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Abstract: This paper presents a methodology and  a model for  data  conversion  or translation. The model assumes  that both source 
and target systems  are available and that conversion  interfaces may be required  to  interact  between these  systems and the conversion 
system. T o  achieve  data conversion or translation using this approach,  two languages are  needed: 1 ) a language to  describe  the  data 
structures,  and 2 )  a language to specify the mapping between source  and target data.  This  paper  describes  these  two languages, DE- 
FINE and CONVERT and gives  numerous  examples to show the capabilities of these languages and how  they can  be used in data 
conversion  and  restructuring. Both languages are high level and nonprocedural and have the power to  deal with most  situations en- 
countered in data conversion processes. In  addition, the  paper also describes  some of the facilities in the languages specifically de- 
signed for data checking in a data conversion process. 

Introduction 
In  recent  years applications of data  base  systems  have 
grown  very rapidly. While the  use of data  base  systems 
relieves users of the task of having to know much of the 
implementation  details, it has  at  the  same time made 
data  conversion a  necessity because of various reasons. 
In general, data conversion is a  complex  problem  requir- 
ing more of our  attention than it has received in the  past. 
This  paper  proposes a  solution  applicable to a  broad 
class of logical data  conversion problems. 

Relatively little work  has been done  to find a solution 
making data  conversion  easier [ 1 - 1 11. All investiga- 
tions so far  are preliminary. Only few individuals are 
actively  involved. The most  comprehensive  work is 
done by members of the  Stored  Data Definition and 
Translation  Task  Group  under  CODASYL’s  System 
Committee, which attempts to develop  a  general  method 
for defining data  structures, storage structures,  their re- 
lationship,  and  translation  from one  structure  to  another. 
Similar work goes on  at  the .University of Michigan and 
to a lesser  extent  elsewhere  (see  references ). The  paper 
of Sibley and Taylor [ 111 gives a good account of some 
of these related  works. 

As reported in reference [ 121, the  authors initiated  a 
similar  project at IBM. This project was established to 
investigate and  develop a methodology for application 
conversion and migration. Application conversion is 
defined to include the movement of both data and  pro- 
grams from  one system (or  one  form)  to  another.  After 
studying the problem for  some time, it became clear  that 
current technology is inadequate in solving the general 

problem. Our initial attack  is  to  solve first the problem 
of data conversion. This  approach not  only  provides us 
with a  more  fundamental  understanding of the problem 
but it actually is a necessary first step  since  we must 
understand  what is needed for  data  conversion before 
we know what is to  be  done in the programs. Attention 
is paid, however,  to  the larger  problem so that  the  re- 
sults obtained can be  used as a foundation in the solu- 
tion of total  application migration. 

At  present  data  conversion is done infrequently  be- 
cause of its  complexity. In spite of changes in require- 
ments,  users  are reluctant to  change  their  data  struc- 
tures.  It is believed that  conversions will take place 
more frequently when  better techniques are known, 
when  automatic or semi-automatic  aids are available, 
and when greater  data  independence is achieved. 

Problem  environment 
A study of current  works revealed that  current ap- 
proaches  to  data  conversion  are  either  too broad and 
general,  as in the  case of CODASYL  Task  Group  or 
Smith’s  and Taylor’s work [5, 61, or  too  narrow in ap- 
plication as in Lin ahd Heller [ 131. In  the  first  case  an 
economically  feasible  solution  requires  much  more  re- 
search  and,  therefore,  appears  distant.  .In  the second 
case, a narrow  approach is not really solving the main 
problem and,  therefore, will provide benefits to only  a 
small subset of computer  users.  The  approach  we  have 
adopted is a compromise which will provide  help to a 
broad  class of users in the  near  future. 
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The  approach  assumes  that  the  conversion  system will 
run under  the operating system of either  the  source  or 
the target system. We  also assume  that  an interface on 
the  source system is available to transform the  source 
data  into  an intermediate form  acceptable  to  the transla- 
tor,  and  an interface on  the target system is available to 
take  the  output of the  translator and  transform it into  the 
target data.  In this way the  translator is shielded  from 
many of the physical  incompatabilities of the  source  and 
target data  such  as parity schemes,  etc. Specific details 
of our model are discussed  later. 

A  basic  assumption in our  approach is that it is gener- 
ally impossible to perform data  conversion without the 
users’ help. It is therefore visualized that it is the  users’ 
responsibility to  describe  the  data  structures  for  both  the 
source  and  target  data and to define the mappings be- 
tween  them.  It is possible,  however, to  have  an ad- 
vanced system which may provide  some  prompting 
through  interaction. 

Two languages have been defined for this purpose: 1 ) 
DEFINE a language to define data  structures, and 2) 
CONVERT, a  language to specify mappings between 
source  and target data,  each of which may contain multi- 
ple logical record types  and logical views. This  paper dis- 
cusses  at  some length these  two languages. For a complete 
discussion, readers should  refer to [ 14, 151. 

In designing these languages we assumed that  the 
users  are skilled programmers. The programmers are 
familiar with their data’s content, not in the  sense of how 
many screws  and  nuts  are in a parts’ file, but in the  sense 
of knowing that  there  exists a field for describing  a  part 
and that this field may contain  blanks if no description 
exists. They know the semantics of their  data and its 
structure  at a logical level and what  they  want to be 
done in the mapping process.  These  aspects  are quite 
different from  the  assumptions of the designers of data 
base  systems who  frequently  consider their  users  to be 
casual users with little  knowledge of the underlying data 
structure. 

Assuming that  the  users  are sophisticated  and know 
their data,  they  do  not  know,  however,  the implementa- 
tion details of their data  structure, nor do they  want to 
be burdened with the  details of how to accomplish the 
whole conversion  process.  Another assumption is that 
the  users  are willing to follow some simple syntactic 
rules of the languages,  but are unwilling to learn another 
complex  language comparable to, say,  COBOL  or  PL/ 1 .  
We have also  assumed that  these  users  are not  mathe- 
matically oriented and they do not appreciate  semantics 
in mathematical  terms. As a result we set  out  at  the be- 
ginning to make our languages high level, nonprocedural, 
easy  to learn, and simple to use. 

The  above  aspects  cannot be  achieved  without some 
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our languages are simple only because we tailored  them 
to a specific purpose, namely, data  conversion  and in 
certain  cases we traded capabilities for simplicity. Our 
philosophy is to provide  a  language to handle  a great 
majority of the  cases  encountered frequently  in data 
conversion and  let the remaining small number of cases 
be  handled by the  computer’s procedural  languages. In 
any case,  the languages have been so structured  that 
additional  capabilities can  be included  without  much 
difficulty. 

