences in which only the namings of blocks differ.

Definition 4.7 Let r(A) and r(A’) be two reference se-
quences defined over sets of blocks 7 and ./’ respective-
ly. Let & be the minimal subset of ./ such that for all

=1, r].(A) = a, implies that g, € # and let #’' C /' be
similarly defined for r(4'). Then reference sequences
r(4) and r(A’) are said to be equivalent (denoted
r(A) ~ r(A')) if and only if there exists a one-to-one
mapping g € % X %' such that r,(4) = g(r;(4’)) for
allj=1.

This notion of equivalence is extended to stack se-
quences and it is observed that for two well formed stack
sequences s(A4) and s(A4’'), the stack sequences are equiv-
alent (denoted s(A4) ~ s(A4")) if and only if r(A4) ~ r(A’'),
where s(A4) © r(A) and s(A') < r(A4’).
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Table 1 Examples of well formed sequences.
J
Sequence 0 1 2 3 4 S 6 7 8 9 10
Reference ri(4) a, a, a, a, a, a, a, a, a, a,
Well formed %] a, a, a, a, a, a, a, a, a, a,
stack s; (A) a, a, a, a, a, a, a, a, a,
a, a, a, a, a, a, a,
a, az a3 a, a,
Size Y 0 1 2 2 3 3 4 4 4 4 4
Well formed 1 2 2 3 2 4 4 1 3 3
distance d] (4)

Proposition 4.8 Consider two reference sequences r(A4)
and r(A’) and their associated well formed distance se-
quences, r(4) = d(A) and r(4’) = d(A’). Then d(A4) =
d(A') if and only if r(A4) ~ r(A4’).

To see this, suppose first that r(4) ~ r(A4’). Itis easily
shown that d(A4) = d(A’') by induction on the index of
the reference sequence. Conversely, suppose that r(A)
and r(A’) are not equivalent. For k as large as possible,
chonse r(A4") defined over the set of block .« and equiv-
alent to r(A4’) such that r;(4") =r;(4), 1 = j= k. It can
easily be shown that d,,,(4") # d,,,(A) and thus d(A4’)
=d(A") # d(A4).

From Propositions 4.6 and 4.8, it follows that the
product space of equivalent classes of reference se-
quences and well formed stack and distance sequences
can be partitioned into triples of mutually associated
sequences. In the sequel, equivalent reference sequences
are distinguished only when necessary; thus, r(A4) is
often referred to as “the’ reference sequence associated
with d(A).

This discussion provides a framework within which
the miss ratio function for merged stochastic reference
sequences generated by (stochastically) independent
LRU distances can be determined. Recall that for stream
A and nonnegative integer m, the LRU distance process
is a sequence D*(A4) = {Dj(A4);j= 1} of i.i.d. nonnega-
tive integer random variables in the range {1, -, m},
where Pr{Dj"‘(A) =i} = ;, 1 =i= m. Subscripted upper
case letters such as D; are used to indicate random vari-
ables. Subscripted lower case letters such as d refer
either to realizations of a random variable or to elements
of a deterministic sequence. A realization of the stochas-
tic process D*(A) is interpreted as a distance sequence
of the previous discussion.
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Definition 4.9 Given a realization {d;(4);j = 1} of the
distance process D*(A), an associated unique well
formed distance sequence d(4) = {d;(4);j = 1} is de-
fined recursively as follows:

—

Forj=1,d,(4)=1.

2. Forj= 2, if d* (4) = k and there exists [ < j such that
d,(A) = k. then d;(4) = k.

3. Otherwise, if / is the maximum integer such that for

some [/ < j, d,(A) = i, then di(4)=i+1.

As an example, {d(4)}=(3,3,2,5,2,4,4,1,3,3}
yields the distance sequence shown in Table 1. It can
now be seen that the use of d,(4) = k represents adding
a kth block to the stack. Recall that the memory is as-
sumed to be initially empty. When a distance in the reali-
zation larger than the current stack size is observed, it
is viewed as a reference to a new (i.e., not previously
referenced) block. This convention is made for con-
venience and does not affect the (long-run) miss ratios.

Some final definitions involving “twin” distance se-
quences complete the preliminaries. These twin se-
quences are the key to describing the structure of the
merged reference sequences. For any finite length se-
quence d= (d,," -+, d,) the reverse of dis (d,, d,_,," - d,)
and is denoted by d

Definition 4.10 Suppose that r(A4) is a finite length ref-
erence sequence and that d(A4) is the associated well
ggrmed distance sequence, r(4) — d(A). Then, if
r(A) — d'(A4), the well formed distance sequence d'(4)
is called the rwin of d(A4).

