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Abstract: An  exploratory  approach is taken to  analyze a  vast  quantity of data recorded  during the running of the data base  manage- 
ment  system IMS  (Information Management System).  The collection of data analyzed is a sequence of access path  lengths  for a day- 
long period. The  number of segments accessed by IMS when searching  a data base in order  to  retrieve a specified segment for a user is 
called an  access path  length. Part of the motivation  for the analysis is to suggest reasonable  stochastic models for  the  access path length 
sequence  that can be conveniently utilized as input  models for a  stimulation model of an IMS installation. The  exploratory  approach 
taken  to the data involves the use of graphical  displays  and simple numerical summaries to reveal characteristics  of, and patterns in,  the 
data.  Some simple ways  are presented in which the structure of the  data revealed by the  analysis  can be incorporated into an  input model 
for  a system simulation 

Introduction 
In this paper an exploratory or  descriptive  approach is 
taken  to  study a vast quantity of data recorded  during a 
day-long  period of operation of a computer  system  that 
is running  a data  base management system.  The  ap- 
proach is to apply appropriate graphical methods  to  the 
time sequence of raw data, and to  use simple  numerical 
summaries to reveal characteristics of, and patterns in, 
the  data.  The  data  base management system is IMS 
(Information  Management  System), a  processing pro- 
gram that facilitates the accessing of large data  bases 
shared in common by several  applications [ I ] .  A de- 
scription of IMS which  provides the  necessary back- 
ground for this  paper is given in [ 21. The  data analyzed 
are  the  sequences of access path  lengths for a day-long 
period. The access path  length is the number of seg- 
ments accessed when  searching a data  base in response 
to a data  base call issued by an application  program to 
IMS (cf. [2] ). The  nature of the  access path  lengths  has 
implications  for the  performance of an IMS installation 
(i.e., a computer  system running IMS) . It  is reasonable 
to  expect  that if access path  lengths are  shortened, e.g., 
by modifying the  set of pointers  maintained under  the 
hierarchical direct  storage organization,  then  improved 
system performance will result. However,  the  precise 
way in which access path  lengths affect system  perfor- 
mance  variables such as the  response time for a transac- 
tion is not know. 

The  sequence of access path  lengths (measured as 
described in the  second  section) is one of the input 
(workload)  sequences  for a simulation model of an IMS 

installation that is currently being developed.  The model 
extends a previously  developed  analytic  queueing model 
[2] of the  data  base management  portion of IMS  to in- 
corporate  representations of additional system activities 
(e.g., IMS data communication  activities and operating 
system  overhead).  Part of the motivation for  the explor- 
atory  data analysis of this paper is to suggest reasonable 
stochastic models for  the  access path length sequence 
that can be conveniently  incorporated  into the simula- 
tion model. In the analytic  queueing model [2] it was 
assumed that  successive  access path  lengths form a se- 
quence of independent and identically distributed  ran- 
dom variables that  are geometrically distributed.  This 
assumption, which facilitated the mathematical  analysis 
of the model, is shown  to be inconsistent with the avail- 
able  data. 

Finally,  a  few  disclaimers are in order. In general, no 
attempt has  been  made to explain the  observed  patterns 
in the  data  on physical grounds, although such explana- 
tions are certainly  desirable. Neither is it claimed that 
the  patterns noted will persist indefinitely at  one installa- 
tion or widely over  many.  Despite  the  fact  that many 
path  lengths were  recorded,  the  duration of recording 
was one  day, representing  but one installation. Never- 
theless,  the  data behavior is of interest  because of the 
detailed structure  revealed; no data  base  system model 
should  ignore such  structure in possible inputs. At the 
end of the  paper some  simple, tentative ways in which 
the  observed  structure can  be  incorporated into  an input 
model for a system simulation are  discussed. 
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Figure 1 Empirical log survivor function for L. 

Table 1 Numerical  histogram for L. 
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Table 2 Summary  statistics for L. 
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Data measurement 

8 Description of the source system 
Initially, data  were collected during one day's normal 
operation of an on-line,  manufacturing IMS installation. 

450 This installation will be  referred to  as  the  source  system. 

The  data  bases  contained information about production 
scheduling,  production history, quality control, planning, 
etc.  The installation  was  running IMS/360 on a 
370/ 155. There  were five data  bases on-line  containing 
1 13.65, 16.91,  9.74,  34.7, and 0.77 megabytes, respec- 
tively. The  structure and number of segment instances 
for  each  data  base  are given in the  Appendix.  The hier- 
archical direct  storage organization  was  used for each 
data  base and  indices  were  maintained for root  segment 
instances.  The  access method for this storage organiza- 
tion is called HIDAM [ I ] .  Forward twin pointers, for- 
ward  parent-to-first-child pointers, and  backward child- 
to-parent pointers were maintained for  each  data  base. 
The  average  number of terminals active was 34, and 48 
types of transactions were  processed during the  day. 
Three message  processing  regions  were active simulta- 
neously. 

9 Measurements  on  the source system 
To minimize data collection overhead on the  source  sys- 
tem, only  a limited amount of data were collected.  The 
collected  information  included, for  each  data  base call, 
the  name of the  transaction  that  made  the call, the  data 
base  referenced,  the call type  (there  are nine types of 
data  base calls in IMS, get unique and get next being 
two of the call types),  the  target segment type and in- 
stance, and the time that  the call was completed.  This 
information  was recorded in the IMS log. The  sequence 
of path  segments accessed in order  to  reach  the target 
segment  was  not recorded. 

