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Abstract: Central  problems in the performance  evaluation of computer  systems  are  the description of the behavior of the  system  and 
characterization of the workload. One  approach to these  problems  comprises  the  interactive combination of data-analytic procedures 
with probability modeling. This  paper  describes  methods, both old and  new, for the statistical  analysis  of  non-stationary  univariate 
stochastic point processes  and  sequences of positive random variables. Such  processes  are frequently encountered in computer  systems. 
As an illustration of the methodology an analysis is given of the  stochastic point process of transactions initiated in a running data  base 
system.  On  the basis of the statistical  analysis,  a  non-homogeneous  Poisson process model for the transaction initiation process is postu- 
lated for periods of high system activity  and  found  to be an  adequate  characterization of the  data. For periods of lower system activity, 
the transaction initiation process has  a  complex structure, with more  clustering evident. Overall  models of this  type have application 
to  the validation of proposed data  base  subsystem models. 

Introduction 
Description of the  behavior of a  running system and 
characterization of the workload are central problems 
in the  performance evaluation of data  base  systems. 
These  are  systems in which there  are many users who can 
access, via remote terminals, a (typically  very large) 
data  base managed by a computer. Such a system should 
respond  to a query in a reasonably short time,  given the 
number of users  and  the  nature of the  user  environment. 
This must  be  accomplished as economically as possible, 
where the  factors  to  be considered  include direct  cus- 
tomer  (waiting)  costs  and  computer  system  resource 
utilization. This is a typical operations  research  situation 
in which we  are trying to allocate limited resources in an 
optimal  way  among  competing demands.  Because of the 
complexity of data  base  systems, detailed measurements 
of existing systems  are  needed in order to model and 
evaluate  them;  such  measurements  comprise  just  one 
aspect of performance evaluation,  which in its entirety 
would encompass  data collection,  analysis,  modeling, 
and  interpretation.  Ultimate goals of performance evalua- 
tion  include  tuning of existing systems  and prediction of 
the  performance of proposed  systems. 

This  paper  is  concerned with methods  for statistical 
analysis of series of events, which can  be applied to 
obtain  a  graphical and mathematical  description of the 
behavior of a  running data  base  system. Such a descrip- 
tion would be a useful starting  point for  studies aimed at 
workload characterization.  The  particular analysis of 
data given uses a  combination of statistical  data-analytic 
procedures  and probability modeling (cf. Lewis and 

Shedler [ 11). The specific results  reported  here  for  the 
analysis of a non-stationary  univariate series of events 
occurring in an IMS data  base  system  are intended  neither 
to  comprise in themselves a  description of the running 
IMS  system  nor necessarily to  be a sufficient basis for 
characterizing the workload of an  IMS  system.  Rather, 
the  results  are  to be  considered  illustrative of methods 
that may be useful  in such studies. 

In a data  base  system  the workload may be  taken to 
be a  collection of data  sequences identifiable at various 
levels of the  system; workload characterization com- 
prises the study of these  data  sequences (individually 
and  jointly) along with the  transformations among them. 
We are deliberately  vague here  about what is meant by 
data  sequence; it could be a sequence of events  occurr- 
ing in  time, i.e., a  point process,  or a sequence of obser- 
vations of a stochastic  process, i.e., a time series. For 
example, in an  IMS  data  base  system we can  consider, 
at  the  user level, sequences of transactions  and DL/I  
calls;  at  the logical level, sequences of target segments; 
at  the segments searched level, sequences of path seg- 
ments;  at  the paging level, sequences of path blocks, 
etc.  Associated with these identified basic  workload data 
sequences,  there may be  other  data  sequences of interest, 
e.g., the  subsequence of path block exceptions.  We may 
also be interested in external  measurements related to 
the workload data  sequences  such  as  response times for 
users. 

Given  the complexity of data  base  systems and the 
resulting  relative difficulty of carrying out meaningful 465 
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Figure 1 IMS system  configuration.  Conceptual  diagram of 
a computer system running IMS. 

performance  evaluations  and designs for  such  systems, 
the collection and analysis of measurement  data  from 
representative  systems  to identify and  characterize sig- 
nificant performance phenomena  seems  appropriate. 
The availability of such  measurements  presents  the  pos- 
sibility of obtaining thereby empirically valid, para- 
meterized  mathematical  models for workload data  se- 
quences.  However,  the  sheer volume of data  that can be 
collected from a running data  base  system (e.g., tens of 
thousands of transactions  per  day,  hundreds of thousands 
of D L / I  calls per  day, millions of path segments per 
day,  etc. j is a source of some difficulty. Such a volume 
of data  is not  only  costly to manipulate, it is difficult to 
comprehend.  In practice it appears  that if we wish to  do 
a detailed  analysis (and modeling) of any of the  several 
workload data  sequences mentioned above, it is nec- 
essary  to  select  “representative”  sequences  observed 
during (relatively)  short  periods of time. If useful  in- 
formation is to  be  obtained from the  data collection, 
analysis, and modeling (e.g., for  the  determination of 
pertinent  system  requirementsj,  it  is  important  to  be 
able  to  describe  the  system  context in which the  trans- 
action  workload phenomena  are  observed  and analyzed. 

In addition to models of the workload,  models of the 
system or  subsystem  structure are needed in perfor- 
mance  evaluation. The  authors feel that  stochastic 
models of the  type  obtained in this study  have application 
to the detailing of proposed  system models, i.e., filling 
in the fine structure of parts of the model. A second appli- 
cation  is  to  the “validation” of system models  in the 
sense of establishing their predictive  value. The  methods 
used for  the statistical  analysis of  data  from  the running 
system  can  also be  used to  analyze  the  output of simula- 
tions of proposed  subsystem models. Consistency of 
a process predicted by the  system model with the  cor- 
responding process  observed in the running system would 
constitute  evidence of the  predictive value of the model. 

466 Thus,  for example, the  results of the statistical  analysis 

of the  transaction initiation process  reported  here could 
be used in attempting to validate a stochastic model of 
the  IMS  DL/I  component  such  as  the queueing model 
developed by Lavenberg  and  Shedler [ 21. 

Description of the available data 
The analysis  given here, illustrating methods  for  the ex- 
amination of non-stationary series of events,  is of data 
obtained  from an  IMS  data management system.  The 
following is a brief outline of the  structure of IMS [3], 
which is a processing  program for  the implementation 
of large data  bases  shared in common by several appli- 
cations. The  IMS program executes  under  the operating 
system of the  computer  system  to  extend  the  data com- 
munication and  data  base management  capabilities of 
the  operating  system.  In  IMS,  users can access  the  data 
base  from  remote terminals by entering  messages called 
transactions. A particular transaction  uses,  and  thus 
uniquely identifies, an application  program which pro- 
cesses  the message (or transaction)  and  accesses  the 
data  base.  The  data management facility of IMS is called 
Data  Language/I  (DL/I).  The  two interfaces of an 
application  program with DL/I   are  a data  base  descrip- 
tion and a program linkage which  allows D L  / I to  process 
data  base  access  requests  that  arise during execution of 
an application  program. The  execution of an application 
program thus gives rise  to a sequence of calls to  the D L  / I 
component of IMS. 

A conceptual diagram of a computer  system running 
IMS is given in Fig. 1. As shown  there, a portion of mem- 
ory is devoted  to  the operating system.  The IMS pro- 
gram  occupies a portion of memory called the IMS con- 
trol  region.  Application  programs  reside in secondary 
storage in an application  program  library. For execution 
an application  program  must be loaded into  one of sev- 
eral (typically three  or  four) regions in memory called 
message  processing  regions. The  data  base  resides in sec- 
ondary storage,  and data  are  transferred  into memory for 
processing in response  to  transaction initiations. 

Data  on  the processing of transactions  have been ob- 
tained from a computer  system running IMS  for  produc- 
tion control  under  the  IBM operating system OS. Entry 
of data into the  system is on-line  and is governed by the 
occurrence of events on the production  line. The  epochs 
of time at which  individual D L  / I calls were completed 
(i.e., control  was  returned to the application program) 
have  been  recorded, along with  information sufficient to 
identify the  epochs of time at which  individual transac- 
tions were initiated. From  these time stamps  the  sequence 
of times between  transaction initiations were  derived. 
Most of the  results  presented in this paper  are  for a  time 
period of high system activity  referred to  as time period 
H. These  data consisted of 1999 transaction initiations 
over a period of time (in unspecified units) of to = 
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11936.6066. Much of the statistical  analysis  was done 
using the experimental SASE-IV program (Lewis, 
Katcher, and Weis [4])  for  analyzing  series of events. 
SASE-IV  has a maximum input of 1999 events; this ac- 
counts  for  the length of the period under study. This high 
system  activity period was  selected after an initial overall 
look at  the several days of data on transaction initiations 
which were  available. The analysis also used SASE-VI, 
an improved  version of SASE-IV,  APL implementations 
of parts of SASE-VI,  and  APL implementations of rate 
estimation procedures. 

