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Derivation  of  Miss Ratios for  Merged  Access  Streams 

Abstract: An access  stream is the sequence of storage  accesses  made by an  executing program; a merged stream results  from  the multi- 
programming of a number of individual access  streams. Assuming that  LRU  (least recently used) miss  ratio  functions for individual 
streams  are known, we consider the problem of predicting the  LRU miss  ratio  function  for merged streams.  Each  access  stream is 
modeled as a sequence of independent, identically distributed LRU  stack  distances which evolves in time as a  Poisson process  and  the 
merged stream is taken  to be the  superoosition of these  urocesses.  For an arbitrary  number of such streams, a  closed  form  expression 
for the  expected miss ratio function’is obtained. 

1. Introduction 
Performance evaluation of computer  systems often in- 
volves the study of a formal (mathematical) model of 
some portion of the  system.  For meaningful storage 
system  evaluation it is necessary to  incorporate  the ref- 
erencing  behavior of executing  programs  into the model. 
This referencing behavior is conceptualized as  an  access 
stream-a  sequence of requests  for  data  access.  Often 
a  distinction is made between the specification of the 
workload characteristics and the  structure of the  system, 
yielding a  “workload  model” as a driver of a “storage 
system model.” The  apparent difficulty of obtaining an 
adequate mathematical  description of the time-varying 
characteristics of a  storage system workload  has led to 
the  practice of using either actual access  streams obtained 
by tracing  executing  programs or over-simplified work- 
load models. An example of the  latter is the miss ratio 
function for an access  stream which tabulates  the (long- 
run) fraction of references made to  the  second level of 
a two-level memory hierarchy as a  function of the  capac- 
ity of the first level; this  function depends implicitly on 
many other  parameters such as block size,  replacement 
algorithm, etc. [ I ] .  

Experience with the  use of miss  ratio  functions,  par- 
ticularly in cache-main memory hierarchy  design,  has 
shown  them to be useful representations of workload 
characteristics when the referencing  activity of only  a 
single stream is considered and  when only the number of 
misses (not their occurrences in time) is important  for 
determining  performance. 

The relative simplicity of a  miss ratio function  inspires 
its  use for more  complex  workloads, such  as  for a con- 
current  set of executing  programs.  Such  multistream 
environments  exist in current  systems  that utilize multi- 
programming or multiprocessing but  use a single mem- 

ory system. In this case  the  stream of accesses  to a stor- 
age device  or  subsystem is a  composite stream arising 
from  several access  streams, and the miss ratio function 
depends  not only on  the individual streams but also on 
the mechanisms that affect the mixing, e.g., the  process 
scheduler and the device timing parameters.  The miss 
ratio  function is also affected if the  separate  streams 
access common  information,  but  this is not  considered 
here. 

This  paper is concerned with the prediction of miss 
ratio functions for multistream environments from the 
miss  ratio  functions of the individual streams.  The  pro- 
posed  basis for  the prediction is the derivation of the 
miss  ratio  fuhction for a stochastic merged stream.  Each 
access  stream is taken to be  a stochastic point process 
(i.e., a  series of events) evolving in time and  the  super- 
position of these  independent  processes provides the 
mixing or merging mechanism. For  the  case of J 1 2 
streams,  each  represented  as  independent, identically 
distributed  (i.i.d.) least recently  used (LRU)  stack 
distances (cf., [2] ) evolving in time as a Poisson process, 
a  closed  form  solution for  the  expected miss  ratio  func- 
tion of the merged stream is obtained.  (An  alternative 
method for predicting  miss ratios  for multistream  environ- 
ments  has been studied by MacDonald  et al. [ 31 .I 

Notution 
Pi ( A j )  miss ratio  function for  stream Aj ,  evalu- 

ated at capacity i - 1 
N ( x : y i  number of occurrences of symbol x in 

set  or  sequence y 

for  the merged stream  for capacity c 
M , ( c )  fraction of misses in first k references 
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Figure 1 Merging of two access  streams by superposition. 
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set of finite length, well formed, merged 
distance  sequences associated with 
the  reverses of the  sequences in T ( z )  

Q ( k , , .  . ., k,; c )  long-run  probability  that  a merged type 
stack  for  capacity c contains kj 
entries  from  stream Aj, 1 5 j 5 J 

ff ( 2 )  Markov chain  based on P* ( M )  

2. Definition of the  multistream  environment 
An access  stream A is taken  to be  a sequence of ref- 
erences occurring in continuous time to  data  items called 
blocks. If a reference is viewed as  an  event,  an  access 
stream is a (multivariate)  stochastic point process [4]. 
Thus,  there is an increasing sequence of epochs of times- 
to-events { t , ( A ) } ,  t , (A)  < tk+, ( A ) ,  k = 1, 2 ;  ..}, and at 
each  epoch t , (A ) a reference r k ( A  ) is made  to  one of 
a finite set of blocks JZ? = {al, . ' ., a,}. I t  is assumed 
throughout  that  the  sets of blocks  referenced  by  separate 
access  streams  are  mutually  disjoint. The  sequence 
{ r , ( A ) ;  k = 1, 2 ,  . . .} is called a reference  sequence and 
is sufficient to  determine  any miss ratio  function for  the 
access  stream.  (In this paper only the LRU miss ratio 
function is considered.) 

The mechanism  considered here  for mixing several 
access  streams  to  create a  multistream environment is 
the superposition of the individual (point  process)  access 
streams.  The  theory of the superposition of point  pro- 
cesses is discussed by Cinlar [ 5 ] .  Figure 1 illustrates 
this type of merging for  two  access  streams A and B .  
The resulting composite  reference  sequence is called 
a merged  reference  sequence and  determines  the miss 
ratio  function of the multistream environment.  Observe 
that  the  reference  sequences of the individual access 
streams  are primarily determined by the  respective  exe- 
cuting  programs,  but the times of reference (and  thus 
the merged reference  sequence)  are primarily determined 
by the system environment. 

Determination of the  LRU miss  ratio  function for a 
given reference  sequence,  either  for  an individual stream 
or  for a merged stream, is given next.  For a finite ref- 
erence  sequence r , ( A ) ,  . . ., r , ( A )  of length L ,  an  LRU 
stack  distance of k ,  1 5 k 5 m ,  is associated with r i ( A )  
if and only if ri ( A  ) = a,, and for  the largest j < i, where 
r j ( A )  = a,, exactly k distinct  blocks are referenced by 
r j ( A ) ,  ..., r i ( A ) .  If r i ( A )  = a, is the first reference  to 
block a,, then the  stack  distance is undefined. Also, let 
Q ( k ) ,  1 5 k 5 m ,  be the  number of associated  stack  dis- 
tances equal to k in the finite reference  sequence. 

Recall that  an  LRU  stack  distance equal to k signifies 
that a miss would occur  to a  first-level  memory if and 
only if it is of capacity in blocks c > k ;  then the  LRU 
miss  ratio  function is given by 1 - L"Zi=,Q(k) for 
1 5 c 5 m - 1 ,  and by 1 - L"Zr=lQ(k) for c 1 m. 
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For  a  stochastic reference sequence  generated by 
i.i.d. LRU stack distances  (with distribution { a i }  as 
given in following sections), the long-run expected frac- 
tion of misses for first-level capacity c approaches 
XI)~c+lai, for c = I ,  . . ., m - I ,  and approaches 0 for 
c 2 m. Thus, if the miss ratio  function for  an  actual refer- 
ence  sequence is known, probabilities {a i }  can be  easily 
determined such  that  the  expected fraction of misses for 
capacity c for  the (i.i.d.)  distance-generated stochastic 
reference  sequence  approaches  the miss ratio  function as 
the number of generated  references becomes  large. 