Measurements  on  the experimental system 
For  the work  described in this paper,  access  path length 
data were  needed. These  data  were  reconstructed  on a 
system dedicated to  measurement and experimental 
work. All of the  data  base calls for a  particular instance 
of a transaction were  grouped together into  a transaction 
sequence. (In  IMS, all data  base calls arising from  an 
instance of a transaction  are processed  consecutively in 
a  message  processing region with no intervening calls 
from  other  transactions  processed in that  region.)  The 
transaction  sequences were then  ordered according to 
the completion  times of the first call of each transaction. 
This was  intended to  approximate  the  order in which the 
transactions arrived  and would have been processed  on 
the  source system if there  were only one message pro- 
cessing region. The  reordered  sequence of calls  was 
executed in a single region on  the experimental system 
using reconstructions of the  source  data  bases.  The  re- 
sulting single-region sequence of access  path lengths was 
measured and is the  one studied in this paper. 

The single-region sequence of access path  lengths is 
one of the input sequences  for a  simulation  model,  dis- 
cussed in the  Introduction, of an IMS installation with 
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Table 3 Sample statistics for sections of L (section  size = 10000) 
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multiple regions. The scheduling of transactions  for pro- 
cessing in multiple regions is represented explicitly in 
the model,  and the model transforms the single-region 
access path length sequence  into a multiple-region se- 
quence.  The single-region sequence is independent of 
the scheduling  algorithm  used and,  hence, is more  sys- 
tem  independent  than the multiple-region sequence.  One 
of the model outputs will be sequence of response times 
for  successive  transactions.  Thus,  the model transforms 
the single-region access path length sequence into  a mul- 
tiple-region sequence of transaction  response times. 

Exploratory  analyses 

Analysis of access  path length sequence 
The  access path  length (apl)  sequence L for a day-long 
period is investigated in this subsection.  The  sequence L 
cullsists of 223 186  apls  ordered  as  described in the pre- 
ceding section [ 31. Table 1 contains a  numerical  histo- 
gram for L [4]. Summary statistics  for  the  entire se- 
quence  are given in Table 2. Notice  that  the median 
and  90th percentile are small, and that  the  data  are highly 
positively skewed.  The large coefficient of variation is 
accounted  for by the substantial number of apls in the 
ranges  201-225  and  1001-4005. 

The  shape of the empirical log survivor function r ( n )  
for L, where r (  n)  = log[ (count of apls 1 n )  / sequence 
size],  can help  reveal whether  the marginal distribution 

for  the  sequence is consistent with a  specified,  simple, 
functional form.  For example, the theoretical log survi- 
vor function for a geometrically  distributed  random  vari- 
able is linear in n. A plot of r ( n )  versus n for n 5 300 is 
shown in Fig. 1 .  Clearly,  the plot is not  consistent with 
the assumption that L is a realization of a stationary  se- 
quence of geometrically  distributed random variables. 
Furthermore,  the coefficient of variation of a  geomet- 
rically distributed  random  variable with mean In is 
[ ( 1 + rn) /rn] f which is equal to 1.05 if m = 9.05; since 
the  observed coefficient of variation for L is equal to 
9.34,  the simple geometric  distribution is quite  implaus- 
ible. Also,  the  apparent  preference  for path  lengths of 
201-225  and  the smaller,  but  noticeable, preference  for 
path  lengths  between 2001 and 4005 are incompatible 
with  a  geometric  distribution. 

In  order  to investigate whether sample statistics  for L 
vary over  the day-long  period, the first 220000 apls in L 
were divided  into 22 non-overlapping sections of 10000 
consecutive apls each. Sample statistics  for  the 22 sec- 
tions  are given in Table 3. The last  two rows of the  table 
contain, respectively, the mean  and standard deviation 
of the numbers in the  second  and third columns of the 
table.  Notice  that  the sample  mean  and coefficient of 
variation  vary  considerably from section to  section while 
the sample  median does not  vary at all and  the sample 
90th  percentile is relatively stable  (except  for Section 
16).  The sample coefficient of variation does  not  exceed 451 
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Figure 2 Empirical log survivor functions for sections of L (section size = 10000). 

3 for  those  sections having no apls greater than 1000 
and it exceeds 5 for all other  sections. Plots of the em- 
pirical log survivor function for selected  sections are 
given in Fig. 2, where minus infinity is plotted as  zero. 
Notice  that  the  shapes of the empirical log survivor 
functions for  the different sections  are  somewhat similar 
for n 5 200. However,  the  frequency of the  occurrence 
of preferred  values  201-225 and of values greater  than 
1000 varies  considerably  among sections. 

The  sequence L was  also  divided  into  223  non-over- 
lapping sections of 1000 consecutive apls each.  The 
sample mean, coefficient of variation  and  serial correla- 
tion of lag 1 for each section are plotted versus  the serial 
number of the section in Fig. 3. The plots  reveal that 

while the sample statistics  are highly variable from  sec- 
tion to  section,  there is no apparent  trend  for  these  sta- 
tistics. If the  apls  for a  section were  independent and 
identically  distributed  (i.i.d.) random variables,  then the 
sample  serial  correlation of lag 1 for a  section of size 
1000 should (based  on  asymptotic  theory) be  approxi- 
mately  normally  distributed with mean 1 / 1000 = 0.001 
and  standard deviation 1 /V%@ = 0.032 [ 5 ] .  The 
probability of observing  a correlation  greater in magni- 
tude than 0.10 would be less than  0.0025.  The third  plot 
in Fig.  3  indicates that apls are not i.i.d. for  each  section, 
since  there  are 24  serial correlations of lag 1 out of 223 
that  are  greater in magnitude  than 0.10. These large cor- 
relations are  both positive  and  negative. 
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There  are 741 apls  greater  than  or equal to  200 in L. 
These ''long'' apls are plotted against  their  serial  num- 
bers of occurrence  (index in the  sequence) in Fig. 4. 
This plot reveals that  the apls greater than 1000 occur in 
clusters. Clearly if L were  a  realization of a sequence of 
i.i.d. random  variables, such clustering would not  be an- 
ticipated. There  are 184 apls greater than 1000, and 
these apls account  for slightly more than 25 percent of 
the approximately  2 X 10" segment accesses  for  the  day- 
long period being considered. 

