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Digital Filtering Using Complex  Mersenne  Transforms 

Abstract: Complex  Mersenne  Transforms  are defined in a ring of integers  modulo a Mersenne  or  pseudo-Mersenne  number  and  can 
be computed  without  multiplications. It is shown  that  under  certain conditions, these transforms can  be  computed by means of fast 
transform  algorithms and permit the evaluation of digital convolutions  with better efficiency and  accuracy  than  does  the  Fast  Fourier 
Transform. 

Introduction 
With the rapid advances in large  scale  integration,  a 
growing number of complex digital signal processing 
applications are becoming  economically  feasible. In 
most cases  the bulk of the processing  workload appears 
to  consist of digital filter computation.  Future  progress 
in digital signal processing, either  towards high speed, 
real time operation  or increased  sophistication, thus 
largely depends  on increased efficiency in digital filter 
computation. This can  be  achieved  not  only by imple- 
menting improved filter circuits but also by using better 
computation  algorithms, as will be  discussed in this 
paper. 

Rader [ 11 and Agarwal and Burrus [ 2 ,  31 have  re- 
cently  introduced Mersenne  Transforms and Fermat 
Number  Transforms.  These  two  transforms  have  the 
circular  convolution property  and  therefore  can  be used 
for evaluating digital filters in the  same way  as Discrete 
Fourier  Transforms (DFT)  [ 4, 51. 

Mersenne  Transforms  and  Fermat  Number  Trans- 
forms  are very  promising for digital filter computation 
because they  can  be  calculated  without  multiplications. 
Their main drawback is a rigid relationship between 
transform  length  and  word  length, caused by the  fact 
that all operations  are performed in a finite ring with 
arithmetic  carried out modulo an integer p .  Another dif- 
ficulty arises  because  it is not  possible to  achieve si- 
multaneously  optimum efficiency in reducing the  number 
of operations  and in implementing  arithmetic operations. 
This is so because  Fermat  Number  Transforms  are  ame- 
nable to a fast transform  algorithm,  and Mersenne  Trans- 
forms  are  not,  whereas  arithmetic  operations  can be 
implemented  more efficiently modulo a Mersenne num- 
ber than  modulo  a Fermat number. 

In this paper  we  consider complex transforms defined 
498 in the ring of integers  modulo  a Mersenne number.  We 

show  that  these Complex Mersenne  Transforms can  be 
partly  computed by a fast  transform technique  and have 
a maximum length up to  four times that of conventional 
Mersenne  Transforms. We discuss  the use of such  trans- 
forms  for filtering complex signals and  show that calcu- 
lations in the first stages of the  direct transforms can be 
performed on words of reduced  length. We then  extend 
these results to cover  the  case of pseudo-Mersenne num- 
bers.  We show  that this  leads to a definition of pseudo- 
Mersenne  Transforms, which can  be  completely  com- 
puted by means of a fast transform algorithm but in which 
the  advantage of performing  arithmetic operations mod- 
ulo a Mersenne number is retained. 

Complex Mersenne Transform 
Let q be a  prime  and p = 2' - 1. Mersenne  numbers p 
are primes for q = 2, 3, 5, 7,r13, 17, 19, 31, 61. . .  [6]. 

The  Mersenne  Transform of an integer sequence 
{a,} having q terms is defined by 

A k = ( ( i a n 2 n k ) )  k = O ,  l . . . q -  1, (1) 

where any  quantity  enclosed by superfluous double 
parentheses is to be replaced by its value  modulo p .  

The  Inverse  Mersenne  Transform is defined by: 

9-1 

a, = ((R A ,  2 - " k ) )  m=O, I . . . q -  1, ( 2 )  
k=O 

where R is such  that ( ( R  . q ) )  = 1, all exponents and 
indices being taken modulo q and all operations being 
performed  modulo p .  