3. Probabilistic assumptions and statement of main 
result 
The derivation of the  expected  LRU miss ratio  function 
formed by merging J 2 2 individual access  streams A , ,  

. . ., A,, is made under  the following probabilistic assump- 
tions. 

1. Access  streams A , ,  A,, . . ., A, are  independent. 
2. Access  stream A j  evolves  as  a Poisson process of rate 

Aj > 0, i.e., { t , ( A j )  - t k - , ( A j ) }  is a  sequence of in- 
dependent and identically distributed random vari- 
ables having an exponential  distribution with rate 
parameter A j ;  i.e., 

Pr{rk(Aj) - t k " l ( ~ j )  5 t )  = I - e-*j', t 2 0. 

3. The  LRU stack distance  sequence { D ; . . ( A j ) }  for 
access stream A j  is a  sequence of i.i.d. random vari- 
ables with distribution { a i ( A j ) } ,  i.e., Pr{Dk.:<(Aj) = i} 
- - a i ( A j ) ,  15 i 5  m j .  

It follows  from the Poisson assumptions  that  the  stream 
identity of a reference in a merged sequence is deter- 
mined by an independent trials process, i.e., for all i the 
probability  that the ith reference in the merged stream 
is from  stream Aj is Aj/Zi=,Ak. F o r j  = 1 , .  . ., .I let 

I "'j 

a , ( A j ) ,  15 i5 m j ,  

p = j  
p i ( A j )  = 

0, i > mj, 

denote  the miss ratio  function for  the  separate  streams 
and let Sj = Xj/ZL=,Ak. Also, for x a symbol, c a non- 
negative  integer, and y a  set  or  a  sequence, let N ( x : y )  
denote  the number of occurrences of x in y and let { y } "  
denote all c-tuples over y. 

Theorem 3.1 
Let A, ,  . . ., A,  be access  streams referencing mutually 
disjoint sets of blocks and satisfying the probabilistic 
assumptions  above.  For  a first-level capacity c, denote 
by M k ( c )  the  fraction of misses in the first k references 
for  the merged stream.  Then  the long-run expected miss 
ratio  function M ( c )  = Fpz E{M,( c ) }  is given by 

where 

I 1 ,  if zj = A i ,  

0, otherwise. 
A , . =  

ZJ 

This theorem is the main result of the  paper.  The  com- 
putation of M ( c )  using Theorem 3.1 requires time of 
the  order of .Ic. Since  direct  application is impractical, 
in Section 7 a second expression  for M ( c )  is given that 
requires computational  time of the  order of c". 

In the  next  three  sections  the theorem is proved for  the 
case J = 2 and the extension to J > 2 is outlined.  Section 
4 introduces precise  notions of reference,  stack, and 
distance  sequences.  This is necessary  because finite 
length sequences  are considered  during which the LRU 
stack  (initially empty) undergoes a "filling  up" phase. 
Notions of reverse  sequences, used in the proof to follow, 
are  also  introduced.  The  extensions of these definitions 
to merged sequences  are given in Section 5. The main 
proof is contained in Section 6 and it involves viewing 
the sequence of LRU  stacks  for  the merged reference 
string as  a Markov  chain. The basic  idea is that a par- 
ticular  stack z will exist  at time t if and  only if the reverse 
of the merged reference  sequence  (actually  the merged 
distance  sequence) up to time t has a particular property. 
This  property is related to  the limiting distribution of 
another  Markov chain H ( z )  that is easily calculated. 

4. Preliminaries 
For notational  convenience in treating the  case of J = 2 
streams, the  two streams  are denoted by A and B ,  the 
respective disjoint sets of blocks  referenced by d = 

{a,;  . ., urn} and %'= { h,; . ., b,}, and the  respective  LRU 
stack distance probability distributions by {a i }  and {p i } .  
The independent  probability of referencing stream A ,  
equal to A A /  (A,., + A B ) ,  where h, and A, are  the Poisson 
rate  parameters, is denoted by 6. 

In this section definitions are given (along with con- 
sequent  properties) of "well formed" LRU stack  and 
stack distance  sequences  that can  be  associated with a 
reference sequence.  The well formed stack  distance 
sequence is related to  the usual  stack distance  sequence 507 
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[ 11 and is used  subsequently in the derivation of the 
miss ratio function for merged reference  sequences. 

For  access  stream A denote  the  associated  reference 
sequence by 

r ( A ) = { r j ( A ) ; j l l } , w h e r e r j ( A ) E d .  

Also, denote  an LRU stack sequence (or  stack  sequence) 
for  access  stream A by s ( A )  = { s j ( A )  ; j 1 0}, where 
each s j ( A )  is an  ordered  subset of d. Thus,  for j 1 0, 
sj(A)hastheformsj(A)=[sj,l(A),~~~,sj,yj(A)],where 
s j , , ( A )  E d and s ~ , ~ ( A )  # s ~ , ~ ( A ) ,  for k # 1 and 1 5  
k 5 y j .  The quantity yj ,  0 5 yj 5 m,  is the size of s j ( A  ). 
If yj = 0, s j ( A  ) is the  empty  set  denoted by 0. Certain 
stack  sequences  are  associated with reference  sequences 
as follows. 

DeJinition 4.1 Given a reference  sequence r ( A ) ,  an us- 
sociated stack  sequence s ( A )  = { s j ( A ) ;  j 1 0} denoted 
by r ( A  ) + s ( A )  is defined recursively fo r j  1 0 as follows: 

1 .  j = 0: so(A) = 0, yo = 0. 
2. F o r j  > 0, given r j + , ( A )  and s j ( A ) :  

a. if for  some k ,  1 5 k P yj,  r j + l ( A )  = sj,  , ( A )  then 

Sj+l ( A )  = bj, , ( A  1, sj,  1 ( A  1, . . . sj,  ,-1 ( A  1, 
sj , ,+l(A), . ’ .9  sj,yj(A)l 

and yjCl = yj . 
b.  otherwise, 

sj+, ( A  1 = [rj+] ( A  1, s j ( A  11 and yj+l = y j  + 1. 

Definition 4.2 Given a stack  sequence s ( A ) ,  a reference 
sequence r ( A  ) is associated with s ( A ) ,  denoted by 
s ( A )  + r ( A ) ,  if r ( A )  + s ( A ) .  If at  least  one r ( A )  is 
associated with s ( A  ), then s ( A )  is said to be well formed. 

The  observation in Definition 4.1 that  for r ( A  ) + s ( A  ), 
sj ,  , ( A )  = r j ( A )  for all j l 1 leads to  the following prop- 
osition. 

Proposition 4.3 Given r ( A  ), there is a unique s ( A  ) such 
that r ( A )  + s ( A ) .  Given s ( A )  well formed,  there is a 
unique r ( A )  such  that s ( A )  ”+ r ( A ) .  

It follows that  the  set of reference  and well formed 
stack  sequences  can  be partitioned into mutually as- 
sociated pairs (denoted by r ( A  ) - s ( A  ) ). These associ- 
ations  are  next  extended  to include distance  sequences. 