Preliminary  analysis of transaction  initiation  process 

Prior considerations  and  assumptions 
In analyzing the  transaction initiation data,  there were  a 
number of prior assumptions  that could be made about 
the  data  to  serve  as a  starting  point for  the analysis. The 
purpose of the  data analysis is to confirm these assump- 
tions or  to point to suitable modifications. 

1 .  Since  the  data  are  taken  over a  whole day  (in  fact, 
six whole days), we expect a time-of-day effect as 
activity builds up  through the working day  and then 
declines during the evening. Thus, any kind of initial 
analysis  based on  an assumption of stationarity is 
inappropriate. 

2.  Since  the  data  consist of times of transaction initia- 
tions, so that  we  are dealing with  a  point process  or 
series of events,  the usual null model (which is de- 
lineated in a subsequent  section of this paper) is a 
nonhomogeneous  Poisson process (NHPP).  This 
could  be appropriate  here since the  transaction initia- 
tion process is a  superposition (Cox and  Lewis [ 5 ] ,  
Ch. 8;  Cinlar [6]) of inputs from a number of sources 
(users). 

3. Because  each user’s activity is likely to  consist of a 
(random) number of transactions  after initial sign-on, 
some  clustering in the  data might be expected.  An 
appropriate model here is the nonhomogeneous 
Poisson cluster  process  (Lewis  [7] ). In this process 
an initial primary (main)  event  generates a finite se- 
quence of secondary  (subsidiary)  events;  the  com- 
plete process is then  the superposition of the primary 
and secondary  events,  where  the main events  are 
assumed to be  generated by a  nonhomogeneous 
Poisson process. If enough initial events  are  generate4 
(high-activity ) so that  the number of active  secondary 
processes is large,  this process is hard to distinguish 
from  a  Poisson process. 

Starting  from these  assumptions,  the analysis of the 
data proceeded as follows: 

a.  A  very  rough, model-free procedure was  used to 
estimate  the  rate function for  the  transaction initia- 

tion process  over the  whole day,  the  rate function 
being the derivative of the  expected number of trans- 
actions in a time period (0, t].  This  rate would be 
constant  for a stationary  (homogeneous)  process. 

b. On the basis of this trend analysis, relatively homo- 
geneous high- and low-activity  periods  were selected, 
and an  attempt was made  to verify the  NHPP model 
or  the clustering  model, for  the  transaction initiation 
process. 

c. Based on this local analysis  and modeling of the  trans- 
action initiation process, more  formal  model-depen- 
dent estimation procedures  were applied to  the  trans- 
action rate function for  the several days. In later 
sections it will be seen  that  the Poisson  assumption 
is reasonably valid for high-activity periods,  clustering 
becomes  more  evident at low-activity  periods,  and 
there is a surprising amount of local inhomogeneity 
of an almost  oscillatory (cyclic) nature. It is this  last 
phenomenon that is perhaps  the most  interesting 
aspect of the analysis. 

Anulysis  ($transaction  initiation  counting  process 
Point  processes  can  be  analyzed either in terms of the 
intervals between  events, which is a stochastic  sequence 
(time  series),  or  the counting process  (the number of 
events in an interval (0, t ] )  which, as a  function o f t ,  is 
a continuous-parameter  stochastic  process.  Here 0 is 
some convenient fixed origin, the number of events in 
(0, t ]  is denoted by N,, and  the  expected value of N ,  is 

M ( t )  = E{N,}. ( 1 )  

Its  derivative, often called the  rate function or intensity 
function, is m ( t )  = d M ( t ) / d t  = h ( t ) ,  the notation h ( t )  
being generally  used for  the  rate function of a Poisson 
process.  (See  Cox and Lewis [5], Ch. 4, for  further 
definitions of point processes.) 

Note  that although the times of the transaction events 
were  available, for an initial analysis we used counts of 
events in successive unit time intervals,  i.e., A = 1. This 
constitutes a  sampling of the data; if the  data  were from 
a NHPP,  these  counts would be independent  variates 
with possibly different means (see  Section 4). Denote 
these  counts by nj, j = 1 ;  . ., n, where nj = N j  - N j - l  and 
N o  = 0. If these  counts  are summed to give counts in C 
contiguous  intervals,  they will still be  Poisson distributed. 
Such  a  summation can be considered as 

1 .  A crude smoothing of the  data  to obtain an  estimate 
and picture of the  rate function over  the  day.  Thus, 
since A = 1, 

5 
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geneous Poisson  count  process; since  39 X u:/i = 156 X I?: should,  under  the null hypothesis,  have a x:, distribu- 
tion with upper 99 percent point of 62.281, all the &y's 
are significantly large (i.e.,  greater than 62.28 I / 156 
= 0.3992) and either  the Poisson or homogeneity (within 
:roup) assumptions  are invalid. 

Comparing  the  sum of the within group  sample  var- 
iances &:, which is 42.1826, to  the between-group  var- 
iances  (or sample  variance of the X i ) ,  which has a value 
1.7126 we  get  an  F-ratio of 19.4878. The  F-ratio,  for- 
mally given by 

F = &:/ k ,  

Figure 2 Estimated  mean  number of transactions  initiated in has an F-distribution with '1 = ( rn  - '1 x = 39 x 12, 

averaging  counts in 4800 adjacent  unit  time  intervals.  This  very in Table 1 is highly significant at a 5 percent level or  at a 
a unit  time  interval for days 1, 2, and 3.  Estimates  obtained by u2= k -  1 = 11  degrees of freedom,  and  the value  19.4878 

severe  smoothing  takes  out local fluctuations  but  gives  a  picture 
of how  the  activity  varies  over  a full day. 1 percent level. We conclude  that  the  data  are inhomoge- 

neous, although departure from  a  Poisson  assumption 
has not  been  ruled out. 

the weights in the smoothing all have value 1 /C. This 
constant smoothing  function  must be used  with care; 
it can cause  spurious effects if the  rate is not changing 
linearly. 

2. A  coalescing of count  data  to  test  for homogeneity. 

The overall  picture in Fig. 2 is of an initial buildup in 
transaction  rate, a fairly constant  transaction  rate  for a 
period of time,  and  then a drop  to a lower  level. This 
picture is consistent  over  days;  the  drop in day 1 (around 
t = 165888) was due  to a period for which data  were 
not available. 

Plots of the smoothed counts using C = 4800  are  shown 
in  Fig. 2 for  three of the six days, and for  the  average of 
the smoothed counts  over all six days.  Formal  tests  for 
homogeneity are available for Poisson variates  (Cox  and 
Lewis [ 5 ] ,  Ch. 6) ,   or  else a one-way  analysis of variance 
can be  performed on  the coalesced data  after a square 
root transformation. The analysis of variance test is used 
because  the  counts  are large  enough to  be considered to 
be  normally distributed;  the  square root  transformation 
is used because although Poisson  counts with a large 
mean are approximately normally distributed (see  Table 
2.1  of [ 5 ] ,  p. 21 ), the mean and  the variance are  the 
same, and  this  violates  a  basic  assumption in the analysis 
of variance test.  The  square  root of a Poisson variate N 
plus a fourth, m, has mean approximately  equal 
to *, and  variance a, where p is the  Poisson mean 

The analysis of selected  time  periods reported below 
is for periods chosen  from  day 2. In  Table 1 we show in 
successive columns the number of counts  (transaction 
initiations) in successive  groups of forty 120-time-unit 
periods;  the mean number of counts in one time  unit (the 
rate function estimate plotted in Fig. 2)  for  day  2; X i  the 
average of forty  quantities x i j  where x i j  = {(number of 
counts in j t h  120-time-unit period in group i) + a};; 6: 
and ei, the within group  sample  variance  and standard 
deviation, respectively. 

First,  it  can  be  seen  that all of the variances u y  are 
larger  than the value 4 postulated on  the basis of a  homo- 

([51, P. 44). 

However,  even in the  two relatively  stable  periods, 
there is some  evidence  (large  values of &: in Table 1 
relative to $) of more  microscopic  inhomogeneity, and 
the analysis proceeded by examining  sections of data 
in these high- and  low-activity  periods in more  detail. 
The examination was of interest  per  se, but  was  also 
motivated by a  need for more  formal  statistical rate esti- 
mation procedures. 

Highly parametric global procedures  for  rate estima- 
tion are available at  present only for  NHPPs.  Details of 
the  procedure and the estimation are given in the next 
two  sections. Application to  the  data  for  the high and 
low system activity  periods  and for  the  entire  day is 
described in later sections. 

In addition,  non-parametric  local  smoothing proce- 
dures related to kernel-type  density estimates  (Rosen- 
blatt [SI)  are  used.  These  are also described later.  First 
we give properties of the  NHPP. 