The notion of twin sequences is extended to realiza-
tions of the stochastic distance process as follows.
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Table 2 Examples of twin sequences.

J
Sequence 1 2 3 4 5 6 7 8 9 10 11 12

Distance d¥(4) 5 t 3 1 4 2 6 1 3 1 2 4
Well formed di(4) 1 1 2 1 3 2 4 1 3 1 2 4

distance /
Reference r;i{4) a, da, a, a, a, a, a, a, a, a, a, a,
R X

Z\;‘err?; ) ¥, (A4) a, a, a, a, a, a, a, a, a, a, a, a,
Twin of d{4) d;/ (4) 1 2 3 1 2 1 4 3 2 1 4 1
Twin of d*(A) d*'(4) 5 3 4 1 2 1 6 3 2 1 4 1

Definition 4.11 Let d*(A4) = {d]?"(A); 1= ;= 1} be afinite
length realization. The twin of d* (A4), denoted d*' (A4),
is defined by the following procedure.

1. Determine d(A4) = {dj(A); 1=j=1}, the well formed
distance sequence for d*(A4). Let {i,, i, -*-} with
i, < i, be the set of indices such that for some &,
d(A) = k and let {i}, iy, -} be similarly defined for
the twin d'(A).

2. d*'(4) = {dj'(A); 1= j= I}, the twin of d*(4), is
given by

dj(A),j # i, ig s

dF'(A) =
dx(A), j=if, 1= 1,2,

Table 2 illustrates these definitions. The first two lines
show a realization of length 12 and its well formed dis-
tance sequence d(A). The third line shows one of the
reference sequences r(A), where r(4) — d(A),(_and
the next line shows the reverse reference sequence r(A4).
The fifth line shows the twin d’'(A4) of d(4),i.e., r(4) —
d'(A), and the last line shows the twin d*'(A4) of d*(A4).
Observe that the index set {i,, i,,-"} is {1, 3, 5, 7} and
{di(4);j=1,3,57}is {5, 3, 4, 6}. Also, {i, i’} is
{1, 2, 3, 7} and consequently {d'(4);j=1,2,3,7}is
{5, 3, 4, 6}.

This example illustrates some properties of twin dis-
tance sequences which are easily shown to hold in gen-
eral.

Proposition 4.12 Let d*(A) be a finite realization of a
distance process and let d(A4) be the corresponding well
formed distance sequence. Then

1. the twin d’'(A4) of d(A4) is unique and the twin of d'(A4)
is d(A4) . Furthermore, d' (A) is a permutation of d(4).

2. the twin d*'(A4) of d*(A) is unique and the twin of
d*'(A) is d*(A). Furthermore, d*'(A) is a permuta-
tion of d*(A).
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5. Merged sequences

In this section the structure of merged reference se-
quences is investigated. Two access streams 4 and B are
considered initially where the respective sets of blocks
accessed, o = {a,," ", a,} and # ={b,,--~, b,}, are as-
sumed disjoint (& N % =(J). Recall that an independent
LRU stack distance process is associated with each
access stream and that the merged stream is obtained by
the superposition of the individual streams.

The definitions and concepts of the previous section
are extended to merged stack and distance sequences and
well formed merged stack and distance sequences in
order to describe the structure of merged reference
sequences. Additionally, a particular merged reference
sequence (corresponding to a realization) is also viewed
as a single access stream over the set of blocks &/ U &
for the purpose of calculating miss ratios.

Definition 5.1 For access streams A4 and B

1. a merged distance sequence p* (M) is a sequence of
pairs p*(M) = {u,(M), df(u;(M)); j = 1}, where
forj=1,

a. u;(M) € {4, B} denotes the.type of the jth dis-
tance;

{{1,"-,m} if u;(M) = 4:
b. d¥(u;(M)) €

{1,--+ n}if u;(M) = B.

2. a well formed merged distance sequence p(M) is a
sequence of pairs p(M) = {uj(M), dj(u].(M));jz 1},
where for j = 1, u;,(M) € {4, B} and
a. the sequence {dj(uj(M)); u].(M) = A} is a well

formed distance sequence for stream A;
b. the sequence {dj(uj(M)); u,(M) = B} is a well
formed distance sequence for stream B.

A merged distance sequence is thus a bivariate dis-
tance sequence with u;(M) denoting the type (or identity)
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Table 3 Examples of merged stack and M-distance sequences.