The  gross  characteristics of the  access path length 
sequence  as revealed in the  above analysis are: 

1 .  The empirical  distribution  function is highly positive- 

2 .  Sample statistics  for  the  sequence vary  greatly  from 

3. There is no obvious  trend or easily explained  cyclic 

4. There is evidence of correlation between  successive 

ly skewed;  certain long apls are preferred. 

section to section over  the  day. 

pattern in the  sequence. 

apls. 
5. A small number (less than 0.1 percent of  all apls) of 

very long apls (apls  greater than 1000) occur in 
clusters in the  sequence.  (Later it will be  seen that 
these very long apls  are  caused by calls to a single 
data  base.) 

Analysis o j  access  path  length  sequences ,fbr diffc'rertt 
dutu buses 
It is plausible that  the apl for a data  base call depends  on 
the particular data  base referenced by the call, since the 
five data  bases  are  quite different in structure  and in size 
(see  the  Appendix).  For  the day-long period being con- 
sidered, all but  one of the  data  base calls were to  one of 
four  data bases, denoted  as  data  bases 1, 2, 3 ,  and 4. 
Four apl sequences  L,, L,, L,, and L, can be extracted 
from L, where Li is the  subsequence of L  containing all 
apls  resulting  from calls to  data  base i. 

The  data  base  reference  sequence D consists of 
223 185 data  base  references  (one for each  data  base 
call except  for  the call to  the fifth data  base)  ordered in 
the  same  manner  as  the  data  base calls are  ordered. D is 
a sequence  on  the integers 1 ,  2, 3, and 4. Given L,, L,, 
L,,  L,, and D, the  sequence L can be recreated in the 
obvious way (with  the exception of one  apl) . In  order  to 
further  explore  the  gross  features of the  access path 
length data,  the apl sequence for each  data  base is exam- 
ined next.  The  sequence D will be  examined in the fol- 
lowing subsection. 

Summary  statistics  for L,-L, are given in Table 4, 
and  plots of the empirical log survivor functions are 
shown in Fig. 5. Notice  that L, contains all apls greater 
than 21 1 and  that  the mean, coefficient of variation, 
and 90th percentile for L, are much  larger  than for  the 
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Figure 5 Empirical log survivor functions  for L,, L,, L:j, L,. 

other  three  sequences.  The empirical log survivor  func- 
tion for L:, has a big jump  at approximately  200, while 
the  other  three log survivor functions do not. (The se- 
quence L, contains  430 apls  between  201 and 21 1 ,  while 
the  other  three  sequences contain  only six such  apls.) 
Clearly,  the empirical  distribution  functions for  the  four 
apl sequences differ greatly and  are not  geometric. 

Each of the  four  sequences was  divided  into  non- 
overlapping sections of 1000  consecutive apls. For  each 
sequence  the sample  mean, coefficient of variation, and 
serial correlation of lag 1 were  computed  for  each  sec- 

454 tion and plotted versus  the serial number of the  section. 

Only the plots of sample  serial correlation  are shown 
here, in Fig. 6. As was the  case  for  the  sequence L, the 
sample statistics  are highly variable  from  section to  sec- 
tion of each  sequence.  For  each of the  sequences L and 
L,-L,, the mean and  standard deviation across  sections 
of the sample statistics  are given in Table 5, where  the 
standard deviation appears below the mean. The  stan- 
dard deviation  provides a measure of the variability  from 
section  to  section.  The variability from section  to  sec- 
tion of the  sample  statistics  for L does not appear  to  be 
simply due  to different data  bases being referenced in 
different sections.  There is evidence of trends in some of 
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Sequence  size 
Mean 
Variance 
Coef. var. 
Minimum 
Maximum 
Median 
90th  percentile 

99076 
5.22 
83.8 
1.75 

0 
113 
2 
1 1  

52413 
20.5 

2.97 X IO" 
8.39 

0 
4005 

2 
34 

25060 
8.67 

865.0 
3.39 

0 
21 I 

2 
12 

46636 
4.48 
19.2 

0.978 
0 
36 
3 
I I  

the sample statistics  for L,-L,. For example, the sample 
serial  correlation of lag 1 for L, decreases  at  the end of 
the  sequence. 

There  are a  substantial  number of sample  serial cor- 
relations of  lag 1 greater than 0.1 in magnitude in Fig. 6, 
suggesting significant serial  correlation for some sections 
of L,-L,. The  correlations  greater  than 0. I in magnitude 
are both  positive  and  negative for L, and L,, but are 
negative  only for L, and L,. In  order  to  further investi- 
gate whether  there is significant serial correlation in L,, 
an informal test was  performed. The empirical  distribu- 
tion function  was  obtained for  each section of L, of size 
1000. Then 1000 independent samples  were drawn  from 
each of the  above 99 empirical  distribution functions to 
create a sequence i,. i, is a  realization of a sequence of 
independent random variables,  where the  random vari- 
ables in a given section of size 1000 are identically  dis- 
tributed with distribution  functional  equal to  the empiri- 
cal  distribution  function for the corresponding section of 
L,. The sample  serial correlations of lag 1 for  each of the 
99 sections of i, are plotted in Fig. 7. All sample  serial 
correlations in Fig. 7 are less than 0.1 in magnitude, in- 
dicating that  the large sample  serial correlations  for L, in 
Fig. 6 are unlikely to  have arisen from a realization of a 
sequence of independent  random  variables. This graphi- 
cal comparison of sample statistics obtained  from the 
simulation of a  model with sample statistics obtained 
from the data provides an informal test of the  adequacy 
of the model. It was expected  that similar results would 
be  obtained if this test were repeated  for L,,  L,, or L, 
and the  test was  not repeated. 

