A General Methodology for Data Conversion and

Restructuring

Abstract: This paper presents a methodology and a model for data conversion or translation. The model assumes that both source
and target systems are available and that conversion interfaces may be required to interact between these systems and the conversion
system. To achieve data conversion or translation using this approach, two languages are needed: 1) a language to describe the data
structures, and 2) a language to specify the mapping between source and target data. This paper describes these two languages, DE-
FINE and CONVERT and gives numerous examples to show the capabilities of these languages and how they can be used in data
conversion and restructuring. Both languages are high level and nonprocedural and have the power to deal with most situations en-
countered in data conversion processes. In addition, the paper also describes some of the facilities in the languages specifically de-

signed for data checking in a data conversion process.

Introduction

In recent years applications of data base systems have
grown very rapidly. While the use of data base systems
relieves users of the task of having to know much of the
implementation details, it has at the same time made
data conversion a necessity because of various reasons.
In general, data conversion is a complex problem requir-
ing more of our attention than it has received in the past.
This paper proposes a solution applicable to a broad
class of logical data conversion problems.

Relatively little work has been done to find a solution
making data conversion easier [1-11]. All investiga-
tions so far are preliminary. Only few individuals are
actively involved. The most comprehensive work is
done by members of the Stored Data Definition and
Translation Task Group under CODASYL’s System
Committee, which attempts to develop a general method
for defining data structures, storage structures, their re-
lationship, and translation from one structure to another.
Similar work goes on at the University of Michigan and
to a lesser extent elsewhere (see references). The paper
of Sibley and Taylor [11] gives a good account of some
of these related works.

As reported in reference [12], the authors initiated a
similar project at IBM. This project was established to
investigate and develop a methodology for application
conversion and migration. Application conversion is
defined to include the movement of both data and pro-
grams from one system (or one form) to another. After
studying the problem for some time, it became clear that
current technology is inadequate in solving the general
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problem. Our initial attack is to solve first the problem
of data conversion. This approach not only provides us
with a more fundamental understanding of the problem
but it actually is a necessary first step since we must
understand what is needed for data conversion before
we know what is to be done in the programs. Attention
is paid, however, to the larger problem so that the re-
sults obtained can be used as a foundation in the solu-
tion of total application migration.

At present data conversion is done infrequently be-
cause of its complexity. In spite of changes in require-
ments, users are reluctant to change their data struc-
tures. It is believed that conversions will take place
more frequently when better techniques are known,
when automatic or semi-automatic aids are available,
and when greater data independence is achieved.

Problem environment

A study of current works revealed that current ap-
proaches to data conversion are either too broad and
general, as in the case of CODASYL Task Group or
Smith’s and Taylor’s work [5, 6], or too narrow in ap-
plication as in Lin ahd Heller [13]. In the first case an
economically feasible solution requires much more re-
search and, therefore, appears distant. .In the second
case, a narrow approach is not really solving the main
problem and, therefore, will provide benefits to only a
small subset of computer users. The approach we have
adopted is a compromise which will provide help to a
broad class of users in the near future.
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The approach assumes that the conversion system will
run under the operating system of either the source or
the target system. We also assume that an interface on
the source system is available to transform the source
data into an intermediate form acceptable to the transla-
tor, and an interface on the target system is available to
take the output of the translator and transform it into the
target data. In this way the translator is shielded from
many of the physical incompatabilities of the source and
target data such as parity schemes, etc. Specific details
of our model are discussed later.

A basic assumption in our approach is that it is gener-
ally impossible to perform data conversion without the
users’ help. It is therefore visualized that it is the users’
responsibility to describe the data structures for both the
source and target data and to define the mappings be-
tween them. It is possible, however, to have an ad-
vanced system which may provide some prompting
through interaction.

Two languages have been defined for this purpose: 1)
DEFINE a language to define data structures, and 2)
CONVERT, a language to specify mappings between
source and target data, each of which may contain multi-
ple logical record types and logical views. This paper dis-
cusses at some length these two languages. For a complete
discussion, readers should refer to [ 14, 15].

In designing these languages we assumed that the
users are skilled programmers. The programmers are
familiar with their data’s content, not in the sense of how
many screws and nuts are in a parts’ file, but in the sense
of knowing that there exists a field for describing a part
and that this field may contain blanks if no description
exists. They know the semantics of their data and its
structure at a logical level and what they want to be
done in the mapping process. These aspects are quite
different from the assumptions of the designers of data
base systems who frequently consider their users to be
casual users with little knowledge of the underlying data
structure.

Assuming that the users are sophisticated and know
their data, they do not know, however, the implementa-
tion details of their data structure, nor do they want to
be burdened with the details of how to accomplish the
whole conversion process. Another assumption is that
the users are willing to follow some simple syntactic
rules of the languages, but are unwilling to learn another
complex language comparable to, say, COBOL or PL /1.
We have also assumed that these users are not mathe-
matically oriented and they do not appreciate semantics
in mathematical terms. As a result we set out at the be-
ginning to make our languages high level, nonprocedural,
easy to learn, and simple to use.

The above aspects cannot be achieved without some
expense. As opposed to a general language like PL/1,
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our languages are simple only because we tailored them
to a specific purpose, namely, data conversion and in
certain cases we traded capabilities for simplicity. Our
philosophy is to provide a language to handle a great
majority of the cases encountered frequently in data
conversion and let the remaining small number of cases
be handled by the computer’s procedural languages. In
any case, the languages have been so structured that
additional capabilities can be included without much
difficulty.

The conversion model

Figure 1 illustrates the overall conversion process in our
model. The source systems which originally process the
source data is used to access it and interacts with the
conversion interface module to produce a nearly system
independent source data called linearized source files.
As the name implies, linearized files are sequential files.
(More is said about them in a subsequent section).
These files become the input to the converter/ translator.
The output from the converter/ translator is another set
of linearized files called linearized target files, which are
changed into physical target files with the use of the
conversion interface and the target system.

