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Digital Filtering Using Complex Mersenne Transforms

Abstract: Complex Mersenne Transforms are defined in a ring of integers modulo a Mersenne or pseudo-Mersenne number and can
be computed without multiplications. It is shown that under certain conditions, these transforms can be computed by means of fast
transform algorithms and permit the evaluation of digital convolutions with better efficiency and accuracy than does the Fast Fourier

Transform.

Introduction

With the rapid advances in large scale integration, a
growing number of complex digital signal processing
applications are becoming economically feasible. In
most cases the bulk of the processing workload appears
to consist of digital filter computation. Future progress
in digital signal processing, either towards high speed,
real time operation or increased sophistication, thus
largely depends on increased efficiency in digital filter
computation. This can be achieved not only by imple-
menting improved filter circuits but also by using better
computation algorithms, as will be discussed in this
paper.

Rader [1] and Agarwal and Burrus [2, 3] have re-
cently introduced Mersenne Transforms and Fermat
Number Transforms. These two transforms have the
circular convolution property and therefore can be used
for evaluating digital filters in the same way as Discrete
Fourier Transforms (DFT) [4, 5].

Mersenne Transforms and Fermat Number Trans-
forms are very promising for digital filter computation
because they can be calculated without multiplications.
Their main drawback is a rigid relationship between
transform length and word length, caused by the fact
that all operations are performed in a finite ring with
arithmetic carried out modulo an integer p. Another dif-
ficulty arises because it is not possible to achieve si-
multaneously optimum efficiency in reducing the number
of operations and in implementing arithmetic operations.
This is so because Fermat Number Transforms are ame-
nable to a fast transform algorithm, and Mersenne Trans-
forms are not, whereas arithmetic operations can be
implemented more efficiently modulo a Mersenne num-
ber than modulo a Fermat number.

In this paper we consider complex transforms defined
in the ring of integers modulo a Mersenne number. We
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show that these Complex Mersenne Transforms can be
partly computed by a fast transform technique and have
a maximum length up to four times that of conventional
Mersenne Transforms. We discuss the use of such trans-
forms for filtering complex signals and show that calcu-
lations in the first stages of the direct transforms can be
performed on words of reduced length. We then extend
these results to cover the case of pseudo-Mersenne num-
bers. We show that this leads to a definition of pseudo-
Mersenne Transforms, which can be completely com-
puted by means of a fast transform algorithm but in which
the advantage of performing arithmetic operations mod-
ulo a Mersenne number is retained.

Complex Mersenne Transform

Let g be a prime and p = 29 — 1. Mersenne numbers p

are primes for ¢ =2, 3, 5, 7,713, 17, 19, 31, 61--- [6].
The Mersenne Transform of an integer sequence

{a,} having g terms is defined by

q-1

4=((Z o))

n=0

k=0,1g— 1, (1)

where any quantity enclosed by superfluous double
parentheses is to be replaced by its value modulo p.
The Inverse Mersenne Transform is defined by:

q-1

4, = ((R k§=:0 A, 2‘””"))

where R is such that ((R - q)) = 1, all exponents and
indices being taken modulo g and all operations being
performed modulo p.

It can be demonstrated easily [1] that the Mersenne
Transform satisfies the convolution theorem; that is to

m=0,1"q—1, (2)
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say, if {X,} is the Mersenne Transform of {x,}, then with
Z, = ((4, - X,)), the Inverse Mersenne Transform
{z,,} of {Z,} is given by

()| 0

If {a,} and {x,} are properly bounded [1], z, is equal
to the output of the ordinary cyclic convolution with

q-1

2z, = 2 a, X, (4)
n=0

Under these conditions, digital filtering of real integer
sequences can be performed by dividing the sequences
into blocks, padding the blocks with zeros [4] to prevent
folding, and aliasing and computing the cyclic convolu-
tions by means of Mersenne Transforms. This provides
a very efficient way of computing digital filters because
calculations of Mersenne Transforms reduce to one’s
complement additions and circular shifts. Because
Mersenne Transforms are evaluated without multiplica-
tions, computation of a time-invariant circular convolu-
tion having g points reduces to one multiplication per
output sample, as opposed to ¢ multiplications with direct
calculation. This corresponds, in the case of a nonre-
cursive digital filter having N taps, to a number of multi-
plications per output sample that is small and essentially
independent of the number of taps. Direct computation
would require N multiplications in the general case and
implementation by means of the Fast Fourier Transform
(FFT) would require K log, N multiplications.