Nonhomogeneous Poisson process  model 
The nonhomogeneous Poisson  process model for a 
series of events N ,  is discussed in a  statistical context 
by Cox and Lewis [ 5 ] ,  Ch. 3, Lewis [9],   Cox  [ lo],  
and  Brown [ 1 I ] .  A very  detailed  mathematical account 
is given in Gnedenko and  Kovalenko [ 121 ; a recent 
treatment is by Cinlar [ 131. Like the homogeneous 
Poisson process,  the nonhomogeneous  Poisson process 
arises  as a limit of the superposition of a large number 
of nonstationary  point processes  (cf., Cinlar [ 61).  The 
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Table 1 One-way  analysis of variance for counts.  Transaction initiation process for day 2. 
~ 

~ 

Counts  in  Meun  counts 
G roup 4800 unit  time  in  unit  time 

I intc,rvcrls interval 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

1034 
1742 
2455 
1877 
2841 
2925 
2446 

1910 
1012 

1671 
1988 
1880 

0.2 154 
0.3629 
0.5 115 
0.3910 
0.5919 
0.6094 
0.5096 
0.2108 
0.3979 
0.3483 
0.4 142 
0.3917 

assumptions underlying the nonhomogeneous or time- 
dependent Poisson process ( N  HPP)  are  the  same as 
those  for  the ordinary  Poisson process  except  that  the 
rate  parameter h is now considered to be  a continuous 
function of time h ( t ) .  One approach to  the  NHPP is 
via the incremental  probabilities in small intervals. Thus, 
for s, r 3 0, and  denoting by N (s: t )  the number of events 
in the  process in the interval ( t ,  t + SI, the assumptions 
for a NHPP with rate function h ( t )  are  that,  as s + 0, 

Pr{N(s; r )  = 0} = 1 - h ( t ) s  + o(s), 

Pr{N(s: r )  = 1 )  = h ( t ) s  + o(s), ( 2 )  

and that  the random variable N ( s ;  t )  is statistically in- 
dependent of the  number  and  position of events in (0, t ]  . 
As a consequence of Eq. (2) ,  Pr{ N (  s ;  t )  2 2) = o( s )  . 
The  survivor function for  the forward recurrence time in 
the  process,  the probability that  there  are no events in 
( t ,  t + s], Le., that N ( s ;  t )  = 0, is derived via first-order 
differential equations  to be 

R ( s ;  t )  = exp [-l+" * ( u ) d u ] .  

A more  general approach  to defining the NHPP starts 
with the function A(  r ) ,  which is assumed to be monotone 
non-decreasing  and continuous from the right; then  the 
number of events occurring in any  interval,  say ( t ,  t + SI, 
is assumed to  have a  Poisson  distribution  with parameter 

A ( t  + S )  - A ( t )  = h ( u ) d u ,  l+s 
i.e., for k = 0, 1, 2, .  . . 

4.5638 
6.5178 
7.6421 
6.61 08 
8.3752 
8.5412 
7.7840 
4.3684 
6.7616 
5.9692 
6.7364 
6.67 15 

X f i  = 80.5420 
XXi/12=6.7118 

u f , =  1.7126 
&:; = 1.3086 

5.6635 
1.6084 
3.5629 
3.8181 
1.4157 
0.6898 
1.0866 
6.8893 
2.5957 
6.8401 
4.9443 
3.0682 

= 42.1826 
Z&i/12=3.5152 B 

2.3798 
1.2682 
1.8876 
1.9540 
1.1898 
0.8305 
1.0424 
2.6248 
1.61 1 1  
2.6154 
2.2236 
1.7516 

Pr{N(s; t )  = k }  

- {exp - [ A ( t  + s) - A ( t ) ] } [ A ( t  + s) - A(t)]"' 
- 

k !  

Consequently A(  t )  is the  expected value  function M (  t )  , 
defined by Eq. ( 1 ) .  In addition,  the number of events 
in any finite set of non-overlapping  intervals are assumed 
to be  independent  random  variables. There  are  other 
equivalent  definitions,  and also minimal definitions; see 
Gnedenko and  Kovalenko [21] and Cinlar [ 131. 

The following theorem (cf. Cinlar [ 131 ) establishes 
that a  homogeneous  Poisson process of rate 1 can be 
obtained by transformation of the time  scale of an  NHPP, 
via the inverse of A(t).  This  result,  Theorem 1 ,  and the 
following Theorem 2 are  the  bases  for  procedures  de- 
scribed below for detrending the  data and  testing the 
goodness-of-fit of the NHPP model. 

Theorem 1 Let A ( t )  be  a  non-decreasing  right-con- 
tinuous  function of t 1 0. Then TI,  T, ,  . . ., are  the times- 
to-events in an NHPP with E{N,} = A ( t )  , if and  only 
if T ;  = A (  T I  ), Ti = A (  T , )  , . . . are  the times-to-events in 
a  homogeneous  Poisson process with rate 1. 

The  next  theorem establishes an  important  property 
of the NHPP which we use throughout the paper. 

Theorem 2 Assume we have  an NHPP observed  for a 
fixed  time (0, t o ] ,  in which N ,  = II events  occur at  times 
T I  < T ,  < . . . < T n  < to.  TAen conditional on having 
observed  n(>O)  events in the (0, t o ] ,  the Ti are dis- 
tributed as  the  order  statistics from  a sample with  distri- 
bution  function 
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Estimation of the NHPP rate function 

Parametric  model and rate estimation 
and when A(t)  is absolutely continuous, probability Following Cox and Lewis [ 5 ] ,  Ch. 3, and COX [ 101, 
density  function an exponential polynomial rate function  has  been as- 

sumed  for the  NHPP, i.e., h ( / )  of the  form 

Thus we see  that  (conditionally)  the transformation 
of the time  axis is exactly the  same  as  the probability - - < a ~ ' a l ; ~ . , C Y , < + ~  (3)  
integral transform which is used to transform a random 
variable X with known  distribution  function F ( X )  into 
a uniform random  variable on (0, 1 ), i.e., U = F ( X )  is 
uniform (0, 1 ). This transformation is the basis for non- 
parametric tests of distribution  functions such as the 
Kolmogorov-Smirnov test.  The analogy  explains why 
tests  for a  homogeneous  Poisson process (HPP)  are 
similar to  tests  for completely specified distributions ob- 
tained from  independent, identically distributed samples; 
the primary difference in the  two  procedures lies in the 
alternative hypotheses  that  arise  (see  Cox and Lewis 
[SI, Ch. 6 ) .  Specifically, if we test  that a random  sample 
X,, X,, . . ., X n  with unknown distribution  function F ( X )  
is from  a given distribution  function F , , ( X ) ,  then if 
F, , (X)  # F ( X ) ,  the variables U ,  = F(l(Xl), ..., U n  = 

F , , ( X n )  are i.i.d., but  not uniformly distributed.  However, 

This assumption is convenient  and constitutes no real 
restriction  because any continuous  rate function can be 
approximated  arbitrarily closely by  an exponential poly- 
nomial. The result  follows  from  results on ordinary poly- 
nomials by taking  logarithms; note  that h ( t )  1 0 for any 
values of a", a,,. . . ar. We now describe statistical  pro- 
cedures based on this model. Formal  tests  for  the  degree 
Y of an exponential polynomial rate function are dis- 
cussed in the following section. Here a procedure is out- 
lined for the maximum likelihood estimation of the co- 
efficients {am} of an exponential polynomial of fixed 
degree r. 

The times-to-events T ,  < T ,  . . . < Tn  in a fixed time 
period and the random  variable N ( t o )  = n have  a joint 
density  function (Cox and  Lewis [ 5 ] ,  Ch. 3 )  

if we test  (conditionally)  that n observed times-to-events 
T , ,  ' . ., T,, are from  a  N HPP with given integrated rate 

" .I 

function A(l ( t 1 ,  then 
I .  if the process is NHPP but A,,(t) is not  equal to  the 

which, on substituting the  rate function (41, becomes 

true integrated rate function A ( t ) ,  then Ti = A,( T I ) ,  
. . ., Ti = A,( T,) are i.i.d., but not uniform (0, t ,], 

f ( t , ,  . . ., tn; n )  = exp - 2 amsm [ m:" 

and 

2. if the  process is not NHPP, then even  ifA,(t) is equal 
- e x p ( i  a I t ) d / ] ,  (4) 

l=n 
to A ( t )  , the T i ,  i = 1, . . ., n are not  conditionally  a 
random  sample. 

The  above leads to very different considerations in 
the power of tests for NHPPs and completely  specified 
distributions,  even though the test statistics  are  the  same 
(see Lewis [ 141, for  greater  detail). It is difficult in test- 
ing for  NHPPs with procedures  based on  the  above 
theorems,  to  separate  out  the effects of departures from 
Poisson  assumptions and departures from assumptions 
as to  the form of A ( t ) .  However, since both HPPs and 
NHPPs  have independent count  increments,  tests  for 
the global Poisson  assumption are based on this property. 
In particular, the  spectrum of counts  (Cox and  Lewis 
[SI, Ch. 5 )  should  be flat after detrending. 