It  can be demonstrated easily [ 11 that  the  Mersenne 
Transform satisfies the convolution theorem;  that is to 
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say, if {X,}  is the  Mersenne  Transform of {xn}, then with 
Z ,  = ( ( A ,  . X , ) ) ,  the  Inverse  Mersenne  Transform 
{ z i j  of { Z , }  is given by 

If { a ,  j and {x,} are properly  bounded [ I ] ,  z, is equal 
to  the  output of the ordinary  cyclic  convolution with 

Under  these  conditions, digital filtering of real  integer 
sequences can  be  performed by dividing the  sequences 
into blocks, padding the blocks  with zeros [4] to  prevent 
folding,  and aliasing and computing the cyclic  convolu- 
tions by means of Mersenne  Transforms.  This provides 
a very efficient way of computing digital filters because 
calculations of Mersenne  Transforms  reduce  to  one's 
complement  additions  and circular shifts.  Because 
Mersenne  Transforms  are evaluated  without multiplica- 
tions,  computation of a  time-invariant  circular  convolu- 
tion having 4 points reduces  to  one multiplication per 
output sample, as  opposed  to 4 multiplications with direct 
calculation. This  corresponds, in the  case of a  nonre- 
cursive digital filter having N taps,  to a number of multi- 
plications per  output sample that is small and  essentially 
independent of the  number of taps.  Direct computation 
would require N multiplications in the general case and 
implementation by means of the  Fast  Fourier  Transform 
(FFT) would require K log, N multiplications. 

The main limitations of the  Mersenne  Transform  ap- 
proach  are related to  the  fact  that  the number of trans- 
form terms q is a  prime. This  means  that calculations of 
the transforms cannot be simplified by an  FFT-type 
algorithm and  that  the number of transform terms is 
equal to  the word size. These limitations  can  be slightly 
alleviated [ I ]  by using a root -2 instead of 2 in ( 1 )  and 
( 2 ) .  The maximum transform  length  then becomes 24. 
It is also possible to  increase  the maximum  convolution 
size by resorting to multidimensional convolutions 
[ 1,  2, 71. Unfortunately, this  result is achieved at  the 
expense of increased requirements  for computation and 
storage. 

We show now that by defining Complex Mersenne 
Transforms, it is possible to achieve higher computation 
efficiency while increasing  both maximum transform 
length and  convolution  length. 

In many instances of digital signal processing, digital 
filtering of complex  signals is required. Modem equalizers 
for phase modulated  signals are a good example of such 
applications [ 81. In  that  case, a  complex  integer sequence 
{xn = y ,  +j$n}  is to be filtered by a  complex sequence 
{a, = b, + j i n } ,  having N terms,  to  produce a  complex 
output  sequence {zm = u, +jim} with 

The complex  convolution (5) can be calculated by 
means of real transforms  provided that  computation on 
real and imaginary numbers is carried out in separate 
transforms. It is even possible, with Fermat  Number 
Transforms,  to  reduce  the  number of multiplications by 
taking advantage of the real number representation of 
j = in a Fermat number  system [ 9 ] .  

It is more natural,  however,  to  compute complex  con- 
volutions  with  complex transforms  such  as  the  Fourier 
transform or Complex Number  Theoretic  Transforms 
13, 10, 1 11. In particular,  complex transforms can  be 
defined in a Mersenne ring. Along these lines, we have 
proposed  a digital filter based on  Complex  Mersenne 
Transforms [ 121. The  author  thanks  the  referees  for 
bringing to his attention  the  independent work of Vegh 
and  Leibowitz on  the  same  subject [ 131. 

In  the following we restrict  our discussion to Complex 
Mersenne  Transforms  that  have simple roots  and can  be 
computed  without  multiplications. In a Mersenne ring, 
with p = 2' - 1 ,  2 and -2 are respectively roots of unity 
of orders 4 and 2q,  corresponding  to  transforms of lengths 
4 and 24, respectively. Since 4 is a  prime, 2" and -2" 
are  also  roots of orders q and 24, provided d is not  a 
multiple of 4 .  This implies that 2j  is a root of order 44 
and 1 + j or 1 - j are  roots of order 8q.  Higher-order 
complex roots  do not have a  simple structure  and there- 
fore will generally not be of practical interest. 