For  access  stream A denote  an LRU distance  se- 
quence (or  distance  sequence) by d ( A )  = { d j ( A ) ;  j 1 l }  
wheredj(A) E { l ; . . , m }  U {i; . . ,E}.Distancesofthe 
form j correspond  to  the first reference  to a block  in a 
reference  sequence. 

Definition 4.4 Given a reference  sequence r ( A )  and a 
well formed stack  sequence s ( A )  where r ( A )  s ( A ) ,  508 
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an associated  distance sequence d ( A )  = { d j ( A ) ;  j P l}, 
denoted by r ( A )  ”+ d ( A )  or s ( A )  ”+ d ( A ) ,  is defined 
recursively f o r j  1 1 as follows: 

1 .  If for some k,  1 5 k i yj-l, r j ( A )  = sj-l, , ( A ) ,  then 

2. If for all k, 1 5  k 5  yj-,, r j ( A )  # sj-l, k ( A ) ,  then 
d j ( A )  = k.  

d j ( A )  = yj-l + 1. 

Dejinition 4.5 A distance  sequence d ( A )  is said to be 
a well formed distance sequence if the following condi- 
tions  are satisfied: 

1 .  Denote by K = { k l ;  11 1 )  where k, < kt+ ,  the  sequence 
of indices of d ( A  ) such  that d, ( A  ) =ifor some j. Then 
dk ( A )  = ifor 1 = 1 ,  2;.. . ‘ 

2. For all k 1 1 ,  if d , (A)  =j, then  there  exists 1 < k such 
that dl ( A  ) = 7. 

Table 1 illustrates these definitions for a  particular 
reference  sequence r ( A  ) over d = { u 1 , .  . ., a,}. 

Proposition 4.6 Given r ( A )  (or s ( A )  where r ( A )  t, 
s ( A ) ) ,  there is a unique d ( A )  such  that r ( A )  + d ( A )  and 
d ( A )  is well formed.  Given d ( A )  well formed,  there ex- 
ists a reference  sequence r ( A )  (not necessarily unique) 
such  that r ( A )  + d ( A  ) . This association is denoted 
d ( A )  -+ r ( A ) .  

The first statement in Proposition 4.6 follows from 
Definition 4.4 and  the  second  statement  can be  derived 
by an inductive proof in  which an  associated  reference 
sequence is constructed. To see  that  the association 
d ( A )  + r ( A )  is not unique, observe in Table 1 that if 
r , (A)  and r l o ( A )  are  both changed  from u4 to a5, the 
associated  distance  sequence is unchanged. Thus,  the 
unique  mutual  association between a reference  sequence 
and a well formed stack  sequence  does not  directly  ex- 
tend to well formed distance  sequences.  There is, how- 
ever, a unique  mutual  association between well formed 
distance  sequences  and  classes of “equivalent” reference 
sequences in which  only the namings of blocks differ. 

Definition 4.7 Let r ( A )  and r(A’) be two  reference se- 
quences defined over  sets  ofblocks d and d‘, respective- 
ly. Let 95’ be the minimal subset of d such  that  for all 
j 1 1, r j ( A )  = ai implies that ai E 9 and let 9’ C d’ be 
similarly defined for r ( A ’ ) .  Then  reference  sequences 
r ( A )  and r ( A ’ )  are said to  be equivalent (denoted 
r ( A )  - r ( A ’ ) )  if and  only if there  exists a  one-to-one 
mapping g E 95’ X 55” such  that r j ( A )  = g ( r j ( A ’ ) )  for 
all j P 1 .  

This notion of equivalence is extended  to  stack se- 
quences  and it is observed  that  for  two well formed stack 
sequences s ( A )  and s ( A ’ ) ,  the  stack  sequences  are equiv- 
alent (denoted s ( A )  N s ( A ’ ) )  if and only if r ( A )  N r ( A ‘ ) ,  
where s ( A )  - r ( A )  and s ( A ’ )  r ( A ’ ) .  
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Table 1 Examples of well formed sequences 

.i 

Sequence 0 1 2 3 4 5 6 7 8 9 10 

Reference rj(A) fll  f l 2  f l ,  f l3  a1 a4 f l z  f l 2  fl l  f14 

Well formed 0 f l l  f l 2  fll f l 3  fll f14 a2 a2 fll f14 

stack sj ( A  1 fl l  f l 2  f l 1  a3 f l 1  a4 f14 f l 2  fl l  

f l 2  f l 2  a3 f l ,  fll a4 f l 2  

f l 2  a3 a3 f l 3  f13 

Size rj 0 1 2 2 3 3 4 4 4 4 4 

Well formed 1 2 2 3 2 4 4 1 3 3 
- - 

distance dj ( A  1 

Proposition 4.8 Consider  two  reference  sequences r ( A )  Definition 4.9 Given a  realization {d; (A)  ; j 1 1) of the 
and r ( A ‘ )  and  their  associated well formed distance  se- distance  process D* ( A ) ,  an associated unique well 
quences, r ( A )  + d ( A )  and r ( A ’ )  -+ d ( A ‘ ) .  Then d ( A )  = formed distance  sequence d ( A )  = { d j ( A ) ;  j 2 I}  is de- 
d ( A ’ )  if and only if r ( A )  - r ( A ’ ) .  fined recursively as follows: 

To see  this,  suppose first that r ( A )  - r ( A ’ ) .  It is easily 
shown  that d ( A )  = d ( A ‘ )  by induction on  the index of 
the  reference  sequence.  Conversely,  suppose  that r ( A )  

and r ( A ’ )  are not  equivalent. For k as large as possible, 3. Otherwise, if i is the maximum integer such that for 

1. F o r j =  1 ,  d, (A)  = i. 
2. For j 1 2, if d: ( A )  = k and  there  exists 1 < j such  that 

d , ( A )  = k. then dj (A)  = k .  

chonqe r ( A “ )  defined over the set of block d and equiv- some I < j ,  d, (A)  = i, then d j ( A )  = ifl. 
alent to r ( A ’ )  such  that r i (A” )  = r j (A) ,  1 P j 5  k .  It  can 

- 

easily  be  shown that d,+,(A”) # d,+,(A) and  thus d ( A ‘ )  

From  Propositions 4.6 and 4.8, it follows that  the 
product  space of equivalent classes of reference  se- 
quences and well formed stack and distance  sequences 
can be  partitioned into triples of mutually associated 
sequer.ces. In  the  sequel, equivalent reference  sequences 
are distinguished  only  when necessary;  thus, r ( A )  is 
often referred  to  as  “the”  reference  sequence  associated 
with d ( A ) .  

This discussion provides a framework within  which 
the miss ratio function for merged stochastic  reference 
sequences  generated by (stochastically)  independent 
LRU  distances  can be determined. Recall that  for  stream 
A and nonnegative  integer rn, the  LRU  distance  process 
is a sequence D * ( A )  = {D; ( A )  ; j 1 1 )  of i.i.d. nonnega- 
tive  integer  random  variables in the range { 1, . . ., m } ,  
where Pr(D;(A) = i }  =ai, 1 5 i 5  rn. Subscripted  upper 
case  letters  such  as Dj are used to indicate random vari- 
ables. Subscripted lower case  letters  such  as dj refer 
either  to realizations of a  random  variable or  to  elements 
of a  deterministic sequence. A realization of the  stochas- 
tic  process D* ( A )  is interpreted  as a distance  sequence 
of the previous discussion. 