Generally speaking, data conversion can be divided
into two basic categories: 1. from files to data base, and
2. from data base to data base. These two categories
have some basic differences. Several points are salient in
the first case. 1) Data is generally not well organized. It
contains much redundancy and much of the data de-
scription is carried implicitly in the procedures. In fact,
frequently additional information is contained there. For
example, a census file may be separated into two parts
such that the first part contains information about males
and the second part about females, but this separation is
not stated explicitly when the data structure for this file
is defined. In our system all this descriptive information
is made explicit. 2) These source files are sequential
files. Since the real world at this time has a preponder-
ance of sequential files to be converted to data bases, we
have attempted to define in our data definition language
a capability that can describe most of these files instead
of imposing severe limitations on the formats of linear-
ized files. 3) The COBOL files deserve further atten-
tion because a great majority of commercial users are
COBOL oriented. Hence, our data definition language
has been designed to have a strong COBOL flavor and
the capability to describe the common COBOL files.
Thus, we define a linearized file to be a file belonging to
that subset of sequential files describable by our data def-
inition language. It may have a flat or hierarchical record
structure. It may contain self-defining data, terminators
of different kinds, multiple record types within the same
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Figure 1 Overall view of conversion.

file, and repeating or non-repeating groups belonging to
the same logical record but appearing in separate physi-
cal records. It does not, however, contain any system-
dependent accessing or alignment information. Direct
addressing, if present, must be replaced by symbolic
addressing. In this manner, common sequential files can
be directly used as input to our conversion model.

The second category of data base to data base conver-
sion is different from that of file to data base conversion.
Here, source data is much better defined and its struc-
ture can be quite complicated. In this case we expect the
users to use the source systems’ support, including utili-
ties, to decompose the data base into linearized files,
stripping all the unneeded control information and re-
placing physical or direct pointers by symbolic or key
pointers (the process of linearization can be automated
by creating conversion interfaces for individual data
base systems). For a given data structure, the linearized
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files can be expected to be different depending on the
user. For example, consider the case as defined in
Fig. 2a. One can create the linearized files for this data
base as given in Fig. 2b where each physical data base
becomes one linearized file. Alternatively one may want
to create a set of linearized files as given in Fig. 2c. It
appears that there are an arbitrary number of ways to
define linearized files. In reality, however, the limitations
existing in a system and its support and the naturalness
of the resulting files dictate the choice. This choice has
only a very small impact to the conversion process be-
cause using the translation language, one can alter this
choice easily.

In a similar manner the target structure is defined in
terms of linearized files. These files should be defined in
such a way that easy loading is possible. As in the case
of source data, a given data structure in a target system
may have several versions of linearized target files. 485
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Figure 2 Linearization of a Data Base.

Let us expand the central portion of the conversion
process to present more details as shown in Fig. 3. The
data definition analyst writes the description of the lin-
earized source and target files. The translation system
Reader extracts from this description the logical view of
these files and strips off much of the encoding informa-
tion in the source and target file description which is not
useful for restructuring. Examples for such information
include the length of the fields, the kind of data represen-
tation, and the way a repeating group may be terminat-
ed. The data translation analyst, who may or may not be
the same person as the data definition analyst, then
writes data mapping specifications to indicate the move-
ment of data from source to target. During actual con-
version, the linearized source files are changed into a
standard system internal form, i.e. IF(S1) and IF(S2)- -+,
suitable for reorganization. Data in this form will go
through restructuring as specified by the mapping state-
ments. The end result from the restructurer component
is data in a standard form i.e., IF(T1), IF(T2), -,
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closely corresponding to the target logical view. The
writer then changes this data format into linearized tar-
get data.

Data description language — DEFINE

Having described the model for data translation (Fig.
3), we see that a data description language is needed for
two purposes. The first is to provide means for describ-
ing a wide spectrum of hierarchically structured linear
files to enable them to be converted by the Reader
(Writer) to (from) the conversion system’s internal form.
The second is to provide the basis for extracting logical
views of the files suitable for use in the restructuring
process. At this time it is appropriate to discuss briefly
why we felt the introduction of a new data description
language was necessary.

First, we examined the data definition facilities of
COBOL and PL/1, since they are well-known and
broadly used by the computing community. We found
they lacked sufficient capability for describing files with
characteristics such as variable length fields, optional
data, and self-defining data. For example, in COBOL
files, frequently one file contains multiple record types
distinguishable by a prefix. The procedural portion of the
program tests the prefix and using the REDEFINE
feature applies the appropriate data definition to the re-
mainder of the record depending on the prefix value. It
is felt that these kinds of semantics should be included in
the data description itself where possible.

Second, we investigated other data definition and
translation languages which were thought to be potential
candidates for our purposes. Specifically, we studied the
Stored Data Definition Language (SDDL) developed at
the Univeristy of Michigan [11], and the Data Def-
inition Language and Data Manipulation Language
(DDL/DML) developed for data conversion at the
University of Pennsylvania [7, 16]. The Michigan
SDDL is very general. In contrast, the Pennsylvania
language is defined for one file to one file conversion
only, but relies on the use of PL/1 procedures. Both
languages include facilities for describing not only data
structures, but also their corresponding storage struc-
tures, and the mappings between them. Further, the
Michigan language attempts to treat every level of de-
scription from device-media and system specific storage
and data structures to the high-level data structure
classes and schemas. While the above capabilities are
required to attain the goal of complete data description
at all levels, they are not required for our needs.