In the following section we discuss estimation of the 
NHPP rate function using parametric models,  both to 
describe in a global way the rate  function (as  opposed 
to  the local smoothing in Fig. 2 )  and to  detrend  the  data 
so as to examine the global Poisson assumption.  Non- 

470 parametric  rate estimation is also briefly discussed. 

where 

Thus  the log-likelihood function, log L,  the logarithm 
of the density at  the  observed values of the random vari- 
ables  considered  as  a  function of the r + 1 parameters, is 

r 

log L(ao,  a,;.., a,) = amsm 
m = 0 

It follows that  the  derivatives, known as  the  scores,  are 

k = 0 ,  l;.., r. ( 5 )  

The solutions { hm} to  the  system of Eqs. (9) ,  the  score 
vector when set  to  zero,  are  the maximum likelihood 
estimators of {a,,}, and can be  determined numerically 
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by Newton-Raphson iteration. The numerical procedure 
works well provided that  an initial vector sufficiently near 
the solution is known.  A two-step method for obtaining 
such an initial value has been  proposed by MacLean 
[ 151. His  procedure  consists of finding an  ordinary poly- 

nomial representation of the same degree  as A ( t )  having 
the  observed sums of powers { s m }  for its “moments”. 
An exponential polynomial approximation to this poly- 
nomial, obtained by taking  logarithms  and again fitting 
moments, serves  as  the initial value for the  Newton- 
Raphson iteration. This  MacLean  procedure has  been 
implemented in APL and used to  estimate coefficients 
{ b m } .  The  procedure  appears  to work well for polyno- 
mials up to degree 8. Estimates of the  covariance matrix 
of the maximum likelihood estimates {bm} are  obtained 
from the  second  order partial derivatives of the log- 
likelihood equation when evaluated at  the estimated 
parameter values. 

Once  the  appropriate  degree of the polynomial is ob- 
tained by the methods of the next section,  the  rate func- 
tion with the maximum likelihood estimates  for  the a’s 
can be plotted to obtain  a  picture of the  rate function. The 
procedures  are clearly  sensitive to  the NHPP model; 
for this reason, we next discuss  nonparametric kernel- 
type  estimates. 

Non-parametric  kernel-type  rate  estimates 
Theorem 2 ,  which relates  (conditionally)  the  rate  func- 
tion A ( t )  in an NHPP  to a  density  function in (0, t o ] ,  

suggests we could  use nonparametric probability  density 
function estimates  to  estimate  rate  functions,  at least 
in NHPPs.  The  procedure  chosen is the nonparametric 
kernel-type  density estimate introduced by Rosenblatt 
[ 81. Briefly, the procedure  to  estimate f( t )  from a  ran- 
dom  sample T , ,  T,, . . ., Tn  is as follows: 
Define 

where W ( u )  is a  bounded  non-negative  integrable weight 
function with J-”, W ( u ) d u  = 1, and b ( n )  is a  positive 
bandwidth  function  which  tends to  zero  as n += a, but 
is such  that o ( b ( n ) )  = 1 / n. Thus, we might have b ( n )  - 
n *, for example. 

Note  that  for a  given set of observations all estimates 
of this form  are  themselves density functions, Le., 

-~ 

2 0, /-;fn(u)du = 1, 

and since the Tj  are  random variables, f n ( t )  is a con- 
tinuous-parameter  stochastic  process, but clearly  non- 

stationary. Although  this type of density estimate  does 
not require  parametric  assumptions  to be made  about 
f ( t ) ,  the bandwidth  function and kernel W ( u )  must  be 
chosen.  In this paper we have already chosen W ( u )  
to be a  triangular  function and b ( n )  to be 1.25/&. 

The conditional structure of the  NHPP makes the 
estimation of the  rate function A ( t )  similar to  the non- 
parametric estimation of the density  function, but with 
two differences. First,  care must be  taken with  normaliza- 
tion of the  rate function estimate.  This is because  the 
procedure  above  estimates  the  rate normalized by divid- 
ing by A ( f o )  - A ( 0 )  and A ( t , )  - A ( 0 )  is unknown. For 
an NHPP this is the mean of a Poisson  variable  which 
is estimated by n ,  the  number of events in (0, to] .  We 
then  get,  as a rate function estimate, 

This will be modal about  the usual estimate of the  rate 
A in a homogeneous  Poisson process, which is estimated 
by i = n / t o .  The second  difference is that  when  the  den- 
sity function  estimation technique is applied to  rate  func- 
tion estimation,  there is no  asymptotic justification for 
the  procedure. 

Tests for the degree of the exponential polynomial 
rate function 

Theory 
The analysis of trends in an  NHPP, based on  the  assump- 
tion of an exponential  polynomial rate  function, is dis- 
cussed in Cox  and Lewis [ 5 ]  (Ch. 3 ) ,  and  Lewis [9]. 
In  the  latter  paper, formal tests  for  the linear  and qua- 
dratic  terms in the exponential  polynomial are  derived. 
We use here a direct  extension of these  methods  to yield 
tests  for higher degree  terms. 

There  are a number of possible hypotheses which can 
be tested when  considering the exponential  polynomial 
rate function 

1. Some given subsets of the r + 1 parameters  are  zero. 
Asymptotic  tests  for this  hypothesis are based on 
standard maximum likelihood arguments;  see Cox 
[ 101 and MacLean [ 151 for details.  Essentially the 
maximum values of the likelihood functions under 
the two hypotheses  are  compared;  the difference has 
(asymptotically) a x’ distribution under  the null hy- 
pothesis  with  known degrees of freedom. The problem 
with this  test is phenomenological; one seldom  knows 
a  priori  which subset  to  test. 

2. It is possible to  ask which subset of the r + 1 para- 
meters gives the  best  (most  parsimonious) fit to  the 471 
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Figure 3 Cumulative number of transactions initiated for 
time  period H (high-activity) . There is enough departure  from 
linearity to suggest  inhomogeneity in the  data.  The  test  for a 
homogeneous  Poisson process using the Kolmogorov-Smirnov 
statistic confirms the  departure;  the value 2.389 of the Kolmo- 
gorov-Smirnov statistic  is highly significant. 

data.  This  has been  worked out  for  ordinary, normal 
theory linear  polynomial  regression (Daniel and 
Wood [ 161, but not for  the NHPP case. 

3. An alternative is to  test  for  successive inclusion of 
higher order polynomial terms.  This is reasonable if 
the exponential polynomial is being  used in a  purely 
descriptive way, and  the statistical theory is known. 
Strictly, we test  that,  for some k 3 1, a, + 0,  a ,  + 0,  
. . ., ak f 0,  ak+, = 0, ak+, = 0; ' .. (The analogous  nor- 
mal time series  case is considered in great detail in 
Anderson [ 171, Ch. 2 . )  A possible drawback would 
occur  where  there is a  cyclic  effect, e.g.. 

h ( t )  = exp[ao + k sin(w,t + e)] .  
The  series  expansion of sin(wot + e) gives  a  poly- 
nomial with  alternating zero  and  nonzero coefficients 
for  powers of t if the  phase angle is appropriate.  This, 
in turn, is tied into  the starting  point of observations. 

We develop  the  procedure now for  case 3;  we  have 
472 used it in an  ad  hoc  manner by testing until two  or  more 

successive  zero coefficients occur. For an N H P P  with 
exponential  polynomial rate function 

the likelihood of n events in the period (0, t o ]  at times 
r ,  < r, < . . . < t ,  is, from Eq. (4), 

where 

s m  = t y ,  m = 0,  1;. ., r .  
n 

i = l  

The  observations { t i }  enter  Eq.  (6) only through 
( n ,  Sti, St:, . . ., S t ; ) ,  and it can  be  shown from the ex- 
ponential  form of Eq.  (6)  that  these  are a set of suffi- 
cient statistics  for  the  set of parameters ao, a I ,  a%; . ., a,. 
There is,  however, even more structure and a formal test 
for  the rth  degree term in the exponential  polynomial rate 
function  can  be based  on  the  idea  that  for any  given r 
and a,., (n ,  St,,.  . ., St:-')  are a set of sufficient statistics 
for ao,  a,, . . ., a,.-,, i.e., the distribution of xtr, given n, 
Xti ,  St:-', is independent of ao, . . ., a,-, for all values of 
a,. This is convenient  since we want  to  test a,  = 0 
against a, # 0 regardless bf the values of ao, . . ., a,-,, 
i.e.,  they are nuisance parameters. 

Denoting t i l to  by ui and S u l l n  by cl,  a test  for a? is 
then based on  the  statistic c, and  its null hypothesis 
conditional  distribution, given n, c,, . . ., c,-,. This  dis- 
tribution is not known for small r, (equivalently small n ) .  
However, asymptotically c , ,   c 2 , .  . ., and c, will be jointly 
normally distributed with mean  value  and  variance that 
can  be obtained from  properties of the uniform  distribu- 
tion.  We assume a uniform (0, to ]  distribution for  the ti  
since ( n ,  Zti ,  . . ., Xt:") are a set of sufficient statistics 
for cyo, a,,. . ., so that assuming these  parameters  to 
have value zero  does not affect the final result  but does 
simplify computations.  Then, also  asymptotically, the 
conditional  distribution of c,, given n, c,,. . ., c,-, is nor- 
mally distributed  with mean pr= E(c,(c,-,, c,-,; . ., c,, 1 2 )  

and  variance ur2 = Var(c,/c,-,, . . ., c,, n )  obtainable 
from normal theory. 