= d(A”)  # d ( A ) .  
As an  example, { d j * ( A ) }  = {3 ,  3 ,  2, 5 ,  2, 4, 4, 1, 3,  3) 

yields the  distance  sequence  shown in Table I .  It  can 
now be seen  that  the  use of d j ( A )  = .& represents adding 
a kth block to  the  stack. Recall that  the memory is as- 
sumed  to be initially empty. When  a distance in the reali- 
zation  larger  than the  current  stack size is observed, it 
is viewed as a reference  to a  new (i.e.,  not previously 
referenced) block. This  convention is made  for con- 
venience and  does not affect the  (long-run) miss ratios. 

Some final definitions involving “twin” distance  se- 
quences  complete  the preliminaries. These twin se- 
quences  are  the key to describing the  structure of the 
merged reference  sequences.  For any finite length se- 
quence d=  (di; . ., d ) the reverse of d i s  (dk, dk-,; . ., d,) 
and is denoted by xk 
Dejinition 4.10 Suppose  that r ( A )  is a finite length ref- 
erence  sequence  and  that d ( A )  is the  associated well 
formed distance  sequence, r ( A )  + d ( A ) .  Then, if 
r ( A )  -+ & ( A ) ,  the well formed distance  sequence d ‘ ( A )  
is called the twin of d ( A )  . 

c 

The notion of twin sequences is extended  to realiza- 
tions of the  stochastic  distance  process  as follows. 509 
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Table 2 Examples of twin  sequences. 

DeJnition 4.1 I Let # ( A )  = { d T ( A )  ; 15j5 l }  be afinite 5. Merged sequences 
length realization. The twin of d* ( A ) ,  denoted d*' ( A ) ,  In this  section the  structure of merged reference se- 
is defined by the following procedure. quences is investigated. Two  access  streams A and B are 

1 .  Determine d ( A  ) = { dj ( A  ) ; 1 5 j 5 l } ,  the well formed 
distance  sequence  for d * ( A ) .  Let {i,, i,, . . .} with 
i, < il+, be the  set of indices  such that  for  some k ,  
d j ( A )  = k and let { i i ,  i i , .  . .} be similarly defined for 
the twin & ( A ) .  

2. & : ' ( A )  = { d T ' ( A ) :  1 Z ~ j 5  l } ,  the twin of d*(A), is 
given by 

considered initially where  the  respective  sets of blocks 
accessed, d = {a,, . . ., am} and = { b,, . . ., hn}, are  as- 
sumed disjoint (d n 9 = 0) . Recall that  an independent 
LRU stack  distance  process is associated with each 
access  stream  and  that  the merged stream is obtained by 
the superposition of the individual streams. 

The definitions and  concepts of the previous  section 
are  extended  to merged stack  and  distance  sequences  and 

Table 2 illustrates these definitions. The first two lines 
show a  realization of length 12 and its well formed  dis- 
tance  sequence d ( A ) .  The third line shows  one of the 
reference  sequences r ( A ) ,  where r ( A )  + d ( A ) , a n d  
the  next line shows  the  reverse  reference sequence+r(A) . 
The fifth line shows the twin d ' ( A )  of d ( A ) ,  i.e., r ( A )  + 

& ( A ) ,  and  the last line shows  the twin # ' ( A )  of d * ( A ) .  
Observe  that  the index set { i,, i,, . . .} is { 1, 3, 5 ,  7) and 
{ d j * ( A ) ; j = l ,  3, 5 ,  7 )  is ( 5 ,  3 , 4 ,  6).  Also, { i i ,  i;;..}is 
( 1 ,  2 ,  3, 7 )  and  consequently { d ? ' ( A ) ; j =  1, 2, 3, 7 )  is 
{ 5 ,  3, 4, 6 ) .  

This  example illustrates  some properties of twin dis- 
tance  sequences which are easily shown  to hold in gen- 
eral. 

Proposition 4.12 Let d * ( A )  be  a finite realization of a 
distance  process and let d ( A )  be  the  corresponding well 
formed distance  sequence.  Then 

1. the twin d ' ( A )  of d ( A )  is unique  and the twin of & ( A )  
is d ( A )  . Furthermore, d ' ( A )  is a permutation of d ( A )  . 

2. the twin d * ' ( A )  of @ ( A )  is unique  and the twin of 
d * ' ( A )  is d * ( A ) .  Furthermore, d * ' ( A )  is a permuta- 

51 0 tion of d* ( A ) .  

well formed merged stack  and  distance  sequences in 
order  to  describe  the  structure of merged reference 
sequences. Additionally,  a particular merged reference 
sequence  (corresponding  to a  realization) is also viewed 
as a single access  stream  over  the  set of blocks d U 9 
for  the  purpose of calculating miss ratios. 

Dejinition 5.1 For  access  streams A and B 

I .  a merged  distance sequence p* ( M )  is a sequence of 
pairs p * ( M )  = { u j ( M ) ,  d j * ( u j ( M ) ) ;  j 2 l } ,  where 
f o r j l  1, 
a. u j ( M )  E { A ,  B }  denotes  the. type of the  jth dis- 

tance; 

2 .  a well formed merged  distunce  sequence p ( M )  is a 
sequence of pairs p ( M )  = { u j ( M ) ,  d j ( u j ( M ) ) ; j ?  I}, 
where f o r j  1 1, u j ( M )  E ( A ,  B }  and 
a. the  sequence { d j ( u j ( M ) ) ;  u j ( M )  = A }  is a well 

b.  the  sequence { d j ( u j ( M ) ) ;  u j ( M )  = B }  is a well 
formed distance  sequence  for  stream A : 

formed distance  sequence  for  stream B. 

A merged distance  sequence is thus a  bivariate  dis- 
tance  sequence with uj( M )  denoting the  type  (or  identity) 
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Table 3 Examples of merged  stack  and  “distance  sequences. 

Well formed d ( A )  1 2 2 3 4 - 3 2 
distance d ( B )  I I 2 2 3 

p ( M )  A i  Bi A2  A2  BI BZ A 3   A 4   8 2  B3 A 3  B2 

Reference r ( A  1 I “ 2  “1 ‘5 “4 “1 

r ( B )  bl hl 62 bl b, 61 
r ( M )  ( I l  bl “ 2  “1 bl h2 “3 “4 bl h3 “1 bl 

‘1 I bl “2 ‘11 hl b2 “3 a4 bl b3 a1 
“ 1  bl ‘12 “1 bl b2 a3 ‘I4 bl b, 

“2 “1 bl b2 “3 “4 a4 
“ 2  “1 “1 h2 a3 “3 

“2 “2 “1 h, b, 
a2 a2 “2 

“distance d ( M )  1 2 3 3 3 4 5 6 4 7 6 3 

Merged  stack s ( M )  u 1  bl “ 2  a1 61 h2 “ 3  “4 bl 6 3  a1 bl 

- 

of each  distance.  For notational convenience  the pair 
[ u j ( M ) ,  dj” ( u j ( M ) ]  is often  written as a concatenation 
and denoted by p j * ( M )  as,  for example, in pj* ( M )  = A S .  
A similar notation is used  for well formed merged dis- 
tance  sequences, e.g., pj (  M )  = B 4 .  