The conversion model 
Figure 1 illustrates the overall conversion  process in our 
model. The  source  systems which originally process  the 
source  data is used to  access  it  and  interacts with the 
conversion interface  module to  produce a  nearly  system 
independent  source  data called linearized source files. 
As the name  implies,  linearized files are sequential files. 
(More is said about them in a subsequent  section). 
These files become the  input  to  the  converter/  translator. 
The  output  from  the  converter/  translator is another  set 
of linearized files called linearized  target files, which are 
changed  into  physical  target files with the  use of the 
conversion interface and  the target system. 

Generally speaking, data  conversion  can be  divided 
into  two basic  categories: 1. from files to  data  base, and 
2. from data  base  to  data  base.  These  two categories 
have some  basic  differences. Several points are salient in 
the first case. 1 )  Data is generally  not well organized. It 
contains much redundancy  and much of the  data de- 
scription is carried implicitly in the  procedures.  In  fact, 
frequently  additional  information is contained there.  For 
example,  a census file may be separated  into  two parts 
such  that  the first part contains information about males 
and the  second  part  about females, but this separation is 
not stated explicitly when the  data  structure  for this file 
is defined. In  our  system all this descriptive information 
is made  explicit. 2) These  source files are sequential 
files. Since  the real world at this  time has a preponder- 
ance of sequential files to be converted  to  data  bases,  we 
have  attempted  to define in our  data definition language 
a capability that  can  describe most of these files instead 
of imposing severe limitations on  the  formats of linear- 
ized files. 3 )  The  COBOL files deserve  further  atten- 
tion because a great majority of commercial users  are 
COBOL  oriented.  Hence,  our  data definition language 
has been  designed to  have a  strong COBOL flavor  and 
the capability to  describe  the common COBOL files. 
Thus,  we define a linearized file to be a file belonging to 
that  subset of sequential files describable by our  data def- 
inition language. It may have a flat or hierarchical  record 
structure.  It may contain self-defining data,  terminators 
of different  kinds, multiple record  types within the same 
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file, and  repeating or non-repeating  groups belonging to 
the  same logical record  but  appearing in separate physi- 
cal records.  It does  not, however,  contain  any system- 
dependent accessing or alignment information. Direct 
addressing, if present, must  be  replaced by symbolic 
addressing. In this  manner,  common  sequential files can 
be  directly  used as input to  our  conversion model. 

The second  category of data  base  to  data  base  conver- 
sion is different  from that of file to  data base  conversion. 
Here,  source  data is much better defined and  its struc- 
ture can be quite  complicated. In this case we expect  the 
users  to use the  source systems' support, including utili- 
ties,  to  decompose  the  data  base  into linearized files, 
stripping all the  unneeded  control information and re- 
placing physical or  direct pointers by symbolic or key 
pointers (the  process of linearization  can be automated 
by creating  conversion  interfaces for individual data 
base systems).  For a given data  structure, the  linearized 
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files can be expected to be different depending on the 
user.  For example, consider  the  case  as defined in 
Fig. 2a. One can create  the linearized files for this data 
base  as given in Fig. 2b where  each physical data  base 
becomes  one linearized file. Alternatively one may want 
to  create a set of linearized files as given in Fig. 2c. It 
appears  that  there  are an arbitrary number of ways to 
define linearized files. In reality, however,  the limitations 
existing in a  system  and  its support and the naturalness 
of the resulting files dictate  the choice. This choice  has 
only a very small impact to  the conversion process be- 
cause using the translation  language, one  can  alter this 
choice easily. 

In a similar manner  the target structure is defined in 
terms of linearized files. These files should  be defined in 
such a way that easy loading is possible. As in the  case 
of source  data, a given data  structure in a target  system 
may have several  versions of linearized target files. 485 
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Figure 2 Linearization of a Data Base. 

Let us expand  the  central portion of the  conversion 
process  to  present more  details as  shown in Fig. 3. The 
data definition analyst  writes the description of the lin- 
earized source and  target files. The translation system 
Reader  extracts from  this  description the logical view of 
these files and strips off much of the encoding  informa- 
tion in the  source and  target file description  which is not 
useful for restructuring. Examples  for such  information 
include the length of the fields, the kind of data  represen- 
tation,  and the way a repeating  group may be terminat- 
ed.  The  data translation analyst, who may or may not be 
the  same person as  the  data definition analyst,  then 
writes data mapping specifications to indicate the move- 
ment of data  from  source  to  target. During  actual  con- 
version,  the linearized source files are changed into a 
standard system internal form, i.e. IF (  S1) and IF(S2) .  . ., 
suitable for reorganization. Data in this  form will go 
through  restructuring as specified by the mapping state- 
ments. The end  result  from the  restructurer  component 
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closely  corresponding to  the target logical view. The 
writer then changes this data  format into  linearized  tar- 
get  data. 

Data description language-  DEFINE 
Having  described the model for  data translation (Fig. 
3 ) ,  we see  that a data description language is needed for 
two  purposes.  The first is to provide  means for describ- 
ing a wide spectrum of hierarchically structured lincar 
files to enable them  to be converted by the  Reader 
(Writer)  to  (from)  the  conversion system's  internal  form. 
The  second is to provide the basis for  extracting logical 
views of the files suitable for  use in the restructuring 
process.  At this  time it is appropriate  to  discuss briefly 
why we felt the introduction of a new data description 
language  was necessary. 

First, we examined the  data definition facilities of 
COBOL and PL/  1 ,  since  they are well-known and 
broadly  used by the computing  community. We found 
they  lacked sufficient capability for describing files with 
characteristics  such  as variable length fields, optional 
data,  and self-defining data.  For  example, in COBOL 
files, frequently one file contains multiple record types 
distinguishable by a prefix. The procedural  portion of the 
program tests  the prefix and using the REDEFINE 
feature applies the  appropriate  data definition to  the re- 
mainder of the record  depending on  the prefix value. It 
is felt that  these kinds of semantics  should  be  included in 
the  data description itself where possible. 