In Fig. 8 the 287 apls greater  than 21 1 in  L, are plot- 
ted  against  their  serial numbers of occurrence in L,. The 
apls greater than 1000 occur in clusters in the first three- 
fourths of the  sequence. 

The  gross  characteristics of the  access path length 
sequences  for  the  four  data  bases  are: 

1 .  The empirical  distribution functions differ greatly for 
L,-L,  and  are highly positively skewed for L,-L,. 
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Table 5 Mean  and  standard deviation across sections of sample  statistics for L and L1-L4 (section size = 1000). 

L 
_ _ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ ~  ~ ~ 

Mean 9.06 
7.60 

Coef.  var. 3.71 
3.20 

Ser.  cor. 1 -0.003 
0.059 

Ll L2 L, L4 
~ ~ ~ _ _ _ _ _ _ _ ~  ~~~~ ~~~ ~~ ~ ~ ~ ~ ~ _ _ _ _ _ _ _ _ ~  ~~ 

5.23  20.07 8.66 4.49 
2.16 21.6  4.62 1.33 
1.50  3.77 3.5 1 0.99 1 
0.336 2.64 0.686 0.342 

-0.0 I 4  -0.083 -0.050 0.055 
0.124 0.1  16 0.039 0.208 

~ _ _ _ _ _  

Mean 
Std. dev. 
Mean 
Std.  dev. 
Mean 
Std.  dev. 

Table 6 One-step transition matrix for D 

I 2 3 4 

1 0.747 0.240 0.0 I 2  3 x 
2  0.462 0.456 0.006 0.076 

4  0.0 I 0  0.070 0.007 0.9 I 4  
3 0.016 0.058 0.926 4 x 10"' 

Table 7 Sample statistics  for  run  lengths for  sections 1-3 of 
D (section size = 10000). 

~~ 

1 1 
2 
3 
4 

2 1 
2 
3 
4 

3 1 
2 
3 
4 

1194 
1257 
105 

81  
992 

1096 
87 

129 
742 
814 
92 
96 

4.45 
1.63 

9.72 
5.07 
1.69 

9.33 
6.25 
2.39 

17.7 

20.3 

19.1 
15.9 

5.32 
0.527 
I .80 
2.95 
4.65 
0.807 
1.72 
1.32 
5.75 
4.27 
1.61 
1.35 

2. Sample statistics  for  each  sequence vary  greatly from 

3. There  are indications of trends in some of the se- 
section to section over  the  day. 

quences. 
4. There is evidence of correlation between  successive 

apls for  each of the  sequences,  the significant correla- 
tions being either positive or negative for  sections of 
L, and L,, and  negative  only for  sections of L, and 

5 .  All apls greater than 1000 occur in clusters in the first 
L,. 

456 three-fourths of L,. 

Allulysis of dutu buse  reference sequc'nce 
The  data  base  reference  (dbr)  sequence D is a sequence 
on the integers 1-4. In Fig. 9, for each i, the  number of 
occurrences of dbr i in the first I I  dbrs is plotted versus 
n, where  the  axes  are labeled in units of 1000. These 
plots of the cumulative counts of references  to  each  data 
base  indicate that  the  sequence D is not stationary  over 
the  day.  Data  bases 1 and 3 are referenced more fre- 
quently in the first half of the  sequence than in the last 
half, and data  bases 2 and 4 are referenced  more  fre- 
quently in the last half of the  sequence than in the first 
half. In addition,  there  are rapid short-term fluctuations 
in the frequency of reference  to  the  four  data  bases. 
(The straight  lines,  plotted for comparison purposes, 
have  slopes equal to  the  frequencies of reference  to  the 
four  data  bases  for  the  entire  day.) 

The 4 X 4 matrix of one-step transition frequencies  for 
D is given in Table 6 (the ijth entry in the matrix is the 
frequency of occurrence of j in the  sequence, given j 
preceded by i ) .  It is apparent  that  successive  dbrs  are 
dependent (e.&.,  a 1 is much  more likely to follow a 1 
than to follow a 3 or 4). Based on counts,  the dominant 
one-step  transitions in D are  the 1-1, 1-2, 2-1, 2-2, 3-3, 
and 4-4 transitions. The  counts of the dominant one-step 
transitions  for non-overlapping sections of 10000 con- 
secutive  dbrs  vary considerably from section to  section. 
(The plots of these  counts  are not shown.) 

A simple  model for D is a  first-order Markov chain 
with state  space equal to  the  integers 1-4. The run length 
in each  state of a  first-order Markov chain has a geo- 
metric  distribution  starting at one. If rn, is the mean  run 
length in state i, then the coefficient of ,variation of the 
run length in state i is [ ( m i  - 1 )  / m i ] ' ,  which is less 
than  one. In order  to informally test  the  adequacy of a 
first-order Markov chain model for D, sample statistics 
were computed  for  the run  lengths of l's, 2's, 3's, and 
4's for  each non-overlapping  section of 10000 consecu- 
tive dbrs.  The sample coefficients of variation of the run 
lengths in some of the  states  were  too high to be  consis- 
tent with the  Markov model. Sample statistics  for  Sec- 
tions 1-3 of D are given in Table 7. 
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Table 8 Estimated transition  matrices  and powers of estimated  transition  matrices for D. 

