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Statistical Analysis of Non-stationary Series of Events
in a Data Base System

Abstract: Central problems in the performance evaluation of computer systems are the description of the behavior of the system and
characterization of the workload. One approach to these problems comprises the interactive combination of data-analytic procedures
with probability modeling. This paper describes methods, both old and new, for the statistical analysis of non-stationary univariate
stochastic point processes and sequences of positive random variables. Such processes are frequently encountered in computer systems.
As an illustration of the methodology an analysis is given of the stochastic point process of transactions initiated in a running data base
system. On the basis of the statistical analysis, a non-homogeneous Poisson process model for the transaction initiation process is postu-
lated for periods of high system activity and found to be an adequate characterization of the data. For periods of lower system activity,
the transaction initiation process has a complex structure, with more clustering evident. Overall models of this type have application

to the validation of proposed data base subsystem models.

Introduction

Description of the behavior of a running system and
characterization of the workload are central problems
in the performance evaluation of data base systems.
These are systems in which there are many users who can
access, via remote terminals, a (typically very large)
data base managed by a computer. Such a system should
respond to a query in a reasonably short time, given the
number of users and the nature of the user environment.
This must be accomplished as economically as possible,
where the factors to be considered include direct cus-
tomer (waiting) costs and computer system resource
utilization. This is a typical operations research situation
in which we are trying to allocate limited resources in an
optimal way among competing demands. Because of the
complexity of data base systems, detailed measurements
of existing systems are needed in order to model and
evaluate them; such measurements comprise just one
aspect of performance evaluation, which in its entirety
would encompass data collection, analysis, modeling,
and interpretation. Ultimate goals of performance evalua-
tion inciude tuning of existing systems and prediction of
the performance of proposed systems.

This paper is concerned with methods for statistical
analysis of series of events, which can be applied to
obtain a graphical and mathematical description of the
behavior of a running data base system. Such a descrip-
tion would be a useful starting point for studies aimed at
workload characterization. The particular analysis of
data given uses a combination of statistical data-analytic
procedures and probability modeling (cf. Lewis and
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Shedler [1]). The specific results reported here for the
analysis of a non-stationary univariate series of events
occurring in an IMS data base system are intended neither
to comprise in themselves a description of the running
IMS system nor necessarily to be a sufficient basis for
characterizing the workload of an IMS system. Rather,
the results are to be considered illustrative of methods
that may be useful in such studies.

In a data base system the workload may be taken to
be a collection of data sequences identifiable at various
levels of the system; workload characterization com-
prises the study of these data sequences (individually
and jointly) along with the transformations among them.
We are deliberately vague here about what is meant by
data sequence; it could be a sequence of events occurr-
ing in time, i.e., a point process, or a sequence of obser-
vations of a stochastic process, i.e., a time series. For
example, in an IMS data base system we can consider,
at the user level, sequences of transactions and DL /I
calls; at the logical level, sequences of target segments;
at the segments searched level, sequences of path seg-
ments; at the paging level, sequences of path blocks,
etc. Associated with these identified basic workload data
sequences, there may be other data sequences of interest,
e.g., the subsequence of path block exceptions. We may
also be interested in external measurements related to
the workload data sequences such as response times for
users.

Given the complexity of data base systems and the
resulting relative difficulty of carrying out meaningful
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Figure 1 IMS system configuration. Conceptual diagram of
a computer system running IMS.

performance evaluations and designs for such systems,
the collection and analysis of measurement data from
representative systems to identify and characterize sig-
nificant performarice phenomena seems appropriate.
The availability of such measurements presents the pos-
sibility of obtaining thereby empirically valid, para-
meterized mathematical models for workload data se-
quences. However, the sheer volume of data that can be
collected from a running data base system (e.g., tens of
thousands of transactions per day, hundreds of thousands
of DL /T calls per day, millions of path segments per
day, etc.) is a source of some difficulty. Such a volume
of data is not only costly to manipulate, it is difficult to
comprehend. In practice it appears that if we wish to do
a detailed analysis (and modeling) of any of the several
workload data sequences mentioned above, it is nec-
essary to select ‘“‘representative’” sequences observed
during (relatively) short periods of time. If useful in-
formation is to be obtained from the data collection,
analysis, and modeling (e.g., for the determination of
pertinent system requirements), it is important to be
able to describe the system context in which the trans-
action workload phenomena are observed and analyzed.

In addition to models of the workload, models of the
system or subsystem structure are needed in perfor-
mance evaluation. The authors feel that stochastic
models of the type obtained in this study have application
to the detailing of proposed system models, i.e., filling
in the fine structure of parts of the model. A second appli-
cation is to the ‘“validation” of system models in the
sense of establishing their predictive value. The methods
used for the statistical analysis of data from the running
system can also be used to analyze the output of simula-
tions of proposed subsystem models. Consistency of
a process predicted by the system model with the cor-
responding process observed in the running system would
constitute evidence of the predictive value of the model.
Thus, for example, the results of the statistical analysis
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of the transaction initiation process reported here could
be used in attempting to validate a stochastic model of
the IMS DL /I component such as the queueing model
developed by Lavenberg and Shedler [2].

Description of the availabie data

The analysis given here, illustrating methods for the ex-
amination of non-stationary series of events, is of data
obtained from an IMS data managemert system. The
following is a brief outline of the structure of IMS [3],
which is a processing program for the implementation
of large data bases shared in common by several appli-
cations. The IMS program executes under the operating
system of the computer system to extend the data com-
munication and data base management capabilities of
the operating system. In IMS, users can access the data
base from remote terminals by entering messages called
transactions. A particular transaction uses, and thus
uniquely identifies, an application program which pro-
cesses the message (or transaction) and accesses the
data base. The data management facility of IMS is called
Data Language/I (DL/I). The two interfaces of an
application program with DL /1 are a data base descrip-
tion and a program linkage which allows DL /1 to process
data base access requests that arise during execution of
an application program. The execution of an application
program thus gives rise to a sequence of calls to the DL /1
component of IMS.

A conceptual diagram of a computer system running
IMS is given in Fig. 1. As shown there, a portion of mem-
ory is devoted to the operating system. The IMS pro-
gram occupies a portion of memory called the IMS con-
trol region. Application programs reside in secondary
storage in an application program library. For execution
an application program must be loaded into one of sev-
eral (typically three or four) regions in memory called
message processing regions. The data base resides in sec-
ondary storage, and data are transferred into memory for
processing in response to transaction initiations.

Data on the processing of transactions have been ob-
tained from a computer system running IMS for produc-
tion contro! under the IBM operating system OS. Entry
of data into the system is on-line and is governed by the
occurrence of events on the production line. The epochs
of time at which individual DL /I calls were completed
(i.e., control was returned to the application program)
have been recorded, along with information sufficient to
identify the epochs of time at which individual transac-
tions were initiated. From these time stamps the sequence
of times between transaction initiations were derived.
Most of the results presented in this paper are for a time
period of high system activity referred to as time period
H. These data consisted of 1999 transaction initiations
over a period of time (in unspecified units) of 7, =
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11936.6066. Much of the statistical analysis was done
using the experimental SASE-IV program (Lewis,
Katcher, and Weis [4]) for analyzing series of events.
SASE-IV has a maximum input of 1999 events; this ac-
counts for the length of the period under study. This high
system activity period was selected after an initial overall
look at the several days of data on transaction initiations
which were available. The analysis also used SASE-VI,
an improved version of SASE-1V, APL implementations
of parts of SASE-VI, and APL implementations of rate
estimation procedures.

Preliminary analysis of transaction initiation process

s Prior considerations and assumptions

In analyzing the transaction initiation data, there were a
number of prior assumptions that could be made about
the data to serve as a starting point for the analysis. The
purpose of the data analysis is to confirm these assump-
tions or to point to suitable modifications.