Second, we investigated other  data definition and 
translation  languages  which were thought to be  potential 
candidates  for  our  purposes. Specifically, we studied the 
Stored  Data Definition Language (SDDL) developed at 
the Univeristy of Michigan [ 1 11, and the  Data  Def- 
inition Language  and Data Manipulation  Language 
(DDL/DML)  developed for  data  conversion  at  the 
University of Pennsylvania [7, 161. The Michigan 
SDDL is very  general. In  contrast,  the Pennsylvania 
language is defined for  one file to  one file conversion 
only, but  relies on  the use of PL/ 1 procedures. Both 
languages  include facilities for describing  not only data 
structures, but also  their corresponding storage  struc- 
tures, and the mappings between  them.  Further,  the 
Michigan language attempts  to  treat  every level of de- 
scription  from  device-media and  system specific storage 
and data  structures  to  the high-level data  structure 
classes and schemas. While the  above capabilities are 
required to attain the goal of complete  data description 
at all levels,  they are not  required for  our needs. 

The  data description language, called DEFINE, is 
developed specifically for describing the linearized 
source and  target data  structures  for  our  conversion sys- 
tem which, as mentioned  before,  uses  this  information to 
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Figure 3 Model of translation. 
Note: Logical  views of the files are extracted from the define specifications. 

parse  data in the  read and write steps of the translation 
process  and  to  extract  the logical views to be presented 
to  the translation analyst. 

As in all data description  languages, DEFINE pro- 
vides constructs  for describing the usual encoding char- 
acteristics of data.  However,  the unique feature of the 
language lies in its rich facilities for explicitly describing 
the  characteristics of files generated by the REDEFINE 
feature  that is used  very  frequently  in COBOL.  Figure 4 
illustrates some of these common  record formats  where 
REDEFINE may have been  used.  A  complete DEFINE 
program is a structured description of one  or  more  source 
and  target files as outlined in Figure 5. 

The  data description block ( A  block is a  general term 
used for designating  a  group of statements.) (DDB) 
applies to  the  entire  DEFINE program.  A DDB may 
contain one  or more j l e  description blocks (FDB)  . The 
keywords SOURCE and TARGET designate whether 
the file is to be parsed  (input  to  translator)  or  generated 
(output by translator), respectively. The  “declarations 
section”  for  the DDB specifies characteristics (e.g., 
character  codes) which are  true  for all subsequent 
FDBs  except  those which are specifically overridden in 
the  declaration section of FDBs. Similarly, an FDB dec- 
laration, for example, specifying character string justifi- 
cation, applies to all the relevant data entities in the giv- 
en file unless it is overridden in a  particular data specifi- 
cation. If the declarations  section is absent in the  DDB 
or  the  FDB, installation specified defaults are  assumed. 

Following  the declarations section in the file descrip- 
tion block are  descriptions which specify the  schema 
and encoding characteristics of the file data  structures in 
the  order of their  occurrence.  There  are  two generic data 
constructs, groups  and  items. An item is a  named unit of 
elementary data  and a group is an  ordered  (named  or 
unnamed)  sequence of items or  groups.  The  term  data 
object is used to  denote  either  one. Multilevel  hierarchi- 
cal data  structures  can be defined by recursive definition 
of groups.  Figure 6 illustrates  a  skeletal structure of a 
file description. 

As shown in the diagram the description of a file  is 
made up of group  and  item descriptors ( G D  and I D  
respectively). Repeating groups can have a  variable 
number of instances as  indicated by the  “occurs”  clause. 

All descriptors  can be either unconditional or condi- 
tional. The  example in Figure 6 illustrates the uncondi- 
tional descriptors. A  conditional descriptor is specified 
like an unconditional one  except  that a  conditional 
expression is specified following the  data  object  name. If 
the conditional expression is evaluated as  true,  the given 
descriptor will be  used to  parse  the  source  data  or  gener- 
ate target data. If it is evaluated  as false, the  next  de- 
scriptor will be used. 

In some cases,  the  structure of a  record depends  on 
the  content of a  particular field. COBOL files with multi- 
ple record  types  are  examples of this category.  DE- 
F INE has a GROUPCASE  descriptor  to  provide it 
with the capability of dynamically  selecting the  appro- 
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priate descriptor.  The example in Figure 7 illustrates the 

Figure 4 Examples of self-describing  common file formats. 

DATA  DESCRIPTION: 
[optional  data description block (DDB) declarations] 
SOURCE  FILE  DESCRIPTION( filea 1: 

[optional file description  block (FDB)  declarations] 
data  descriptors  for “filea” 

END  FILE  DESCRIPTION; 
TARGET  FILE  DESCRIPTION ( fileb 1: 

[optional FDB declarations] 
data  descriptors  for “fileb” 

END  FILE  DESCRIPTION ; 
END  DATA  DESCRIPTION ; 

Figure 5 DEFINE program  structure. 

Figure 6 Skeletal DEFINE  structure for DEPT file. 

G D  

GROUP  DEPT: 
. . .  I DEPT# I DMGR 1 NEMP 

ITEM  DEPT#: I EMP# I ESAL 

END  DEPT#; 
ITEM  DMGR: 

I D (  . . .  

I D (  . . .  
END  DMGR; L EMP# I ESAL I 
ITEM  NEMP: 

I D (  . . .  (end of record) 
END  NEMP; 
GROUP  EMPLOYEE: 
OCCURS  DEPT.NEMP  TIMES; 

ITEM  EMP#: 

iD.  END  EMP#; 
ITEM  ESAL: 

. . .  

I D (  . . .  

I D {  . . .  
END  ESAL; 

END  EMPLOYEE; 
<END  DEPT; 
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use of the  GROUPCASE  descriptor.  In this example, 
each  DEPT record is followed by a  number of EM- 
PLOYEE  and/or  PROJECT  records. If the first field, 
TYPE, in a  record contains  E,  the record is an EM- 
PLOYEE  record; if it is P,  the record is a  project  rec- 
ord.  Otherwise, it is a DEPT record.  These conditions 
are reflected in the specification of the conditional de- 
scriptors,  EMPLOYEE  and  PROJECT.  The  GROUP- 
CASE  descriptor  has  no effect if none of the conditions 
in its member descriptors is satisfied. 

Frequently, arithmetic  and  conditional expressions  are 
required in writing a data  description.  In general,  a  con- 
ditional expression is a logical factor  or a sequence of 
logical factors  separated by AND’s and O R s .  A logical 
factor is a predicate, comparison of arithmetic expres- 
sions,  or a  parenthesized  conditional expression  and  the 
operators allowed in the  arithmetic  expressions in DE- 
F INE are +, -, I and / .  For  example A < B and C - D 
= E are  the  two logical factors in ( A  < B OR C ?’ D = 

E) .  Conditional expressions  are primarily used in condi- 
tional descriptors. 