The normal theory  results  are  that  to  test  the null 
hypothesis H , :  &,. = 0, a,+, = 0,. . ., but ao,. . ., a,-, have 
any value,  compute  the  statistic 

and test  as a  mean 0, variance 1  normal deviate, i.e., 
accept Ha at,  say, a 5% level if /U,I i 1.96. Expressions 
for p, and u, have been derived by techniques of sym- 

P. A. W. LEWIS AND G .  S. SHEDLER IBM. J. RES. DEVELOP. 



bolic mathematics and the matrix operations  above. 
Details of the derivation will be reported  elsewhere. 
The  case r = 1 is discussed in detail in Cox and  Lewis 
[ 5 ] ,  Ch. 3. 

Applications  to high activity ( H )  data 
We discuss now the application of the parametric rate 
function  testing scheme of the previous subsection and 
the  rate estimation procedures of the preceding  section 
to a  more  microscopic  examination of the  transaction 
initiation process during  a period of high system activity 
for day 2. This high-activity period  is, in Fig. 2, from 
approximately r = 73  728  to t = 85  661. We also  use the 
kernel-type  density estimate described in the  second 
part of the preceding section. We do this  most  particularly 
because the  NHPP assumption has,  at this  point, not 
been  validated. Overall  characteristics of the sample are 
shown in Table 2. (The sample  moments given there 
should be used only as a  guide;  they are meaningless if 
the  data  are  inhomogeneous.) 

The first question to be addressed is whether  the  data 
can, in this relatively short high-activity period,  be  con- 
sidered to be  approximately  homogeneous or  stationary. 

Figure 3  shows the cumulative  number of transactions 
initiated during this  time  period. The  departure from 
linearity is fairly gross; assuming  a  homogeneous  Pois- 
son process,  the Kolmogorov-Smirnov measure of the 
departure from linearity is 

where 

This is the uniform conditional test in Cox and  Lewis 
[ 5 ] ,  Ch. 6; conditional on  the  observed value N,,, = 

1999 of events in (0 ,  to] it has the usual Kolmogorov- 
Smirnov  statistic  distribution  with upper 1 % point 1.628; 
the  observed value is 2.389, which is an  event of very 
small probability under the Poisson assumption. 

These probabilities  could be grossly in error if the 
data  were more  dispersed  than under  the Poisson as- 
sumption, where by dispersion we mean either  that  the 
standard  deviation of the intervals  between events  or  the 
counts of events in long intervals is larger  than would 
be expected  under a Poisson assumption.  (The  two  are 
not independent.)  These dispersions are usually mea- 
sured by first normalizing to give the random  variable Z 
mean one; for  intervals,  the  result is the coefficient of 
variation, i.e., 

C ( Z )  = 
S.D. ( Z )  u(Z) 

E(Z) -m='(&)' - 

Table 2 Sample characteristics of times-between-events. 
Transaction initiation process for  time period H. 

n number of transactions initiated 1999 

X estimated mean time  between trans- 5.9698 
action initiations 

C ( X )  estimated coefficient of variation 
of times  between  transaction 
initiations 1.0533 

times  between transaction 
initiations 6.7399 

times  between transaction 
initiations 107.7282 

initiations 133.6488 

initiations 0.0152 

- t" period of observation 11936.6066 

9 , ( X )  estimated coefficient of skewness of 

i . ,(X) estimated coefficient of kurtosis of 

X,,, maximum time  between  transaction 

Xmi, minimum time  between  transaction 

Table 3 Sample characteristics of times-between-events. 
Transaction initiation process  for ten sections of time period H .  

Section 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean 
S.D. mean 

Sample S.D. of Coeff. of Coeff. of 

m g n  mean variation skewness 
x &(x, C ( X )  i , ( X )  

7.4645 0.5561 0.8430 2.3096 
6.0584 0.3577 0.8328 2.2653 
5.4878 0.5414 1.3916 7.7614 
6.1348 0.3822 0.8789 1.1901 
5.061 1 0.2854 0.7954 2.9991 
6.8133 0.4689 0.9708 2.2651 
7.5992 0.7779 1.4440 8.0075 
6.2456 0.3831 0.8652 1.8087 
4.2847 0.2425 0.7984 1.6654 
4.5566 0.2513 0.7750 1.7533 

5.9706 0.4137 0.9598 3.2026 
0.3591 0.0506 0.0783 0.7952 

Coeff. of 
kurtosis 
?, (X)  

1 1.4548 
12. I494 
84.6585 
3.9449 

18.6264 
9.6977 

89.8598 
7.1 174 
6.6807 
8.1512 

25.2341 
10.4197 

To  examine  the dispersion of the intervals in the  data 
without  confounding it with the  apparent inhomogeneity, 
the 1999  intervals  were  divided  into  ten  non-overlapping 
sections.  The sample characteristics  for  each interval 
are  shown in Table 3. The  means within each group  could 
be used to  test  for inhomogeneity,  but more importantly 
the coefficients of variation, skewness and kurtosis, 
which for exponentially  distributed  intervals have values 
1, 2,  and  9,  respectively, give us rough measures of de- 
parture  that  are sufficient to validate the  tests  for  trend. 

Table 3  gives no indication that  the sample character- 
istics of the intervals of the  process  depart from an ex- 
ponential  distribution (although  there may be correlation 
between  intervals). Values for  the sample coefficients 
of variation are all around unity,  as is the sample  co- 473 
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n 
efficient of variation for  the whole set of data  as given 
in Table 2 .  We therefore proceed to  use  techniques based 
on  the  NHPP model to  examine  the trend in more detail; 
further  tests of the Poisson assumption  for this  section 
of data  are given in the  next  section. 

Table 4 gives successive  test  statistic values for  the 
tests  for null parameters in the exponential polynomial 
model of Eq. ( 3 ) ,  

I h ( t )  = exp a,tm . 
(m:o 

This  procedure  has been described earlier, and  as re- 
marked there, is used fairly informally. A  formal  ap- 
plication would suggest  stopping at r = 2 and  accepting 
a log-linear model 

h ( t )  = exp(a, + a,t) ,  

but the  test  statistic  for a3, U ,  = 5.3138 is significantly 
large, and  the  tests  have been continued up to r = 9. 
For r = 7, 8, 9, the  test  statistics  are all small, well within 
the 5% limits of k1.96. 

Table 4 also gives the values of the log-likelihood func- 
Figure 4 Estimate f i ( t ;  of NHPP rate function using ex- tion evaluated  at  the maximum likelihood estimates.  The 
ponential polynomial (degree 6) of transaction initiation pro- log-likelihood must increase as parameters are 
cess  for time  period  H  (high-activity) . 

added;  the difference,  when  suitably  normalized, is used 

z 0.12 I I I I I 
0 2000 4000 6000 8000 10000 12000 

time t 

Table 4 Values of maximum log-likelihood and  test  statistic 
in NHPP exponential  polynomial rate function for times be- 
tween transaction initiations for time  period H. 

Degree of Maximum Absolute Test 
polynomial log-likelihood difference statistic 

( r )  (max log. L) (6) ( U J  
- 

1 -5563.8 3.8387 
2 -5562.8 1 .o 1.5727 
3 -5549.4 13.4 5.3138 
4 -5548.9 0.5 -0.4437 
5 -5539.9 10.0 -4.2081 
6 -5537.0 2.9  -2.6  188 
7 -5536.9 0.1 0.0188 
8 -5536.8 0.1 0.1211 
9 -5536.8 0.0 0.2038 

Table 5 Estimated  values of the coefficients {Gym! in NHPP 
exponential  polynomial rate function (degree r = 6) for times 
between  transaction initiations for time  period H. 

m 
%I &,t," 

0 -2.1381 
1 3.1832 X 

-2.1381 
3.7996 

2 -2.2607 X IO" -32.2109 
3 1.0211 x 10"O 173.6660 
4 -2.1286 X -432.1270 
5 1.9331 X 10"' 468.4494 
6 -6.2664 X -181.2609 

474 

to  test  (asymptotically) for  inclusion or exclusion of 
parameters  (see  MacLean [ 151 or  Cox  [lo]) ,  and is 
known  asymptotically to  have a x' distribution. The 
absolute differences 6, given in column three of Table 4, 
are clearly correlated with values of the  test  statistic 
U,,  e.g.,  the large jump of 13.4 when including as in the 
likelihood goes  with a large  value of U3.  

The  results of both  the U ,  statistic and the likelihood 
function  values  suggest that  an exponential  polynomial 
of degree 6 will  fit the  data  very well. The maximum like- 
lihood estimates of the  parameters and  normalized  values 
are given in Table 5. In computing these  estimates in an 
APL program using MacLean's starting procedure, it is 
necessary to  use normalized  time t / t ,  = u and normal- 
ized parameters ah = a,?: to avoid scale  problems. 