1. Since the data are taken over a whole day (in fact,
six whole days), we expect a time-of-day effect as
activity builds up through the working day and then
declines during the evening. Thus, any kind of initial
analysis based on an assumption of stationarity is
inappropriate.

2. Since the data consist of times of transaction initia-
tions, so that we are dealing with a point process or
series of events, the usual null model (which is de-
lineated in a subsequent section of this paper) is a
nonhomogeneous Poisson process (NHPP). This
could be appropriate here since the transaction initia-
tion process is a superposition (Cox and Lewis [5],
Ch. 8; Cinlar {6]) of inputs from a number of sources
(users).

3. Because each user’s activity is likely to consist of a
(random) number of transactions after initial sign-on,
some clustering in the data might be expected. An
appropriate model here is the nonhomogeneous
Poisson cluster process (Lewis [7]). In this process
an initial primary (main) event generates a finite se-
quence of secondary (subsidiary) events; the com-
plete process is then the superposition of the primary
and secondary events, where the main events are
assumed to be generated by a nonhomogeneous
Poisson process. If enough initial events are generateg
(high-activity ) so that the number of active secondary
processes is large, this process is hard to distinguish
from a Poisson process.

Starting from these assumptions, the analysis of the
data proceeded as follows:

a. A very rough, model-free procedure was used to
estimate the rate function for the transaction initia-
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tion process over the whole day, the rate function
being the derivative of the expected number of trans-
actions in a time period (0, t]. This rate would be
constant for a stationary (homogeneous) process.

b. On the basis of this trend analysis, relatively homo-
geneous high- and low-activity periods were selected,
and an attempt was made to verify the NHPP model
or the clustering model, for the transaction initiation
process.

c. Based on this local analysis and modeling of the trans-
action initiation process, more formal model-depen-
dent estimation procedures were applied to the trans-
action rate function for the several days. In later
sections it will be seen that the Poisson assumption
is reasonably valid for high-activity periods, clustering
becomes more evident at low-activity periods, and
there is a surprising amount of local inhomogeneity
of an almost oscillatory (cyclic) nature. It is this last
phenomenon that is perhaps the most interesting
aspect of the analysis.

s Analysis of transaction initiation counting process

Point processes can be analyzed either in terms of the
intervals between events, which is a stochastic sequence
(time series), or the counting process (the number of
events in an interval (0, t]) which, as a function of ¢, is
a continuous-parameter stochastic process. Here 0 is
some convenient fixed origin, the number of events in
(0, 1] is denoted by N, and the expected value of N, is

M(t) = E{N,}. (1)

Its derivative, often called the rate function or intensity
function, is m(¢) = dM(¢) /dt = X (1), the notation A(f)
being generally used for the rate function of a Poisson
process. (See Cox and Lewis [5], Ch. 4, for further
definitions of point processes.)

Note that although the times of the transaction events
were available, for an initial analysis we used counts of
events in successive unit time intervals, i.e., A = 1. This
constitutes a sampling of the data; if the data were from
a NHPP, these counts would be independent variates
with possibly different means (see Section 4). Denote
these counts by n;, j = 1; -, n, where n; = N; — N,_, and
N, = 0. If these counts are summed to give counts in C
contiguous intervals, they will still be Poisson distributed.
Such a summation can be considered as

1. A crude smoothing of the data to obtain an estimate
and picture of the rate function over the day. Thus,

i =
since A=1, »
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Figure 2 Estimated mean number of transactions initiated in
a unit time interval for days 1, 2, and 3. Estimates obtained by
averaging counts in 4800 adjacent unit time intervals. This very
severe smoothing takes out local fluctuations but gives a picture
of how the activity varies over a full day.

the weights in the smoothing all have value 1/C. This
constant smoothing function must be used with care;
it can cause spurious effects if the rate is not changing
linearly.

2. A coalescing of count data to test for homogeneity.

Plots of the smoothed counts using C = 4800 are shown
in Fig. 2 for three of the six days, and for the average of
the smoothed counts over all six days. Formal tests for
homogeneity are available for Poisson variates (Cox and
Lewis [5], Ch. 6), or else a one-way analysis of variance
can be performed on the coalesced data after a square
root transformation. The analysis of variance test is used
because the counts are large enough to be considered to
be normally distributed; the square root transformation
is used because although Poisson counts with a large
mean are approximately normally distributed (see Table
2.1 of [5], p. 21), the mean and the variance are the
same, and this violates a basic assumption in the analysis
of variance test. The square root of a Poisson variate N
plus a fourth, VN + {, has mean approximately equal
to \/,E, and variance I, where p is the Poisson mean
([5], p. 44).

The analysis of selected time periods reported below
is for periods chosen from day 2. In Table 1 we show in
successive columns the number of counts (transaction
initiations) in successive groups of forty 120-time-unit
periods; the mean number of counts in one time unit (the
rate function estimate plotted in Fig. 2) for day 2; x, the
average of forty quantities x; ; where x;; = {(numbelzr of
counts in jth 120-time-unit period in group i) + §}2; o‘-zl.
and &,, the within group sample variance and standard
deviation, respectively.

First, it can be seen that all of the variances 6'? are
larger than the value § postulated on the basis of a homo-
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geneous Poisson count process; since 39 X d—? /1=156 X
6'? should, under the null hypothesis, have a ng distribu-
tion with upper 99 percent point of 62.281, all the &?’s
are significantly large (i.e., greater than 62.281/156
=0.3992) and either the Poisson or homogeneity ( within
oroup) assumptions are invalid.

Comparing the sum of the within group sample var-
iances é—f, which is 42.1826, to the between-group var-
iances (or sample variance of the &,}, which has a value
1.7126 we get an F-ratio of 19.4878. The F-ratio, for-

mally given by

F= m&;i/z i/ k,

has an F-distribution with », = (m — 1) X k=39 X 12,
v,= k— 1= 11 degrees of freedom, and the value 19.4878
in Table 1 is highly significant at a 5 percent level or at a
1 percent level. We conclude that the data are inhomoge-
neous, although departure from a Poisson assumption
has not been ruled out.

The overall picture in Fig. 2 is of an initial buildup in
transaction rate, a fairly constant transaction rate for a
period of time, and then a drop to a lower level. This
picture is consistent over days; the drop in day 1 (around
t = 165888) was due to a period for which data were
not available.

However, even in the two relatively stable periods,
there is some evidence (large values of 6'? in Table 1
relative to 1) of more microscopic inhomogeneity, and
the analysis proceeded by examining sections of data
in these high- and low-activity periods in more detail.
The examination was of interest per se, but was also
motivated by a need for more formal statistical rate esti-
mation procedures.

Highly parametric global procedures for rate estima-
tion are available at present only for NHPPs. Details of
the procedure and the estimation are given in the next
two sections. Application to the data for the high and
low system activity periods and for the entire day is
described in later sections.

In addition, non-parametric local smoothing proce-
dures related to kernel-type density estimates (Rosen-
blatt [8]) are used. These are also described later. First
we give properties of the NHPP.

Nonhomogeneous Poisson process model

The nonhomogeneous Poisson process model for a
series of events N, is discussed in a statistical context
by Cox and Lewis [5], Ch. 3, Lewis [9], Cox [10],
and Brown [11]. A very detailed mathematical account
is given in Gnedenko and Kovalenko [12]; a recent
treatment is by Cinlar [13]. Like the homogeneous
Poisson process, the nonhomogeneous Poisson process
arises as a limit of the superposition of a large number
of nonstationary point processes (cf., Cinlar [6]). The
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Table 1 One-way analysis of variance for counts. Transaction initiation process for day 2.