Well formed d(A4) 1 B 2 2
distance d(B) ~ 1 ~

p(M) Al Bl A2 A2

Reference r(A) a, a, a,

r(B) b,

r(M) a, b, d, a,

Merged stack s(M) a, b, a, a,
a, b, a,

a, b,

M-distance d{M) 1 2 3 3

_ 3 4 B 3 2
2 B - 2 3
B2 A3 A4 B2 B3 A3 B2
a, a, a,
b, b, b, b,
b, a, a, b, b, a, b,
b, a, a, b, b, a, b,
b, b, a, a, b, b, a,
a, b, b, a, a, b, b,
a, a, b, b, a, a, a,
a, a a, b, a, a,
a, a, a, b, b,
a, a, a,
4 5 6 4 7 6 3

of each distance. For notational convenience the pair
[u;(M), d (u;(M)] is often written as a concatenation
and denoted by p].*(M) as, for example, in pi (M) =A45.
A similar notation is used for well formed merged dis-
tance sequences, e.g., p;(M) = B4.

A merged reference sequence (for access streams A
and B) is denoted by r(M) = {r;(M);j = 1}, where
(M) € {e« U %}, j = 1. For merged reference se-
quences the type of each reference is not included ex-
plicitly since it can be deduced from r;(M). A well formed
merged stack sequence s(M) = {sj(M); J = 0}, with
each sj(M) an ordered subset of &7 U £, is defined by
viewing r(M) as a reference sequence for a single access
stream and requiring r(M) — s(M). Finally, the well
formed distance sequence d(M) = {dj(M);j > 1} as-
sociated with s(M) is called the M-distance sequence.
Observe that each distance in the M-distance sequence is
an element of the set {1,2,- m+#, 1,2, -, m+n}and
that the M-distance sequence determines the miss ratio
function for the merged reference sequence.

Definition 5.2 Let p(M) be a well formed merged dis-
tance sequence, let d(4) = {dj(u}.(M)); u].(M) =A}, let
d(B) = {d,(u;(M)); u;(M) = B}, and let r(4) and r(B)
be reference sequences where r(4) — d(A) and r(B) —
d(B). A merged reference sequence r(M), associated
with p(M) and denoted by p(M) — r(M), is obtained by
replacing the subsequences d(A4) and d(B) in the se-
quence {dj(uj(M) );j=1} by r(A) and r(B), respectively.

Table 3 illustrates these definitions. The following
definition and proposition provide a mechanism for as-
sociating a merged stack sequence s(M) directly with a
well formed merged distance sequence p(M).

Definition 5.3 For access streams 4 and B suppose that
p(M) = {u(M), d;(u;(M)); j = 1} is a well formed
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merged distance sequence. A merged stack sequence
s(M) = {s].(M);j = 0} associated with p(M) is defined
recursively as follows:

1. Forj=, 5o(M) = and Y, =0.
2. Fo.rj> 0, suppose 5;(M) and v; have been determined;
a. if djﬂ(ujH(M)) = k and ! is the kth smallest index
such that 5; (M) is of type u;,,(M), then
j+l(M) = [sj’ I(M)’ Sj’ I(M)9. "5 sj’ l—l(M)’

s
S;, l+1(M)»' Ty S YJ(M)]

and y;,, =y,
b. if d,, (u,,,(M)) =k, then
lay, s;(M)], if u;, (M) = 4,
S (M) =4 "

[by, s,(M)], if u;, (M) = B,
and y;,, =v; + L.

Proposition 5.4 Let p(M) be a well formed merged dis-
tance sequence, let r(M) be a merged reference sequence
where p(M) —> r(M), and let s{M) be a merged stack
sequence associated with p(M) as given by Definition
5.3. Then s(M) is well formed, #(M) ~ r(M) where
s(M) — (M), and d(M) is unique where r(M) — d(M).

6. Proof of main result

Consider now the merged distance sequence for two
streams under the assumptions of Section 3. It is easily
shown from the association of merged distance sequences
with well formed merged distance sequences and from
Definition 5.3 above that the well formed merged stack
sequence s(M) is a Markov chain (see, e.g., Parzen [6]),
and the long-run miss ratio function can in principle be
obtained from this chain. However, to obtain the miss
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Table 4 Examples of merged type stack sequences.

J
Sequence 0 1 2 3 4 5 6 7 8 9 10
Merged distance dj*(l\/l) A4 A4 B2 Bl B3 A4 B2 B4 Bl B2
Merged reference r (M) a, a, b, b, b, a, b, b, b, b,
Merged type 1, (M, 5) %] A A B B B A B B B B
@ 1%} A A A B B A B B B
<& %] < A A A B B A A A
%] < %] %] %} A A A B B B
1%} %] 14} G} %] ) A A A A A

ratio function in closed form it is more convenient to
consider another related Markov chain of merged “‘type”
stacks.