Currently only one  predicate  has been defined in the 
DEFINE language: CONFORM(  x).  This  predicate 
returns  true if the referenced yet untranslated data ob- 
ject  agrees with its description, and  false otherwise.  For 
example,  suppose  that a  record is to be interpreted dif- 
ferently  depending on  the last  character’s content. If the 
last character is numeric, the  record  takes  one  form; if it 
is alphabetic,  the record takes  another  form.  The de- 
scription for this might be as follows: 

GROUPCASE  GF: 
GROUP  G(CONFORM(LAST)) :  

ITEM  LAST: 
CHAR(P1CTURE IS ‘9’);;  

END; 
GROUP  F(CONFORM(LAST)) :  

ITEM LAST: 
CHAR(  PICTURE  IS  ‘A’) ;; 

END; 
END;  

Note  that in this example,  the conditiona! descriptor 
approach  from  Figure 7 is not  applicable. The difference 
between  these  two  examples by our  convention is that in 
Fig. 7, the value for testing is that  one which has  just 
been parsed; while in this example,  the value to be used 
for testing has  yet  to be  defined. Thus,  the  predicate 
CONFORM essentially  provides us with the capability 
of looking ahead in processing the input data. 
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In  the  above example the specification of data  repre- 
sentation by means of the  “picture”  clause, which is a 
generalization of COBOL’s  “picture”  clause was  intro- 
duced.  The details for this appear in reference [ 141. 

This  completes  the essential  description of the  DE- 
F INE language. Following is an example of a DEFINE 
description. 

Consider a  parts-supplier (PTS) file with variable 
length records whose fields are  P#,  DES, S#, CN, and 
UC, standing for part  number,  description,  supplier 
number,  company name,  and unit cost, respectively. The 
last three fields are grouped together  to form  a  supplier 
repeating group.  Further,  each of the fields is fixed 
length with the following structure: 

P#  -character string of length 4 with first two  charac- 
ters alphabetic and  the next two numeric.  Key for 
record. 

DES - 5 alphabetic  characters, left justified, padded  with 

S# - 4  numeric,  packed-decimal characters. Key for 

CN - 10 alphanumeric characters 
UC - 15 bits  binary  integer 

In addition, assume  that  the file  is so structured  that 
each logical record (Fig. 8(  a ) )  ends with  a $ sign. A 
DEFINE description for this file  is given in Fig. 8. 

The example in Fig. 8 illustrates the general  flavor of 
DEFINE and  reveals some of its typical constructs, in- 
cluding some  shorthand descriptions. For  example, in- 
stead of ending items by ‘END item-name;’, we have 
used ‘;’ as  a substitute.  This substitution is possible in 
other places as well (e.g., in ‘END group-name;’).  The 
description is self-explanatory. 

Conceptual data representation 
To understand  further  the translation process  one must 
understand  the  representation of the  data  as viewed by 
the translation analysts  and  the  conversion system’s 
Data  Restructurer. It is paramount  to define a represen- 
tation or  form  that is simple, capable of representing 
different data  structures and familiar to  data  conversion 
analysts. While there  are many candidates  for this  role, 
most of them can be  eliminated because they are  too  re- 
strictive or  require  too much  learning. Our final choice 
was the partially filled tabular  form  for hierarchically 
structured  data. All data  structures will be transformed 
into  this tabular  form, which from now on will be re- 
ferred  to simply as  the  Form.  This choice  biases toward 
the  source  and target data organized in flat files, hierar- 
chical, and relational structures. 

To illustrate  the tabular form, or simply the  Form in 
Fig. 9 (a)  the  schema of a  hierarchical data  structure is 
represented.  The  actual  data may be  organized as 

blanks. 

repeating  group. 
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GROUP  DEPT-EMP-PROJ: 

GROUP  DEPT: 
FOLLOWED BY EOR; / *  end or  record / 
ITEM  DEPT#: . . .; 
ITEM  DMGR: . . .; 
ITEM  NEMP: . . .; 

END  DEPT; 
GROUP  EMP-PROJ-RCD: 

OCCURS  FROM 0 TIMES,  TERMINATES 
WHEN  TYPE  NOT  IN ( ‘ E ,  ‘P’);  

ITEM  TYPE:  CHAR(1);   END  TYPE; 
GROUPCASE  PE: 

GROUP  EMPLOYEE(TYPE = ‘E’): 
. . .  
description for  EMPLOYEE 
. . .  

END  EMPLOYEE; 
GROUP  PROJECT(TYPE = ‘P’): 

. . .  
description for  PROJECT 
. . .  

END  PROJECT; 
END  PE;  

END  EMP-PROJ-RCD; 
END  DEPT-EMP-PROJ; 

Figure 7 “GROUPCASE” Example 

COBOL  records, in which case  the information on  edu- 
cation, skill, or child may be repeating groups,  or  the 
data may be  organized  as  a tree  as in some data  base 
systems (e.g., IMS).  In  either  case,  the  data can be rep- 
resented by the  Form  as shown in Fig. 9 (b).  Note  that 
in this representation, caution is required  not to  produce 
false  information that  does not exist in the original. For 
example, although  information on education  and child 
exist in the  same row in the  table,  there  does not exist 
any  relationship between them except  that they are both 
related to  the  same  person.  Hence  these tables or  Forms 
are not relational  tables [ 17-21], but perhaps some- 
what  akin to Bracchi’s unnormalized  relations [ 22 - 241. 
Note  that additional visual aids can be included in the 
Form’s  layout if so desired by the  user, e.g.  double lines 
to  separate repeating groups. 

The  use of the  Forms  to  represent  data  and its struc- 
ture is believed to  possess many advantages. Included 
among these  are  that  the  Forms  are  easy  to visualize, 
they can represent  other  data  structures readily  and  they 
are  easy  to manipulate. One  can  define a  very simple 
and powerful translation  language to  operate  on  these 
Forms  as shown in a subsequent section. 489 
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DATA  DESCRIPTION: 
DECLARATIONS: 

CHAR  CODE IS EBCDIC; 
NUMERIC  ENCODING IS IBM 370; 
CONSTANT  BLANK IS HEX ‘40’; 

END  DECLARATIONS; 
SOURCE  FILE  DESCRIPTION  (PARTS-SUPPLIER): 

GROUP PTS: 
OCCURS  FROM 1 TIMES, 

KEY IS P# WITHIN  PTS; 
ITEM P#: 

ITEM  DES: 

FOLLOWED BY END-OF-FILE; 

CHAR  (PICTURE 1s ’AA99’);; 

CHAR  (PICTURE IS ‘A(5)’, 
JUST IS LEFT 
AND  PAD  CHAR IS BLANK);;  

GROUP S: 
OCCURS  FROM 1 TIMES, 

FOLLOWED BY ‘$’; 
KEY IS S# WITHIN S; 
ITEM S#: 

ITEM CN: 
DEC  (PICTURE IS ’9(4)’) ; ;  

CHAR ( I O ) ; ;  

BINARY (1.5);; 
ITEM  UC: 

END S; 
END PTS: 

END  FILE  DESCRIPTION; 
END  DATA  DESCRIPTION; 

Figure 8 DEFINE description of PTS file. 