Counts in Mean counts
Group 4800 unit time in unit time
i intervals interval X, 6'? g,
1 1034 0.2154 4.5638 5.6635 2.3798
2 1742 0.3629 6.5178 1.6084 1.2682
3 2455 0.5115 7.6421 3.5629 1.8876
4 1877 0.3910 6.6108 3.8181 1.9540
S 2841 0.5919 8.3752 1.4157 1.1898
6 2925 0.6094 8.5412 0.6898 0.8305
7 2446 0.5096 7.7840 1.0866 1.0424
8 1012 0.2108 4.3684 6.8893 2.6248
9 1910 0.3979 6.7616 . 2.5957 1.6111
10 1671 0.3483 5.9692 6.8401 2.6154
11 1988 0.4142 6.7364 4.9443 2.2236
12 1880 0.3917 6.6715 3.0682 1.7516
S, = 80.5420 36" = 42.1826
2X,/12=16.7118 3267/12=3.5152
¢ =1.7126
5- = 1.3086

assumptions underlying the nonhomogeneous or time-
dependent Poisson process (NHPP) are the same as
those for the ordinary Poisson process except that the
rate parameter A is now considered to be a continuous
function of time A(¢). One approach to the NHPP is
via the incremental probabilities in small intervals. Thus,
for s, 1 = 0, and denoting by N (s; ¢) the number of events
in the process in the interval (¢, ¢ + 5], the assumptions
for a NHPP with rate function A(t) are that, as s — 0,

Pr{N(s; 1) =0} =1—A(t)s + o(s),
Pr{N(s;t) =1} =AX(t)s + 0o(s), (2)

and that the random variable N (s; ¢) is statistically in-
dependent of the number and position of events in (0, 7].
As a consequence of Eq. (2), Pr{N(s; 1) = 2} = o(s).
The survivor function for the forward recurrence time in
the process, the probability that there are no events in
(t, t +s],ie., that N(s; t) =0, is derived via first-order
differential equations to be

R(s; t) =exp [—fﬂx(u)du}.

A more general approach to defining the NHPP starts
with the function A(t), which is assumed to be monotone
non-decreasing and continuous from the right; then the
number of events occurring in any interval, say (r, t +s],
is assumed to have a Poisson distribution with parameter

A(t+s) — Ar) =j ' A u)du,
t

ie,fork=0,12,---
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Pr{N(s; t) = k}

_{exp—[AGt+35) = AWDIAC+5) = AD]*
k! '

Consequently A(7) is the expected value function M (),
defined by Eq. (1). In addition, the number of events
in any finite set of non-overlapping intervals are assumed
to be independent random variables. There are other
equivalent definitions, and also minimal definitions; see
Gnedenko and Kovalenko [21] and Cinlar [13].

The following theorem (cf. Cinlar [13]) establishes
that a homogeneous Poisson process of rate 1 can be
obtained by transformation of the time scale of an NHPP,
via the inverse of A(t). This result, Theorem 1, and the
following Theorem 2 are the bases for procedures de-
scribed below for detrending the data and testing the
goodness-of-fit of the NHPP model.

Theorem 1 Let A(t) be a non-decreasing right-con-
tinuous function of r = 0. Then T, T,,- - -, are the times-
to-events in an NHPP with E{N,} = A(y), if and only
if T)=A(T,), T,= A(T,)," - are the times-to-events in
a homogeneous Poisson process with rate 1.

The next theorem establishes an important property
of the NHPP which we use throughout the paper.

Theorem 2 Assume we have an NHPP observed for a
fixed time (0, 7,], in which N, = n events occur at times
T, < T, <---<T, <t, Then conditional on having
observed n(>0) events in the (0, ¢,], the T, are dis-
tributed as the order statistics from a sample with distri-
bution function
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_AQ@) = AQ©)

O =X = a0

0=t=1,
and when A(t) is absolutely continuous, probability

density function

fry =M

W, 0_[_[0.

Thus we see that (conditionally) the transformation
of the time axis is exactly the same as the probability
integral transform which is used to transform a random
variable X with known distribution function F(X) into
a uniform random variable on (0, 1), i.e., U =F(X) is
uniform (0, 1). This transformation is the basis for non-
parametric tests of distribution functions such as the
Kolmogorov-Smirnov test. The analogy explains why
tests for a homogeneous Poisson process (HPP) are
similar to tests for completely specified distributions ob-
tained from independent, identically distributed samples;
the primary difference in the two procedures lies in the
alternative hypotheses that arise (see Cox and Lewis
[5], Ch. 6). Specifically, if we test that a random sample
X,, X,, -+, X, with unknown distribution function F(X)
is from a given distribution function F (X), then if
F (X) # F(X), the variables U, = F (X)), - U, =
F,(X,) are i.i.d., but not uniformly distributed. However,
if we test (conditionally) that n observed times-to-events
T, - T, are from a NHPP with given integrated rate
function A (), then
1. if the process is NHPP but A () is not equal to the

true integrated rate function A(r), then T| = A (T)),

o, T!=A,(T,) are i.id., but not uniform (0, 1,1
and

2. if the process is not NHPP, then even if A (¢) is equal
to A(t), the T}, i = 1, -+, n are not conditionally a
random sample.

The above leads to very different considerations in
the power of tests for NHPPs and completely specified
distributions, even though the test statistics are the same
(see Lewis [14], for greater detail). It is difficult in test-
ing for NHPPs with procedures based on the above
theorems, to separate out the effects of departures from
Poisson assumptions and departures from assumptions
as to the form of A(¢). However, since both HPPs and
NHPPs have independent count increments, tests for
the global Poisson assumption are based on this property.
In particular, the spectrum of counts (Cox and Lewis
[5], Ch. 5) should be flat after detrending.

In the following section we discuss estimation of the
NHPP rate function using parametric models, both to
describe in a global way the rate function (as opposed
to the local smoothing in Fig. 2) and to detrend the data
so as to examine the global Poisson assumption. Non-
parametric rate estimation is also briefly discussed.
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Estimation of the NHPP rate function

o Parametric model and rate estimation

Following Cox and Lewis [5], Ch. 3, and Cox [10],
an exponential polynomial rate function has been as-
sumed for the NHPP, i.e., A(¢) of the form

A(t) = exp (é amtm>’

—°°<010,C¥1,"',ar<+oo (3)

This assumption is convenient and constitutes no real
restriction because any continuous rate function can be
approximated arbitrarily closely by an exponential poly-
nomial. The result follows from results on ordinary poly-
nomials by taking logarithms; note that A(#) = O for any
values of a,, a, - «,. We now describe statistical pro-
cedures based on this model. Formal tests for the degree
r of an exponential polynomial rate function are dis-
cussed in the following section. Here a procedure is out-
lined for the maximum likelihood estimation of the co-
efficients {a,} of an exponential polynomial of fixed
degree r.