A merged  reference  sequence (for  access  streams A 
and B )  is denoted by r (  M )  = { r j (  M )  : j 1 l}, where 
r j ( M )  E {A? U 9}, j 2 1. For merged reference se- 
quences  the  type of each  reference is not included ex- 
plicitly since it can be deduced from r j (  M )  . A well formed 
merged  stack  sequence s( M )  = { s j (  M )  : j 3 0}, with 
each s j ( M )  an ordered  subset of A? U 9, is defined by 
viewing r (  M )  as a reference  sequence  for a single access 
stream  and requiring r ( M )  + s ( M ) .  Finally, the well 
formed distance  sequence d ( M )  = { d j ( M ) ;  j 2 1 j as- 
sociated with s ( M )  is called the “distance  sequence. 
Observe  that  each  distance in the ”distance sequence is 
anelementoftheset{i,~;~~,m+n,1,2;~~,m+n}and 
that  the ”distance sequence  determines  the miss  ratio 
function for  the merged reference  sequence. 

Definition 5 .2  Let p ( M )  be a well formed merged dis- 
tance  sequence, let d ( A )  = { d j ( u j ( M ) ) ;  u j ( M )  = A } ,  let 
d ( B )  = { d j ( u j ( M ) ) :  u j ( M )  = Bj, and let r ( A )  and r ( B )  
be reference  sequences  where r ( A )  + d ( A )  and r ( B )  + 

d( B )  . A merged reference  sequence r ( M )  , associated 
with p (  M )  and denoted by p (  M )  - r (  M )  , is obtained by 
replacing the  subsequences d ( A )  and d ( B )  in the  se- 
quence { dj ( uj ( M )  ) : j 1 1 } by r ( A  ) and r ( B  ), respectively. 

Table 3 illustrates these definitions. The following 
definition and  proposition  provide  a  mechanism for  as- 
sociating  a merged stack sequence s ( M )  directly  with  a 
well formed merged distance  sequence p (  M )  . 
Definition 5.3 For  access  streams A and B suppose  that 
p ( M )  = { u j ( M ) ,  d j ( u j ( M ) ) ;  j 2 l}  is a well formed 

merged distance  sequence. A merged stack sequence 
s( M )  = { s j ( M )  : j 2 0) associated with p ( M )  is defined 
recursively  as  follows: 

Proposition 5.4 Let p ( M )  be  a well formed merged dis- 
tance  sequence, let r (  M )  be a merged reference  sequence 
where p ( M )  ”+ r (  M ) ,  and let s ( M )  be a merged stack 
sequence associated with p ( M )  as given by Definition 
5.3. Then s ( M )  is well formed, i ( M )  - r ( M )  where 
s ( M )  - f ( M ) ,  and d ( M )  is unique where r ( M )  + d ( M ) .  

6. Proof of main result 
Consider now the merged distance  sequence  for  two 
streams  under  the  assumptions of Section 3 .  It is easily 
shown from the association of merged distance  sequences 
with well formed merged distance  sequences and from 
Definition 5.3 above  that  the well formed merged stack 
sequence s( M )  is a  Markov  chain (see, e.g., Parzen [ 61 ) , 
and the long-run miss ratio  function can in principle be 
obtained  from  this chain.  However,  to  obtain  the miss 51 1 
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Table 4 Examples of merged  type  stack sequences. 

.i 

Seqr4r,rce 0 I 2 3 4 5 6 7 8  9 I O  

Merged  distance d j * ( M )  A4  A4  B2 BI  B3  A4  B2  B4 B1 B2 

Merged  type f j ( M ,  5 )  0 A  A  B  B B A B B  B B 
0 0  A  A  A A B  B 
0 0  

B 
0 

B 
A A 

B 

0 0  
A 

0 
B B A  A  A 

0 0 
0 0  0 0 

A  A A B  
0 0 

B  B 
A A A  A  A 

ratio  function in closed  form it is more convenient  to h. otherwise, let I  be the index  such that 
consider another related  Markov  chain of merged "type" 
stacks. 

Informally,  a well formed merged type stack sequence = d;+,bj+," 
t ( M ,  c )  = { t j ( M ,  c )  ; j 2 0 )  differs from s ( M )  in that 

1. A type stack only indicates the  type of each stack 
Then, 

entry.  For  example, if s j ( M )  = ( a l ,  h,, us, u2, h,) then t j + l ( M >  c )  = [uj+," tj, ] ( M ,  e ) ,  
t j ( M ,  5 )  is ( A ,  B ,  A ,   A ,  B ) .  . " 9  tj, / & , ( M ,  c ) ,  tj, [ + , ( M ,  e ) , . . . ,  t j , c ( M ,  e l l .  

2. For a  nonnegative  integer c ,  the type stack t j ( M ,  C )  

contains  just c entries  corresponding  to the first c 
Table 4 illustrates Definition 6.1 for  the  case c = 5 .  

elements of s j ( M )  if y j  1 e,  or  to s j ( M )  followed by 
c - y j  "empty" entries  denoted by 0 if y j  < c. 

In the  example  above, t j ( M ,  3) = ( A ,  B ,  A )  and 
t j ( M ,  7) = ( A ,  B ,  A ,   A ,  B ,  0, 0). The miss ratio  calcula- 
tion for capacity c is obtained  from t ( M ,  e )  for 1 5 c 5 
m + n. A calculation with type  stacks is preferable  be- 
cause  the  number of possible type  stacks is much  smaller 
than  the  number of stacks. 

Let {x,, . . ., x,}' denote  the  set of all e-tuples over  the 
symbols x,, . . ., xr, and let (x l , .  . 1, x,) *: denote  the  set of 
all sequences of length zero  or more over  these symbols. 

Dejnition 6.1 Let c be  a  nonnegative  integer  and let 
p * ( M )  = { u j ( M ) ,  d : ( u j ( M ) ) ;  j 1 I }  be a merged dis- 
tance  sequence.  The associated well formed  merged  t .yp 
stuck  sequence  t( M ,  e )  = { t j(  M ,  e )  ; j 2 O}, where 

is defined recursively: 

1 .  For j = 0, to( M ,  c )  = {0}". 
2. F o r j  1 0, suppose  that r j ( M ,  c) has been determined; 

a. if d j * , , [ ~ ~ + ~ ( M ) ]  > N [ u j + , ( M ) : t j ( M ,  c)],  then 

t j ( M ,  c )  = [ t j ,  , ( M ,  ( . I , . . . ,   t j ,  c ( M ,  e ) ]  E { A  u B u Ojr, 

t j+,(M9 c )  = [ U j + , ( M ) ,  t j ,  , ( M ,  c ) ,  

51 2 . . .  
3 tj, c"l ( M ,  c )  1 ; 

8 Markov  chain of merged  type  stacks 
From  the probabilistic assumptions of Section 3 ,  the 
stochastic  process P * ( M )  = { U j ( M ) ,  D;( U j ( M ) ) ;  
.j 2 l}, called a merged distance  process, is a sequence 
of pairs of i.i.d. random  variables, where 

= ( 1  - S)&, I 5 k 5 n ,  ( 1 )  

and 6 = A,/ ( h ,  + A B ) .  Note  that a merged distance se- 
quence p* ( M )  is a realization of the  process P* ( M )  and 
consider  the  stochastic  process  for merged type  stacks 

where T j ( M ,  c )  E { A  U B U 0}". A realization of this 
process,  denoted t ( M ,  e ) ,  is derived using Definition 6.1 
from a merged distance  sequence p* ( M )  , a  realization 
of P* ( M )  . Definition 6.1, together with the i.i.d. property 
of P* ( M )  , leads to  the following proposition. 