The data description language, called DEFINE, is
developed specifically for describing the linearized
source and target data structures for our conversion sys-
tem which, as mentioned before, uses this information to
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Note: Logical views of the files are extracted from the define specifications.

parse data in the read and write steps of the translation
process and to extract the logical views to be presented
to the translation analyst.

As in all data description languages, DEFINE pro-
vides constructs for describing the usual encoding char-
acteristics of data. However, the unique feature of the
language lies in its rich facilities for explicitly describing
the characteristics of files generated by the REDEFINE
feature that is used very frequently in COBOL. Figure 4
illustrates some of these common record formats where
REDEFINE may have been used. A complete DEFINE
program is a structured description of one or more source
and target files as outlined in Figure 5.

The data description block (A block is a general term
used for designating a group of statements.) (DDB)
applies to the entire DEFINE program. A DDB may
contain one or more file description blocks (FDB). The
keywords SOURCE and TARGET designate whether
the file is to be parsed (input to translator) or generated
(output by translator), respectively. The “declarations
section” for the DDB specifies characteristics (e.g.,
character codes) which are true for all subsequent
FDBs except those which are specifically overridden in
the declaration section of FDBs. Similarly, an FDB dec-
laration, for example, specifying character string justifi-
cation, applies to all the relevant data entities in the giv-
en file unless it is overridden in a particular data specifi-
cation. If the declarations section is absent in the DDB
or the FDB, installation specified defaults are assumed.
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Following the declarations section in the file descrip-
tion block are descriptions which specify the schema
and encoding characteristics of the file data structures in
the order of their occurrence. There are two generic data
constructs, groups and items. An item is a named unit of
elementary data and a group is an ordered (named or
unnamed) sequence of items or groups. The term data
object is used to denote either one. Multilevel hierarchi-
cal data structures can be defined by recursive definition
of groups. Figure 6 illustrates a skeletal structure of a
file description.

As shown in the diagram the description of a file is
made up of group and item descriptors (GD and ID
respectively). Repeating groups can have a variable
number of instances as indicated by the “occurs’ clause.

All descriptors can be either unconditional or condi-
tional. The example in Figure 6 illustrates the uncondi-
tional descriptors. A conditional descriptor is specified
like an unconditional one except that a conditional
expression is specified following the data object name. If
the conditional expression is evaluated as true, the given
descriptor will be used to parse the source data or gener-
ate target data. If it is evaluated as false, the next de-
scriptor will be used.

In some cases, the structure of a record depends on
the content of a particular field. COBOL files with multi-
ple record types are examples of this category. DE-
FINE has a GROUPCASE descriptor to provide it
with the capability of dynamically selecting the appro-
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Figure 4 Examples of self-describing common file formats.

DATA DESCRIPTION:
[optional data description block (DDB) declarations]
SOURCE FILE DESCRIPTION( filea ):
[optional file description block (FDB) declarations |
data descriptors for “filea”
END FILE DESCRIPTION;
TARGET FILE DESCRIPTION ( fileb ):
[optional FDB declarations ]
data descriptors for “fileb”
END FILE DESCRIPTION;
END DATA DESCRIPTION;

Figure 5 DEFINE program structure.

Figure 6 Skeletal DEFINE structure for DEPT file.

- GROUP DEPT:

| DEPT# | DMGR | NEMP

{ITEM DEPT#: L EMP# | ESAL |
ID '

END DEPT#;
ITEM DMGR:
i {

END DMGR;
ITEM NEMP:
ID { e

LEMP# | ESAL

(end of record)
END NEMP;

- GROUP EMPLOYEE:

OCCURS DEPT.NEMP TIMES;

GD+

ITEM EMP#:
m{
GDx END EMP#;
ITEM ESAL:
ID [

END ESAL,;
END EMPLOYEE;
N ‘END DEPT;
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priate descriptor. The example in Figure 7 illustrates the
use of the GROUPCASE descriptor. In this example,
each DEPT record is followed by a number of EM-
PLOYEE and/or PROJECT records. If the first field,
TYPE, in a record contains E, the record is an EM-
PLOYEE record; if it is P, the record is a project rec-
ord. Otherwise, it is a DEPT record. These conditions
are reflected in the specification of the conditional de-
scriptors, EMPLOYEE and PROJECT. The GROUP-
CASE descriptor has no effect if none of the conditions
in its member descriptors is satisfied.

Frequently, arithmetic and conditional expressions are
required in writing a data description. In general, a con-
ditional expression is a logical factor or a sequence of
logical factors separated by AND’s and OR’s. A logical
factor is a predicate, comparison of arithmetic expres-
sions, or a parenthesized conditional expression and the
operators allowed in the arithmetic expressions in DE-
FINE are +, —, * and /. For example A < Band C * D
= E are the two logical factors in (A < B ORC * D=
E). Conditional expressions are primarily used in condi-
tional descriptors.

Currently only one predicate has been defined in the
DEFINE language: CONFORM(x). This predicate
returns true if the referenced yet untranslated data ob-
ject agrees with its description, and false otherwise. For
example, suppose that a record is to be interpreted dif-
ferently depending on the last character’s content. If the
last character is numeric, the record takes one form; if it
is alphabetic, the record takes another form. The de-
scription for this might be as follows:

GROUPCASE GF:
GROUP G(CONFORM(LAST)):

ITEM LAST:
CHAR(PICTURE IS ‘9’);;
END;
GROUP F(CONFORM(LAST)):

ITEM LAST:
CHAR(PICTURE IS ‘A");;
END;
END;

Note that in this example, the conditional descriptor
approach from Figure 7 is not applicable. The difference
between these two examples by our convention is that in
Fig. 7, the value for testing is that one which has just
been parsed; while in this example, the value to be used
for testing has yet to be defined. Thus, the predicate
CONFORM essentially provides us with the capability
of looking ahead in processing the input data.
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In the above example the specification of data repre-
sentation by means of the “picture” clause, which is a
generalization of COBOL’s “picture” clause was intro-
duced. The details for this appear in reference [ 14].