The times-to-events T, < T,--- < T, in a fixed time
period and the random variable N(f,) = n have a joint
density function (Cox and Lewis [5], Ch. 3)

ity = oxo— [ ] [T
0 i=1

which, on substituting the rate function (4), becomes

Sl sn) = exp[— 2 %Sy,
=0

‘o r
—f exp(Z altl>dt:|, (4
0 1=0
where
s, =0t m =0,
Thus the log-likelihood function, log L, the logarithm

of the density at the observed values of the random vari-
ables considered as a function of the r -+ | parameters, is

log Lay, o ) = D a8,

m=0
tO r f
—f exp(E alt)dt.
0 =0
It follows that the derivatives, known as the scores, are

Lo r
doel_ o ["Few(S " o,
0

aak m=0

k=0,1,-r (5)

The solutions {&,} to the system of Eqs. (9), the score
vector when set to zero, are the maximum likelihood
estimators of {«,}, and can be determined numerically
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by Newton-Raphson iteration. The numerical procedure
works well provided that an initial vector sufficiently near
the solution is known. A two-step method for obtaining
such an initial value has been proposed by MacLean
[15]. His procedure consists of finding an ordinary poly-
nomial representation of the same degree as A () having
the observed sums of powers {s,} for its “moments”.
An exponential polynomial approximation to this poly-
nomial, obtained by taking logarithms and again fitting
moments, serves as the initial value for the Newton-
Raphson iteration. This MacLean procedure has been
impiemented in APL and used to estimate coefficients
{&,}. The procedure appears to work well for polyno-
mials up to degree 8. Estimates of the covariance matrix
of the maximum likelihood estimates {&,,} are obtained
from the second order partial derivatives of the log-
likelihood equation when evaluatéd at the estimated
parameter values.

Once the appropriate degree of the polynomial is ob-
tained by the methods of the next section, the rate func-
tion with the maximum likelihood estimates for the «’s
can be plotted to obtain a picture of the rate function. The
procedures are clearly sensitive to the NHPP model:
for this reason, we next discuss nonparametric kernel-
type estimates.

* Non-parametric kernel-type rate estimates
Theorem 2, which relates (conditionally) the rate func-
tion A(t) in an NHPP to a density function in (0, t,],

AD) 0=r=1,

REYYEY ’

suggests we could use nonparametric probability density
function estimates to estimate rate functions, at least
in NHPPs. The procedure chosen is the nonparametric
kernel-type density estimate introduced by Rosenblatt
[8]. Briefly, the procedure to estimate £(¢) from a ran-
dom sample 7,, T,," ", T, is as follows:

Define

f" nb(n gﬂ <tb—(—nT)

where W () is a bounded non-negative integrable weight
function with [Z, W(u)du =1, and b(n) is a positive
bandwidth function which tends to zero as n — «, but
is sluch that o(5(n)) = 1/n. Thus, we might have b(n) ~
n" 2, for example.

Note that for a given set of observations all estimates
of this form are themselves density functions, i.e.,

) = o,f Fluydu=1,

and since the TJ. are random variables, fn(t) is a con-
tinuous-parameter stochastic process, but clearly non-
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stationary. Although this type of density estimate does
not require parametric assumptions to be made about
f(¢), the bandwidth function and kernel W («) must be
chosen. In this paper we have already chosen1 Wiu)
to be a triangular function and b (n) to be 1.25/n2.

The conditional structure of the NHPP makes the
estimation of the rate function A(¢) similar to the non-
parametric estimation of the density function, but with
two differences. First, care must be taken with normaliza-
tion of the rate function estimate. This is because the
procedure above estimates the rate normalized by divid-
ing by A(z,) —~ A(0) and A(t,) — A(0) is unknown. For
an NHPP this is the mean of a Poisson variable which
is estimated by n, the number of events in (0, to]. We
then get, as a rate function estimate,

) A 1 & t— Tj
A n, b)) =nf (1) = b(n) E W(b(n) >

This will be modal about the usual estimate of the rate
A in a homogeneous Poisson process, which is estimated
by A=n/ t,- The second difference is that when the den-
sity function estimation technique is applied to rate func-
tion estimation, there is no asymptotic justification for
the procedure.

Tests for the degree of the exponential polynomiai
rate function

o Theory
The analysis of trends in an NHPP, based on the assump-
tion of an exponential polynomial rate function, is dis-
cussed in Cox and Lewis [5] (Ch. 3), and Lewis [9].
In the latter paper, formal tests for the linear and qua-
dratic terms in the exponential polynomial are derived.
We use here a direct extension of these methods to yield
tests for higher degree terms.

There are a number of possible hypotheses which can
be tested when considering the exponential polynomial
rate function

A1) =exp<i amtm). (10)

1. Some given subsets of the r + 1 parameters are zero.
Asymptotic tests for this hypothesis are based on
standard maximum likelihood arguments; see Cox
[10] and MacLean [15] for details. Essentially the
maximum values of the likelihood functions under
the two hypotheses are compared; the difference has
(asymptotically) a x° distribution under the null hy-
pothesis with known degrees of freedom. The problem
with this test is phenomenological; one seldom knows
a priori which subset to test.

2. It is possible to ask which subset of the r + 1 para-
meters gives the best (most parsimonious) fit to the
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Figure 3 Cumulative number of transactions initiated for
time period H (high-activity). There is enough departure from
linearity to suggest inhomogeneity in the data. The test for a
homogeneous Poisson process using the Kolmogorov-Smirnov
statistic confirms the departure; the value 2.389 of the Kolmo-
gorov-Smirnov statistic is highly significant.

data. This has been worked out for ordinary, normal
theory linear polynomial regression (Daniel and
Wood [16], but not for the NHPP case.

3. An alternative is to test for successive inclusion of
higher order polynomial terms. This is reasonable if
the exponential polynomial is being used in a purely
descriptive way, and the statistical theory is known.
Strictly, we test that, for some £ = 1, oy # 0, o, # O,
ey #0,0,,=0, 0, =0, . (The analogous nor-
mal time series case is considered in great detail in
Anderson [17], Ch. 2.) A possible drawback would
occur where there is a cyclic effect, e.g..

A1) = explea, + & sin(wyt + 6)].

The series expansion of sin(w,t + 8) gives a poly-
nomial with alternating zero and nonzero coefficients
for powers of ¢ if the phase angle is appropriate. This,
in turn, is tied into the starting point of observations.

We develop the procedure now for case 3; we have
used it in an ad hoc manner by testing until two or more

successive zero coefficients occur. For an NHPP with
exponential polynomial rate function

NOE exp(i amtm>,

the likelihood of # events in the period (0, to] at times
b <t, < -<t, s, from Eq. (4),

Liag, a, - o) = exp{z .S
m=0
d r !
—f exp(z alt)a't} (6)
0 =0
where

n

sm = E t;n’

i=1

m=0,1,---r.

The observations {z,} enter Eq. (6) only through
(n, 2t, Etf, -++, 2t7), and it can be shown from the ex-
ponential form of Eq. (6) that these are a set of suffi-
cient statistics for the set of parameters o, a,, a,," " ", «,.
There is, however, even more structure and a formal test
for the rth degree term in the exponential polynomial rate
function can be based on the idea that for any given r
and o, (n, 21, ", 367" are a set of sufficient statistics
for o, a,, -, a,_,, ie., the distribution of X7, given x,
St, 3¢, is independent of «,, -, a,_, for all values of
a,. This is convenient since we want to test o, = 0
against ¢, # O regardless of the values of &, -, «
i.e., they are nuisance parameters.

Denoting ¢,/t, by u; and Eui/n by ¢, a test for e, is
then based on the statistic ¢, and its null hypothesis
conditional distribution, given n, c,, -*-, c,_,. This dis-
tribution is not known for small ¢, (equivalently small n).
However, asymptotically ¢, c,," - -, and ¢, will be jointly
normally distributed with mean value and variance that
can be obtained from properties of the uniform distribu-
tion. We assume a uniform (0, 7,] distribution for the ¢
since (1, Zt;, """, Eti’_l) are a set of sufficient statistics
._,» SO that assuming these parameters to
have value zero does not affect the final result but does
simplify computations. Then, also asymptotically, the
conditional distribution of ¢,, given n, ¢, -, ¢,_, is nor-
mally distributed with mean u, = E(c,|c,_,, ¢, 5. " ¢ 1)
and variance o,° = Var(c,lc “+, ¢,, n) obtainable
from normal theory.