Informally, a well formed merged type stack sequence
t(M, c) = {tj(M, ¢);j = 0} differs from s(M) in that

1. A type stack only indicates the type of each stack
entry. For example, if s,(M) = (a,, b,, a,, a,, b,) then
tj(M, 5)is (A4, B, A, A, B).

2. For a nonnegative integer c, the type stack (M, c)
contains just ¢ entries corresponding to the first ¢
elements of s;(M) if y; = ¢, or to s;(M) followed by
¢ —v; “empty” entries denoted by J if y; < c.

In the example above, (M, 3) = (A, B, A) and
t{M,7) = (A, B, A, A, B, 2, ). The miss ratio calcula-
tion for capacity ¢ is obtained from (M, ¢) for 1 = ¢ =
m + n. A calculation with type stacks is preferable be-
cause the number of possible type stacks is much smaller
than the number of stacks.

Let {x,, "~ x,} denote the set of all c-tuples over the
symbols x,,- -, x, and let (x,,* -, x,) ¥ denote the set of
all sequences of length zero or more over these symbols.

Definition 6.1 Let ¢ be a nonnegative integer and let
p*(M) = {u(M), d (u;(M)); j = 1} be a merged dis-
tance sequence. The associated well formed merged type
stack sequence t(M, c¢) = {tj(M, ¢); j = 0}, where
(M, ) =11, (M,c), 1, (M, c)]€{4UBUII,
is defined recursively:

1. Forj=0, 1,(M, c) = {}".
2. For j = 0, suppose that £,(M, ¢} has been determined;
a. if d* [ujH(M)] > N[uJ.H(M):rj(M, ¢)], then

J+1

(M, c) = [u].H(M), ;. (M, c),

e (ML o))
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b. otherwise, let [ be the index such that
Nl (M) 1, (M, e)y o 1, (M, )]
=d (4, (M)).
Then,
(M, ¢) = [, (M), 1, (M, ¢,

(M, ¢),- 1, (M, o).

U,

(M, c), ¢

tj+l
b L 141

Table 4 illustrates Definition 6.1 for the case ¢ = 5.

* Markov chain of merged type stacks
From the probabilistic assumptions of Section 3, the
stochastic process P*(M) = {U,(M), Dj(U,(M)):

J = 1}, called a merged distance process, is a sequence

of pairs of i.i.d. random variables, where
Pr{U;(M) = 4, D} (U;(M)) = k} = 8a,, 1 =k = m,
Pr{U,(M) = B, D} (U;(M)) = k}

=(1-38)B,,

and 8 = N,/ (A, + Ap). Note that a merged distance se-
quence p*(M) is a realization of the process P*(M) and
consider the stochastic process for merged type stacks

1= k=n, (1)

T(M, ¢) ={T(M,c):jZ 0} c=1,

where T,(M, ¢) € {4 U B U J}°. A realization of this
process, denoted (M, ¢), is derived using Definition 6.1
from a merged distance sequence p*(M), a realization
of P*(M). Definition 6.1, together with the i.i.d. property
of P*(M), leads to the following proposition.

Proposition 6.2 The stochastic process of merged type

stacks T(M, c) is a Markov chain. Furthermore,
1. If 8 =1 and ¢ = m, the chain has a single recurrent
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state {A4}°. If 8 = 0 and ¢ = n, the chain has a single
recurrent state {B}°;

2. If0<8<l,¢e=m+n, a,>0,and g, > 0, the chain
has a single irreducible closed set of recurrent states

ZM,c)=1{z:z€ {4 U B}, N(4:2) = m,
N(B:z) = n}.

To prove 2 in Proposition 6.2 suppose that c = m + n
and (M, m +n) = (X,," ", Xpow) EZ(M, m~+n). Itis
first shown that this state communicates with (X, -,
X o X Xp Xy Xy ) forany L 1= [=m+n—1,
where X, # X, ;. Since 0 <8 < 1, a, > 0,and 8, > 0,
state (X, -+, X,.,) communicates with (X, ., X;; "
X onoy) and thus with (X,,,, 5 X, X Xp Xy
Now, since X, # X, , this latter state communicates with
(Xp Xpow " X X107 7> Xpp» X,.p) and thus with state
(X o X X Xp X 05 X,..n)- Now, since
t].(M, m + n) communicates with any state obtained by
permuting two successive elements of (M, m + n), it
communicates with all states in Z(M, m + n). It is easily
shown that Z(M, m + n) contains all the recurrent states,
completing the proof for ¢ = m + n. This result can then
be used to establish 2 for ¢ < m + n. It is assumed sub-
sequently that the conditions 2 of Proposition 6.2 are
met. There is no loss of generality since 8 =0ord=1
corresponds to only a single access stream and «,, = 0
or 3, = 0 can be interpreted as a different access stream
referencing a smaller set of blocks. Note that the set
Z(M, ¢) contains 2° states for 1 = ¢ = min(m, n) and

+1°

X

-1

s "’(‘l.') states for min(m, n) < ¢ = m + n, where

i=iD
i, = max (0, (c — max(m, n))).