Under  these conditions,  a  Complex Mersenne  Trans- 
form having 44 terms can  be defined by 

A ,  = (( anjnk2nk)) 
49-1 

n=o 

Because 4 has  an  inverse modulo p and the  inverse of 4 
, 44 has  an  inverse R such  that ( (4qR) )  = 1 and the 

inverse transform of A ,  is 

is 2"-2 

where all exponents  and indices are  taken modulo 4q. 
We demonstrate  that this  Complex Mersenne  Trans- 

form satisfies the convolution theorem. Taking the  com- 
plex transform {X,> of the complex sequence {x,}, per- 
forming the term-by-term complex multiplications X ,  . 
A ,  and taking the  inverse transform yields 499 
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49-1 49-1 

z, = (( a , x , ~  ( 2 j's22'* ) 5 24rk)) (8) 

with 1 + n - m = Y and k replaced by 4k + s. 
As in the  case of conventional  Mersenne  Transforms, 

the sum Xi:', 24rk is equal to  zero  for ( Y ) ~ , , ~  # 0 and 
equal to q for ( Y ) , , ~  = 0. For ( r)mod = 0, Y = q t and 
( (Z:=0jrs2's) ) becomes ( (Z:=,j"'")). Because  q is an odd 
prime,  this  sum is different  from zero only  when t is a 
multiple of 4 and is equal  to 4  when t is a multiple of 4. 
Under  these conditions, the  product of the  two  sums is 
different from zero only for ( r )  mod 4q = 0 and z, becomes 

zm = (( .c, an x(m-n),od 4q 1) (9) 

which  shows that  two complex sequences of length 4q 
can be cyclically convolved by means of Complex Mer- 
senne  Transforms modulo p = 2' - 1. In  such  an  ap- 
proach, all arithmetic operations  are performed as in 
normal,  complex arithmetic with j *  = -1 and  real and 
imaginary parts  treated  separately modulo p .  

Using a root j + 1 leads to a definition of a Complex 
Mersenne  Transform having 8q  terms with 

n=O 1=0 s=o k=O 

49-1 

, ,8q-1 \ \  

A k = ( ( C  a,( j+ 1)"'))) k = 0 ,  1 . . . 8 q -  1, (10) 
n=O 

and, with R such  that ( (8qR) ) = 1, an  inverse  transform 
nq-1 

a m =  ((. 2 A k ( j +  ')",)) 
k=O 

m=O,  1 . . . 8 q -  1, ( 1 1 )  

with all exponents  and indices taken modulo  8q. It  can 
be  demonstrated easily,  by using the  same  development 
as given above,  that this  transform  permits  evaluation 
of convolutions of length 8q with word  lengths of q  bits. 

Fast computation of Complex Mersenne Transforms 
We have so far defined Complex Mersenne  Transforms 
that  can be computed without  multiplications and  have 
a length up to  four times that of conventional  Mersenne 
Transforms.  The calculation of these  transforms  can be 
partly simplified by an  FFT-type algorithm because  the 
number of terms  is  no longer a prime. 

Using either decimation in time or decimation in fre- 
quency [ 141 allows a decomposition into  transforms 
having four q terms  and  transforms having eight q terms 
in the  case of roots 2 j   a n d j  + 1, respectively. These FFT 
decompositions reduce  the  number of real operations  to 
8q(q + 1) additions and  8q(q - 1 ) shifts for a  complex 
transform having 4q points,  and  to 16 q(q  - 1 ) + 52q 
additions  and  16 (q - 1 ) *  + 24 ( q  - 1 ) shifts for a  complex 
transform having 8q points. If we assume,  for  the  sake 

500 of comparison,  the  existence of hypothetical real Mer- 
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senne  Transforms having 4q points and  8q  points, com- 
puting the transforms of the real and imaginary parts of 
a complex sequence would require  4q(4q - 1)  addi- 
tions and (4q - 1 ) 2  shifts for 4q-point transforms and 
8q( 8q - 1)  additions  and ( 8 q  - 1 ) 2  shifts for 8q-point 
transforms.  This means that in the practical  range of 
interest  for q (where q = 3 l ) ,  substituting  Complex 
Mersenne  Transforms  for  conventional  Mersenne  Trans- 
forms  results approximately in an eightfold reduction 
in the number of operations. 