The resulting estimated  rate function i(?; e) is plotted 
for  the high-activity period in Fig. 4. The  data give an 
intimation of a growth plus cyclic effect of fairly long 
period. A model for this  could  be 

h ( t )  = exp[a, + a,t + a,sin(o,t)]; 

this equation is linear in the  parameters if oo is fixed and 
known  (e.g.,  time of day  effect).  Moreover if the  Taylor 
series  expansion  for  the sine  function is used,  one  has 
an exponential  polynomial  with even index parameters 
(beyond  zero)  equal  to  zero, i.e., a2 = a4 = as =. * . = 0. 
This is the  reason why the  test  for  the  order of the ex- 
ponential  polynomial  indicated that we should have 
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Figure 5 Estimate f ( t ;  n, to) of the  rate function of the  trans- 
action initiation process  for time period H (high-activity) using 
a kernel-type  density estimator.  Sample size n = 1999, band- 
width h ( n )  = 1.25/n'. Triangular  window. 

Figure 6 Estimate of the rate function of a  homogeneous  Pois- 
son process of rate n/t,. The  estimator is the  same as in Fig. 5. 
The  greater dispersion In Fig. 5 is due to departures from the 
Poisson process, most  probably  inhomogeneity. 

stopped  at r = 2 ,  and then gave an indication that a3 was 
non-zero.  Cyclic effects are  more easily handled via 
spectral methods; we return  to this in the final section. 

Another way to examine the trend is to use the kernel- 
type local smoothing techniques. Although these  have 
broader applicability than the  particular global fitting 
under  an  NHPP  assumption, they suffer as in all non- 
parametric  density  estimation (spectra,  rate  functions, 
probability density functions, intensity functions) from 
the need to  choose a  suitable  kernel and bandwidth. In 
practice, it  is usually reasonable  to  take a few different 
bandwidths and, by eye,  judge when  a  balance between 
small variability and small bias is achieved. 

A kernel-type rate function estimate i ( t ;  n, to)  = n f n ( t )  
with bandwidth bn = 1.25,fni (chosen in the  above  way) 
is shown in Fig. 5. It again shows possible  oscillatory 
behavior in the  data,  or  greater dispersion that  we would 
expect  under  an HPP assumption. Confidence  bands for 

this type of estimate  are available  (Bickel  and Rosen- 
blatt [ 181, Lewis et al. [ 191 ), but we have preferred to 
give, in Fig. 6, an identical smoothing of a  simulated 
homogeneous  Poisson process of rate h: = n / t o .  Com- 
parison of Figs. 5 and 6 graphically illustrates that  the 
data  are not HPP.  The lack of gross departures from 
Poisson-type characteristics  for  the interval structure 
was discussed above;  over-dispersion,  rather than  a 
trend, could give the large fluctuations in the  rate  es- 
timate. 

In Fig. 5 there is a large peak at  about f = 3000; we 
have examined the  data for any obvious  anomalies at this 
point  (e.g.,  very  regular intervals) but have found  none. 
In Fig. 7 we have overlaid the estimated  integrated rate 
function i ( t ;  6 )  (exponential polynomial degree 6 )  on 
the empirical estimate of the integrated rate function 
which is just  the cumulative  number of events in (0, t] 
as  a  function o f t .  
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Figure 7 Parametric  and empirical estimates of the integrated 
rate function for  the period H (high-activity). Solid curve in 
the NHPP estimate A ( t ;  4) using exponential polynomial 
(degree 6 ) .  Dotted  curve is the cumulative number of events 
for  time  period H. 

Figure 8 Parametric  and empirical estimates of the integrated 
rate function for time period L (low  activity). Solid curve is the 
NHPP estimate A ( t ;  4) using exponential polynomial (degree 
8 ) .  Dotted  curve is the cumulative number of events for time 
period L. 
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Table 6 Sample characteristics of times-between-events. 
transaction initiation process  for time period L. 

n number of transactions initiated 

X 
period of observation 
estimated  mean  time between trans- 

action  initiations 
c ( X )  estimated coefficient of variation of 

times  between transaction 
initiations 

times  between transaction 
initiations 

times between  transaction 
initiations 

initiations 

initiations 

- t" 

+ , ( X )  estimated coefficient of skewness of 

+,(X) estimated coefficient of kurtosis of 

X,,, maximum  time  between  transaction 

Xmin minimum time  between transaction 

1258 
13819.5193 

10.9809 

1.6563 

3.7524 

18.9686 

145.424 1 

0.0263 

Applications  to low-activity ( L )  data 
We  now give, in abbreviated form,  an analysis of low- 
activity (L)  data, which is similar to  that given for high- 
activity (H) data in the preceding  section. The low- 
activity data  are  for  the period  beyond t = 145 152 in 
Fig. 2; the  data  are  for a  time period of approximately 
1.15 times as long as  for  the high-activity (H) data, and 
only  1258 events  (transaction initiations) occur. Overall 
characteristics of the sample are  shown in Table 6. 

An immediate observation from Table 6 is that  the 
coefficient of variation of the intervals is high relative 
to  the value one  for  an exponentially  distributed  random 
variable. To examine  this further, five sections of the 
data  were  taken and the interval characteristics which 
were computed are given in Table 7. Each  section of data 
contained 25 1 observations.  It is fairly apparent  that  the 
means are decreasing (rate is increasing) over  the five 
sections,  the  successive differences, on  the basis of the 
estimated standard deviations of the mean estimates, 
being about  three  standard deviations. However, all 
the coefficients of variation, coefficients of skewness, 
and kurtosis are larger  than the  corresponding values for 
a Poisson  process. 

The first conclusion  from the  above analysis is that 
parametric detrending for  these low-activity data must 
be done with care; we return in the  next section to con- 
sider details of the  structure of the low-activity process, 
but  because  the intervals are  more dispersed than  for a 
Poisson process,  there is consistency with a cluster  pro- 
cess hypothesis (Lewis [7], Vere-Jones [20] ). Note, 
too,  that a cluster  process will look  more and  more like 
a Poisson  process  as activity increases and  this is con- 
sistent with the finding that  the high-activity data  are 
approximately Poisson. 
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Table 7 Sample  characteristics of times-between-events. 
Transaction initiation process for five sections of time period L. 

Sample S.D. of Coeff. of Coeff. of Coeff. of 
Section m E n  mean  variation  skewness  kurtosis 

x &(X) C ( X )  ? , ( X )  ?,(X) 

1 18.4683 1.6760 1.4378 2.2573 7.9515 
2 12.5333 1.2289 1.5534 3.5112 16.6713 
3 9.2178 0.9318 1.6015 5.0123 32.5160 
4 8.2978 0.9430 1.8005 4.2290 23.2152 
5 6.2124 0.3806 0.9706 3.7494 23.7669 

Mean 10.9459 1.0321 1.4728 3.7519 20.8242 
S.D. mean 2.1390 0.2116 0.1386 0.4532 4.0867 

Table 8 Values of maximum log-likelihood and  test  statistic 
in NHPP exponential polynomial rate function for times be- 
tween transaction initiations for time  period L. 

Degree of Maximum Absolute Test 
polynomial log-likelihood difference statistic 

( r) ( max log L )  (6) (UT) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-4203.7 
-4203.6 
-4200.4 
-4199.2 
-4191.0 
-4190.2 
-4187.4 
-4174.4 
- 
- 

0.1 
3.2 
1.2 
8.2 
0.8 
2.8 

13.0 
- 
- 

1 1.6960 
1.203 1 

-2.4203 
0.8175 

-3.6703 
0.4564 

-2.3417 
-5.0208 
-5.9505 

2.7145 

Returning to  the  trend analysis, we show in Fig.  8 the 
cumulative  number of events in (0, t ]  as a function of t ,  
which is a  nonparametric  estimate of the integrated rate 
function (dotted  curve).  It is by no means  linear,  and the 
Kolmogorov-Smirnov test  statistic  (see Eqs. (7) and 
(8 )  has  value  6.048. This, we surmise, is significantly 
large even if the Poisson  hypothesis were  not  true. 

In  Table 8 we give the  successive  test  statistics U ,  for 
successively  more  complicated  exponential  polynomial 
rate functions. There is a  very definite overall increase 
in the  rate,  as measured by U ,  = 1 1.696, and again a 
phenomenon  where U,,  U4  and U ,  are not significant. 
However, it can  also be seen  that  the  tests  are significant 
out  to Y = 10; it is not  possible, even if it were  desirable, 
to carry out  the  computations  any  further.  The maximum 
log-likelihoods are  also given in Table 8. Since  the  data 
are  non-Poisson,  the likelihoods  must  be interpreted very 
carefully. It is conceivable that using a likelihood based 
on a Poisson  process would force  the  rate estimation 
procedure  to fit the irregularity due  to  overdispersion by 
added  local  wrinkles in the  rate  function.  It is, in fact, 

0.22 r, .* 
0.20 - .’ 
0.18 - .*  . . . .  
0.16 - . .  