Translation definition language -CONVERT 
From  the logical views extracted  from  the DEFINE 
description of data  structures, a  translation  analyst can 
visualize his data in view of the  Form  (Fig. 9) and pro- 
ceed to write mapping statements  for manipulating his 
data into the  format required in the target description.  In 
order  to  achieve this goal, a translation  language  must 
have  the following capabilities: 

1. Combining components of different  linearized files to 
form new files according  to some specified criteria. 

2. Decomposing  a  linearized file to form  different files 
according to  some specified criteria. 

3. Rearranging the  order of data  instances  (occurrences) 
within a  linearized file  in some  manner. 

4. Altering values of data  instances in different manners. 
Sometimes the new values may be  derived arithmeti- 
cally from  the old values and other times new values 
may be  arbitrarily defined from the old ones.  An 

490 example of the  former is the changing of payroll from 

hourly pay to weekly  pay. An  example of the  latter is 
that  the field ‘sex’, previously  containing ‘male’ or 
‘female’, will now become ‘ 1 ’  or ‘0’. 

5. Formation of trees,  or decomposition of trees. 

These  are but some of the minimum capabilities  required 
from a  translation definition language. 

Several existing languages [7 ,  19, 22, 25 ,  261 were 
investigated to  determine if they may be  used for  data 
translation. It was  found that they are  either  too low 
level,  lack the required  capability, or  are  too mathemati- 
cally oriented for  the  type of users we visualized. As a 
result,  the translation definition language, CONVERT, 
based on a  few  simple concepts  was  developed.  The lan- 
guage is algebraic, (Le.  operators & operands), specifi- 
cally oriented  to  operate  on  Forms, but has powerful 
and flexible restructuring capabilities. 

The  data mapping and restructuring facilities in 
CONVERT are provided by a set of Form  operators. 
Figure 10 represents a list of the form operations and 
their  formats  as  currently defined. The list includes 
component  extraction,  SELECT,  SLICE,  GRAFT, 

DATE, a set of built-in-functions (SUM,  MAX,  MIN, 
AVG and COUNT),  assignment and  CASE-assign- 
ment. The meanings  and uses of some of the more in- 
teresting Form  operations  are  discussed  later. 

Each of these  Form  operators  operates  on  one  or 
more Forms  (or  components of them)  and  produces a 
Form  as a  result. The  resultant  Form  can  then be  used 
as  an  operand  for  another  Form  operation.  Except  for 
assignment  and CASE-assignment all Form  operations 
can be nested, and all have  the  same general  format: 
Operator  (Operands  [options] [ :Specified conditions] ) . 
In this statement  the  square  brackets, [ 1, are meta 
symbols  denoting that  the enclosed is optional. 

In describing the  operands, we use  the following nota- 
tions: “F” denotes a Form which  could  be either a Form 
name or the result of a Forin  operation.  “f”  denotes a 
field (i.e., a column in a Form  correspondihg  to  an 
“item” in the DEFINE language). “c” denotes a com- 
ponent of a Form, which could be  either a field or a sub- 
Form.  “EXPR’  denotes  an  arithmetic  expression deriv- 
able  from the fields of a Form. To be more  specific, 
EXPR could  be  any of the following: 1) a constant; 2) a 
field name; 3) a built-in-function (e.g.,  SUM,  MAX, 
MIN,  AVG,  COUNT); 4) an  expression derivable 
from I ,  2, or 3 above,  or recursively  a derived  expres- 
sion  enclosed in parenthesis, using +, -, *, / as arithme- 
tic operators; 5 )  a sub-Form  or  group name. (Note  that 
a sub-Form is not allowed to be an  operand in arithmetic 
operation.)  As a rule,  the  order of appearance of the 
components  or  EXPR in the  statement  determines  the 
component  order in the resulting Form. 

CONCAT,  MERGE,  SORT,  ELIM-DUP,  CONSOLI- 
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In general, the specijied conditions, Le., “SC”, can  be 
expressed  as a SC-EXPR, which is defined as logical 
factors connected by W ( s )  and/or m(s) and is not 
restricted to fields in one  Form. A logical factor  can be 
either I )  an EXPR compared with another  EXPR, 2) an 
EXPR compared  with ANY OF a  one-column Form,  or 
3) an EXPR  compared with ANY OF a list of single 
values. The permissible comparison  operators include, = 

, 1 =, >, <, 1 >, 1 <, > = and < =. A logical factor is 
assigned a value of “true”  or “false”  according to  the 
result  obtained  from  evaluating the comparison. The 
evaluated logical factors  are  ANDed  or  ORed  together 
as specified to  determine  the final “true”  or “false” val- 
ue. An operation is executed only if the SC-EXPR 
yields a “true” result. 

In this  paper  only the  operations  SELECT,  GRAFT, 
built-in-functions,  and CASE-assignment  are  discussed. 
(For  other  operations, refer to [ 151 .) Following are 
some simple examples  to illustrate these  operations. 

In the examples, PTS is a parts-supplier file described 
in Fig. 8 but repeated here  as a Form. INV is an inven- 
tory file containing P# (i.e.,  part number) and QH (i.e., 
quantity-on-hand). SUP is a supplier file having CN 
(i.e., company name), S# (Le., supplier number)  and 
CA (company address). 

EMP 
Person 

L FMP 
I i ; Person 

I 
Child Education 

School Deg Yr 
Skill 

Name 

. 
0 

(b) 

Figure 9 Translation analyst’s  views of Data in terms of 
‘Forms.’ (a)  Schema of hierarchical data (b)  Form  representa- 
tion of hierarchical data. 