= 0,053 0.084 0.858 0.005 0.052 0.068 0.877 0.003 
0.048 0.099 0.013 0.840 0.036 0.121 0.01 1 0.832 

106121 0.038 0.058 0.025 0.016 

(01281 0.  I30  0.024 0.718 0.168 0.02 1 0.733 

0.03 1 )0132) 10.397j 0.036 
( T , I 4 =  0.128 0.1 15 1 0 . 7 3 9 1  0.018 T,= 0.107 0.096 0.008 

I I L 

Table 9 Estimated  transition  matrices and  powers of estimated  transition matrices  for D' 

0 0.930 0.069 7 x 10- 
0.892 0 0.0 12 0.096 
0.264 0.736 0 0 
0.095 0.77 1 0.134 0 

Ti = 

0.848 0.052 0.012 0.089 
, 2 -  - 0.012 0.912 0.075 6 X 10- 

0.656 0.246 0.027 pzj 0.187  0.016 

0.791 0.1 10 0.015 0.083 
, 4 - 0.071 0.85 1 0.070  0.007 

0.628 0.278 0.028 
0.225 0.024 

(T1) - 

0.867 0.05 1 0.012  0.070 

0.637 0.201 0.074 
0.190  0.0 13 

= 0.0 12 0.917 0.070 6 X IO-' 

/G-iq 

0.066 0.858 0.069 0.007 
0.27 1 0.042 
0.219 0.039 

Ti = 

Another way to informally  investigate the  adequacy of 
a first-order Markov chain model for D is to  compare 
the nth power of the estimated one-step  transition matrix 
for D with the estimated a-step transition  matrix for D. 
These should  be  approximately equal  for a first-order 
Markov chain. (This method has been  used to investi- 
gate  Markov chain  models of social  and  occupational 
mobility [ 61 .) Denote by T ,  the estimated  one-step  trah- 
sition  matrix for D given  in Table  6; (T,)' and ( T,)4 are 
given in the left half of Table 8. The estimated  two-step 
and four-step transition  matrices, denoted by T ,  and T,,  
are given in the right half of the  table. Arbitrarily define 
there  to be  a  substantial difference between  correspond- 
ing entries of ( and T ,  or  between corresponding 
entries of ( T,)4 and T ,  whenever  the  entries differ in 
magnitude by 0.05 or  more;  the corresponding entries 
which differ substantially are enclosed in boxes in Ta- 
ble 8. This  table provides further  evidence  as  to  the in- 

458 adequacy of a first-order Markov chain model for D. 

Although D is  apparently  not  adequately  represented 
by a  first-order Markov  chain, it is possible that a higher 
order  Markov chain would provide  an  adequate  repre- 
sentation.  This is not investigated here.  Alternatively, a 
four-state semi-Markov process  [7] with  a state transi- 
tion occurring at  the beginning of every run might pro- 
vide an  adequate model. The run length in each  state of a 
semi-Markov process has an  arbitrary distribution and 
successive run  lengths in a  particular state  are i.i.d. ran- 
dom variables. The embedded sequence of states  that 
occur  at  the beginning of successive runs in a  semi-Mar- 
kov process is a  first-order Markov chain. Note  that 
successive  states in the  embedded  sequence  are  not 
equal by definition. 

The  embedded  sequence D' and  the  sequences of run 
lengths in the  four  states  were  extracted  from  the first 
30000  dbrs in D in order  to investigate the  adequacy of 
the semi-Markov model. D' is a sequence of size 6686, 
and  the run  length sequences  have  sizes 2928, 3167, 
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Table 10 Sample  statistics for fun  lengths  for first 30000 
dbr's. 

Sequence CWj: 
State size Mean  var. TI 

1 2928 5.16 5.33 -0.090 
2  3 I67  1.85 2.86 14,O 
3 284 19.0 1.71 -0.2 11 
4 306 11.5 1.81 0.063 

284,  and 306, respectively.  Since all run  lengths for D' 
are  equal  to  one,  the  adequacy of a  first-order Markov 
chain model for D' cannot be assessed  based  on run 
lengths. The estimated one-step transition  matrix for D', 
denoted by TI,  and the second and fourth powers of this 
matrix are given in the left half on  Table 9. The  estimat- 
ed two-step and four-step transition matrixes,  denoted 
by 7'; and Ti ,  are given in the right half of the table. Cor- 
responding entries which differ substantially (by  at  least 
0.05 in magnitude) are enclosed in boxes in the  table. 
All corresponding  entries in the first two rows of ( T l )  
and T;,  and in the first three  rows of ( and T i  differ 
in magnitude by less than 0.02. D' is apparently more 
adequately  represented by a  first-order Markov chain 
than is D. Sample statistics for the run length sequences 
are given in Table 10. The quantity r1 is the normalized 
sample  serial correlation of lag 1, obtained by multiply- 
ing the sample  serial  correlation of lag 1 by the  square 
root of the sample  size. For a sequence of n i.i.d. ran- 
dom variables, where n is large, r1 is approximately 
normally  distributed with mean l/V%and variance one 
[SI, and a value of r1 greater than 3 is very unlikely to 
occur.  Thus,  there is strong evidence  that  successive 
run  lengths in state 2 are  dependent.  (The  sequence of 
run  lengths in state 2  contains  4  values  equal to 147 and 
no  other values greater than 18. Two of the 147's occur 
in succession  and may considerably inflate the value of 
r , .  The value of rl computed with the 147's removed 
from the  sequence is equal to 10.1, which is still sig- 
nificantly large.) Based on  the values of r1, successive 
run  lengths in states 1 ,  3, and  4 appear  to be  independent. 

The  data  base  reference  sequence  has  the following 
gross  characteristics: 

1. The  sequence  is not stationary  over  the  day. 
2. A first-order Markov chain is an  inadequate model 

for the sequence; a  semi-Markov process  more  ade- 
quately represents  the  sequence, although there  are 
some  large discrepancies between the model and  the 
data. 