The long run probability, lll_r)l;lc Pr{ TJ.(M, ¢) =z}, where
z € Z(M, c¢), that a particular merged type stack occurs
is determined by considering the sets of merged refer-
ence and distance sequences of length j that yield the
event {TJ.(M, c) =z} for a given j. For ease of exposition
and to avoid additional notation, the development in-
volves a particular example, viz.,z= (B, B, A, B, 4A) €
Z(M,5).

Forz &€ Z(M, ¢) let ¥(z) denote the set of finite length
merged reference sequences that yield the type stack z.
Noting that an LRU stack at index j is a list of the blocks
referenced in the first j references and ordered by their
last reference, we claim that all the reference sequences
in¥(z) for z= (B, B, A, B, A) are equivalent to elements
of the set

Yy by b)) *a(ay, by, by, b)*
a,(b,, b,)*b,(b,)*b,. (2)

(al’ ..
b:;(av bl’ b2)*

Itis difficult to characterize the well formed merged dis-
tance sequences associated with elements of ¥ (z). In-
stead, let {}(z) denote the set of finite length well formed
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merged distance sequences such that an associated
merged reference sequence is the reverse of an element
of ¥(z). For the example it is claimed that

Q(B, B, A, B, A) = B1(B1)*B2(B1, B2)*
A1(A1, B1, B2)*B3(A1, B1, B2, B3)*A2x, (3)

where x is any finite string over (43, - -, A, B4, - -, Ba,
Al, -+ Am, Bl, ---, Bn) which yields a well formed
merged distance sequence according to Definition 5.1. To
see this, consider the reverse of an element of (2). The
“first” b, is associated with B1 in (3). Successive occur-
rences of b, [denoted by (b,)* in (2)] are associated
with (B1)* in (3) until b, occurs, which is associated
with B2; etc.

The notion of twin distance sequences can be extended
to merged distance sequences (not necessarily well
formed) by defining the rwin of a merged distance se-
quence as that (unique) sequence obtained by replacing
the subsequence of distances for access stream A by
its twin and the subsequence of distances for access
stream B by its twin.

Lemma 6.3 For z = (z,, -+, z.) € Z(M, ¢) the event
{TJ.(M, ¢) = z} occurs if and only if the twin of the well
formed merged distance sequence p, (M), -~ p(M) is
an element of ((z). The set Q(z) can be expressed as

X, " X. where

L. Forl=k=c—1,letx =N(z.:z, " 2,),x,=N(4:

2,05 2), and x, = N(B:z,--+ z,). The set x, is
given by x, = z,X, (A1, -+, Ax,, B1,---, Bx,)*.

2, For k=cand x, = N(z:z, ' 2z,) the set x, is given
by x,. = z.X,x, where ¥ is the set of all finite sequences
over (A1, - Am, B1,--~, B, Al,- -+, Am, B, - -, Bn)
such that x, - -- x, is a well formed merged distance
sequence.

This is a key result since the occurrence of a particular
merged type stack (from which miss ratios are calculated)
can be interpreted as a property of a merged distance
sequence. Thus, letting ¢(j) denote the subset of realiza-
tions of the merged distance sequence of length j, such
that the associated well formed merged distance sequence
is a member of Q(z),

Pr{T;(M, ¢) =z} =3Pr{P} (M) = q,,- -, P}(M) = ¢;},
z2€Z(M, c), (4)

where the summation is over all (¢,," -, qj) such that the
twin (g;,- " 4;) € q(j}. Since any merged distance se-
quence is a permutation of its twin and since {P}(M);
Jj = 1} are i.i.d. random variables,

Pr{P[(M) =40 P;L(M) = q]}
=Pr{P;(M) =gq;.- - P} (M) =qi},

J
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a7
® . () aC
Bl B1,B2 Al,B1,B2 Al,Bl1,B2,B3 all

Figure 2 State transition diagram for Markov chain H(z) for
z=(B,B,A, B, 4).