The normal theory results are that to test the null
hypothesis H:&, =0, «,,, =0, -+, but «,- *+, &, _, have
any value, compute the statistic

r—12

for o, @, ", @

r

r~1°

Ur = (Cr_ “’r)/o-r

and test as a mean O, variance | normal deviate, i.e.,
accept H  at, say, a 5% level if |U,| = 1.96. Expressions
for u, and o, have been derived by techniques of sym-
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bolic mathematics and the matrix operations above.
Details of the derivation will be reported elsewhere.
The case r = 1 is discussed in detail in Cox and Lewis
[51, Ch. 3.

o Applications to high activity (H) data

We discuss now the application of the parametric rate
function testing scheme of the previous subsection and
the rate estimation procedures of the preceding section
to a more microscopic examination of the transaction
initiation process during a period of high system activity
for day 2. This high-activity period is, in Fig. 2, from
approximately r = 73728 to t = 85661. We also use the
kernel-type density estimate described in the second
part of the preceding section. We do this most particularly
because the NHPP assumption has, at this point, not
been validated. Overall characteristics of the sample are
shown in Table 2. (The sample moments given there
should be used only as a guide; they are meaningless if
the data are inhomogeneous.)

The first question to be addressed is whether the data
can, in this relatively short high-activity period, be con-
sidered to be approximately homogeneous or stationary.

Figure 3 shows the cumulative number of transactions
initiated during this time period. The departure from
linearity is fairly gross; assuming a homogeneous Pois-
son process, the Kolmogorov-Smirnov measure of the
departure from linearity is

D, =Vn sup |F, (u)—ul, (7)
0=u=1
where

number of ¢, = ut,
F (u) = L 0=u=1. (8)

n n

This is the uniform conditional test in Cox and Lewis
[5], Ch. 6; conditional on the observed value N, =
1999 of events in (0, ¢ ] it has the usual Kolmogorov-
Smirnov statistic distribution with upper 1% point 1.628;
the observed value is 2.389, which is an event of very
small probability under the Poisson assumption.

These probabilities could be grossly in error if the
data were more dispersed than under the Poisson as-
sumption, where by dispersion we mean either that the
standard deviation of the intervals between events or the
counts of events in long intervals is larger than would
be expected under a Poisson assumption. (The two are
not independent.) These dispersions are usually mea-
sured by first normalizing to give the random variable Z
mean one; for intervals, the result is the coefficient of
variation, i.e.,

D.(Z) _o(2) :(r( 4 )
E(Z) E(Z) E(Z)/

C(Z)=S

SEPTEMBER 1976

Table 2 Sample characteristics of times-between-events.
Transaction initiation process for time period H.

number of transactions initiated 1999

period of observation 11936.6066

estimated mean time between trans- 5.9698
action initiations

estimated coefficient of variation
of times between transaction
initiations 1.0533

estimated coefficient of skewness of
times between transaction
initiations

estimated coefficient of kurtosis of
times between transaction
initiations

maximum time between transaction
initiations

minimum time between transaction
initiations

6.7399

107.7282
133.6488

0.0152

Table 3 Sample characteristics of times-between-events.
Transaction initiation process for ten sections of time period H.

Sample S.D. of Coeff. of Coeff. of Coeff. of
mean mean  variation skewness  kurtosis
Section X a(X) C(X) v,.(X) 7,(X)

7.4645 0.5561 0.8430
6.0584 0.3577 0.8328
5.4878 0.5414 1.3916
6.1348 0.3822
5.0611 0.2854
6.8133  0.4689
7.5992  0.7779
6.2456  0.3831
4.2847 0.2425
4.5566 0.2513

11.4548
12.1494
84.6585
3.9449
18.6264
9.6977
89.8598
7.1174
6.6807
8.1512

2.3096
2.2653
7.7614
0.8789 1.1901
0.7954 2.9991
0.9708 2.2651
1.4440 8.0075
0.8652 1.8087
0.7984 1.6654
0.7750 1.7533

1
2
3
4
b
6
7
8
9
0

—_

0.9598
0.0783

Mean 59706 0.4137
S.D. mean 0.3591 0.0506

25.2341
10.4197

3.2026
0.7952

To examine the dispersion of the intervals in the data
without confounding it with the apparent inhomogeneity,
the 1999 intervals were divided into ten non-overlapping
sections. The sample characteristics for each interval
are shown in Table 3. The means within each group could
be used to test for inhomogeneity, but more importantly
the coefficients of variation, skewness and Kurtosis,
which for exponentially distributed intervals have values
1, 2, and 9, respectively, give us rough measures of de-
parture that are sufficient to validate the tests for trend.

Table 3 gives no indication that the sample character-
istics of the intervals of the process depart from an ex-
ponential distribution (although there may be correlation
between intervals). Values for the sample coefficients
of variation are all around unity, as is the sample co-
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Figure 4 Estimate IXeT &) of NHPP rate function using ex-
ponential polynomial (degree 6) of transaction initiation pro-
cess for time period H (high-activity).

Table 4 Values of maximum log-likelihood and test statistic
in NHPP exponential polynomial rate function for times be-
tween transaction initiations for time period H.

Degree of Maximum Absolute Test

polynomial log-likelihood difference statistic
(r (max log. L) () (u,)

1 —5563.8 3.8387

2 —5562.8 1.0 1.5727

3 —5549.4 13.4 5.3138

4 —5548.9 0.5 —0.4437

S —5539.9 10.0 —4.2081

6 —5537.0 2.9 —2.6188

7 —5536.9 0.1 0.0188

8 —5536.8 0.1 0.1211

9 —5536.8 0.0 0.2038

Table 5 Estimated values of the coefficients {&,} in NHPP
exponential polynomial rate function (degree r = 6) for times
between transaction initiations for time period H.

m a, &mt;"

0 —2.1381 —2.1381
1 3.1832 x 107 3.7996
2 —2.2607 x 1077 —32.2109
3 1.0211 x 107*° 173.6660
4 —2.1286 x 107 —432.1270
5 1.9331 x 107*® 468.4494
6 —6.2664 X 107% —181.2609

P. AL W. LEWIS AND G. S. SHEDLER

efficient of variation for the whole set of data as given
in Table 2. We therefore proceed to use techniques based
on the NHPP model to examine the trend in more detail;
further tests of the Poisson assumption for this section
of data are given in the next section.

Table 4 gives successive test statistic values for the
tests for null parameters in the exponential polynomial
model of Eq. (3),

A1) = exp(}r: amt"‘).
m=0

This procedure has been described earlier, and as re-
marked there, is used fairly informally. A formal ap-
plication would suggest stopping at » = 2 and accepting
a log-linear model

A1) = expla, + ayt),

but the test statistic for a,, U, = 5.3138 is significantly
large, and the tests have been continued up to r = 9.
Forr= 7k, 8, 9, the test statistics are all small, well within
the 5% limits of =1.96.

Table 4 also gives the values of the log-likelihood func-
tion evaluated at the maximum likelihood estimates. The
log-likelihood must increase as more parameters are
added; the difference, when suitably normalized, is used
to test (asymptotically) for inclusion or exclusion of
parameters (see MacLean [15] or Cox [10]), and is
known asymptotically to have a x° distribution. The
absolute differences 8, given in column three of Table 4,
are clearly correlated with values of the test statistic
U,, e.g., the large jump of 13.4 when including «, in the
likelihood goes with a large value of U,

The results of both the U, statistic and the likelihood
function values suggest that an exponential polynomial
of degree 6 will fit the data very well. The maximum like-
lihood estimates of the parameters and normalized values
are given in Table 5. In computing these estimates in an
APL program using MaclLean’s starting procedure, it is
necessary to use normalized time 7/f, = 1 and normal-
ized parameters o, = amt';‘ to avoid scale problems.