Computation of a  complex  convolution  by means of 
Complex  Mersenne  Transforms  is  carried  out  as with 
DFT, with  real  and  complex parts being evaluated 
modulo p separately.  In  order  to avoid errors  due  to 
overflow, the amplitudes of real and imaginary outputs 
must  be  bounded to ( p  - 1)  /2.  This  means  that usually 
the word length of real and imaginary parts of input se- 
quences {a,} and {x,} is less  than half that of output 
sequences.  In  other  words, all computations  are  carried 
out modulo p on q-bit words, yielding q-bit  word outputs, 
and the input sequences  are  represented by words of 
less  than ( q  - 1) / 2  bits. It is possible to  take  advantage 
of the input word length limitations to  further  reduce 
the processing workload.  This is done by selecting a fast 
transform  decomposition such  that  the first two  transform 
stages  can be computed without multiplication by powers 
of two. In  such  an  approach, a  Complex Mersenne  Trans- 
form having 4q points, with root  2j, is decomposed  into 
q four-point transforms with 

A, = ((5 aqJqnk +jk2k a s n + ~ j q n ,  +. . . 
I l = O  n=O 

+ j ' q - ' ' k  2'q-"h' i aqntq-ljqnk)). (12) 
n=O 

The q  four-point  transforms corresponding  to  the first 
two  stages of the decomposition require only multipli- 
cations by -+1 and k j  and can therefore be computed in 
normal,  complex arithmetic,  on  words of length  approxi- 
mately half that of the final result. 

If the two sequences { y , }  and {a,} to be  convolved 
are  real,  the full benefit of using Complex Mersenne 
Transforms  can  be retained by processing  simultaneously 
two  successive blocks of the  sequence { y , }  by means of 
the  same  Complex  Mersenne  Transforms.  This is done 
by computing the complex  convolution {z,} of the se- 
quence {a,} with the auxiliary  complex sequence {x, = 
y ,  + jyn+nq}. The real part {u , }  and  the imaginary part 
{a,} of {z,} yield respectively the convolutions of { y , }  
and of the  next block { Y , + ~ , }  with {a,}. 

Complex pseudo-Mersenne Transforms 
We have  seen  above  that a  conventional q-point  Mer- 
senne  Transform could be extended  to 8q points by oper- 
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Table 1 Maximum  odd  length and corresponding  power-of-2 roots for real transforms modulo p = 2" - 1 with q odd and p composite. 

Prime  factorizution of 
9 p = 2 9 -  1 p * , p 2 " ' p i  

M U X .  Power 
odd of 2 

Prime  factorization of pi - 1 length  roots 

15 7 .  31 . 151 2 . 3   2 . 3 . 5   2 . 3 . 5 '  3 / 
21 7'.   127.  337 2 . 3   2 . 3 ' . 7   2 4 . 3 . 7  3 / 
23 47 . 178481 23 2 
25 31 . 601 . 1801 2 . 3 . 5   2 3 . 3 . 5 2   2 3 . 3 2 . 5 2  
27 

15 / 
7 . 73 . 262657 

29 
2 . 3   2 3 . 3 2   2 9 . 3 3 .  19 3 / 

233 . 1103 . 2089 23 . 29  2 . 19 . 29 Z3 . 3' . 29 
33 7 .  23 . 8 9 .  599479 

29  2 

35 
2 . 3   2 . 1 1   2 3 . 1 1   2 . 3 . 1 1 . 3 1 . 2 9 3  / / 

31 . 71 . 127.  122921 2 . 3 . 5   2 . 5 . 7   2 . 3 2 . ~   2 3 . 5 . 7 . 4 3 9  / / 