The main limitations of the Mersenne Transform ap-
proach are related to the fact that the number of trans-
form terms ¢ is a prime. This means that calculations of
the transforms cannot be simplified by an FFT-type
algorithm and that the number of transform terms is
equal to the word size. These limitations can be slightly
alleviated [ 1] by using a root —2 instead of 2 in (1) and
(2). The maximum transform length then becomes 2gq.
It is also possible to increase the maximum convolution
size by resorting to multidimensional convolutions
[1, 2, 7]. Unfortunately, this result is achieved at the
expense of increased requirements for computation and
storage.

We show now that by defining Complex Mersenne
Transforms, it is possible to achieve higher computation
efficiency while increasing both maximum transform
length and convolution length.

In many instances of digital signal processing, digital
filtering of complex signals is required. Modem equalizers
for phase modulated signals are a good example of such
applications [8]. In that case, a complex integer sequence
{x, =y, +Jj¥,} is to be filtered by a complex sequence
{a,=b, +j13n}, having N terms, to produce a complex
output sequence {z, = u, + ji,} with
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j=V-1L (5)

The complex convolution (5) can be calculated by
means of real transforms provided that computation on
real and imaginary numbers is carried out in separate
transforms. It is even possible, with Fermat Number
Transforms, to reduce the number of multiplications by
taking advantage of the real number representation of
j=V~—1 in a Fermat number system [9].

It is more natural, however, to compute complex con-
volutions with complex transforms such as the Fourier
transform or Complex Number Theoretic Transforms
[3, 10, 11]. In particular, complex transforms can be
defined in a Mersenne ring. Along these lines, we have
proposed a digital filter based on Complex Mersenne
Transforms [12]. The author thanks the referees for
bringing to his attention the independent work of Vegh
and Leibowitz on the same subject [13].

In the following we restrict our discussion to Complex
Mersenne Transforms that have simple roots and can be
computed without multiplications. In a Mersenne ring,
with p = 27— 1, 2 and —2 are respectively roots of unity
of orders ¢ and 2¢, corresponding to transforms of lengths
q and 2g, respectively. Since ¢ is a prime, 2% and —2°
are also roots of orders ¢ and 2gq, provided d is not a
multiple of g. This implies that 2j is a root of order 4q
and 1 + j or 1 — j are roots of order 8g. Higher-order
complex roots do not have a simple structure and there-
fore will generally not be of practical interest.

Under these conditions, a Complex Mersenne Trans-
form having 4g terms can be defined by

([ )

n=0
J=V=1,k=0,1---4g—1. (6)

Because ¢ has an inverse modulo p and the inverse of 4
is 27, 4¢ has an inverse R such that ((4¢gR)) =1 and the
inverse transform of 4, is

4q—1

am — ((R 2 Akj—me—mk)) m= 0, 1 P 4q — 1’ (7)

k=0

where all exponents and indices are taken modulo 4q.

We demonstrate that this Complex Mersenne Trans-
form satisfies the convolution theorem. Taking the com-
plex transform {X,} of the complex sequence {x,}, per-
forming the term-by-term complex multiplications X, -
A, and taking the inverse transform yields
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- ((2 z iR @0 ) z 2) 8

with | + n — m = r and k replaced by 4k + s.