This completes the essential description of the DE-
FINE language. Following is an example of a DEFINE
description.

Consider a parts-supplier (PTS) file with variable
length records whose fields are P#, DES, S#, CN, and
UC, standing for part number, description, supplier
number, company name, and unit cost, respectively. The
last three fields are grouped together to form a supplier
repeating group. Further, each of the fields is fixed
length with the following structure:

P# —character string of length 4 with first two charac-
ters alphabetic and the next two numeric. Key for
record.

DES —5 alphabetic characters, left justified, padded with
blanks.

S# —4 numeric, packed-decimal characters. Key for
repeating group.

CN - 10 alphanumeric characters

UC —15 bits binary integer

In addition, assume that the file is so structured that
each logical record (Fig. 8(a)) ends with a $ sign. A
DEFINE description for this file is given in Fig. 8.

The example in Fig. 8 illustrates the general flavor of
DEFINE and reveals some of its typical constructs, in-
cluding some shorthand descriptions. For example, in-
stead of ending items by ‘END item-name;’, we have
used ‘;” as a substitute. This substitution is possible in
other places as well (e.g., in ‘END group-name;’). The
description is self-explanatory.

Conceptual data representation
To understand further the translation process one must
understand the representation of the data as viewed by
the translation analysts and the conversion system’s
Data Restructurer. It is paramount to define a represen-
tation or form that is simple, capable of representing
different data structures and familiar to data conversion
analysts. While there are many candidates for this role,
most of them can be eliminated because they are too re-
strictive or require too much learning. Our final choice
was the partially filled tabular form for hierarchically
structured data. All data structures will be transformed
into this tabular form, which from now on will be re-
ferred to simply as the Form. This choice biases toward
the source and target data organized in flat files, hierar-
chical, and relational structures.

To illustrate the tabular form, or simply the Form in
Fig. 9 (a) the schema of a hierarchical data structure is
represented. The actual data may be organized as
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GROUP DEPT-EMP-PROI:

GROUP DEPT:
FOLLOWED BY EOR; /* end or record */
ITEM DEPT#: -
ITEM DMGR: ---;
ITEM NEMP: - -+
END DEPT;
GROUP EMP-PROJ-RCD:
OCCURS FROM 0 TIMES, TERMINATES
WHEN TYPE NOT IN (‘E’, ‘P’);
ITEM TYPE: CHAR(!); END TYPE;
GROUPCASE PE:
GROUP EMPLOYEE(TYPE = ‘E’):

description for EMPLOYEE

END EMPLOYEE;
GROUP PROJECT(TYPE = ‘P’'):

description for PROJECT

END PROJECT;
END PE;
END EMP-PROJ-RCD;
END DEPT-EMP-PROJ;

Figure 7 “GROUPCASE” Example.

COBOL records, in which case the information on edu-
cation, skill, or child may be repeating groups, or the
data may be organized as a tree as in some data base
systems (e.g., IMS). In either case, the data can be rep-
resented by the Form as shown in Fig. 9 (b). Note that
in this representation, caution is required not to produce
false information that does not exist in the original. For
example, although information on education and child
exist in the same row in the table, there does not exist
any relationship between them except that they are both
related to the same person. Hence these tables or Forms
are not relational tables [17-21], but perhaps some-
what akin to Bracchi’s unnormalized relations [ 22 -24].
Note that additional visual aids can be included in the
Form’s layout if so desired by the user, e.g. double lines
to separate repeating groups.

The use of the Forms to represent data and its struc-
ture is believed to possess many advantages. Included
among these are that the Forms are easy to visualize,
they can represent other data structures readily and they
are easy to manipulate. One can define a very simple
and powerful translation language to operate on these
Forms as shown in a subsequent section.
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DATA DESCRIPTION:
DECLARATIONS:
CHAR CODE IS EBCDIC;
NUMERIC ENCODING IS IBM 370;
CONSTANT BLANK IS HEX '40';
END DECLARATIONS;
SOURCE FILE DESCRIPTION (PARTS-SUPPLIER):
GROUP PTS:
OCCURS FROM 1 TIMES,
FOLLOWED BY END-OF-FILE;
KEY IS P# WITHIN PTS;
ITEM P#:
CHAR (PICTURE IS 'AA99');;
ITEM DES:
CHAR (PICTURE IS 'A(5)’,
JUST IS LEFT
AND PAD CHAR IS BLANK);;
GROUP S:
OCCURS FROM 1 TIMES,
FOLLOWED BY '$';
KEY IS S# WITHIN §;
ITEM S#:
DEC (PICTURE 1S '9(4)');;
ITEM CN:
CHAR (10);;
ITEM UC:
BINARY (15);;
END S;
END PTS:
END FILE DESCRIPTION;
END DATA DESCRIPTION;

Figure 8 DEFINE description of PTS file.

Transiation definition language —CONVERT

From the logical views extracted from the DEFINE
description of data structures, a translation analyst can
visualize his data in view of the Form (Fig. 9) and pro-
ceed to write mapping statements for manipulating his
data into the format required in the target description. In
order to achieve this goal, a translation language must
have the following capabilities:

1. Combining components of different linearized files to
form new files according to some specified criteria.

2. Decomposing a linearized file to form different files
according to some specified criteria.

3. Rearranging the order of data instances (occurrences)
within a linearized file in some manner.

4. Altering values of data instances in different manners.
Sometimes the new values may be derived arithmeti-
cally from the old values and other times new values
may be arbitrarily defined from the old ones. An
example of the former is the changing of payroll from
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hourly pay to weekly pay. An example of the latter is
that the field ‘sex’, previously containing ‘male’ or
‘female’, will now become ‘1’ or ‘0’.