where ¢,," ', g; and g,," - -, g] are twins; Eq. (4) can also
be written
Pr{T;(M, c) =2} = > Pr{P}(M)

(g, > q)E€q())
=q,  Pf(M)=gq},z€ Z(M, c). (4)

e Markov chain H(z)

To compute the right hand side of Eq. (4') it is convenient
to introduce for z € Z(M, ¢) a Markov chain H(z) =
{H,(2); k = 0} based on the merged distance sequence
process P*(M). The chain has a state £, such that
Hj(z) = ¢, if and only if p¥ (M), -, pj*(M) is such that
its well formed counterpart p, (M), - -, pj(M) € Q(z2).

Definition 6.4 For 2= (z,,- -, 2,) EZ(M, ¢),let H(2) =
{H,(2); k = 0} be a Markov chain where

1. the state space is {¢£,," " £,,,};
2. the initial state is £, i.e., Pr{H (2) = ¢} = 1;
3. forl=1,"--, ¢, Pr{H (2) = £|H, (z) =¢,_}

Pr{U,(M) =4, D} (U,(M))
>Nz, 2 )} ifz,=A4;
Pr{U,(M) = B, D*(U(M))

> N(B:z, '+ 2_,)}ifz,= B;
4. forl=1,--c—1,Pr{H(2) = {|H,_(2) = &}
=Pr{U,(M) =4, D}(U,(M)) < N(A:a,, 2}
+Pr{U,(M) =B, D*(U/(M)) = N(B:z,," "+ 2,)};

5. Pr{H,(2) =¢.|H,_[(z2) =&} =1,
6. for [ =0,---, c — 1, Pr{H,(2) = £, ,|H,_,(2) = ¢}

Pr{U, (M) =A, D} (U/(M))
>N(A:z, ' 2)}ifz,, =B;

Pr{U,(M) =B, D} (U,(M))

7. Pr{H, (2) =& |H, (2)=¢..,} = 1;and
8. all other one-step transition probabilities are zero.

As an example of the chain H(z), a state transition
diagram for z= (B, B, A, B, A) is shown in Figure 2. The
transitions are labeled by the associated elements of the
well formed merged distance sequence. Thus, p*(M) =
(B4, B1, BS, B1, A3, B2, A1, A3, ) would cause the
state transition sequence (£, &, &, &, &, & & &5
gs’ fs’ <),

In the chain H(z), states ¢, and £,,, are absorbing
states representing, respectively, that the well formed
merged reference sequence is or is not an element of
Q(z). The remaining states are transient and indicate
that the question of membership in ©(z) has not yet been
determined.

Proposition 6.5 Forz€ Z(M, c¢) and j = 1
Pr{T,(M) =z} = Pr{H (z) = ¢_}. (3)

Since Z(M, ¢) is an irreducible closed set of recurrent

states, for all z € Z(M, c), w(z) = lim Pr{T;(M) = z}
. Jx

exists such that 7(z) > 0 and

Eﬂ'(z) =1.
€2 (M, )

Lemma 6.6 Forall z€ Z(M, ¢)
lim Pr{Hj(z) =¢}=m(2).
Jree

Thus 7(2) is the probability in H(z) of ultimate absorp-
tion in state £ ; this quantity can be easily determined
by inspection from the structure of H(z).

Recall from Eq. (1) that
Pr{U;(M) = 4, D} (U;(M)) = k} = 8a,,
1=k=m,j=1,
and
Pr{U;(M) = B, D} (U;(M)) = k} = (1~ 8)B,,
1=k=<nj=1,

and let

m
Eajalz 17”" m,
0, otherwise;

n
EBj’i= 17..'9 n’
= <{j=i

!
@;

Bi
0, otherwise.

Note that 8c; is the joint probability that U;(M) =4 and
D} (U;(M)} = i, i.e., the probability that the well formed

514 > N(B:z, ' z)}tifz, =A; realization has pj(M) = A{ given that p(M)=Ai— 1and
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P (M) # Al p (M) # Ai for some | < i. Now, for
z=(z,"~2)E€EZM,c)and j=1,--- ¢ let

-

8CX’N(A:Z,.”'-ZJ»J
8a,N(A:z|,”'.zj)+ (1 B 8) B;\/lb’:zl.'“,zi)Jrl
if z,=A4;
G(2.)) = , (6)
( 11— S)B N(B:z,2)
Ba/N(A:zl,"',zJ)+l+ ( 1— S)B,N(B:zl.'”, zj)
if 2, = B.