As in the case of conventional Mersenne Transforms,
the sum ;| 2" is equal to zero for (r),.,, # 0 and
equal to g for (r), ., = 0. For (r),,,=0,r=gqtand
((22_,j2")) becomes ((Z°_, j™)). Because g is an odd
prime, this sum is different from zero only when ¢ is a
multiple of 4 and is equal to 4 when ¢ is a multiple of 4.
Under these conditions, the product of the two sums is
different from zero only for (r),,,4 ,,= 0 and z,, becomes
4q-1

2 = ((2 o X 1) o )) (9)

n=90

which shows that two complex sequences of length 4¢
can be cyclically convolved by means of Complex Mer-
senne Transforms modulo p = 27 — 1. In such an ap-
proach, all arithmetic operations are performed as in
normal, complex arithmetic with j> = —1 and real and
imaginary parts treated separately modulo p.

Using a root j + 1 leads to a definition of a Complex
Mersenne Transform having 8¢ terms with

8q-1

= (3 o)

n=0

k=0,1---8g~— 1, (10)

and, with R such that ((8¢R)) = 1, an inverse transform

8g—1

am=(<R z) A+ 1)"’”‘))
m=0,1--8g—1, (11)

with all exponents and indices taken modulo 8¢q. It can
be demonstrated easily, by using the same development
as given above, that this transform permits evaluation
of convolutions of length 8¢ with word lengths of g bits.

Fast computation of Complex Mersenne Transforms
We have so far defined Complex Mersenne Transforms
that can be computed without multiplications and have
a length up to four times that of conventional Mersenne
Transforms. The calculation of these transforms can be
partly simplified by an FFT-type algorithm because the
number of terms is no longer a prime.

Using either decimation in time or decimation in fre-
quency [14] allows a decomposition into transforms
having four g terms and transforms having eight ¢ terms
in the case of roots 2j and j + 1, respectively. These FFT
decompositions reduce the number of real operations to
8q(gq + 1) additions and 8q(g — 1) shifts for a complex
transform having 4¢ points, and to 16 g(q — 1) + 52¢g
additions and 16(q— 1)* + 24(g— 1) shifts for a complex
transform having 8q points. If we assume, for the sake
of comparison, the existence of hypothetical real Mer-
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senne Transforms having 4q points and 8¢ points, com-
puting the transforms of the real and imaginary parts of
a complex sequence would require 4q(4g — 1) addi-
tions and (4g — 1)® shifts for 4g-point transforms and
84(8q — 1) additions and (8g — 1)* shifts for 8¢-point
transforms. This means that in the practical range of
interest for g (where ¢ = 31), substituting Complex
Mersenne Transforms for conventional Mersenne Trans-
forms results approximately in an eightfold reduction
in the number of operations.

Computation of a complex convolution by means of
Complex Mersenne Transforms is carried out as with
DFT, with real and complex parts being evaluated
modulo p separately. In order to avoid errors due to
overflow, the amplitudes of real and imaginary outputs
must be bounded to (p — 1) /2. This means that usually
the word length of real and imaginary parts of input se-
quences {a,} and {x,} is less than half that of output
sequences. In other words, all computations are carried
out modulo p on g-bit words, yielding g-bit word outputs,
and the input sequences are represented by words of
less than (¢ — 1) /2 bits. It is possible to take advantage
of the input word length limitations to further reduce
the processing workload. This is done by selecting a fast
transform decomposition such that the first two transform
stages can be computed without multiplication by powers
of two. In such an approach, a Complex Mersenne Trans-
form having 4q points, with root 2j, is decomposed into
g four-point transforms with

3 3
Ak = ((E aqn-jan _+_j’\2k 2 aqn+1jan NI

n=0 n=0

3
+j(q\1)k 2(q-1)k 2 aq“q_qunk))_ ( 12)
n=0

The g four-point transforms corresponding to the first
two stages of the decomposition require only multipli-
cations by =1 and =; and can therefore be computed in
normal, complex arithmetic, on words of length approxi-
mately half that of the final result.

If the two sequences {y,} and {q,} to be convolved
are real, the full benefit of using Complex Mersenne
Transforms can be retained by processing simultaneously
two successive blocks of the sequence {y,} by means of
the same Complex Mersenne Transforms. This is done
by computing the complex convolution {z,} of the se-
quence {a,} with the auxiliary complex sequence {x, =
Yp + J¥pisq)- The real part {u,,} and the imaginary part
{a,} of {z,} yield respectively the convolutions of {y,}
and of the next block {y, . } with {a,}.