The resulting estimated rate function A (¢; &) is plotted
for the high-activity period in Fig. 4. The data give an
intimation of a growth plus cyclic effect of fairly long
period. A model for this could be

A1) = expla, + a1 + a,sin(wt)];

this equation is linear in the parameters if w, is fixed and
known (e.g., time of day effect). Moreover if the Taylor
series expansion for the sine function is used, one has
an exponential polynomial with even index parameters
(beyond zero) equal to zero, ie., a,=a,=a,= = 0.
This is the reason why the test for the order of the ex-
ponential polynomial indicated that we should have
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Figure 5 Estimate A (1; n, t,) of the rate function of the trans-
action initiation process for time period H (high-activity) using
a kernel-type density estimator. Sample size n = 1999, band-
width b(n) = 1.25/n?. Triangular window.

stopped at r = 2, and then gave an indication that o, was
non-zero. Cyclic effects are more easily handled via
spectral methods; we return to this in the final section.

Another way to examine the trend is to use the kernel-
type local smoothing techniques. Although these have
broader applicability than the particular global fitting
under an NHPP assumption, they suffer as in all non-
parametric density estimation (spectra, rate functions,
probability density functions, intensity functions) from
the need to choose a suitable kernel and bandwidth. In
practice, it is usually reasonable to take a few different
bandwidths and, by eye, judge when a balance between
small variability and small bias is achieved.

A kernel-type rate functiorll estimate A (7: &, )= nf"(t)
with bandwidth b, = 1.25/x2 (chosen in the above way)
is shown in Fig. 5. It again shows possible oscillatory
behavior in the data, or greater dispersion that we would
expect under an HPP assumption. Confidence bands for
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Figure 6 Estimate of the rate function of a homogeneous Pois-
son process of rate n/t,. The estimator is the same as in Fig. 5.
The greater dispersion in Fig. 5 is due to departures from the
Poisson process, most probably inhomogeneity.

this type of estimate are available (Bickel and Rosen-
blatt [18], Lewis et al. [19]), but we have preferred to
give, in Fig. 6, an identical smoothing of a simulated
homogeneous Poisson process of rate A = n/t, Com-
parison of Figs. S and 6 graphically illustrates that the
data are not HPP. The lack of gross departures from
Poisson-type characteristics for the interval structure
was discussed above; over-dispersion, rather than a
trend, could give the large fluctuations in the rate es-
timate.

In Fig. 5 there is a large peak at about 1 = 3000; we
have examined the data for any obvious anomalies at this
point (e.g., very regular intervals) but have found none.
In Fig. 7 we have overlaid the estimated integrated rate
function A(1; &) (exponential polynomial degree 6) on
the empirical estimate of the integrated rate function
which is just the cumulative number of events in (0, ]
as a function of .
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Figure 7 Parametric and empirical estimates of the integrated
rate function for the period H (high-activity). Solid curve in
the NHPP estimate A(s; &) using exponential polynomial
(degree 6). Dotted curve is the cumulative number of events
for time period H.

Figure 8 Parametric and empirical estimates of the integrated
rate function for time period L (low activity). Solid curve is the
NHPP estimate A(r; &) using exponential polynomial (degree
8). Dotted curve is the cumulative number of events for time
period L.
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Table 6 Sample characteristics of times-between-events.
transaction initiation process for time period L.

n number of transactions initiated 1258
Ly period of observation 13819.5193
X estimated mean time between trans-
R action initiations 10.9809
C(X) estimated coefficient of variation of

times between transaction

initiations 1.6563
7,(X) estimated coefficient of skewness of

times between transaction

initiations 3.7524
¥,(X) estimated coefficient of kurtosis of

times between transaction

initiations 18.9686
X ax maximum time between transaction

initiations 145.4241

nin minimum time between transaction
initiations 0.0263

e Applications to low-activity (L) data

We now give, in abbreviated form, an analysis of low-
activity (L) data, which is similar to that given for high-
activity (H) data in the preceding section. The low-
activity data are for the period beyond t = 145152 in
Fig. 2; the data are for a time period of approximately
1.15 times as long as for the high-activity (H) data, and
only 1258 events (transaction initiations) occur. Overall
characteristics of the sample are shown in Table 6.

An immediate observation from Table 6 is that the
coefficient of variation of the intervals is high relative
to the value one for an exponentially distributed random
variable. To examine this further, five sections of the
data were taken and the interval characteristics which
were computed are given in Table 7. Each section of data
contained 251 observations. It is fairly apparent that the
means are decreasing (rate is increasing) over the five
sections, the successive differences, on the basis of the
estimated standard deviations of the mean estimates,
being about three standard deviations. However, all
the coefficients of variation, coefficients of skewness,
and kurtosis are larger than the corresponding values for
a Poisson process.

The first conclusion from the above analysis is that
parametric detrending for these low-activity data must
be done with care; we return in the next section to con-
sider details of the structure of the low-activity process,
but because the intervals are more dispersed than for a
Poisson process, there is consistency with a cluster pro-
cess hypothesis (Lewis [7], Vere-Jones [20]). Note,
too, that a cluster process will look more and more like
a Poisson process as activity increases and this is con-
sistent with the finding that the high-activity data are
approximately Poisson.

IBM. J. RES. DEVELOP.




Table 7 Sample characteristics

of times-between-events.
Transaction initiation process for five sections of time period L.

Sample S.D.of Coeff. of Coeff. of Coeff. of
Section mean mean variation skewness kurtosis
X a(X)  CX) ¥,(X) 72 (X)

1 18.4683 1.6760 1.4378 2.2573 7.9515
2 12,5333 1.2289 1.5534 3.5112  16.6713
3 9.2178 0.9318 1.6015 5.0123  32.5160
4 8.2978 0.9430 1.8005 42290  23.2152
5 6.2124 0.3806 0.9706 3.7494  23.7669
Mean 10.9459 1.0321 1.4728 3.7519  20.8242
S.D.mean 2.1390 0.2116 0.1386  0.4532 4.0867

Table 8 Values of maximum log-likelihood and test statistic
in NHPP exponential polynomial rate function for times be-
tween transaction initiations for time period L.

Degree of Maximum Absolute Test
polynomial log-likelihood difference statistic
(r) (max log L) (8) (u,)
1 —4203.7 11.6960
2 —4203.6 0.1 1.2031
3 —4200.4 3.2 —2.4203
4 —4199.2 1.2 0.8175
5 —4191.0 8.2 -3.6703
6 —4190.2 0.8 0.4564
7 —4187.4 2.8 —2.3417
8 —4174.4 13.0 —5.0208
9 — — —5.9505
10 — — 2.7145

Returning to the trend analysis, we show in Fig. 8 the
cumulative number of events in (0, r] as a function of 7,
which is a nonparametric estimate of the integrated rate
function (dotted curve). It is by no means linear, and the
Kolmogorov-Smirnov test statistic (see Egs. (7) and
(8) has value 6.048. This, we surmise, is significantly
large even if the Poisson hypothesis were not true.

In Table 8 we give the successive test statistics U, for
successively more complicated exponential polynomial
rate functions. There is a very definite overall increase
in the rate, as measured by U, = 11.696, and again a
phenomenon where U,, U, and U, are not significant.
However, it can also be seen that the tests are significant
out to r = 10; it is not possible, even if it were desirable,
to carry out the computations any further. The maximum
log-likelihoods are also given in Table 8. Since the data
are non-Poisson, the likelihoods must be interpreted very
carefully. It is conceivable that using a likelihood based
on a Poisson process would force the rate estimation
procedure to fit the irregularity due to overdispersion by
added local wrinkles in the rate function. It is, in fact,
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Figure 9 Estimates of the rate function for time period L (low-
activity). Solid curve is the NHPP estimate A(f; &) using ex-
ponential polynomial (degree 8). Dotted curve is the estimate
A(£; n, 1) using a kernel-type density estimator. Sample size
n = 1258, band-width b(n) == 1.25/ n2. Triangular window.

always difficult to discriminate between inhomogeneity
and over-dispersion, but it is almost certain that it is
the over-dispersion which gives rise to the high degree
of the fitted polynomial for these data.