4 1  AB 

Figure 10 List of Form operations. 
(Note) [ ] denotes enclosed are optional 

{ } denotes  one of the enclosed  must  exist 
Underlined are  reserved  words 
“:” may be substituted by ‘ I  WHERE” 

XB 
1. Component  extraction F (C,, C,, . . . C,) 
2. Assignment 
3. SELECT  ([EXPR, . . . EXPR]  FROM F [, 

4. SLICE ( f i . . . f j  FROM F) 
5. GRAFT (F,, F , ; . . O N T O   F n [ K F ] [ : S C ] )  
6. CONCAT (Fl, F,, . . . ONTO F, a) 
7. MERGE (F,, F,; . . Fn) 

[:SCI 1 
1 7 1 Y 1 7 I C 1 7 1  

SUP I:] 
7 20 

1. SELECT ( [ E X P R , ,  . . .  EXPR,] FROM F [, . . . I  

This  operation  selects  part(s) of a Form if specified 
conditions are satisfied. For example, to create a new 
file consisting of part numbers of the parts supplied by 
suppliers  located in San Jose, together with the  corre- 
sponding  part descriptions and  their  suppliers code 
numbers  and  names,  one  can  use  the  SELECT  opera- 
tion as follows: 

SELECT  (P#,  DES, S#, CN  FROM  PTS : PTS.S# = 

SUPS#  AND  SUP.CA = ‘SJ’); 

[ :SC] 

8. SORT (F [x [Descendin f,, fz ,  . . .  [WITHIN 
Ascendinggl I 

PARENT] ) 
9. ELIM-DUP (F)  

10. CONSOLIDATE (F  FOR  UNIQUE f’ f z ” “  
(f], f,, ’ . .), 

(fa> fb’ . . .) i )  
I 1 .  Built-in-Functions 

\E 1 [:Si% 
MIN  (f  IN F [FOR  UNIQUE f,, f,, . . . I  

[COUNTJ 
12. CASE Assignment 

491 
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In this case,  PTS is the,  source file from which a  target 
Form consisting of P#,  DES, S# and CN  are  to be con- 
structed.  Not all instances,  however, in the source file 
produce  an image in the target because  we  are  interested 
in only those  instances where the suppliers are in San 
Jose. Since the information about  the location of a sup- 
plier appears only in the  SUP file, one must find the 
connection  between the  PTS  Form and the  SUP  Form 
through the use of some  common  information  which in 
this case is S#. The resulting form is as follows: 

xx 
XB 

In addition,  the SELECT  operation also  provides  a 
facility to  derive new data.  As mentioned  earlier, com- 
putations can be  performed on selected fields. To  in- 
crease  the unit costs of the  parts in PTS by 25%, one 
may use the following statement: 

NEWPTS(P#,  DES, S#, CN,  UC) + SELECT 
(P#,  DES, S#, CN, UC’”.25  FROM  PTS) ; 

2. GRAFT ( F , ,  F,; . .ONTO F, [ATf][:SC]) 
GRAFT combines two  or more Forms into one  Form 
when specified conditions are met.  It produces  Cartesian 
Products when “:SC” is omitted. 

In general, the conditions to  be satisfied can  be stated 
as an SC-EXPR as described before. Since GRAFT 
operates  on two or more Forms, it should  be apparent 
that  the  SC-EXPR should  include at  least  the logical 
factors which serve  to tie  the Forms together. For exam- 
ple, to form one file from the  PTS and INV files such 
that  the resulting file  will have the  information of the 
PTS file plus the quantity-on-hand (i.e., Q H )  obtained 
from INV,  one can use  the  statement GRAFT  ( INV 
ONTO PTS:  PTS.P# = INV.P#);  here,  the  SC-EXPR 
serves  as a  tie  between the  PTS and the  INV files. 
There  are two tying fields: P# of PTS and P# of INV. 
Only the  one in the  Form  after “ONTO” will appear in 
the resulting Form.  The result is: 

This way of stating  conditions is useful in most of the 
cases.  There  are  situations,  however,  where some of the 
data  exists only in some of the files. For  example,  P# = 

492 4 exists in INV but not in PTS. By stating “PTS.P# = 

INV.P#” as the satisfying condition,  the inclusion of 
p# = 4 in the new file  is excluded. To include all P#s in 
the new file, leaving the missing information  blank the 
“PREVAIL” clause is used to specify the  conditions. 

The  PREVAIL  clause, in general, takes  the following 
format: 

f,, f2,. . . PREVAIL [fj, fk, .  . . f,] 
where f,, . . . f, are  the  names of the fields whose  values 
are to be “matched”.  The names on the left hand side of 
the key word “PREVAIL”  are considered to  be  the 
pvrvailing fields. The union of the  instances of the pre- 
vailing fields determine  the  instances  to be included in 
the resulting Form.  Take  the  PTS and INV files for 
example. The  statement  GRAFT  (INV,  ONTO  PTS: 
INV.P#  PREVAIL  PTS.P#) ; produces  the following: 

3. Built-in-functions 

SUM 

[ti{ COUNT 

The built-in-function computes,  respectively, the sum, 
maximum, minimum, average  or  count of the  instances 
of a  certain field of f in a Form F where the specified 
conditions are satisfied. All built-in functions have  the 
same format  and operate in exactly the  same manner.  If 
the  “FOR  UN  IQUE f,, . . . f,” option is taken,  computa- 
tion performed over  instances of f for  unique values of 
f,, . . . f, where  f,, . . . f, must  be ancestors  (an  ancestor is 
any  generation of a parent in a hierarchical path)  off. If 
there is no “FOR  UNIQUE’ clause  stated,  computa- 
tion is performed over all instances off in the  Form.  For 
example, 

SUM(UC  IN  PTS) results 5 + 4 + 2 + 3 + 7 

T(A,B) c SELECT(P#,COUNT(S# in PTS  FOR 
UNIQUE  P#)  FROM PTS) results  the following: 

(f’mF [FOR  UNIQUEf,; . .f,] [ : S C ] )  
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4 .  CASE Assignment 
CASE Assignment  allows varied operations  to  be  per- 
formed over different  instances. These varied operations 
must produce homogeneous  results to be  assigned to  the 
resulting Form.  The variation is dependent on some  pre- 
scribed tests  either 1 )  on  the value of a single instance 
of a field, or  2)  on a set of values of a specific field for 
unique  parent or  ancestors. Accordingly, there  are two 
formats  for  the  CASE assignment. Here only the  first 
format is discussed.  (Refer  to [ 151 for second format.) 