Table 11 Number of calls due  to five most active  transactions 

Number Number of rol/s to dura base 
Trunsartiorl of calls 1 2  3  4 

1 39657 28180 302 1 1  I75 0 
2 32444 27560 4884 0 0 
3 26659 0 181 0 26478 
4 22215 10961 11254 0 0 
5 20251 1 I757 8494 0 0 

Analysis of access  path  length  sequences for diflerent 
transactions  and  data  bases 
It is plausible that  the  access  path length for a data base 
call depends  on  the  transaction  that gives rise to  the call 
in addition to  the  data  base referenced  by the call,  since 
different transactions  cause different application  pro- 
grams  to  be  executed.  Five  transactions  account  for 63 
percent of the  data  base calls for the day-long period 
being considered.  The  number of calls due  to  each of 
these  transactions and the  number of calls to  each  data 
base  due  to  each of these  transactions  are given in Table 
11. The cumulative count of data  base calls due  to  each 
of these  transactions is plotted versus  the serial numbers 
of the calls in Fig. 10, where  the  axes  are labeled in units 
of 1000 calls. Notice  that  the  rate  at which each  transac- 
tion issues  calls  varies over  the  sequence of calls. It is 
possible that  the variability of the sample statistics from 
section to section of each of the  sequences L,-L, is 
largely due  to  the variability from  section to section of 
the number of calls  arising  from each  transaction. Sam- 
ple statistics  for  the apl sequence  for a  particular  trans- 
action and data  base might be relatively stable  from  sec- 
tion to section. 

To investigate  this hypothesis,  sequences L,,, L,,, and 
L,, were extracted from L where Lij is the apl sequence 
for  transaction i and data  base j .  (L, ,  and L,, contain 
over one-half of the apls in L,, and L,, contains slightly 
less than one-half of the apls in L,.) Each of these se- 
quences was  divided  into  non-overlapping sections of 
1000  consecutive  apls;  the  number of sections  for L,,, 
L,,, and L,, is 28, 11, and  27,  respectively. For  each 
sequence  the sample mean, coefficient of variation,  and 
serial  correlation of lag 1 were computed  for  each  sec- 
tion. The mean and  standard deviation across sections of 
each of the sample statistics  are given in Table 12, 
where  the  standard deviation appears below the mean. 
Notice  that  the  standard deviations across  sections of 
the sample statistics  for L,, are  comparable in value 
to  the  standard deviations for L, given in Table 5. Thus, 
the sample statistics  for L,, are  as variable from section 459 
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Figure 10 Cumulative  counts of calls for five most active 
transactions. 

to section as  the sample statistics  for L,. The sample sta- 
tistics for L,, are less  variable than  those  for L,, and  the 
sample  mean  and  serial correlation of lag 1 for L,, are 
less  variable  than for L,. (The sample coefficient of vari- 
ation  is, however, more  variable.) The sample  serial cor- 

460 relation of lag 1 for each section of L,, is plotted versus 

the serial number of the section in Fig. 11. The values 
vary  greatly from  section  to  section,  and  there is evi- 
dence of significant serial correlation  for  several  sec- 
tions. It  appears  that it would be  no  easier  to  develop  an 
adequate  stochastic model for L,,  than to develop  one 
for L,. The apl sequences  for different transactions and 
data  bases were not investigated further. 

Models for the simulation of access  path lengths 
The analysis of the previous section shows that  access 
path lengths have  the following characteristics: 

1 .  Access path  length  distributions, as  represented by 
log survivor functions,  appear  to differ between  data 
bases. Graphical  presentations  (see Fig. 5) provide 
the evidence. 

2 .  The log survivor functions reveal  that while the ma- 
jority of the  apls  are  short (5 12 about 90 percent of 
the  time),  the overall distributions  are skewed to the 
right,  showing a few  preferred  values, and eventually 
truncating or cutting off at a large finite value. The 
cutoff is relatively smooth  for apls  from data  bases 1 
and 4, appearing  more abrupt  for  data  base 3 ; the 
graph does not  display  a cutoff for  data  base 2. Thus, 
apl  behavior  cannot be  realistically modeled as a 
geometric  distribution with a linearly decreasing log 
survivor  function. Modification of the geometric is 
evidently  required. 

3. Successive  apls  are  somewhat  correlated.  The  degree 
and sign of the correlation are peculiar to  the  data 
base being referenced. 

Models  for  apls  that will provide  the  type of qualita- 
tive behavior noted above  are now introduced.  These 
models can readily  be fitted to  the  observed log survivor 
function  and are a convenient means for generating sim- 
ulated  apls having the  observed  characteristics 1) -3) .  

The representing function  method 
First  the  sequence L, is considered.  The log survivor 
function for L, appears similar to  that of a geometric dis- 
tribution for small  variable values  (say 5 10, but exclud- 
ing zero),  departs therefrom by decreasing  more slowly 
(long-tailed behavior)  for intermediate  values (approxi- 
mately in the  range 11-75) and finally cuts off at large 
values  (around 113). A random apl, Y ,  will be repre- 
sented in terms of an underlying unit exponential  ran- 
dom  variable, X ,  as follows: 

Let 

+ ( X ;  a ,  b, E) = (/3xeaox) / (1  + e/3xeaox), 

and 

y =  [ + ( X ;  a,  b, &)I, ( 1 )  
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where [a] denotes  the integer  part of a  and a,  /3, c > 0; 
+ is called a representing  function [8]. In  order  to sim- 
ulate apls Y, exponential  realizations are obtained from 
X ,  where P{X > x }  = e-s, and converted  to Y-realizations 
by use of Eq. ( 1 ) .  Examination of Eq. ( 1) reveals that 
Y behaves like a  discretized  exponential  random  variable 
(i.e., like a  geometric  random variable)  for small X and 
cuts off at 1 / e ;  at intermediate  values it exhibits long- 
tailed behavior due  to  the influence of eaSx on X .  Methods 
for introducing correlations  between  successive Y-values 
will be  considered  shortly. 