5. Formation of trees, or decomposition of trees.

These are but some of the minimum capabilities required
from a translation definition language.

Several existing languages [7, 19, 22, 25, 26] were
investigated to determine if they may be used for data
translation. It was found that they are either too low
level, lack the required capability, or are too mathemati-
cally oriented for the type of users we visualized. As a
result, the translation definition language, CONVERT,
based on a few simple concepts was developed. The lan-
guage is algebraic, (i.e. operators & operands), specifi-
cally oriented to operate on Forms, but has powerful
and flexible restructuring capabilities.

The data mapping and restructuring facilities in
CONVERT are provided by a set of Form operators.
Figure 10 represents a list of the form operations and
their formats as currently defined. The list includes
component extraction, SELECT, SLICE, GRAFT,
CONCAT, MERGE, SORT, ELIM-DUP, CONSOLI-
DATE, a set of built-in-functions (SUM, MAX, MIN,
AVG and COUNT), assignment and CASE-assign-
ment. The meanings and uses of some of the more in-
teresting Form operations are discussed later.

Each of these Form operators operates on one or
more Forms (or components of them) and produces a
Form as a result. The resultant Form can then be used
as an operand for another Form operation. Except for
assignment and CASE-assignment all Form operations
can be nested, and all have the same general format:
Operator (Operands [options] [:Specified conditions]).
In this statement the square brackets, [ ]}, are meta
symbols denoting that the enclosed is optional.

In describing the operands, we use the following nota-
tions: “F”’ denotes a Form which could be either a Form
name or the result of a Forim operation. “f”” denotes a
field (i.., a column in a Form correspondihg to an
“item” in the DEFINE language). “c¢” denotes a com-
ponent of a Form, which could be either a field or a sub-
Form. “EXPR” denotes an arithmetic expression deriv-
able from the fields of a Form. To be more specific,
EXPR could be any of the following: 1) a constant; 2) a
field name; 3) a built-in-function (e.g., SUM, MAX,
MIN, AVG, COUNT); 4) an expression derivable
from 1, 2, or 3 above, or recursively a derived expres-
ston enclosed in parenthesis, using +, —, *, / as arithme-
tic operators; 5) a sub-Form or group name. (Note that
a sub-Form is not allowed to be an operand in arithmetic
operation.) As a rule, the order of appearance of the
components or EXPR in the statement determines the
component order in the resulting Form.
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In general, the specified conditions, i.e., **SC”, can be
expressed as a SC-EXPR, which is defined as logical
factors connected by AND(s) and/or OR(s) and is not
restricted to fields in one Form. A logical factor can be
either 1) an EXPR compared with another EXPR, 2) an
EXPR compared with ANY OF a one-column Form, or
3) an EXPR compared with ANY OF a list of single
values. The permissible comparison operators include, =
, 1=, >, <, 1>, 1<, >=and <=, A logical factor is
assigned a value of “true” or “false” according to the
result obtained from evaluating the comparison. The
evaluated logical factors are ANDed or ORed together
as specified to determine the final “true” or “false” val-
ue. An operation is executed only if the SC-EXPR
yields a “‘true” result.

In this paper only the operations SELECT, GRAFT,
built-in-functions, and CASE-assignment are discussed.
(For other operations, refer to [15].) Following are
some simple examples to illustrate these operations.

In the examples, PTS is a parts-supplier file described
in Fig. 8 but repeated here as a Form. INV is an inven-
tory file containing P# (i.e., part number) and QH (i.e.,
quantity-on-hand). SUP is a supplier file having CN
(i.e., company name), S# (i.e., supplier number) and
CA (company address).

PTS
S

P# | DES | S# CN uc

2 X 4 AB 5

2 BB 4

3 XX 4 AB 2

1 XB 3

7 Y 7 C 7

INV SuUP
P# QH CN S# CA
2 10 AB 4 S
3 17 BB 2 MV
4 5 C 7 SF
7 20 D 3 LA
XB 1 SI
1. SELECT ([EXPR,, ‘- EXPR"] FROM F [, - -]

[:5C]

This operation selects part(s) of a Form if specified
conditions are satisfied. For example, to create a new
file consisting of part numbers of the parts supplied by
suppliers located in San Jose, together with the corre-
sponding part descriptions and their suppliers code
numbers and names, one can use the SELECT opera-
tion as follows:

SELECT (P#, DES, S#, CN FROM PTS : PTS.S# =
SUP.S# AND SUP.CA =‘SJ’);
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Figure 9 Translation analyst’s views of Data in terms of

‘Forms.” (a) Schema of hierarchical data (b) Form representa-

tion

of hierarchical data.

Figure 10 List of Form operations.

(No

te) [ ] denotes enclosed are optional
{ } denotes one of the enclosed must exist
Underlined are reserved words
“:" may be substituted by “WHERE”
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e ]

10.