F + CASE (f COP u,, u g ; .  . u,[,OTHERS]) 
(Fl, F,,~~~F,[,F,,,I); 

With this format, assignment is allowed to be  varied 
according to the  value of an  occurrence of the specified 
field, f. For  each  instance  off, its  value is compared with 
vi (where 1 5 i 5 n )  in the left to right order until a 
“true” result is obtained from the evaluation. At  that 
time,  the  corresponding Fi will be  activated to  provide 
the  source  for assignment. Fi could be  any of the Form 
operations  (except  the assignment  and CASE assign- 
ment).  The  scope of these  operations,  however, is lim- 
ited to  the  pertinent instance (not all instances of the 
Form).  For this reason the italic F (instead of F) is 
used to  denote  the  Form  operations effective for  CASE 
assignment. Furthermore, vi  and Fi must  be  paired. If 
the optional pair of [,OTHERS] and [,Fn+I] is not 
specified, no  operation will be  performed when all tests 
specified in f  cop vi,. . . vn failed. 

To change  the entries of “FEMALE’ and “MALE’  
in the  SEX field  of the source  Form S F  into 
SEX  CODE where “0” represents female  and “1” 
represents male, the following statement can  be used: 

T  (E#, S E E C O D E )  + CASE  (SF.SEX = ‘MALE,  ‘FEMALE) 
(SELECT  (E#, ‘ I ’  FROM S F ) ,  SELECT  (E#, ‘0’ FROM S F ) ) ;  

Source: 

T a r g e t E :  

FEMALE 

74 MALE 74 

78 FEMALE 78 

A  description, in some detail, of the syntax  and se- 
mantics of a  few of the  CONVERT  operators  was pre- 
sented.  This is believed to be sufficient to illustrate the 
flavor of the  CONVERT language. A  detailed  description 
of each of the  operators  can be found in reference [ 1.51. 

Application example 
As mentioned  earlier other  data  structures can  be ex- 
pressed in linearized  files, and hence  the  Forms.  In this 
section we  discuss how this  can  be done.  In addition, an 
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DEFT P PROJ 
/ 

Figure 11 A network example. 

example that illustrates how the methodology  can  be 
used to specify data translation in a network environ- 
ment is also given. 

Consider  the simple example of a network  (Fig. 1 l ) ,  
with  nodes DEPT,  PROJ, and EMP and  edges D, P  and 
E  where D links all employees belonging to  the  same 
department, P  links all the projects in a department, and 
E links all the  employees working on  the  same project. 

Our  approach in dealing with networks is to  decom- 
pose  the network into a family of hierarchies each of 
which can be  represented as a Form.  This decomposi- 
tion, however, is not  unique for a given network.  It  de- 
pends  on what is natural or  convenient  to  the  user.  For 
instance,  one way to  decompose  the  above  network is 
to  have each  node corresponding  to a Form as in Fig. 
12(a)  where  the connecting  information,  designated by 
each named edge, is embedded in the  Forms. Alternative- 
ly, each named edge  can  be in itself represented  as a Form 
as in Fig. 12(b). A  combination of both  techniques is 
equally  applicable. The important  point to  note is that 
the connecting  information is represented  by  symbolic 
pointers in terms of the  keys. In  the  case  where  the con- 
necting  information is at a level away  from the  root of a 
tree, a concatenation of keys may be necessary.  For 
example, suppose  that  an edge exists in the above net- 
work from PROJ directly to  SKILL in EMP, then  this 
symbolic  pointer will be expressed by a concatenated 
key of E#.SKILL. 

To  illustrate the application of the  CONVERT lan- 
guage, suppose  that  the  above network is decomposed 
into a representation  as  shown in Fig. 12(a),  and is reor- 
ganized such  that  it  generates  one file with the  structure 
shown in Fig. 13 and Fig. 14. 

One translation  specification for this  example may be 
stated  as follows: 

DEMP + SELECT ( D #  FROM  DEPT, 
E#,  NAME,  EDUCATION,  SKILL FROM EMP: 
EMP.DEGl= 0 A N D  DEPT.E# = EMP.E#): 

NEMP + SELECT ( D #  FROM  DEPT, 
E#,  NAME,  SKILL  FROM  EMP: 
EMP.DEG = 0 AND  DEPT.E#=  EMP.E#); 

TDEPT+  GRAFT  (DEMP,  NEMP  ONTO  DEPT: 
DEPT.D#  PREVAIL  DEMP.D#,  NEMP.D#): 

DEPTDB t GRAFT (PROJ ONTO  TDEPT  AT  P#: 
DEPT.P# = PROJ.P#); 

DATA < 
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Figure 12 A node and its  edges (a) represented  as  one  Form 
(b)  represented  as  separate Forms. 

DEPTDB 

T 
P Y I  

r"""" """" ,~ """ """ 

I P# LEADER  BUDGET I I E# NAME I I E #  NAME I 
I 
I 1 I , j (I , :'";"! j ,  {":;:- lr-- ----- 

I 
I 
I 

Figure 13 Diagram of target structure. 

There  are obviously other  ways of specifying the 
mappings in this  translation. The  CONVERT language 
is powerful enough that  each translation  analyst can 
specify the mappings in a way that is most  natural to him. 

Data validation  in  conversion 
One of the  important  tasks in the  process of data con- 
version is data validation. Data validation  in  a broad 
sense includes the checking of the translation process 
per  se  or checking the information to  see  to what  degree 
the  conversion  process is an information  preserving 
mapping. For instance,  the  conversion  on  the  above 
example is information  preserving. However, if the  tar- 
get had been  changed slightly such  that E# no longer 
appears  under PROJ, then  the  conversion is not infor- 
mation preserving. This  area in itself requires much re- 
search  and is not the  subject of this  discussion. In this 
paper only the simple  problem of checking data  to  see if 
unexpected  data  exist is considered.  Further,  the work 
presented is only  preliminary;  more  study is needed to 
make it complete. 

There  are  two  approaches  to handle  this  class of er- 
rors:  One is to  attempt  to  correct  the  errors when they 
are  found,  and  the  other is simply to  detect  the  errors 
without  attempting to  correct.  Complete  error  correc- 
tion, in our opinion, is generally  impossible and  attempts 
to  correct  errors without user interaction are usually fu- 
tile. While providing interactive facilities including error 
correction is our long term goal, it is beyond  the  scope 
of this  paper. Thus,  we  have limited ourselves  to  the 
problem of error  detection  at this time. 

On investigating the common errors in data,  one finds 
that many aspects of data checking  can be described 
with the  Data Definition Language, DEFINE, making it 
possible to  detect  the  errors  at a very  early  stage (Le., 
when the  source  data is read).  The following is a  sum- 
mary of the  error checking  capabilities  existing in DE- 
FINE. 
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PROJ NON-DEG-EMP DEG-EMP 

D #  MGR 
P#  NAME E #  E #  BUDGET LEADER 

EDUCATION 
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SKILL SKILL NAME E# 
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- 
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Figure 14 Form  representation of target structure. 