I time t 

Figure 9 Estimates of the  rate function for time period L (low- 
activity). Solid curve is the NHPP estimate h ( t ;  p )  using ex- 
ponential polynomial (degree 8) .  Dotted  curve is the  estimate 
h ( t ;  n ,  to)  using a  kernel-type  density estimator. Sample  size 
n = 1258, band-width b(n)  = 1.25/n’. Triangular  window. 

always difficult to discriminate between inhomogeneity 
and  over-dispersion,  but it is almost certain  that it is 
the over-dispersion  which  gives  rise to  the high degree 
of the fitted polynomial for  these  data. 

With the  above qualifiers in mind, we have fitted an 
exponential  polynomial of degree 8 to  the  data.  Degree 8 
was chosen  because of computational limitations. The 
integrated rate function A( 1;  4) is shown  overlaid on  the 
non-parametric estimate in Fig. 8;  the eighth degree ex- 
ponential polynomial rate function i( t ;  &) with estimated 
parameters is shown in Fig. 9 (solid curve). Again the 
outstanding feature is the cyclic nature of the  rate,  super- 
posed on a generally  increasing rate. 

The kernel-type estimator i ( t ;  n ,  t o )  of the  rate  func- 
tion is also  shown in Fig.  9 (dotted  curve); it is clear in 
comparing it to  the exponential polynomial rate function 
estimate  that  the  procedure using the NHPP assumption 
works well despite  the  apparent  departures  from a  Pois- 
son  process; if anything, there is a fairly clear validation 
of the  results in Table 8 that  an exponential polynomial 
rate function of degree higher than 8 is needed. 
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Figure 10 Estimates of the  rate  function of transaction  initia- 
tion  process  for  day 2. Solid  curve is a global  estimate  based  on 
an  exponential  polynomial  of  degree 9. Dotted  curve is local 
estimate obtained as in Fig. 2. The high-activity ( H )  and low- 
activity (L )  time  periods are marked on  the  flgure. 

Table 9 Estimated  values of the  coefficients {hm}  in NHPP 
exponential  polynomial  rate function (degree r = 8) for times 
between  transaction  initiations for time  period L. 

-2.4784 
5.7575 X 

-2.4040 X 
1.6908 X 

-5.1474 X IO-'" 
8.2145 X 1 0 " ~  
7.1769 X 
3.2524 x 

-5.9823 X IO-"" 

-2.4784 
7.9566 

-459. I064 
4462.4093 

-1 8774.5509 
41404.4332 

-4999 1.0659 
3 1307.4980 
-7958.1 157 

It is also of interest to  note  that  the estimated para- 
meters &,. with even index r are negative (Table 9) ,  a 
pattern similar to  that for the high-activity data shown in 
Table 5 ,  where &,,, &2, h4 and &6 are negative, the remain- 
ing estimated hrn being positive. This is again illustrative 
of the cyclic effect in the  data.  It is difficult to  compare 
the magnitude of the  estimates in the two  periods since, 
if there were  a  cycle in the  data,  the relative  phase  at the 
beginning of the period of observations would influence 
the  parameter values. 

Applicutions to complete duys dmta 
Recall that a very rough smoothing  produced the 
smoothed estimate of the  rate of transaction initiations 

478 given in Fig. 2 .  It is of interest  to apply  the global smooth- 

ing based on an NHPP assumption  and an exponential 
polynomial rate function to  the  complete  days  data,  even 
though they are not  Poisson  at  low-activity, so as to  have 
a formal, easily implemented  procedure  for  this type of 
data  that  does not  involve a choice of smoothing  func- 
tions  and  bandwidths. 

Over  the whole day, 25,076 transaction initiations 
were observed; details of the testing for  the  degree of 
the exponential polynomial, and the values of the esti- 
mated parameters,  are not tabulated here. Briefly, the 
tests up to r = I O ,  except  for r = 2 ,  indicate that  the para- 
meters  are non-zero. Computation of the moments for 
the U ,  only up to r = 10 imposes  a limitation on the fit; 
more  importantly,  estimation of parameters in an ex- 
ponential polynomial for  an entire  day's data is not  fea- 
sible for degree greater than 9. Thus in Fig. 10 we  have 
overlaid on the  rate  estimate  for day 2 data (given in 
Fig. 2 )  an exponential polynomial of degree 9. The agree- 
ment  between the  two  estimates is good. 

We would expect  that as the degree of the polynomial 
went up,  the local fluctuations  for the high- and low- 
activity  sections would appear.  The computational  prob- 
lems,  however, are  horrendous; it would be simpler to 
connect up polynomial rate  function estimates within 
smaller,  contiguous sections.  This has not been pursued; 
in particular, it  is not clear  that  the polynomials would 
connect smoothly. 

The overall  conclusion of this  section is that  the  data 
are grossly  nonhomogeneous;  possible reasons will be 
discussed in a subsequent section. 

Tests of fit of the NHPP 
In the earlier  discussion, it was noted  that hv trans- 
forming the  observations in an NHPP with known rate 
function so that  the times-to-events  become Ti = A (  T I ) ,  
7'; = A (  T 2 ) ,  . . ., the transformed process is a homo- 
geneous  Poisson process with unit rate  function. More- 
over, by conditioning on the  number of events in (0 ,  to] 
or (0 ,  A ( t , ) ] ,  the problem of testing for an NHPP can 
be reduced to testing, for  some  alternatives,  that  the 
times-to-events are  order  statistics from a uniform dis- 
tribution. Other  tests  are given in Cox and Lewis [ 5 ] ,  
Ch. 6. The transformation is shown in Fig. 1 1 .  

Testing for an NHPP with unknown rate function is 
more difficult. The analogous  problem in regression 
analysis is to  test  the usual assumption  that  the residuals 
ci in an additive model 

are independent  normal random variables with mean 
zero  and  constant variance (T'. The problem is that  after 
estimating the  parametric mean value  function, the resid- 
uals ci = Yi  - g(  i; e) are no longer  independent and nor- 
mally distributed. (e.g.,  see Daniel  and Wood [ 161). 
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An analogous procedure suggested by Lewis [2 I], 
using Theorem I ,  is to  estimate the parameters in the 
parametric  rate function A([;  g), which we denote by 
A ( t ;  &) or i ( r ) ,  via maximum likelihood and  then to 
detrend  the  process by transforming the  process  to  ob- 
tain T ~ = ~ ( T , ; ~ ) , T ~ = A ( T , ; & ) ; . ~ W e w o u l d e x p e c t  
the  departures  from a  homogeneous process  to  be small 
if the number of observations is large and  the  number of 
parameters small, and, of course, if the completely  speci- 
fied NHPP is correct. 

Very little is known  about this  procedure.  Note, how- 
ever,  that if the uniform conditional test is used with 
(conditional) Kolmogorov-Smirnov  statistics, the  prob- 
lem is that of Kolmogorov-Smirnov tests of fit after para- 
meter estimation. Lilliefors [22, 231 has investigated 
this for exponential and normal  random  variables: as 
expected,  the estimated  distribution  function  (integrated 
rate  function) is, on  average,  closer  to  the empirical dis- 
tribution  function  (empirical  integrated rate  function) 
than without  parameter estimation. More  recent work on 
Kolmogorov-Smirnov tests with estimated parameters 
is not yet  developed for our purposes.  Tests  for a  homo- 
geneous Poisson process based on  spectra  (Cox  and 
Lewis [ 5 ] ,  Ch. 6)  should be less  sensitive to  parameter 
estimation. 

We now apply these methods to  the low- and high- 
activity  periods in an informal manner, relying more on 
properties of the  intervals and the  count  spectra than 
on  the  rate function. 

High-activity  data:  test for NHPP 
The following discussion of the validity of, or departures 
from,  the NHPP model for  the high-activity data is based, 
after transformation of the  data,  on  the methodology in 
Cox  and Lewis [ S I ,  which is implemented in the  SASE- 
IV program.  It is highly technical;  our discussion is 
abbreviated and can be  skipped by the  reader  interested 
primarily in the  results of the  data  analysis. Briefly, the 
NHPP is found using the  detrending technique to  be 
approximately correct. Deviations occur  because of an 
apparent inhibition effect that results in fewer  very short 
intervals  than would occur  under  the NHPP assumption. 

To  proceed with the analysis of the  detrended high- 
activity data, in Table 10 we given results of several 
tests  for  dependence of intervals in the  process.  The 
normalized,  estimated first serial correlation coefficient 
(n - l ) ib ,  has a  value -2.5532, higher than  the 1% level 
of  the normal  distribution, while the  tests  for indepen- 
dence  based  on  the cumulated  periodogram (raw inter- 
val spectral density estimate) using the Kolmogorov- 
Smirnov statistic Oniz and the Anderson-Darling statistic 

(Cox and Lewis  [5],  Ch. 6)  are  just significant at 
a 1% level. 

SEPTEMBER 1976 

1 Time-to-event (NHPP) 

Figure 11 Transformation of the time scale for NHPP having 
integrated  rate  function A ( t ) .  The Ti are  the  times-to-events in 
the NHPP; the TI are  the  times-to-events in a homogeneous 
Poisson  process of rate 1. 