2 .  23 2 4 .  5 .  23 .   97  

37 223.616318177 2 .  3 . 37 Z5 . 3 . 37 . 167.  1039  37  2 
111 / 

39 7 .  79 .   8191 . 121369 2 . 3   2 . 3 . 1 3   2 . 3 2 . 5 . 7 . 1 3  3 / 

41 13367. 164511353 
43 43  1 . 97  19 . 2099863 

2 .   4 1  . 163 23 .   41  . 59 . 8501  41 2 

45 
2 4 . 4 3   2 . 4 3 .  113 2 . 4 3 . 3 ' . 2 7 1 3  43 2 

7 .  31 . 7 3 .  151 . 631 . 23311 2 . 3   2 . 3 . 5   2 3 . 3 2   2 . 3 . 9   2 . 3 2 . 5 . 7  3 / 

47 2 3 5 1 .   4 5 1 3 .   1 3 2 6 4 5 2 9   2 . 5 ' . 4 7   2 5 . 3 . 4 7   2 4 . 3 1 . 4 7 . 5 6 9  
49  127.  4432676798593 

47 2 
2 ' 3'. I 2'. 3' . 7' .  43 . 337.  5419 63 / 

2" 3 . 13 . 389 

2 .  3 2 .  5 . 7 ' 3 7  

ating in the complex  number field and  replacing the root 
2 of order q, by a complex  root (1  + j )  of order 8q. Up 
to now, the discussion has been restricted  to  Mersenne 
numbers,  that is, to  numbers p = 2" - 1 such  that q is a 
prime. 

If p is not  a  prime,  its prime factorization is given by 

= pldl . & d Z .  . . di Pi . (13)  

An "point real transform having the  circular convolu- 
tion property can  be defined in the ring of integers  modulo 
p provided "point transforms can be defined separately 
in the fields pl, p 2  . . . pi. This follows  directly  from the 
Chinese remainder theorem [3, 151, and  leads to  the 
condition for  the  existence of an M-point  transform in 
the ring p that M must simultaneously  divide p 1  - 1 ,  
p z  - 1; . ' p i  - 1 .  When p is a prime, the maximum length 
of the transform is M = p - 1. Transforms in a ring p ,  
with p nonprime, are  therefore proportionally shorter 
than transforms defined modulo  a  prime number. If p 
and q are  composites with q = q1 . qz and q1 prime, 2"- 1 
divides p and  the maximum  transform length is governed 
by that possible for 2'l - 1 .  This has led us to  consider 
that  the only transforms of interest in a ring modulo 
2" - 1 are  Mersenne  transforms. 

The situation, however, changes  noticeably if we con- 
sider  Complex  Mersenne  Transforms.  In  that  case,  the 
transform length becomes  8M if 2 does not  divide M .  
This  means  that  even if M is too small to yield a real 
transform of practical interest, useful Complex Mer- 
senne  Transforms of length 8M  can still be defined. 

Let us define these points  precisely.  Assuming we 
restrict our discussion to transforms that can  be  com- 

puted without multiplications, and  therefore  have  roots 
2w of order M ,  we  have by definition 2wM = I ,  with 2nW 
taking M distinct  values for n = 0, 1 . . . M - 1. The ex- 
ponents W n  are  taken modulo M W with ( M  W )  mod * = 0. 
If we consider now a root ( j  + l)w, this root will be of 
order  8M in the ring p if ( j  + 1 )8MW = 1 and if ( j  + 1 ) Wn 

takes  8M  distinct values for n varying  from 0 up  to 
8M - 1. We first notice  that  as ( j  + 1 ) 8  = Z4 ,  ( j  + 1 )8MW 

complex  values for n varying from n = 0 to n = 7 and if 
q = W M  is odd, ( (  ( j  + = ( (  24nw)) takes M dis- 
tinct values for n varying from 0 to M - 1 .  