Complex pseudo-Mersenne Transforms
We have seen above that a conventional g-point Mer-
senne Transform could be extended to 8¢ points by oper-
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Table 1 Maximum odd length and corresponding power-of-2 roots for real transforms modulo p = 27— 1 with ¢ odd and p composite.

Max. Power

Prime factorization of odd of 2

q p=2"-1 p.p,"p Prime factorization of p,— 1 length roots
15 7-31-151 2-3 2:3-5 2-3-5 3 /
21 7F 127 - 337 2-3 2-3.7 2*.3.7 3 /
23 47 - 178481 2.23 2*-5-23-97 23 2
25 31- 601 - 1801 2:3-5 2%.3.5 2°.32.¢° 15 /
27 773 - 262657 2-3 2.3 -3%. 19 3 /
29 233 - 1103 - 2089 2929 2.19-29 2°.3%.29 29 2
33 7-23 -89 - 599479 2-3 2-11 2°-11 2-3-11-31-293 / /
35 3171127 - 122921 2-3-5 2-5-7 2-3-7 2°.5.7-439 / /
37 223 - 616318177 2-3-37 2°-3-37.167- 1039 37 2
111 /

39 7-79 - 8191 - 121369 23 2-3-13 2-3.5-7-13 3 /

2*-3-13-389
41 13367 - 164511353 2-41-163 2°-41-59 - 8501 41 2
43 4319719 - 2099863 2-5-43 2-43-113 2-43-3.2713 43 2
45 7-31-73-151-631- 23311 23 2-3-5 2°.3 2.3.5 2.3%.5.7 3 /
2-3.5.7.37

47 2351 - 4513 - 13264529 2-5-47 22-3-47 2'-31-47-569 47 2
49 127 - 4432676798593 2-3%.7 27-3%.7°.43 337 - 5419 63 /

ating in the complex number field and replacing the root
2 of order ¢, by a complex root (1 + ;) of order 8g. Up
to now, the discussion has been restricted to Mersenne
numbers, that is, to numbers p = 2 — 1 such that g is a
prime.

If p is not a prime, its prime factorization is given by

p=p1d"p2d2"'pidi. (13)

An M-point real transform having the circular convolu-
tion property can be defined in the ring of integers modulo
p provided M-point transforms can be defined separately
in the fields p,, p, - - - p,. This follows directly from the
Chinese remainder theorem [3, 15], and leads to the
condition for the existence of an M-point transform in
the ring p that M must simultaneously divide p, — 1,
p,— 1,7+ p,— 1. When p is a prime, the maximum length
of the transform is M = p — 1. Transforms in a ring p,
with p nonprime, are therefore proportionally shorter
than transforms defined modulo a prime number. If p
and q are composites with ¢ = g, - ¢, and g, prime, pALE |
divides p and the maximum transform length is governed
by that possible for 2”* — 1. This has led us to consider
that the only transforms of interest in a ring modulo
27 — 1 are Mersenne transforms.

puted without multiplications, and therefore have roots
2" of order M, we have by definition 2" = 1, with 2"
taking M distinct values for n=0, 1+ M — 1. The ex-
ponents Wn are taken modulo MW with (MW), ., ,=0.
If we consider now a root (j + 1)%, this root will be of
order 8M in the ring p if G+ D**"' = 1andif G+ D"
takes 8M distinct values for n varying from 0 up to
8M — 1. We first notice that as (j + 1)°=2*, (j+ 1)®"

=2"" = [ If Wis odd, (j + 1)" takes eight distinct

complex values for n varying from n =0 to n= 7 and if
g=WMis odd, (((j + D¥")) = ((2*"")) takes M dis-
tinct values for n varying from 0 to M — 1.