Given that H,(z) = & G (z,j) is seen to be the prob-
ability that H,(2) = ¢, for some / > £, i.e., of ever making
the transition &, = & For the example in Fig. 2,

(1-9)B;

Gz 1) =—— "L =
Sl + (1—8)B!

-3,
corresponding to Pr{U,(M) = B}.

It follows from this that the probability of ultimate
absorption in £, and thus 7 (2), is given by the following
lemma.

Lemma 6.7 Forz€ Z(M, ¢), w(z) =TI;_, G(z, ). Recall
that the M-distance sequence d(M} = {d,(M);j= 1} is
the well formed distance sequence associated with the
well formed merged stack sequence s(M). The corre-
sponding stochastic process D(M) = {DJ.(M);j = 1}is
seen for ¢ = 1, -+, m + n to have the property

Pr{D;(M) = ¢} =3 Pr{T, (M) =z}
X Pr{U;(M) =4, Dj(U;(M)) =N(A4:2)}
+ 3 Pr{T,_,(M) =z}
X Pr{U;(M) = B, D} (U;(M)) = N(B:z)}, (7N

where the first summation is over all z € Z(M, ¢) such
that z = (z,, ", 2._,, A), and the second summation is
over all z€ Z(M, ¢) such that z= (2,," -+ z._;, B). In
other words, an M-distance of ¢ is observed just when a
type stack z € Z(M, c¢) exists and the cth entry in the
stack is “‘referenced.”

Theorem 6.8 For c=1,--, m+nand k = 1, let M, (c)
be the fraction of M-distances Dj(M), 1 = j =k, greater
than ¢. Then the (long-run) expected miss ratio function

M(c) = limA‘mE{Mk(c)} for the merged stream exists
and is given by
M(c)= > 7(2)(8a + (1—=8)p’ ). (8)
N(A:2)+1 N(B:z)+1
26Z(M, ¢)

To see this, observe that Pr{D].(M) > ¢} can be ob-
tained from Eq. (7) by replacing the second term in both
sums by 8y gmeT (1— S)B;vm:zm' The sums can then
be combined into a single sum over z € Z(M, ¢) and
since Z (M, ¢) is an irreducible aperiodic recurrent class
(cf. [6]), letting j — « we obtain Eq. (8).
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Theorem 6.8, together with Lemma 6.7, completes
the proof of Theorem 3.1 for the case of J = 2 streams.
Extension of the proof to the case J > 2 involves the
preliminaries of Section 4 and the same sequence of steps
used in Sections 5 and 6. The merged sequences of Sec-
tion 5 become multivariate (J-type) sequences. The
stochastic process of merged type stacks can be shown
to be a Markov chain (as in Proposition 6.2) and under
the conditions ¢ = 2}{:1 n, amj(Aj) > 0and §, > 0 for
j=1,-++ J, the chain has a single irreducible closed set
of recurrent states Z(M, ¢) ={z;z€ {4, U+ U A4,},
N(A;:z) = m;for j=1, -+, J}. Lemma 6.3 relating the
occurrence of a type stack to well formed merged dis-
tance sequences; the definition of the Markov chains
H(z) for z € Z(M, ¢); and Proposition 6.5, Lemma 6.6,
and Lemma 6.7 relating to the determination of {m(2)}
all extend directly for J > 2.

7. Other results

Calculation of the expected miss ratios for J = 2 and
capacity ¢ from Eq. (8) involves a sum overz€ Z (M, c)
and thus is of complexity 2° (J¢ in general). This can be
a severe practical limitation. However, there is a less
complex computational procedure whereby 7 (z) need
not be determined for each z € Z(M, ¢). The procedure,
which is not described in detail here, involves partition-
ing the states of Z(M, ¢) into classes such that z and 2’
are in the same class if and only if N(A4:2) = N(4:2').
For ¢ = 1 let Q(k, ¢) denote the long-run probability
that a merged type stack contains exactly 4 type A4 entries,
max(0, ¢ — n) = k = min(m, ¢). By expressing Q(k; ¢)
as a sum over the appropriate 7 (z) the following lemma
can be established.

Lemma 7.1
I. Forc=1,Q(0;1)=1—8and Q(1; 1) =8. (9)

2. For ¢ =2 and max(0, ¢ — n) = &= min(m, c¢),

(1 -8)B,_ ]

Qk; ) =Q(ki ¢ — ”[6&’ +(1=8)B;
K1 ok

,
da,

Sal, + (1—38)p

+Q(k—1;c—l)[ , }

c—k+1

(10)

The following theorem can then be demonstrated.