12.

sour (o

. Component extraction F(C,, C,,---C,)
. Assignment
. SELECT ([EXPR, ‘- EXPR] FROM F [, --]

(:8C])

. SLICE (f;--f, FROM F)
. GRAFT (F,, F,
. CONCAT (F,, F,,
. MERGE (F,, F,,

,+-ONTO F, [AT F][:SC])
-+ ONTO F, AT )
Ascending

Q@gmé%]ﬂ’%'”ﬁﬂiﬂﬂﬁ

PARENT])

. ELIM__DUP (F)

£.f. -

1 72

(£, 6.,

CONSOLIDATE (F FOR UNIQUE {

(£, £, )})

. Built-in-Functions

SUM

MAX

MIN ¢ (f IN F [FOR UNIQUE f,, £, -]
AVG | [:SC])

COUNT

CASE Assignment
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In this case, PTS is the source file from which a target
Form consisting of P#, DES, S# and CN are to be con-
structed. Not all instances, however, in the source file
produce an image in the target because we are interested
in only those instances where the suppliers are in San
Jose. Since the information about the location of a sup-
plier appears only in the SUP file, one must find the
connection between the PTS Form and the SUP Form
through the use of some common information which in
this case is S#. The resulting form is as follows:

P# DES S# CN

2 X 4 AB
3 XX 4 AB
1 XB

In addition, the SELECT operation also provides a
facility to derive new data. As mentioned earlier, com-
putations can be performed on selected fields. To in-
crease the unit costs of the parts in PTS by 25%, one
may use the following statement:

NEWPTS(P#, DES, S#, CN, UC) <« SELECT
(P#, DES, S#, CN, UC¥1.25 FROM PTS);

2. GRAFT (F,, F,,---ONTO F, [AT f][:8C])
GRAFT combines two or more Forms into one Form
when specified conditions are met. It produces Cartesian
Products when “:SC” is omitted.

In general, the conditions to be satisfied can be stated
as an SC-EXPR as described before. Since GRAFT
operates on two or more Forms, it should be apparent
that the SC-EXPR should include at least the logical
factors which serve to tie the Forms together. For exam-
ple, to form one file from the PTS and INV files such
that the resulting file will have the information of the
PTS file plus the quantity-on-hand (i.e., QH) obtained
from INV, one can use the statement GRAFT (INV
ONTO PTS: PTS.P# = INV.P#); here, the SC-EXPR
serves as a tie between the PTS and the INV files.
There are two tying fields: P# of PTS and P# of INV.
Only the one in the Form after “ONTO” will appear in
the resulting Form. The result is:

P DES | S# CN uc QH

2 X ! AB 5 10
2 BB 4

3 XX 4 AB 2 17
1 XB 3

7 Y 7 C 7 20

This way of stating conditions is useful in most of the
cases. There are situations, however, where some of the
data exists only in some of the files. For example, P# =
4 exists in INV but not in PTS. By stating “PTS.P# =
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INV.P#” as the satisfying condition, the inclusion of
P# = 4 in the new file is excluded. To include all P#s in
the new file, leaving the missing information blank the
“PREVAIL" clause is used to specify the conditions.

The PREVAIL clause, in general, takes the following
format:

f, f,,--- PREVAIL [f, f,,--- f,]

17 *2?

where ), f, are the names of the fields whose values
are to be “matched”. The names on the left hand side of
the key word “PREVAIL” are considered to be the
prevailing fields. The union of the instances of the pre-
vailing fields determine the instances to be included in
the resulting Form. Take the PTS and INV files for
example. The statement GRAFT (INV, ONTO PTS:
INV.P# PREVAIL PTS.P#); produces the following:

. B
p# DES S# CN uc QH
2 X 4 AB S 10
2 BB 4
3 XX 4 AB 2 17
1 XB 3
4 - - - - 5
7 Y 7 C 7 20
3. Built-in-functions
SUM
MAX
MIN (fIN_F [FOR UNIQUE f,, - £,][:SC])
AVG
COUNT

The built-in-function computes, respectively, the sum,
maximum, minimum, average or count of the instances
of a certain field of f in a Form F where the specified
conditions are satisfied. All built-in functions have the
same format and operate in exactly the same manner. If
the “FOR UNIQUE f,- - -f ” option is taken, computa-
tion performed over instances of f for unique values of
f,,---f, where f,-- - f must be ancestors (an ancestor is
any generation of a parent in a hierarchical path) of f. If
there is no “FOR UNIQUE” clause stated, computa-
tion is performed over all instances of f in the Form. For

example,
SUM(UC IN PTS) results 5+4+2+3+7

T(A,B) « SELECT(P#,COUNT(S# in PTS FOR
UNIQUE P#) FROM PTS) results the following:

T

~N W N
SIS
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4. CASE Assignment

CASE Assignment allows varied operations to be per-
formed over different instances. These varied operations
must produce homogeneous results to be assigned to the
resulting Form. The variation is dependent on some pre-
scribed tests either 1) on the value of a single instance
of a field, or 2) on a set of values of a specific field for
unique parent or ancestors. Accordingly, there are two
formats for the CASE assignment. Here only the first
format is discussed. (Refer to [15] for second format.)

F < CASE (fCOP v,, v, v,[LOTHERS])
(F, Fy - F,[LF,,1);

With this format, assignment is allowed to be varied
according to the value of an occurrence of the specified
field, f. For each instance of f, its value is compared with
v; (where 1 = i = n) in the left to right order until a
“true” result is obtained from the evaluation. At that
time, the corresponding F, will be activated to provide
the source for assignment. F; could be any of the Form
operations (except the assignment and CASE assign-
ment). The scope of these operations, however, is lim-
ited to the pertinent instance (not all instances of the
Form). For this reason the italic F (instead of F) is
used to denote the Form operations effective for CASE
assignment. Furthermore, v, and F, must be paired. If
the optional pair of [,OTHERS] and [,F,,,] is not
specified, no operation will be performed when all tests
specified in f cop v,,- - - v, failed.

To change the entries of “FEMALE” and “MALE”
in the SEX field of the source Form SF into
SEX CODE where “0” represents female and ‘17
represents male, the following statement can be used:

T (E#, SEX_CODE) < CASE (SF.SEX=‘MALE’, ‘FEMALE’)
{(SELECT (E#, ‘1I' FROM SF), SELECT (E#, ‘0" FROM SF)}:

Source: SF Target: T
E# SEX E# | SEX-CODE
51 MALE 51 1
57 FEMALE 57 0
74 MALE 74 1
78 FEMALE 78 0

A description, in some detail, of the syntax and se-
mantics of a few of the CONVERT operators was pre-
sented. This is believed to be sufficient to illustrate the
flavor of the CONVERT language. A detailed description
of each of the operators can be found in reference {15].