With the above qualifiers in mind, we have fitted an
exponential polynomial of degree 8 to the data. Degree 8
was chosen because of computational limitations. The
integrated rate function f\(t; &) is shown overlaid on the
non-parametric estimate in Fig. 8; the eighth degree ex-
ponential polynomial rate function INCA &) with estimated
parameters is shown in Fig. 9 (solid curve). Again the
outstanding feature is the cyclic nature of the rate, super-
posed on a generally increasing rate.

The kernel-type estimator A n, t,) of the rate func-
tion is also shown in Fig. 9 (dotted curve); it is clear in
comparing it to the exponential polynomial rate function
estimate that the procedure using the NHPP assumption
works well despite the apparent departures from a Pois-
son process; if anything, there is a fairly clear validation
of the results in Table 8 that an exponential polynomial
rate function of degree higher than 8 is needed.
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Figure 10 Estimates of the rate function of transaction initia-
tion process for day 2. Solid curve is a global estimate based on
an exponential polynomial of degree 9. Dotted curve is local
estimate obtained as in Fig. 2. The high-activity (H) and low-
activity (L) time periods are marked on the flgure.

Table 9 Estimated values of the coefficients {a,} in NHPP
exponential polynomial rate function (degree r = 8) for times
between transaction initiations for time period L.

m a,, &mtg’

0 —2.4784 —2.4784
1 5.7575x 107* 7.9566
2 —2.4040 x 107° —459.1064
3 1.6908 x 107* 4462.4093
4 —5.1474 x 107" —18774.5509
5 8.2145 x 1077 41404.4332
6 7.1769 x 107 —49991.0659
7 3.2524 x 1077 31307.4980
8 —5.9823 x 107 —7958.1157

It is also of interest to note that the estimated para-
meters &, with even index r are negative (Table 9), a
pattern similar to that for the high-activity data shown in
Table 5, where &, &,, &, and &, are negative, the remain-
ing estimated &,, being positive. This is again illustrative
of the cyclic effect in the data. It is difficult to compare
the magnitude of the estimates in the two periods since,
if there were a cycle in the data, the relative phase at the
beginning of the period of observations would influence
the parameter values.

e Applications to complete days data

Recall that a very rough smoothing produced the
smoothed estimate of the rate of transaction initiations
given in Fig. 2. It is of interest to apply the global smooth-

P. A. W. LEWIS AND G. S. SHEDLER

ing based on an NHPP assumption and an exponential
polynomial rate function to the complete days data, even
though they are not Poisson at low-activity, so as to have
a formal, easily implemented procedure for this type of
data that does not involve a choice of smoothing func-
tions and bandwidths.

Over the whole day, 25,076 transaction initiations
were observed; details of the testing for the degree of
the exponential polynomial, and the values of the esti-
mated parameters, are not tabulated here. Briefly, the
tests up to r = 10, except for r = 2, indicate that the para-
meters are non-zero. Computation of the moments for
the U, only up to r = 10 imposes a limitation on the fit;
more importantly, estimation of parameters in an ex-
ponential polynomial for an entire day’s data is not fea-
sible for degree greater than 9. Thus in Fig. 10 we have
overlaid on the rate estimate for day 2 data (given in
Fig. 2) an exponential polynomial of degree 9. The agree-
ment between the two estimates is good.

We would expect that as the degree of the polynomial
went up, the local fluctuations for the high- and low-
activity sections would appear. The computational prob-
lems, however, are horrendous; it would be simpler to
connect up polynomial rate function estimates within
smaller, contiguous sections. This has not been pursued;
in particular, it is not clear that the polynomials would
connect smoothly.

The overall conclusion of this section is that the data
are grossly nonhomogeneous; possible reasons will be
discussed in a subsequent section.

Tests of fit of the NHPP

In the earlier discussion, it was noted that by trans-
forming the observations in an NHPP with known rate
function so that the times-to-events become T, = A(T),),
T, = A(T,), -, the transformed process is a homo-
geneous Poisson process with unit rate function. More-
over, by conditioning on the number of events in (0, 7,]
or (0, A(r,)], the problem of testing for an NHPP can
be reduced to testing, for some alternatives, that the
times-to-events are order statistics from a uniform dis-
tribution. Other tests are given in Cox and Lewis [5],
Ch. 6. The transformation is shown in Fig. 11.

Testing for an NHPP with unknown rate function is
more difficult. The analogous problem in regression
analysis is to test the usual assumption that the residuals
¢, in an additive model

Yi=g(i; B) tg

are independent normal random variables with mean
zero and constant variance o”’. The problem is that after
estimating the parametric mean value function, the resid-
vals e, =Y, — g(i; é‘) are no longer independent and nor-
mally distributed. (e.g., see Daniel and Wood [ 16]).
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An analogous procedure suggested by Lewis [21],
using Theorem 1, is to estimate the parameters in the
parametric rate function A(r; «), which we denote by
A(t; & or A(r), via maximum likelihood and then to
detrend the process by transforming the process to ob-
tain 7, = /A\(TI;Q), T, = A(Tz; a), - We would expect
the departures from a homogeneous process to be small
if the number of observations is large and the number of
parameters small, and, of course, if the completely speci-
fied NHPP is correct.

Very little is known about this procedure. Note, how-
ever, that if the uniform conditional test is used with
(conditional) Kolmogorov-Smirnov statistics, the prob-
lem is that of Kolmogorov-Smirnov tests of fit after para-
meter estimation. Lilliefors [22, 23] has investigated
this for exponential and normal random variables; as
expected, the estimated distribution function (integrated
rate function) is, on average, closer to the empirical dis-
tribution function (empirical integrated rate function)
than without parameter estimation. More recent work on
Kolmogorov-Smirnov tests with estimated parameters
is not yet developed for our purposes. Tests for a homo-
geneous Poisson process based on spectra (Cox and
Lewis [5], Ch. 6) should be less sensitive to parameter
estimation.

We now apply these methods to the low- and high-
activity periods in an informal manner, relying more on
properties of the intervals and the count spectra than
on the rate function.

s High-activity data: test for NHPP
The following discussion of the validity of, or departures
from, the NHPP model for the high-activity data is based,
after transformation of the data, on the methodology in
Cox and Lewis [5], which is implemented in the SASE-
IV program. It is highly technical; our discussion is
abbreviated and can be skipped by the reader interested
primarily in the results of the data analysis. Briefly, the
NHPP is found using the detrending technique to be
approximately correct. Deviations occur because of an
apparent inhibition effect that results in fewer very short
intervals than would occur under the NHPP assumption.
To proceed with the analysis of the detrended high-
activity data, in Table 10 we given results of several
tests for dependence of intervals in the process. The
normalilzed, estimated first serial correlation coefficient
(n— 1)2p, has a value —2.5532, higher than the 1% level
of the normal distribution, while the tests for indepen-
dence based on the cumulated periodogram (raw inter-
val spectral density estimate) using the Kolmogorov-
Smirnov statistic D, and the Anderson-Darling statistic
W%, (Cox and Lewis [5], Ch. 6) are just significant at
a 1% level.
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Figure 11 Transformation of the time scale for NHPP having
integrated rate function A(f). The T, are the times-to-events in
the NHPP; the T| are the times-to-events in a homogeneous
Poisson process of rate 1.