Theorem 7.2 For ¢ = 1

min(m, ¢}
M(c) = 2

k=max(0, c—n)

Q (ks ) [Bay,, + (1 =8)B ;]

Equations (9) and (10) and Theorem 7.2 constitute
the less complex procedure for calculating M (¢), which
is seen to have complexity ¢*. Additionally, {Q(k; ¢)}
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provides the long-run distribution of the number of type
A blocks in a first-level device, which is also of interest.
ForJ>2and ¢ = 1let Q(k, - k,: c), where3_ k;=rc,
denote the long-run probability that a merged type stack
contains exactly k; type A, entries, 1 = i=J.

Theorem 7.3

I.Forc=1landj=1,""+J, Q(k, -~ k; 1) =3; when
kj=1andki=0,i¢j.

2. For ¢ = 2 and all &,,- -+, &, such that 0 = k]. = m; and
S k=c,

1
Bty (A))
Q(kl’...’ kJ; ¢) = 2 : i
= Z al”’le—Ajl(Al)
=1

X QUk,— Ay ky— Ayie— 1),

where A;; = 1if i =j and 0 otherwise.
J
3 M(0) =3 QU ki [ S D (4) |
i=1

where the summation is over all &, -, k, such that

0=k=mand3_ k=c.
Use of Theorem 7.3 for calculating miss ratios involves
complexity ¢’. This is a substantial improvement over
the use of Theorem 3.1, which involves complexity J°.

For fixed capacity ¢ it is interesting to consider the
range of values of the expected merged miss ratio M (¢)
when only the rates A, of the set of access streams are
varied. The following lemma establishes that the mini-
mum value of M(c) is equal to the minimum expected
miss ratio of the individual streams at capacity c.
Lemma 7.4 Consider J = 2 access streams A4,, "+, A,
satisfying the assumptions of Section 3 where, for j= 1,
~rJand i =1, p(4;) is the miss ratio function (evaluated
at capacity i — 1) for the jth stream and §,= A, /3, \,.
For 1 = j= J, the minimum value of the expected merged
miss ratio M{(c) over 0 = 3,=1 and Ejzl ;=1 is given
by ., (4,) for any ksuch thatfor 1=j=J, u, (4,) =
Mc+1(Aj)‘

To see this, suppose that u . ,(4,) = u ., (4;) for

j = 2. From 3 of Theorem 7.3 it follows that for any
5, 31”

1

M) 23 Ok ki S B (4)

If
M-

8ilu‘c+1 (Al) N

1

)

1

Furthermore,

J J
E 8#‘*“1(‘41‘) z E 5iMe+1(A1) = M’c+1(Al)’

i=1 i=1
which implies that §, = 1 and 8, = 0 for j = 2 minimizes
M(c).
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The set of rates that yields the maximum value of
M(c) must generally be determined empirically. Sur-
prisingly, when all the access streams have identical
LRU stack distance processes, the maximum expected
merged miss ratio is not necessarily achieved by choosing
equal rates for all streams.

8. Remarks

The results of this paper provide a method for predicting
the miss ratio function for a multistream environment
from miss ratio functions for individual streams. The
method involves representing each access stream by a
sequence of LRU stack distances evolving in time as a
Poisson process and viewing the composite stream as
the superposition of these processes.

Interesting extensions to this work lie in varying either
the representation of the individual access streams, the
merging mechanism, or both. For example, the reference
sequence of each access stream could be represented by
a (finite order) Markov chain of stack distances (cf.,
[7]). With the same merging mechanism, namely the
superposition of Poisson processes, the merged stack
sequence would still be a Markov chain.

Alternatively, other merging mechanisms could be
studied. The merging mechanism considered in this paper
has the property that the number of successive accesses
from a given stream in a merged reference sequence is
geometrically distributed. This may well be unrealistic
and it would be of interest to compare results obtained
from merging mechanisms that more closely represent
the access patterns observed in actual systems. A system
incorporating “time slicing,” for example, might be use-
fully represented by forming (for positive integral N)
a merged reference sequence from N accesses from
stream A4, N accesses from stream A,, etc.

An important extension of the results of this paper
would be to relax the assumption that the sets of blocks
accessed by the individual streams are mutually disjoint.
(Such “sharing” exists to some extent in most real sys-
tems and can have a significant effect on the miss ratio
function.) Several formulations of sharing are possible.
Examination of actual system structures might suggest
an appropriate formulation. For example, it is often the
case that only certain blocks (e.g., those of compilers
and system code) are shared, the remaining blocks being
private to the individual streams. Prediction of composite
miss ratio functions for such situations, however, appears
to be difficult.
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