Under these conditions, (j + 1)" is a root of order
8M in the ring modulo p = 2?— 1 if g, M, and W are odd.
Moreover, the existence of an M-point real transform
in the ring modulo p implies that M has an inverse, R
modulo p. As the inverse of 8 modulo p is 277, 8M always
has an inverse, 2 °R. This means that, given an M-point
real transform of root 2* with p composite and g, w, M
odd integers, we can define 8 M-point complex transforms
in the ring modulo p with

(% a7

The situation, however, changes noticeably if we con- =0
sider Complex Mersenne Transforms. In that case, the Jj=v-l
transform length becomes 8M if 2 does not divide M. k=0,1-8M— I, (14)

This means that even if M is too small to yield a real
transform of practical interest, useful Complex Mer-
senne Transforms of length 8M can still be defined.

Let us define these points precisely. Assuming we
restrict our discussion to transforms that can be com-
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a,= ((2"‘3R Mf A+ 1)‘"’""‘))
k=0

m=0,1--8M—1. (15)
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Table 2 Length and roots for real and complex transforms in the ring (27— 1)/ pid".

Transform Real transform

q ring Length Root
28— 1 s

15 217 5 2

21 2 731 7 2
2% — 1

25 231 25 2
27— 1

27 1.73 27 2
2 -1

35 3315 > 35 2
27 —1 7

35 ‘;!27 5 2
27 —1 5

35 —4'31 7 2

45 2 - 5 2
249.* 1 7

49 4(1’27 7 2
27 -1

49 127 49 2

Approximate

Complex transform word length

Length Root Nb of bits
" .‘g(; 25— 1) 12
(23.576) 2— 1) ~ 15
2 ?(;9) J+1 20
(23,213?) j+l 18
" 280 - j+ 23
" ‘;‘; 2(1—J) 28
" 576) —2(1+4J) 30
" ‘g(; 2(1 +) 36
" 57(; 2(1—j) 42
> _3973) j+1 42

In most practical digital filtering applications, the
input signal samples are defined by a number of signifi-
cant bits comprised between seven bits and 20 bits. This
means that, in order to avoid overflow, the transforms
must operate on word lengths approximately double
that of input words, comprising between 15 bits and about
50 bits.

The various possibilities for p nonprime and odd ¢ are
listed in Table 1. The case of g prime (¢ = 23,29, 37, 41,
43, 47) corresponds to conventional Mersenne Trans-
forms. When ¢ is not a prime, the corresponding trans-
forms have a very short length and their roots are not
powers of 2.

In order to achieve maximum effectiveness in comput-
ing convolutions by means of pseudo-Mersenne Trans-
forms, it would be desirable to have relatively long trans-
forms with a number of terms highly factorizable. This
does not seem possible with transforms computed modulo
p="2"—1. We note, however, that when p is not a prime,
with the prime factorization of p defined by (13), we
can define transforms modulo p/ pid" having power-of-2
roots and such that the number of terms is large and
highly factorizable. These transforms can be defined by

8M—1 P
p— : wni
A= (S @ U+ D™

n=0

k=0,1-8M— 1
j=V~L. (16)
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Various possibilities for such transforms are listed in
Table 2. It can be seen that the maximum number of
terms is both large (40 to 392 terms) and highly factor-
able, thereby leading to efficient FFT-type computation
with a minimum number of operations.

It would seem, however, that these advantages are
offset by the fact that the various operations are per-
formed modulo (27— 1)/ (pid"). The corresponding arith-
metic circuits are obviously much more complex than
arithmetic circuits modulo 2% — 1.