Proposition 6.2 The  stochastic  process of merged type 
stacks T ( M ,  c )  is a  Markov chain.  Furthermore, 
1. If 6 = 1 and c 5 rn, the chain has a single recurrent 
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state { A } " .  If 6 = 0 and c 5 1 1 ,  the chain has a single 

2. If 0 < 6 < 1, ( ' 5  nz + 17, ant > 0, and p, > 0, the chain 
has a single irreducible closed set of recurrent  states 

' recurrent  state { B } ' :  

Z ( M ,  e )  = { z : z  E { A  u B},, N ( A  : z )  5 /?I, 

N ( B : z )  5 n }  

To prove 2 in Proposition 6.2 suppose  that c = IYZ + n 

and t j ( M ,  rn + n )  = ( X , , .  . ., X,,,,) E Z ( M ,  n7 + n ) .  It is 
first shown  that  this state  communicates with ( X , ,  . . ., 
X,-, ,  X,,,, X , ,  X,,,; . ., X,,,) for  any 1, 1 5 15 nz + n - 1, 
where X, # X,,,. Since 0 < 6 < I ,  a ,  : 0, and /3, > 0, 
state ( X , ,  . . ., X,,,) communicates with (X,,,, X,; . ., 
X,+,_,) and thus with (X,+2,  ' . ., X,,,, X , ,  . . ., X,,  X ,+ , ) .  
Now, since X ,  # X,,,, this latter  state  communicates with 
( X , ,  X,,,, . . ., X,,,, X,, . . ., X[- , ,  X / + , )  and thus with state 
( X , ,  . . ., X,-,,  X,,,, X , ,  X/,,, . . ., X,,,). Now, since 
r j ( M ,  rn + n )  communicates with any state obtained by 
permuting two  successive  elements of t j (  M ,  / n  + n )  , it 
communicates with all states in Z ( M ,  rn + n )  . It is easily 
shown that Z ( M ,  rn + n )  contains all the  recurrent  states, 
completing the proof for c = rn + n. This result  can  then 
be  used to establish 2 for c < rn + n. It is assumed  sub- 
sequently that  the conditions 2 of Proposition 6.2 are 
met. There is no loss of generality since 6 = 0 or 6 = 1 
corresponds  to only a single access stream and a,  = 0 
or /3, = 0 can be interpreted as a different access  stream 
referencing a smaller set of blocks. Note  that  the  set 
Z ( M ,  c) contains 2' states for I 5 c 5 min(rn, n )  and 

( i )  states  for min(rn, n )  < c 5 rn + n, where 

i ,=max(O,   (c -max(rn ,n) ) ) .  
The long run  probability, l,im Pr{ T j ( M ,  c )  = z } ,  where 

z E Z(M, c ) ,  that  a particular merged type  stack  occurs 
is determined by considering the  sets of merged refer- 
ence and distance  sequences of length j that yield the 
event { T j ( M ,  e )  = z }  for a givenj.  For  ease  ofexposition 
and to avoid additional  notation, the  development in- 
volves a particular example, viz., z = ( B ,  B ,  A ,  B ,  A )  E 

L o  
mln ( m .  I O  c 

Z ( M ,  5 ) .  
For z E Z ( M ,  c )  let q ( z )  denote  the  set of finite length 

merged reference  sequences  that yield the type stack Z. 
Noting that  an LRU stack  at index,; is a list of the blocks 
referenced in the  first j references and ordered by their 
last reference, we claim that all the reference sequences 
in v ( z )  for z = ( B ,   B ,  A ,  B ,  A )  are equivalent to  elements 
of the  set 

(a , , . . . ,  a,, h, , . . . ,  bn)*ap(u1, h,, b,, b 3 ) *  

h,(a,, b,, b2)*a,(b, ,  h,)*b,(b,)*b,. ( 2 )  

merged distance sequences  such  that an associated 
merged reference  sequence is the reverse of  an element 
of q ( z ) .  For  the example it is claimed that 

n(B, B ,  A ,  B,  A , )  = B i ( B l ) * B T ( B I ,  B 2 ) *  

A i ( A 1 ,  B1, B 2 ) * B 3 ( A I ,  B I ,  B2, B 3 ) * A 2 x ,  ( 3  1 

where x is any finite string over ( A  3 , .  . ., Ax B4, .  . ., B i ,  
A 1, . . ., Am,  B 1 ,  . . ., B n )  which yields a well formed 
merged distance  sequence according to Definition 5.1. To 
see  this,  consider  the  reverse of an element of (2) .  The 
"first" b, is associated with Bi in ( 3  ).  Successive  occur- 
rences of h, [denoted by ( h ,  ) >: in ( 2 ) ]  are associated 
with (BI )>: in ( 3 )  until b, occurs, which is associated 
with B?: etc. 

The notion of twin distance  sequences can be extended 
to merged distance  sequences  (not necessarily well 
formed) by defining the twin of a merged distance  se- 
quence  as  that  (unique)  sequence obtained by replacing 
the  subsequence of distances  for  access  stream A by 
its twin and the  subsequence of distances  for  access 
stream B by its twin. 

Lenwzu 6.3 For z = (z,, . . ., z r )  E Z ( M ,  c )  the  event 
{ T j ( M ,  c )  = z }  occurs if and only if the twin of the well 
formed merged distance  sequence p, ( M ) ,  . . ., p j ( M )  is 
an element of Cl(z) .  The  set a(z) can be expressed  as 
x,. . . x, where 

I .  F o r l ~ k 5 ~ - l , l e t . u l = N ( z , : z , ; . . , z , ) , x , = N ( A :  
z,, ..., zk), and x3 = N ( B : z , ; . . ,  z k ) .  The  set x, is 
given by xk = zkXl ( A  I ,  . . ., Ax,, B 1 , .  . ., Bx,) *. 

2. For k = c and x, = N ( z i : z , ;  . ., z c )  the  set x, is given 
by x,. = z,X,x, where x is the  set of all finite sequences 
ove r (Ai ; . . ,A~ ,Bs i , . . . ,Bn ,Al , . . . ,Arn ,B1  ; . . , B n )  
such that x, . . . x, is a well formed merged distance 
sequence. 

This is a key result  since the  occurrence of a particular 
merged type stack (from which miss ratios  are  calculated) 
can be interpreted as a  property of a merged distance 
sequence.  Thus, letting q(.j)  denote the subset of realiza- 
tions of the merged distance  sequence of length j ,  such 
that  the associated well formed merged distance  sequence 
is a member of O ( z ) ,  

Pr{Tj(M, c )  =z}=ZPr{ fT(M)  = q l ; . . ,  f ? ( M )  = q j } ,  

z E Z ( M ,  e ) ,  (4) 

where  the summation is over all (q,; . 1, q j )  such  that  the 
twin ( q i , .  . ., (1;) E ~ ( j ) .  Since any merged distance se- 
quence is a permutation of its twin and  since { f ;  ( M )  : 
j 2 I }  are i.i.d. random  variables, 

It is difficult to  characterize  the well formed merged dis- Pr{ p ;  ( M )  q,, . . ., p; ( M )  qj}  
tance  sequences associated with elements of Ur(z). In- 
stead, let s2 ( z )  denote  the  set of finite length well formed = Pr{f$(M) = q ;  ;.., f T ( M )  =q;}, 51 3 
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7. Pr{H,(z) = tc+]lH&]b) = t,+,} = 1:  and 
8. all other  one-step transition  probabilities are  zero. 