Application example

As mentioned earlier other data structures can be ex-
pressed in linearized files, and hence the Forms. In this
section we discuss how this can be done. In addition, an
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Figure 11 A network example.

example that illustrates how the methodology can be
used to specify data translation in a network environ-
ment is also given.

Consider the simple example of a network (Fig. 11),
with nodes DEPT, PROJ, and EMP and edges D, P and
E where D links all employees belonging to the same
department, P links all the projects in a department, and
E links all the employees working on the same project.

Our approach in dealing with networks is to decom-
pose the network into a family of hierarchies each of
which can be represented as a Form. This decomposi-
tion, however, is not unique for a given network. It de-
pends on what is natural or convenient to the user. For
instance, one way to decompose the above network is
to have each node corresponding to a Form as in Fig.
12{a) where the connecting information, designated by
each named edge, is embedded in the Forms. Alternative-
ly, each named edge can be in itself represented as a Form
as in Fig. 12(b). A combination of both techniques is
equally applicable. The important point to note is that
the connecting information is represented by symbolic
pointers in terms of the keys. In the case where the con-
necting information is at a level away from the root of a
tree, a concatenation of keys may be necessary. For
example, suppose that an edge exists in the above net-
work from PROJ directly to SKILL in EMP, then this
symbolic pointer will be expressed by a concatenated
key of E#.SKILL.

To illustrate the application of the CONVERT lan-
guage, suppose that the above network is decomposed
into a representation as shown in Fig. 12(a), and is reor-
ganized such that it generates one file with the structure
shown in Fig. 13 and Fig. 14.

One translation specification for this example may be
stated as follows:

DEMP « SELECT (D# FROM DEPT,
E#, NAME, EDUCATION, SKILL FROM EMP:
EMP.DEG1=0 AND DEPT.E# = EMP.E#);

NEMP « SELECT (D# FROM DEPT,
E#, NAME, SKILL FROM EMP:
EMP.DEG =0 AND DEPT E#= EMP.E#);

TDEPT < GRAFT (DEMP, NEMP ONTO DEPT:
DEPT.D# PREVAIL DEMP.D#, NEMP.D#);

DEPTDB < GRAFT (PROJ ONTO TDEPT AT P#:
DEPT.P# = PROJ.P#);
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DEPT EMP DEPTDB

EDUCATION MGR
D#| MGR | P# | E# E# | NAME "pE =T vp ISKILY
55 |SMITH| P1 541 — — — — — NON-DEG-
P2 | 351 - - - PROJ DEG-EMP EMP
P3| 552
553
554 I - - | -
555 . - -
556 . . . . .
54 [JONES| P4 | 542 * * ‘ ¢ *
543
544
E E 5 E Figure 13 Diagram of target structure.
PROJ
P# |LEADER |BUDGET| E#
Pl 541 100K 551
552
541
P2 554 200K 553
554
555
p3 - 50K ggz There are obviously other ways of specifying the
mappings in this translation. The CONVERT language
P4 542 300K 542 . .
543 is powerful enough that each translation analyst can
_ . 344 specify the mappings in a way that is most natural to him.
() Data validation in conversion
One of the important tasks in the process of data con-
DEPT P b version is data validation. Data validation in a broad
D% | MGR D P pe | E% sense includes .the che.c_kmg of the translation process
per se or checking the information to see to what degree
55 |SMITH 55 Pl 55 541 . . . . .
P 551 the conversion process is an information preserving
5.4 JOI:JES P3 §§§ mapping. For instance, the conversion on the above
: : 54 P4 22‘5‘ example is information preserving. However, if the tar-
E - 556 get had been changed slightly such that E# no longer
54 542 appears under PROJ, then the conversion is not infor-
;ﬁ mation preserving. This area in itself requires much re-
: : search and is not the subject of this discussion. In this
* ° paper only the simple problem of checking data to see if
PROJ E unexpected data exist is considered. Further, the work
P# | LEADER | BUDGET P# | E# presented is only preliminary; more study is needed to
Pl 541 100K PL 3 make it complete.
P2 554 200K 541 There are two approaches to handle this class of er-
P3 - 50K " ggi rors: One is to attempt to correct the errors when they
555 i i
vl sa 300K 3 = ar.e found, and t.he other is simply to detect the errors
. . . 556 without attempting to correct. Complete error correc-
. . . P4 542 tion, in our opinion, is generally impossible and attempts
232 to correct errors without user interaction are usually fu-
: . tile. While providing interactive facilities including error
EMP correction is our long term goal, it is beyond the scope
EDUCATION of this paper. Thus, we have limited ourselves to the
E# | NAME SKILL . .
DEG [ YR problem of error detection at this time.
- - B - - On investigating the common errors in data, one finds
_ _ _ _ _ that many aspects of data checking can be described
: : : . . with the Data Definition Language, DEFINE, making it
¢ * * * * possible to detect the errors at a very early stage (i.e.,
(&) when the source data is read). The following is a sum-
Figure 12 A node and its edges (a) represented as one Form mary of the error checking capabilities existing in DE-
494 (b) represented as separate Forms. FINE.
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Figure 14 Form representation of target structure.

1. Record ordering e.g., PART# in current record is
expected to be greater than the PART# in the pre-
vious record. This can be specified in DEFINE with
the ORDER clause, e.g., ORDERED ON PART#
ASCENDING.