This difficulty can be circumvented by noticing that
as p = pfl . p;12 s pf", we can compute the convolution
modulo p = 2Y— 1 as with conventional Mersenne Trans-
forms and obtain the final result by performing a last
operation modulo p/ pf" on the convolutions computed
modulo p,

z, mod p/pfi = (z,, mod p)mod p/pfi. (17)

By proceeding in this fashion, relatively long convolu-
tions can be computed efficiently by means of FFT-type
algorithms with all but the last operation performed with
easily implemented arithmetic circuits operating modulo
(27— 1). This technique is similar to what was proposed
in [1] to compute Fermat Number Transforms with
Mersenne arithmetic. The only drawback of this ap-
proach is that all the operations modulo (27— 1) are done
on words longer than that of the final result. It can be
seen however, from Table 2 that many transforms with
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a highly factorable number of terms can be defined for
which pf" is small compared to p, so that the penalty in
word length increase incurred when operating modulo
p instead of modulo p/pf" is only of the order of 20 per-
cent.

The most interesting transforms are those which have
a large, highly factorable number of terms combined
with a useful word length as close as possible to g. Among
these, the 200-point, 56-point, and 392-point Complex
pseudo-Mersenne Transforms (corresponding, respec-
tively, to ¢ equal to 25, 35, and 49) seem particularly
well adapted for digital filtering applications. Taking as
an example the case of transforms defined by ¢ = 25,
one can see from Table 1 that the maximum odd length
for real transforms computed modulo p = 2*° — 1 is 15
terms and that the corresponding roots are not powers of
two. By operating modulo (2 — 1)/31, it is possible
to define real transforms having power-of-two roots with
a maximum odd length increased to 25 terms. The maxi-
mum length is then expanded to 200 terms by using com-
plex roots. Such a transform can be computed very
efficiently by means of an FFT-type algorithm with a
three-stage radix 2 decomposition, followed by a two-
stage radix 5 decomposition.

One limitation of conventional Mersenne Transforms is
the rigid relationship between word length and transform
length. In this respect, pseudo-Mersenne Transforms
provide a significant improvement, because their maxi-
mum number of terms M ___ is highly composite and any
transform length submultiple of M__, can be selected.
It is even possible to have several transforms of identical
length and defined modulo integers P,, - - P, that are
relatively prime. The convolution canthan be computed
separately modulo P,,- - - P, and the final result obtained
modulo (P, - P, - P,) by the Chinese remainder theorem.
This approach could, for instance, be used to compute
a 40-term convolution with an approximate word length
of 32 bits by means of transforms defined by modulo
(2®—1)/7 and (2° — 1)/31.

The computation of a time-variant convolution by
means of Complex pseudo-Mersenne Transforms is
shown in Fig. 1. When a time-invariant convolution is to
be evaluated, the various samples A, of the transform of
{a,} are constant. They are usually precomputed and
stored in a memory. In this case, minor additional sav-
ings on multiplication cost can be achieved by storing A,
Modulo p/pfi instead of 4, modulo p.

Concluding remarks

We have discussed Complex Mersenne Transforms that
can be computed without multiplications. These trans-
forms are very promising for computing convolutions
because they can be partly computed with FFT-type
algorithms and some of the operations can be performed
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{a,=b,*ib,) (5=t 190}
Normal
arithmetic
4 points FFT 4 points FFT
word length
=g~ 1 bits
2
/ /
Last stages Last stages
Complex Mersenne Complex Mersenne
Transform Transform
X g bits words
o arithmetic
Ay Xy modulo
=21-1
((4, X)) i’
i
Inverse Complex
Mersenne
Transform J
Operation
modulo p/ B 4,

!

{Zm=um+jﬁm;

Figure 1 Computation of complex circular convolutions by
means of Complex pseudo-Mersenne Transforms.

on words of reduced length. Complex Mersenne Trans-
forms also have the advantage of permitting operation
on transform length and convolution lengths up to four
times longer than is possible with conventional Mer-
senne Transforms.

These results have then been extended to cover the
case of transforms operating in a ring modulo a pseudo-
Mersenne number or a submultiple of such a number.
It has been shown that some of these transforms have a
highly composite transform length and therefore can be
computed with an efficient FFT-type algorithm.

Complex Mersenne Transforms can be used for im-
plementing digital filters in the same manner as Discrete
Fourier Transforms. They have the advantage over DFT
of permitting exact calculations, without round-off
errors, and of being computationally much more efficient
because they can be calculated without multiplications.
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