As  an example of the chain H ( z ) ,  a state transition 
diagram for z = ( B ,  B ,  A ,  B ,  A )  is shown in Figure 2 .  The 
transitions  are labeled by the associated elements of the 
well formed merged distance  sequence.  Thus, p * ( M )  = 

(B4, B1, B5, B1, A 3 ,  B2,  A l ,   A 3 ; . . )  would cause  the 
state transition sequence (to, t,, el, t2,  t2, t3, t3, t3, 
t6' t6 ' .  . 9 .  

In the chain H ( z ) ,  states 8, and t,,, are absorbing 
states representing, respectively,  that  the well formed 
merged reference  sequence  is  or is not an element of 
n ( z ) .  The remaining states  are  transient  and indicate 
that  the  question of membership in n(z) has  not  yet been 
determined. 

Figure 2 State transition  diagram for  Markov chain H ( z )  for 
z = ( E ,  B ,  A ,  B, A ) .  

where q,, . . ., qj and q;; . *, qj are  twins:  Eq. (4) can also 
be written 

Pr{ T j ( M ,  c )  = z }  = x Pr{P:(M) 
( Y ~ . , ' . ~ ~ J W J )  

- - q,;.., P j * ( M )  = qj} ,  z E Z ( M ,  c ) .  (4') 

Markov chain H ( z )  
To compute  the right hand side  ofEq. (4') it is convenient 
to  introduce  for z E Z ( M ,  c )  a Markov chain H ( z )  = 

{H, (z )  : k 3 0 )  based on  the merged distance  sequence 
process P* ( M )  . The chain has a state 5, such  that 
H j ( z )  = 5, if and only if p: ( M )  , . * ., p? ( M )  is such  that 
its well formed counterpart p 1  ( M ) ,  . . ., p j ( M )  E n(z). 
DeJinition 6.4 For z = (z, , .  . ., zc) E Z ( M ,  c )  , let H ( z )  = 
{ H,(z)  ; k 2 0} be  a Markov chain where 

1 .  the  state  space is {to, .  . ., [,+,}; 
2 .  the initial state is to, Le., Pr{H,(z) = 5,) = 1 ;  

Proposition 6.5 For z E Z ( M ,  c )  and j P 1 

Pr{Tj(M) = z }  = Pr{Hj(z) = t,}. ( 5 )  

Since Z ( M ,  c )  is an irreducible  closed set of recurrent 
states,  for all z E Z ( M ,  c ) ,  n ( z )  = lim Pr{Tj(M) = z }  
exists  such  that n ( z )  > 0 and .I+" 

Lemma 6.6 For all z E Z ( M ,  c )  

Iim Pr{ H j  ( z )  = E,} = n ( z )  . 
Thus ~ ( z )  is the probability in H(z) of ultimate absorp- 
tion in state E,: this quantity can  be easily determined 
by inspection  from the  structure of N ( z )  . 

J-+" 

Recall from Eq. (1) that 

Pr{Uj(M) = A ,  D j * ( U j ( M ) )  = k }  =sak ,  

1 5  k 5  m , j l  1 ,  

and 

Pr{Uj(M) = B ,  D ? ( U j ( M ) )  = k }  = ( 1  - S ) p k ,  
1 5  k 5  n , j 3  1 ,  

and  let 

(0, otherwise: 

LO, otherwise. 

Note  that Sal is the  joint probability that U j ( M )  = A  and 
Dj*( U j ( M ) )  2 i, i.e., the probability that  the well formed 
realization has pj( M )  = Aigiven  that p,( M )  = A  i-l and 
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P ~ + ~ ( M )  # A i , .  . ., pj_,(M) # Arfor  some I < i. Now,  for 
z =  (z , ; . . ,  zc) E Z(M,  e )  a n d j =  l;.., e,  let 

Given  that H,(z) = tj+,, G ( z , j )  is seen to be the prob- 
ability that H , ( z )  = tj for  some I > k ,  i.e., of ever making 
the transition tj-, + tj. For  the  example in Fig. 2, 

corresponding  to Pr{ U ,  ( M )  = B }  . 
It follows  from  this that  the probability of ultimate 

absorption in tc, and  thus 7~ ( z )  , is given by the following 
lemma. 

Lemma 6.7 F o r z E  Z(M,  e ) ,  ~ ( z )  = II;=, G ( z ,  i). Recall 
that  the "distance sequence d ( M )  = { d j ( M ) ; j  1 I }  is 
the well formed distance  sequence associated with the 
well formed merged stack  sequence s ( M ) .  The  corre- 
sponding stochastic  process D ( M )  = { D j (  M )  ; . j  3 1 } is 
seen  for c = 1 , .  . ., m + n to  have  the  property 

Pr{Dj(M) = e }  = C Pr{Tj-,(M) = z }  

X Pr{Uj(M) = A ,  D T ( U j ( M ) )  = N ( A : z ) }  

+ C Pr{ Tj-l ( M )  = z }  

X Pr{Uj(M) = B ,  D j " ( U j ( M ) )  = N ( B : z ) } ,  ( 7 )  

where the first summation is over all z E Z(M,  e )  such 
that z = (z,, . . ., zc-l, A ) ,  and the  second summation is 
over all z E Z(M,  c )  such  that z = (zl,. . ., zc-I, B ) .  In 
other  words,  an "distance of c is observed  just  when a 
type  stack z E Z ( M ,  e )  exists and the  cth  entry in the 
stack is "referenced." 

Theorem 6.8 For c = 1 , .  . ., m + n and k 1 1 ,  let M,(c) 
be the  fraction of "distances D j ( M ) ,  1 5 j 5 k ,  greater 
than c. Then the (long-run)  expected miss rcrtio function 
M (  e )  = limL+mE{Mk( e )  } for the merged stream  exists 
and is given by 

To see  this,  observe  that  Pr{Dj(M) > e }  can be ob- 
tained from  Eq. ( 7 )  by replacing the second term in both 
sums by Sa'No:z,+,+ ( 1  - S)pA,,,,,+,. The  sums can  then 
be  combined  into  a single sum over z E Z ( M ,  e )  and 
since Z(M,  e )  is an irreducible  aperiodic recurrent  class 
(cf. [6]),  letting j + 00 we obtain Eq. (8 ) .  