2. Valid representation of data This can be specified in
DEFINE with the PICTURE clause. For example,
to specify an 11 character item, N, in which: a) the
first character must be a letter, b) the 4th and 8th
characters consist of dashes (-), and ¢) the remaining
characters are digits or letters (e.g., X9C-4BZ-M32).
The specification of N could be precisely described by:

ITEM N:
PICTURE CODE D IS ‘A’ OR ‘9’;
CHAR(PICTURE 1S ‘ADD[-]DDD[-]1DDD’);
END N;

3. Acceptable values (or ranges of values) for specific
fields. Employee age can only be in the range be-
tween 18 and 65. This can be specified in DEFINE
with the VALUE clause in the following manner:
VALUE IS > 18 AND < 65.

4. Conventions. E.g., different spellings of “Expressway”
should be coded as “EXPY”. This can be specified in
DEFINE with the TRANSLATE clause, TRANS-
LATE (‘EXPWY’, ‘EXPRESS’, ‘EXPRESSWAY’
TO ‘EXPY’).

5. Record precedence relationship. e.g., One type of re-
cord must precede another type. This can be specified
in DEFINE with the correct structure of description.

6. Mandatory occurrence. e.g., A certain field must
always have an occurrence. This can be specified in
DEFINE with the unconditional descriptors or by
giving a lower bound of greater than O for repeating
or variable length data.

These are the kinds of errors that can be detected in
the early stage of a conversion process and they can be
specified within the powers of DEFINE [14]. There are
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PROJ DEG-EMP NON-DEG-EMP
D# MGR EDUCATION
P# LEADER BUDGET E# E# NAME SKILL E# NAME SKILL
DEG YR
[ ] L . L] T L] . . . L] L) L] L4
L) . . . L] . [} [ ] [ . [ . [} [
. . [ . . L] . . L] . . . (]

other kinds of errors which cannot be conveniently spec-
ified in DEFINE without modification of the model.
These can be roughly categorized as follows:

1. Contextual validity It is frequently the case that the
validity of a data instance can only be determined in
the context of other data instance. An example of this
is as follows: If a department belongs to Research
Division and is located in San Jose, the department
number can only be in the range of KO1 and K99.

2. Validity which requires cross checking For example,
a PART# that exists in FILE 1 must also exist in
FILE 2.

3. Validity which requires computation.

These categories can be checked by the following three
validation statements in CONVERT.

VALIDATE (SC-EXPR,[.SC-EXPR,, "-])
VALIDATE IN CONTEXT (SC-EXPR,, SC-EXPR, [.--'])
VALIDATE MEMBERSHIP (Member-tests)

(Note: SC-EXPR is discussed in a previous section and
Member-tests is discussed in [15].)

Thus, examples of the validation statements for the
fore-mentioned three categories are, respectively:

. VALIDATE IN CONTEXT (EMP.DIV = ‘RESEARCH’, EMP.LOC = ‘SAN JOSE’,
EMP.DEPT# >=K0l AND EMP.DEPT# <=K99);
VALIDATE MEMBERSHIP (FILE1.PART# CONTAINED IN FILE2 (PART#) OR
SAME AS FILE2 (PART#));
. VALIDATE (COUNT (NAME IN CITIZEN

: CITIZEN.INCOME < 1000 OR CITIZEN.TAX < 100

OR CITIZEN.INCOME/CITIZEN.TAX < 10) = 0};

I

w

Furthermore, validation can be either stated as a stand
alone statement (as in the examples above), or be at-
tached to a mapping specification. An example of the lat-
ter is

SELECT (A,B, C FROM F) VALIDATE (F.A+ F.B
=F.C);

When standing alone, validity checking is done whenev-
er the relevant Form is included in any mapping. When
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attached to a mapping specification, validity checking is
done only when that particular mapping specification is
being carried out.

Conclusion

In this paper we have described a methodology and
model for data conversion. Unlike some previous works,
the approach assumes that the source and target systems
play an important role in the conversion process by
transforming the source data into sequential files to be
used as inputs to the conversion system and transform-
ing the conversion system output into desirable target
formats. Data conversion is a complex process, even
when the input and output formats are limited to sequen-
tial files. It is believed that the process cannot be suc-
cessful without user participation. Thus, the application
of this method requires the users to describe the data
structures of the linearized input and output files and to
specify the mappings between the source and target
data. Two languages were defined for this purpose:
DEFINE for data description and CONVERT for
mapping specification; both languages are in the process
of implementation.

In defining any language the designers are always
faced with the problem of tradeoffs between complexity
and limited capability. The goal is to make these lan-
guages high level, nonprocedural, and simple to learn
and use, but with sufficient capability to handie the
common situations [27]. It is believed that these lan-
guages are indeed high level and nonprocedural by cur-
rent standards and can handle most of the situations
commonly encountered in data conversion. This belief is
supported by the tests performed on several real life
examples. Further, although the languages are designed
to work in a specific environment, (DEFINE for se-
quential files and CONVERT for hierarchically struc-
tured data in tabular form), the model is general and the
example in the paper demonstrated how a network struc-
ture can be decomposed into simpler forms acceptable in
this model.

While the languages are relatively complete, several
problems remain to be solved. First, given the capability
of a data translation definition language like CON-
VERT, one can write mapping specification in many
ways for the same task. It would be highly desirable if
techniques can be developed so that some optimization
can be done on an arbitrary mapping specification so
that the translation process can be made more efficient.
Second, one must define implementation algorithms to
effect data conversion taking into account the time and
resource constraints. Third, techniques to perform pro-
gram translation, coupled to data conversion, must be
developed to produce application conversion. Little
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work has been done on these problems; each of them
requires much research. Our future effort is expected to
be directed towards these problems.
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