Fitting  the  representing  junction 
For simplicity, Y is not  discretized  in what follows; in- 
stead, Y = + ( X ;  a, p, c ) .  Observe  that if F ( y )  is the  dis- 
tribution  function of Y, then 

l - F ( y ) = ~ ” ‘ ~ P ’ = l - p = ~ - x P , o ~ p ~  1 ,  

where y ,  is the  pth quantile of the Y-distribution, and x p  
is the  pth quantile of the unit exponential  distribution. 
Hence,  the log survivor function of Y, namely A(y) , sat- 
isfies 

A(y,) = log( 1 - p)  = -xp. (2) 

Furthermore,  the monotonicity of + guarantees  that 

Y p  = + ( x p ;  a, /3, E ) .  (3) 

In  order  to fit + to empirical data, a, p, and E must  be 
chosen.  This may be  done by matching  suitable  quan- 
tiles using Eq. (3).  Most easily, 1 / E  is the cutoff point 
for Y; from  Fig. 5 this is 11 3 for L, so that  one parame- 
ter value is established. Next,  two  other  points on the 
empirical log survivor  function are  selected. Examina- 
tion of the empirical log survivor function for L, reveals 
turning  points in the neighborhood of n = 12.5, r ( n )  = 

-2.37 and n = 75, r ( n )  = -6; these  two  points are now 
selected. 

1. Select y p  = 12.5, and  set A(y,)  =-2.37; from  Eq.  (2) 

2. Select y p =  75,  and  set A(y,) =-6; from  Eq.  (2) xp= 
x p  = 2.37 and p = 0.907. 

6 and p = 0.998. 

This choice  leads to  the simultaneous equations 

12.5= (2.37pe”’”’“’)/[l + (2.37/113)/3e”37a8], 

75 = ( 6petia’) / [ 1 + (6/  1 13)petiaB], 

which are readily solved by a Newton-Raphson iteration 
procedure,  as  are  other similarly derived  equations  for 
the log survivor  functions for L,,  L,, and L,. The fitted 
values of a, p,  and c are given in Table 13. Plots of the 
fitted log survivor  functions  are superimposed on plots 
of the empirical log survivor  functions in Fig.  12; the 
solid line curves are the fitted functions.  For L, the  cut- 
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Figure 11 Sample serial correlation of lag 1 vs section number 
for L,, (section  size = 1000). 

Table 12 Mean  and  standard deviation across  sections of 
sample statistics for L,,, L,,, L,, (section size = 1000). 

Mean 5.14  2.09 2.90 Mean 

Coef. var. 1 .50 4.29 1.12 Mean 

Ser.  cor. 1 0.036 -0.019 -0.050 Mean 

2.26 0.381 0.561 Std. dev. 

0.29 1 0.867 0. I72 Std. dev. 

0.172 0.007 0.057 Std. dev. 

Table 13 Fitted parameter values for log  Survivor functions 
for L,, L,, L,, L4. 

ff P I / €  

L, 0.283 1.79 
L, 0.126 
L3 
L4 0.106 3.36 

113 
3.84 m 

16.6 0.0984 m 
36 

off value is so large that 1 / e  was  chosen  equal  to infini- 
ty (in which case + = PXewx ). The empirical log survi- 
vor function for L, has  an  abrupt cutoff at  21 1. This log 
survivor function was fitted by choosing I / &  equal to 
infinity and  letting P = max ( Y ,  21 1) ; the log survivor 
function for P is plotted in the figure. 461 
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Figure 12 Fitted and empirical log survivor functions for L, , L,, L, , L, . 

By and  large,  the general shapes of the empirical log 
survivor functions  are imitated  by the simple parametric 
models  with the  parameter  values given in the table. 
Simulation of independent  apls  via  the models is easily 
accomplished. One noticeable  difference between  the 
simulated apls  and  those  observed in the  data will be  the 
smoothness and  lack of preferred  values  in the  former. 
No physical  explanation has been  obtained for  these 
preferred values; they  may not remain  a significant fea- 
ture  as  more  data  are  analyzed. 

Correlations 
Analysis of the apls in successive  sections of sequences 
L,-L, revealed that mild but definite (statistically 

462 significant) correlations, of both signs, exist  between 

two  successive apls. Very likely  some kind of depen- 
dency  structure  exists  between apls of even  greater sep- 
aration. Although no physical  explanation for  their be- 
havior  can be advanced at this date,  it  is of interest  to 
suggest  simple schemes  for simulating such  correlated 
apls. The following are a few tentative suggestions. None 
has  been, as yet, fitted to  the available data. 

A )  A method  based on a jirst-order  autoregressive  se- 
quence of exponentials 
Gaver  and Lewis [ 91 showed that a sequence {X, , }  of 
random variables  having  unit  exponential marginals may 
be  constructed as follows: 

X,,,  = p X ,  + E,, n = 0,  1, 2 , .  . ., 
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Abstract: This paper presents a methodology and a model for  data  conversion  or translation. The model assumes  that both source 
and  target systems  are available and that conversion  interfaces may be required to interact between  these  systems  and  the  conversion 
system. To achieve data conversion or translation using this approach,  two languages are needed: 1 ) a language to describe  the  data 
structures, and 2 )  a language to specify the mapping between source  and target data.  This  paper  describes  these two  languages, DE- 
FINE and CONVERT and gives  numerous  examples to show the capabilities of these languages and how  they can  be used in data 
conversion and restructuring. Both languages are high level and nonprocedural and have  the  power  to deal with most situations  en- 
countered in data conversion processes.  In addition, the  paper also describes  some of the facilities in the languages specifically de- 
signed for  data checking in a data conversion  process. 