Under  these conditions, ( j  + is a root of order 
8M in the ring modulo p = 2' - 1 if q, M ,  and W are  odd. 
Moreover,  the  existence of an "point real  transform 
in the ring modulo p implies that M has  an  inverse, R 
modulop.  As  the  inverse of 8 modulop is 2q-3, 8M always 
has  an  inverse, 2q"3R. This  means  that, given an "point 
real  transform of root 2" with p composite  and q, w ,  M 
odd  integers, we can define 8M-point complex  transforms 
in the ring modulo p with 

- - 24"W ~ 1 .  If W is odd, ( j  + l ) n w  takes eight distinct 
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Table 2 Length and roots for real and complex  transforms in the ring (2" - 1 ) /p>. 

q 
~ 

15 

21 

25 

27 

35 

35 

35 

45 

49 

49 

Transform  Real trunsform 
ring Length  Root 

5 

7 

5 

7 

49 

Approximate 
word length 
N b  of bits 

12 

15 

20 

18 

23 

28 

30 

36 

42 

42 

In most  practical digital filtering applications, the 
input signal samples are defined by a number of signifi- 
cant bits  comprised between seven  bits and 20 bits. This 
means that, in order  to avoid overflow, the  transforms 
must operate  on word  lengths  approximately double 
that of input words, comprising between 15 bits  and about 
50 bits. 

The various  possibilities for p nonprime  and  odd q are 
listed in Table 1. The  case of q prime ( q  = 23,29,  37,41, 
43,  47)  corresponds  to conventional Mersenne  Trans- 
forms.  When q is not  a  prime, the corresponding trans- 
forms  have a  very short length and their  roots are not 
powers of 2. 

In  order  to  achieve maximum  effectiveness in comput- 
ing convolutions by means of pseudo-Mersenne  Trans- 
forms, it would be  desirable to  have relatively long trans- 
forms  with  a  number of terms highly factorizable.  This 
does  not  seem possible with transforms  computed modulo 
p = 2" - I .  We note,  however,  that when p is not a  prime, 
with the prime  factorization of p defined by ( 13), we 
can define transforms modulo p / p ?  having power-of-2 
roots  and such  that  the number of terms is large  and 
highly factorizable. These transforms can be defined by 

A, = ( u,(j + I )Y),,,,, L,,p> 

8M ~ 1 

n=O 

k = 0 ,  I . . . 8 M -  1 
502 j =  G i .  (16) 

Various possibilities for  such  transforms  are listed in 
Table 2. It  can  be  seen  that  the maximum number of 
terms is both  large (40 to  392  terms) and highly factor- 
able, thereby leading to efficient FFT-type computation 
with  a minimum number of operations. 

It would seem,  however,  that  these  advantages  are 
offset by the  fact  that  the various operations  are per- 
formed  modulo (2' - 1) / (p?).  The corresponding arith- 
metic circuits  are obviously much more  complex  than 
arithmetic circuits  modulo 2' - 1 .  

This difficulty can  be circumvented by noticing that 
as p = pp1 . p?. . . p?, we  can  compute  the convolution 
modulo p = 2"- 1 as with  conventional Mersenne  Trans- 
forms and obtain  the final result by performing  a last 
operation modulo p /p>  on the convolutions computed 
modulo p ,  

zm mod p / p f i  = ( z m  mod p)mod p/p>. ( 17) 

By proceeding in this  fashion,  relatively long convolu- 
tions can  be computed efficiently by means of FFT-type 
algorithms with all but the last operation performed with 
easily implemented  arithmetic  circuits  operating  modulo 
(2" - 1 ) . This  technique is similar to what was proposed 
in [ I ]  to  compute  Fermat  Number  Transforms with 
Mersenne arithmetic. The only drawback of this  ap- 
proach is that all the  operations modulo (2'- 1 ) are  done 
on  words longer  than that of the final result. It  can be 
seen  however, from Table 2 that many transforms with 

H. J. NUSSBAUMEK IRM J. RES. DEVELOP. 



a highly factorable  number of terms can be defined for 
which pf is small compared  to p ,  so that  the penalty in 
word length increase incurred when operating  modulo 
p instead of modulo p / p :  is only of the  order of 20  per- 
cent. 