Table 10 Tests for  dependence on serial  number and depen- 
dence between intervals. Detrended (NHPP exponential poly- 
nomial rate function of degree 6) transaction initiation process 
for time period H. 

n number of transactions initiated 1999 
P I  estimated  serial  correlation 

coefficient of lag 1 for  times 
between transaction initiations -0.05762 

( n -  l )+& -2.5532 

*n,z Kolmogorov-Smirnov statistic* 1.4897 
w:,z Anderson-Darling  statistic? 3.994 1 

Tests for  serial  independence based 
on cumulated  periodogram -. 

*Upper I%point is 1.518 
Wpper 1 %  point is  3.857 

We note  that  the smoothed  interval spectral  density, 
as  computed in the  SASE-VI program, shows no char- 
acteristic  departure from  flatness,  and  serial correlations 
beyond the first are small. Thus  there  appears  to be  only 
a  residual dependence in the intervals,  possibly due  to 
the detrending or a  residual trend. 

Similarly, the  estimated  spectrum of counts  (Cox  and 
Lewis [ 51, Ch. 5; Lewis [ 211 ) has  no significant de- 
parture from  flatness,  showing that a Poisson  process is 
a tenable hypothesis  for  the  detrended  data  and  con- 
sequently  a NHPP hypothesis for  the original data. 

However,  some very subtle  departures  from  expo- 
nentiality appear when we look at  the interval prop- 
erties of the  detrended  process.  These  are given in Table 
1 1 .  In  the first  place, the  estimated coefficient of variation 479 
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Figure  12 Empirical log survivor function of the  detrended 
times X‘ between transaction initiations for time period H. 
Sample size n = 1999. Note  that  the figure shows  the log sur- 
vivor  function out only to 1564 events. 

of times between  events, e ( X ’ )  is smaller than 1. Esti- 

0.9673, with estimated  standard  deviation 0.0775,  which 

I mated  from five sections of the  data, it has  value c ( X ’ )  = 

l is too large to give conclusive evidence of departure from 

~ 

the value C ( X ’ )  = 1 for a Poisson process.  The empirical 
log survivor  function of the  detrended times X’ between 
transaction initiations is shown in Fig. 12. 

This  artifact of the  data shows up clearly in an  esti- 
mate of the intensity  function, m,(t) .  There is a definite 
notch  at  zero in the  estimate rkf( At) (Cox  and  Lewis [ 51, 

of the origin, and subsequently the  estimate is essentially 
flat, never deviating in any  interval A from  the modal 
value of 1,000 by  more than SO. 

Checking of the  transaction initiation process  showed 
that  there was in fact  a minimum time between  trans- 
action  initiations  imposed by the  system. A simple  model 
of a Poisson  process with blocking (Type I counter) is 
sufficient to  account  for  the deviations from a Poisson 
process. 

Another artifact in the  data  appears in the  fact  that  the 
estimated coefficients of skewness and  kurtosis, T , ( X ‘ )  
and ?,(Xf) for  the  data  (5.2363 and 68.3916 in Table 
1 1 )  are large compared  to  the  Poisson  process  values 

480 y , ( X )  = 2, ?,(X) = 9. These  are  due to occasional  very 

I 

I Ch. 5 ) .  Thus  there  are only 720  observations within A 

to  occur in very short periods of high variability of times 
between transaction initiations. This shows  up in Fig. 5 
as the  spike  at  about t = 3000. 

No explanation  has  been  found for this departure from 
the  NHPP; it could be  due  to special procedures in the 
use of the system  but in any  event is too minor to affect 
practical use of the NHPP model in evaluating such a 
system. 

Low-uctivity datu:  test for N H P P  
The low-activity data,  after detrending with an estimated 
rate function A(!; &) which is the integral of an expo- 
nential polynomial of degree 8, to give T ;  = A ( T I  ), Ti = 

( T , ) ,  . . ., show  a  very definite indication of departure 
from a  Poisson process.  For & . ! X ! ) ,  +,(A’’), +*(X‘ ) ,  we 
obtain values  1.475,  4.1233,  21.716,  respectively,  and 
these  are  too large to  be  consistent with  a Poisson hy- 
pothesis after detrending. 

The  data also show considerable  interval  correlation. 
A detailed  analysis will not be given here, especially 
since the detrending process is not  completely valid. 
However, as remarked earlier. the low-activity data 
after detrending is consistent with a cluster  process hy- 
pothesis.  We  emphasize  that  “consistent”  here  refers 
only to matching of gross  characteristics of the  observed 
and  theoretical processes;  there is no known  formal way 
of verifying a non-homogeneous cluster  process hy- 
pothesis. 

Discussion 
The outstanding feature of these  data is the oscillatory 
nature of the  rate function in both the high and low activ- 
ity periods.  Such  oscillatory behavior is usually investi- 
gated by spectral analysis,  but  this of course is applicable 
only to  stationary  data.  The  data show  a gross time-of- 
day effect superimposed  on  the oscillations, and it is not 
simple to filter this out, most  particularly because  the 
period of the oscillation is long, i.e., low-frequency. It 
is therefore likely to become mixed up in a  spectral  analy- 
sis with long term  evolutionary (time-of-day)  trends. 

Nevertheless,  an  attempt was made  to  examine  the 
cyclic effect in time  periods  H and L by 

1. detrending after fitting an exponential polynomial 

2. computing the  count  spectrum of the  detrended  data 
of degree 1 ; and 

using SASE-VI. 

The  results of these  spectral  analyses  show generally 
flat spectra, with peaks  at a  low frequency corresponding 
to a rough guess at the frequency of the  cycle, which was 
obtained  from  Figs.  4 and  9.  There  seems  to be no evi- 
dence of a fixed frequency  cycle; this would show  up as 
a sharp peak in the  spectrum. 
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The  cycles  observed in this exploratory analysis of a 
single series of events in the  system bring up  some in- 
teresting,  difficult,  and as  yet, unresolved  methodological 
and  phenomenological questions. 

The global techniques  for  rate function  estimation 
need to be extended  to larger sections of data  as  the 
best  overall way of looking at  these  data.  The most 
practical way of doing this would appear  to be to 
apply  the technique to non-overlapping or overlapping 
sections of the  data.  The problem of joining sections 
might lead to  (exponential) spline  function tech- 
niques; new problems of testing  then arise. 
The  question  arises  as  to what causes  the oscillatory 
or cyclic effect. In  the  Introduction we pointed out 
that  the transaction  initiation process is an  output  or 
response  process so that it is presumably driven by 
other  processes associated with the system  (e.g.,  mes- 
sage arrivals).  The implications of this from a  meth- 
odological point of view are twofold: 
a.  The deterministic rate function  estimated in pre- 

vious  sections might be considered,  at least in the 
micro-aspects, to be purely descriptive. There is 
a possibility that what we  are seeing is the effect 
of congestion in the  system (e.g., DL/I  compo- 
nent), and the  data may perhaps  be  best  described 
by something like a self-exciting process  (Hawkes 
[24]), which is the point process analog of an 
autoregressive  system.  This would not  be  incon- 
sistent with our findings, since  (linear) self-excit- 
ing procesSes are special types of cluster  processes 
(Hawkes  and  Oakes [ 2 5 ] ) .  One problem with the 
above  interpretation of the cyclic effect is that  we 
would expect more  oscillatory effect during high 
activity  periods than during low activity  periods. 
However,  just  the  opposite is true. 

b. Since  the  observed  transaction initiation process 
is driven by other  processes  associated with the 
system, a full description of the behavior of the 
system would involve an  attempt  to  correlate  the 
transaction initiation process studied in this paper 
with p$oicesses at  other points of the  system. In 
particular, it would be of interest  to  correlate  the 
transaction initiation process with the  process of 
message  arrivals from terminals. It would also  be 
desirable to  correlate  the  transaction initiation 
process with the  successive  response times ex- 
perienced by users of the  system. 

There  are many methodological  problems in analyz- 
ing very  non-stationary systems, in particular  the  prob- 
lem of estimating  correlation and/or  coherence.  For 
the  present  case  the  fact  that  the high-activity data  are 
close to Poisson,  although  nonhomogeneous,  should 

Table 11 Sample  characteristics of times-between-events. De- 
trended (NHPP exponential polynomial rate function of de- 
gree 6 ) .  Transaction initiation process  for time  period H. 

n number of transactions initiated 1999 
- t o  period of observation 1999.02 
X ’  estimated mean  time  between  trans- 

C(Xf)  estimated coefficient of variation 
action initiations 0.9998 

of times  between  transaction 
initiations 0.9784 

times  between transaction 
initiations 5.2363 

times  between transaction 
initiations 68.3916 

initiations 17.4752 

initiations 0.003 1 

q1(.Y’) estimated coefficient of skewness of 

+*(Xf) estimated coefficient of kurtosis of 

X’,,, maximum  time between transaction 

minimum time  between transaction 

make development  ofthe  necessary methodology simpler. 
The work of Cox and  Lewis [ 5 ] ,  and  particularly Cox 
[lo], should be useful. 
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