1. Record ordering e.g., PART# in current  record is 
expected  to be greater than the  PART# in the pre- 
vious record.  This  can  be specified in DEFINE with 
the  ORDER  clause, e.g., ORDERED  ON  PART# 
ASCENDING. 

2. Valid  representation of data This  can  be specified in 
DEFINE with the  PICTURE  clause.  For  example, 
to specify an 1 1  character item, N, in which: a )  the 
first character must  be a letter, b )  the 4th and 8th 
characters  consist of dashes (-) , and c )  the remaining 
characters  are digits or  letters  (e.g.,  X9C-4BZ-M32). 
The specification of N could be precisely  described  by: 

ITEM N :  
PICTURE  CODE D IS ‘A’ OR  ‘9’; 
CHAR(P1CTURE  IS  ‘ADD[-]DDD[-]DDD’); 

END N ;  

3. Acceptable  values  (or  ranges of values)  for  specijk 
.fields. Employee age can only be in the range be- 
tween 18 and 65. This can  be specified in DEFINE 
with the  VALUE  clause in the following manner: 
VALUE  IS > 18 A N D  < 65.  

4. Conventions. E.g., different spellings of “Expressway” 
should  be coded  as  “EXPY”.  This  can be specified in 
DEFINE with the  TRANSLATE  clause,  TRANS- 
LATE (‘EXPWY’,  ‘EXPRESS’,  ‘EXPRESSWAY’ 
TO  ‘EXPY’).  

5. Record precedence  relationship. e.g., One  type of re- 
cord must precede  another  type.  This can be specified 
in DEFINE with the  correct  structure of description. 

6. Mandatory  occurrence. e.g., A certain field must 
always have  an  occurrence.  This can  be specified in 
DEFINE with the unconditional descriptors  or by 
giving a lower  bound of greater  than 0 for  repeating 
or variable length data. 

These  are  the kinds of errors  that can  be detected in 
the  early stage of a conversion  process and  they  can be 
specified within the  powers of DEFINE [ 141. There  are 

other kinds of errors which cannot be conveniently spec- 
ified in DEFINE without modification of the model. 
These can be roughly categorized as follows: 

1. Contextual validity It is frequently the  case  that  the 
validity of a data  instance can  only  be  determined in 
the  context of other  data  instance.  An  example of this 
is as follows: If a department belongs to  Research 
Division  and is located in San Jose,  the  department 
number  can only be in the range of KO1 and  K99. 

2. Validity  which  requires cross checking For example, 
a PART#  that  exists in FILE 1 must also exist in 
FILE 2 .  

3. Validity which requires  computation. 

These categories can be checked by the following three 
validation statements in CONVERT. 

VALIDATE  (SC-EXPR,  [,SC-EXPR,, ’ .  .] ) 
VALIDATE  CONTEXT  (SC-EXPR,,  SC-EXPR, [, . . . I )  
VALIDATE  MEMBERSHIP (Member-tests) 

(Note:  SC-EXPR is discussed in a  previous  section and 
Member-tests is discussed in [ 151 .) 

Thus, examples of the validation statements for the 
fore-mentioned three categories are, respectively: 

I VALIDATE IN CONTEXT  iEMP.DIV = ‘RESEARCH’, EMP LOC = ‘SAN JOSE, 

2. VALIDATE MEMBERSHIP (FILEI.PART#  CONTAINED IN FILE2  (PART#) OR 

3.  VALIDATE (COUNT (NAME IN CITIZEN 

EMP.DEPT#>=KOI  AND  EMP.DEPT#<=K99): 

SAME  AS FILE2 (PART#) ) .  

C1TIZEN.INCOME < 1000 OR CITIZEN.TAX < 100 
OR CITIZEN.INCOME/CITIZEN.TAX < 10) = 0).  

Furthermore, validation can  be either stated  as a stand 
alone  statement  (as in the examples above),  or be at- 
tached  to a mapping specification. An example of the lat- 
ter is 

SELECT  (A,B, C FROM F) VALIDATE  (F.A + F.B 
= F.C) ; 

When  standing  alone, validity checking is done whenev- 
er  the relevant Form is included in any mapping. When 
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attached  to a mapping specification, validity checking is 
done only when  that  particular mapping specification is 
being carried out. 

Conclusion 
In this paper we have described a methodology  and 
model for  data  conversion. Unlike some previous works, 
the  approach  assumes  that  the  source and  target systems 
play an important role in the  conversion  process by 
transforming the  source  data into  sequential files to  be 
used as inputs to  the  conversion  system  and transform- 
ing the  conversion  system  output  into desirable  target 
formats.  Data  conversion is a complex process,  even 
when the  input and output  formats  are limited to  sequen- 
tial files. It is believed that  the  process  cannot  be  suc- 
cessful  without user participation. Thus,  the application 
of this  method requires  the  users  to  describe  the  data 
structures of the linearized  input  and output files and to 
specify the mappings between  the  source and  target 
data.  Two languages  were defined for this purpose: 
DEFINE for  data description  and CONVERT  for 
mapping specification;  both  languages are in the process 
of implementation. 

In defining any  language the  designers  are always 
faced with the problem of tradeoffs between complexity 
and limited capability. The goal is to  make  these lan- 
guages high level,  nonprocedural,  and  simple to learn 
and  use,  but with sufficient capability to handle the 
common  situations [27]. It is believed that  these lan- 
guages are indeed high level and nonprocedural by cur- 
rent  standards  and  can handle  most of the situations 
commonly encountered in data  conversion.  This belief is 
supported by the  tests performed on  several  real life 
examples. Further, although the languages are designed 
to work in a specific environment, (DEFINE for  se- 
quential files and CONVERT  for hierarchically struc- 
tured data in tabular  form), the model is general  and the 
example in the  paper  demonstrated how a network  struc- 
ture can  be decomposed into  simpler forms  acceptable in 
this  model. 

While the languages are relatively  complete, several 
problems  remain to be  solved. First, given the capability 
of a data  translation definition language like CON- 
VERT,  one  can write mapping specification in many 
ways  for  the same task.  It would be highly desirable if 
techniques  can  be developed so that  some optimization 
can  be done  on an arbitrary mapping specification so 
that  the translation process  can  be  made more efficient. 
Second,  one must  define  implementation  algorithms to 
effect data  conversion taking into account  the time  and 
resource  constraints.  Third,  techniques  to perform pro- 
gram  translation,  coupled to  data  conversion, must be 
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work has been  done  on  these  problems;  each of them 
requires much research.  Our  future effort is expected  to 
be directed towards  these  problems. 
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