The most  interesting transforms  are  those which have 
a  large, highly factorable number of terms combined 
with a  useful word length as close as possible to q. Among 
these,  the 200-point,  56-point,  and  392-point Complex 
pseudo-Mersenne  Transforms  (corresponding, respec- 
tively, to q equal to 25, 35,  and  49)  seem particularly 
well adapted  for digital filtering applications. Taking  as 
an example  the  case of transforms defined by q = 2 5 ,  
one  can  see from Table 1 that  the maximum odd length 
for real transforms  computed  modulo p = 2’5 - I is 15 
terms and that  the corresponding roots  are not  powers of 
two. By operating  modulo (22s - I ) / 3  1, it is possible 
to define real transforms having power-of-two roots with 
a maximum odd length increased to 25 terms.  The maxi- 
mum length is then  expanded to 200 terms by using com- 
plex roots. Such  a  transform  can be computed  very 
efficiently by means of an  FFT-type algorithm with a 
three-stage radix 2 decomposition, followed by a two- 
stage  radix 5 decomposition. 

One limitation of conventional Mersenne  Transforms is 
the rigid relationship  between word length and transform 
length. In this respect,  pseudo-Mersenne  Transforms 
provide  a significant improvement, because  their maxi- 
mum number of terms Mmax is highly composite and  any 
transform length submultiple of Mmax can be selected. 
It is even possible to  have several transforms of identical 
length and defined modulo  integers P,, . . . Pi that  are 
relatively prime. The convolution can  than be computed 
separately modulo P , ,  . . . Pi and the final result  obtained 
modulo (P ,  . P; . .Pi) by the Chinese  remainder theorem. 
This  approach  could,  for  instance, be  used to  compute 
a 40-term  convolution with an approximate word length 
of 32 bits by means of transforms defined by modulo 
(215- 1) /7  and (zz5- 1) /31 .  

The computation of a  time-variant  convolution by 
means of Complex  pseudo-Mersenne  Transforms is 
shown in Fig. 1. When  a  time-invariant  convolution is to 
be evaluated,  the various  samples A ,  of the transform of 
{un}  are  constant.  They  are usually precomputed  and 
stored in a  memory. In this case, minor  additional  sav- 
ings on multiplication cost can  be  achieved by storing A ,  
Modulo plpp“ instead of A ,  modulo p .  

Concluding remarks 
We have  discussed Complex Mersenne  Transforms  that 
can  be computed without  multiplications. These  trans- 
forms  are very promising for  computing  convolutions 
because they can  be  partly computed with FFT-type 
algorithms and some of the  operations  can be performed 

I 1 
Normal 
arithmetic 

word length - q - 1 bits 

4 points FFT 

Complex Mersenne Complex Mersenne 

Mersenne 
Inverse Complex 

Transform 

Operation 
modulo p/qdi  

2 

q bits words 

arithmetic 
modulo 
p = 2 q - 1  

Figure 1 Computation of complex  circular convolutions by 
means of Complex pseudo-Mersenne  Transforms. 

on  words of reduced  length.  Complex Mersenne  Trans- 
forms also have  the  advantage of permitting operation 
on transform  length and convolution  lengths up  to  four 
times  longer than is possible  with conventional  Mer- 
senne  Transforms. 

These  results  have  then been extended  to  cover  the 
case of transforms  operating in a ring modulo  a  pseudo- 
Mersenne  number  or a  submultiple of such a number. 
It  has been  shown that some of these  transforms  have a 
highly composite  transform  length and  therefore  can be 
computed with an efficient FFT-type algorithm. 

Complex Mersenne  Transforms can  be  used for im- 
plementing digital filters in the  same  manner  as  Discrete 
Fourier  Transforms.  They  have  the  advantage  over D F T  
of permitting exact calculations, without round-off 
errors, and of being computationally  much  more efficient 
because they  can  be  calculated  without  multiplications. 
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