Theorem 6.8, together with Lemma 6.7, completes 
the proof of Theorem 3.1 for  the  case of J = 2 streams. 
Extension of the proof to  the  case .I > 2 involves the 
preliminaries of Section 4 and the  same  sequence of steps 
used in Sections 5 and 6. The merged sequences of Sec- 
tion 5 become  multivariate (J-type)  sequences.  The 
stochastic  process of merged type  stacks  can be shown 
to be  a Markov chain (as in Proposition 6.2)  and under 
the conditions c 5 2J!=l mj, a ( A j )  > 0 and > 0 for 
j 1 , .  . ., J ,  the chain  has a single irreducible  closed set 
of recurrent  states Z(M,  e )  = { z ;  z E { A ,  u . . . u A ~ } ' ,  
N ( A j : z )  5 mj for j = 1 , .  . ., J } .  Lemma 6.3 relating the 
occurrence of a type stack to well formed merged dis- 
tance  sequences;  the definition of the  Markov  chains 
H ( z )  for z E Z(M,  c ) ;  and  Proposition 6.5, Lemma 6.6, 
and Lemma 6.7 relating to  the determination of { ~ ( z ) }  
all extend  directly for J > 2. 

7. Other results 
Calculation of the  expected miss ratios for J = 2 and 
capacity c from Eq. ( 8 )  involves  a  sum over z E Z (  M, c) 
and thus is  of complexity 2" ( J "  in general).  This  can be 
a severe practical limitation. However,  there is a  less 
complex  computational procedure whereby 7~ ( z )  need 
not be  determined for  each z E Z (  M, e )  . The  procedure, 
which is not described in detail  here,  involves  partition- 
ing the  states of Z ( M ,  e )  into classes  such  that z and z' 
are in the  same  class if and only if N ( A   : z )  = N ( A  : z ' ) .  
For c 1 1 let (2 ( k ,  e )  denote  the long-run probability 
that a merged type  stack  contains exactly k type A entries, 
max(0, c - n )  5 k 5 min(m, c) .  By expressing Q ( k ;  c )  
as a  sum over  the  appropriate ~ ( z )  the following lemma 
can  be  established. 

Lc.mmc1 7.1 

I .  For c =  I ,  Q ( 0 ;  I )  = 1 - 6  and Q(1 ;  1 )  =S.  (9)  

2. For c 3 2 and max(0, c - n )  5 X 5 min(m, e ) ,  

mj 

( 1  - s)pf-, 
-1  + ( 1  - s)P:-, I 
) [sa;  + ( 1  - S)P;-,+, 1. Sa; 

(10) 

The following theorem  can then  be demonstrated. 

Theorem 7.2 For c 1 1 
min(711, c )  

M ( c )  = Q ( k ;  c.1 [sa;,, + ( 1  - s)pf-,+,I. 
k=max(n, c - n )  

Equations (9) and ( I O )  and Theorem 7.2 constitute 
the less  complex procedure  for calculating M ( e )  , which 
is seen  to  have complexity e'. Additionally, { Q ( k ;  e ) }  

+ Q ( k -  1 ;  e -  1 
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provides the long-run  distribution of the  number of type 
A blocks in a  first-level device, which is also of interest. 
ForJ>2andc111etQ(k,,~.~,k,;c),whereX~=lkj=c, 
denote  the long-run probability that a merged type  stack 
contains  exactly ki type Ai entries, 1 5 i 5 J .  

Theorem 7.3 
1. For e =  1 a n d j =  l ; . . ,J ,  Q ( k , ; . ;  k,; 1) = S j  when 

2. For c 2 2 and all k, ,  . . ., k, such  that 0 5 kj 5 mj and 
kj = 1 and ki = 0, i # j .  

X:=, ki = c ,  

X Q ( k ,  - k,- AJj;  C -  I ) ,  

where Aij = 1 if i = j and 0 otherwise. 

3. M ( c )  = 2 Q ( k , , . . . ,  k,; c ) [ i  Sipki+ , iAi ) ] ,  
i= l  

where  the summation is over all k,, . . ., kJ such  that 
0 5 kj 5 mj and Xi=, ki = c. 

Use of Theorem 7.3 for calculating miss ratios involves 
complexity cJ.  This is a  substantial improvement Over 
the  use of Theorem 3.1,  which  involves  complexity J“. 

For fixed capacity c it is interesting to  consider  the 
range of values of the  expected merged miss  ratio M ( c )  
when only the  rates hi of the  set of access  streams  are 
varied. The following lemma establishes  that  the mini- 
mum value of M (  e )  is equal to  the minimum expected 
miss ratio of the individual streams  at  capacity e. 
Lemma 7.4 Consider J 1 2 access  streams A,, . . ., A,  
satisfying the  assumptions of Section  3 where,  for j = 1 ,  
. . ., J and i 1 1, pi (A j )  is the miss  ratio  function (evaluated 
at capacity i - 1 ) for  the j t h  stream and Sj = A j  /Z;=, hi. 
For 1 5 j 5 J ,  the minimum value of the  expected merged 
miss ratio M ( c )  over 0 5 Sj 5 1 and Sj = 1 is given 
by pC+, (Ak)  for  any k such  that  for 1 5 j 5  J, pC+,(Ak) 5 

P“+,(Aj) .  

To  see this, suppose  that pe+ , (A I )  5 pC+](Aj)  for 
j 2 2. From 3 of Theorem 7.3 it follows that  for  any 
a,, . . .> a,, 

M ( c )  2 2 Q ( k , , . . . ,   k , ;  c ) [ i  SipC+,(Ai)] 
i = l  

J 

= 2 SiP“+,(Ai). 
i=1 

The  set of rates  that yields the maximum  value of 
M ( c )  must  generally  be determined empirically.  Sur- 
prisingly, when all the  access  streams  have identical 
LRU  stack  distance  processes,  the maximum expected 
merged miss ratio is not necessarily  achieved by choosing 
equal  rates  for all streams. 

8. Remarks 
The  results of this paper  provide a method for predicting 
the miss  ratio function  for a  multistream environment 
from miss ratio  functions  for individual streams.  The 
method  involves  representing each  access  stream by a 
sequence of LRU stack  distances evolving in time as a 
Poisson  process and viewing the  composite  stream  as 
the  superposition of these  processes. 

Interesting  extensions  to this  work lie in varying either 
the  representation of the individual access  streams,  the 
merging mechanism, or  both.  For example, the  reference 
sequence of each  access  stream could  be represented by 
a  (finite order)  Markov chain of stack  distances  (cf., 
[7]) .  With the  same merging mechanism,  namely the 
superposition of Poisson  processes,  the merged stack 
sequence would still be a Markov chain. 

Alternatively, other merging mechanisms  could  be 
studied.  The merging mechanism  considered in this paper 
has  the  property  that  the  number of successive  accesses 
from  a given stream in a merged reference  sequence is 
geometrically distributed.  This may well be unrealistic 
and it would be of interest  to  compare  results obtained 
from merging mechanisms that  more closely represent 
the  access  patterns  observed in actual  systems. A system 
incorporating “time slicing,” for example, might be use- 
fully represented by forming (for positive integral N) 
a merged reference  sequence  from N accesses  from 
stream A,,  N accesses from stream A,, etc. 

An  important extension of the  results of this paper 
would be  to relax the  assumption  that  the  sets of blocks 
accessed by the individual streams  are mutually  disjoint. 
(Such “sharing” exists  to  some  extent in most  real  sys- 
tems and  can have a significant effect on  the miss ratio 
function.) Several  formulations of sharing are possible. 
Examination of actual system  structures might suggest 
an  appropriate formulation. For  example,  it is often  the 
case  that only certain blocks  (e.g., those of compilers 
and system code)  are  shared,  the remaining blocks being 
private to  the individual streams. Prediction of composite 
miss ratio functions  for  such  situations,  however,  appears 
to  be difficult. 

Furthermore, 
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