Table 10 Tests for dependence on serial number and depen-
dence between intervals. Detrended (NHPP exponential poly-
nomial rate function of degree 6) transaction initiation process
for time period H.

n number of transactions initiated 1999
h, estimated serial correlation

coefficient of lag I for times

. between transaction initiations —0.05762
(n— 1)2p, ~-2.5532
Tests for serial independence based

on cumulated periodogram -
Dq/z Kolmogorov-Smirnov statistic* 1.4897
W, Anderson-Darling statistict 3.9941

*Upper 1% point is 1.518
tUpper 1% point is 3.857

We note that the smoothed interval spectral density,
as computed in the SASE-VI program, shows no char-
acteristic departure from flatness, and serial correlations
beyond the first are small. Thus there appears to be only
a residual dependence in the intervals, possibly due to
the detrending or a residual trend.

Similarly, the estimated spectrum of counts (Cox and
Lewis [5}, Ch. 5; Lewis [21]) has no significant de-
parture from flatness, showing that a Poisson process is
a tenable hypothesis for the detrended data and con-
sequently a NHPP hypothesis for the original data.

However, some very subtle departures from expo-
nentiality appear when we look at the interval prop-
erties of the detrended process. These are given in Table
11. In the first place, the estimated coefficient of variation
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Figure 12 Empirical log survivor function of the detrended
times X’ between transaction initiations for time period H.
Sample size n = 1999. Note that the figure shows the log sur-
vivor function out only to 1564 events.

of times between events, C (X’) is smaller than 1. Esti-
mated from five sections of the data, it has value C(X') =
0.9673, with estimated standard deviation 0.0775, which
is too large to give conclusive evidence of departure from
the value C(X’) = 1 for a Poisson process. The empirical
log survivor function of the detrended times X’ between
transaction initiations is shown in Fig. 12.

This artifact of the data shows up clearly in an esti-
mate of the intensity function, m (t) There is a definite
notch at zero in the estimate m (At) (Cox and Lewis [ 5],
Ch. 5). Thus there are only 720 observations within A
of the origin, and subsequently the estimate is essentially
flat, never deviating in any interval A from the modal
value of 1,000 by more than 50.

Checking of the transaction initiation process showed
that there was in fact a minimum time between trans-
action initiations imposed by the system. A simple model
of a Poisson process with blocking (Type I counter) is
sufficient to account for the deviations from a Poisson
process.

Another artifact in the data appears in the fact that the
estimated coefficients of skewness and kurtosis, y,(X")
and y,(X’) for the data (5.2363 and 68.3916 in Table
11) are large compared to the Poisson process values
7:(X) =2, y,(X) = 9. These are due to occasional very
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large times between transaction initiations; these seem
to occur in very short periods of high variability of times
between transaction initiations. This shows up in Fig. §
as the spike at about ¢ = 3000.

No explanation has been found for this departure from
the NHPP; it could be due to special procedures in the
use of the system but in any event is too minor to affect
practical use of the NHPP model in evaluating such a
system.

e Low-activity data: test for NHPP

The low-activity data, after detrending with an estimated
rate function A(z; a) which is the integral of an expo-
nential polynomial of degree 8, to give 7] = A(Tl), T,=
A(T ,), "+, show a very definite indication of departure
from a Poisson process. For C(X"), Y, (X)), ¥,(X"), we
obtain values 1.475, 4.1233, 21.716, respectively, and
these are too large to be consistent with a Poisson hy-
pothesis after detrending.

The data also show considerable interval correlation.
A detailed analysis will not be given here, especially
since the detrending process is not completely valid.
However, as remarked earlier, the low-activity data
after detrending is consistent with a cluster process hy-
pothesis. We emphasize that “consistent” here refers
only to matching of gross characteristics of the observed
and theoretical processes; there is no known formal way
of verifying a non-homogeneous cluster process hy-
pothesis.

Discussion
The outstanding feature of these data is the oscillatory
nature of the rate function in both the high and low activ-
ity periods. Such oscillatory behavior is usually investi-
gated by spectral analysis, but this of course is applicable
only to stationary data. The data show a gross time-of-
day effect superimposed on the oscillations, and it is not
simple to filter this out, most particularly because the
period of the oscillation is long, i.e., low-frequency. It
is therefore likely to become mixed up in a spectral analy-
sis with long term evolutionary (time-of-day) trends.
Nevertheless, an attempt was made to examine the
cyclic effect in time periods H and L by

1. detrending after fitting an exponential polynomial
of degree 1; and

2. computing the count spectrum of the detrended data
using SASE-VI.

The results of these spectral analyses show generally
flat spectra, with peaks at a low frequency corresponding
to a rough guess at the frequency of the cycle, which was
obtained from Figs. 4 and 9. There seems to be no evi-
dence of a fixed frequency cycle; this would show up as
a sharp peak in the spectrum.
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The cycles observed in this exploratory analysis of a
single series of events in the system bring up some in-
teresting, difficult, and as yet, unresolved methodological
and phenomenological questions.

1. The global techniques for rate function estimation
need to be extended to larger sections of data as the
best overall way of looking at these data. The most
practical way of doing this would appear to be to
apply the technique to non-overlapping or overlapping
sections of the data. The problem of joining sections
might lead to (exponential) spline function tech-
niques; new problems of testing then arise.

2. The question arises as to what causes the oscillatory
or cyclic effect. In the Introduction we pointed out
that the transaction initiation process is an output or
response process so that it is presumably driven by
other processes associated with the system (e.g., mes-
sage arrivals). The implications of this from a meth-
odological point of view are twofold:

a. The deterministic rate function estimated in pre-
vious sections might be considered, at least in the
micro-aspects, to be purely descriptive. There is
a possibility that what we are seeing is the effect
of congestion in the system (e.g., DL/I compo-
nent), and the data may perhaps be best described
by something like a self-exciting process (Hawkes
[24]), which is the point process analog of an
autoregressive system. This would not be incon-
sistent with our findings, since (linear) self-excit-
ing processes are special types of cluster processes
(Hawkes and Oakes [25]). One problem with the
above interpretation of the cyclic effect is that we
would expect more oscillatory effect during high
activity periods than during low activity periods.
However, just the opposite is true.

b. Since the observed transaction initiation process
is driven by other processes associated with the
system, a full description of the behavior of the
system would involve an attempt to correlate the
transaction initiation process studied in this paper
with processes at other points of the system. In
particular, it would be of interest to correlate the
transaction initiation process with the process of
message arrivals from terminals. It would also be
desirable to correlate the transaction initiation
process with the successive response times ex-
perienced by users of the system.

There are many methodological problems in analyz-
ing very non-stationary systems, in particular the prob-
lem of estimating correlation and/or coherence. For
the present case the fact that the high-activity data are
close to Poisson, although nonhomogeneous, should
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Table 11 Sample characteristics of times-between-events. De-
trended (NHPP exponential polynomial rate function of de-
gree 6). Transaction initiation process for time period H.

n number of transactions initiated 1999
Iy period of observation 1999.02
X' estimated mean time between trans-
. action initiations 0.9998
C(X") estimated coefficient of variation

of times between transaction

initiations 0.9784
v.(X") estimated coefficient of skewness of

times between transaction

initiations 5.2363
7,(X") estimated coefficient of kurtosis of

times between transaction

initiations 68.3916
X' pax maximum time between transaction

initiations 17.4752
X' in minimum time between transaction

initiations 0.0031

make development of the necessary methodology simpler.
The work of Cox and Lewis [5], and particularly Cox
[10], should be useful.
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