Introduction 
In recent  years applications of data  base  systems  have 
grown  very  rapidly. While the  use of data  base  systems 
relieves users of the  task of having to know much of the 
implementation  details, it has at the  same time made 
data  conversion a  necessity because of various reasons. 
In  general,  data  conversion is a  complex  problem  requir- 
ing more of our  attention  than it has received in the  past. 
This  paper  proposes a solution  applicable to a broad 
class of logical data conversion  problems. 

Relatively little work has been done  to find a solution 
making data  conversion  easier [ 1 - 1 I] .  All investiga- 
tions so far  are preliminary. Only few individuals are 
actively  involved. The most comprehensive work is 
done by members of the  Stored  Data Definition and 
Translation  Task  Group  under  CODASYL’s  System 
Committee, which attempts  to  develop a general  method 
for defining data  structures, storage structures,  their  re- 
lationship, and translation  from one  structure  to  another. 
Similar work goes on  at  the.University of Michigan and 
to a lesser  extent  elsewhere  (see  references).  The  paper 
of Sibley and Taylor [ 1 1 ] gives  a good account of some 
of these related works. 

As reported in reference [ 121, the  authors initiated  a 
similar project at IBM. This project was established to 
investigate and  develop a methodology for application 
conversion and migration. Application conversion is 
defined to include the movement of both  data  and pro- 
grams from  one  system  (or  one  form)  to  another.  After 
studying the problem for some  time, it became  clear that 
current technology is inadequate in solving the general 

problem. Our initial attack is to  solve first the problem 
of data conversion. This  approach not  only  provides us 
with a more fundamental  understanding of the problem 
but it actually is a necessary first step since we must 
understand  what is needed for  data  conversion before 
we know what is to  be  done in the programs. Attention 
is paid, however,  to  the larger  problem so that  the re- 
sults  obtained can be  used as a foundation in the solu- 
tion of total  application migration. 

At  present  data  conversion is done infrequently  be- 
cause of its  complexity. In  spite of changes in require- 
ments,  users  are reluctant to change their  data  struc- 
tures.  It is believed that  conversions will take place 
more frequently when  better techniques are known, 
when  automatic or semi-automatic  aids are available, 
and when greater  data  independence is achieved. 

Problem  environment 
A  study of current works  revealed that  current ap- 
proaches  to  data  conversion  are either too broad and 
general,  as in the  case of CODASYL  Task  Group  or 
Smith’s and  Taylor’s work [ 5 ,  61, or  too  narrow in ap- 
plication as in Lin ahd  Heller [ 131. In  the first case  an 
economically  feasible  solution  requires  much  more re- 
search  and,  therefore,  appears  distant.  .In  the  second 
case, a narrow  approach is not really solving the main 
problem and,  therefore, will provide benefits to only  a 
small subset of computer  users.  The  approach we have 
adopted is a compromise which will provide  help to a 
broad  class of users in the  near  future. 
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The  approach  assumes  that  the  conversion  system will 
run under  the operating system of either  the  source  or 
the target  system.  We also  assume  that  an interface on 
the  source  system  is available to  transform  the  source 
data  into  an intermediate form  acceptable  to  the transla- 
tor, and an interface on  the target system is available to 
take  the  output of the  translator  and  transform  it  into  the 
target data.  In this way the  translator is shielded from 
many of the physical  incompatabilities of the  source and 
target data  such  as parity schemes,  etc. Specific details 
of our model are discussed  later. 

A basic  assumption in our  approach is that it is gener- 
ally impossible to perform data  conversion without the 
users’ help. It is therefore visualized that it is the users’ 
responsibility to  describe  the  data  structures  for  both  the 
source  and target data  and  to define the mappings  be- 
tween  them. It is possible, however,  to  have an ad- 
vanced system which may provide  some  prompting 
through  interaction. 

Two languages have been defined for this purpose: 1 ) 
DEFINE a language to define data  structures, and 2 )  
CONVERT, a language to specify mappings between 
source  and target data,  each of which may contain multi- 
ple logical record types  and logical views. This  paper dis- 
cusses  at some  length these  two languages. For a complete 
discussion, readers should  refer to [ 14, 151. 

In designing these languages we assumed that  the 
users  are skilled programmers. The programmers are 
familiar with their data’s content, not in the  sense of how 
many screws  and  nuts  are in a  parts’ file, but in the  sense 
of knowing that  there  exists a field for describing a part 
and that this field may contain blanks if no description 
exists. They know the  semantics of their  data  and  its 
structure  at a logical level and  what they want  to  be 
done in the mapping process.  These  aspects  are quite 
different from the  assumptions of the designers of data 
base  systems who  frequently  consider their  users  to be 
casual users with little knowledge of the underlying data 
structure. 

Assuming that  the  users  are sophisticated and know 
their  data, they do not  know, however,  the implementa- 
tion  details of their  data  structure, nor do they  want to 
be burdened with the details of how to accomplish the 
whole conversion  process.  Another assumption is that 
the  users  are willing to follow some simple syntactic 
rules of the languages, but  are unwilling to learn another 
complex  language comparable  to,  say,  COBOL  or PL/  1. 
We have also assumed  that  these  users  are not  mathe- 
matically oriented  and they do not appreciate  semantics 
in mathematical  terms. As a result we set  out  at  the be- 
ginning to  make  our languages high level, nonprocedural, 
easy  to  learn,  and simple to use. 

The  above  aspects  cannot be  achieved  without  some 

our languages are simple  only because  we tailored  them 
to a specific purpose, namely, data  conversion and in 
certain  cases  we  traded capabilities for simplicity. Our 
philosophy is to provide a language to handle a great 
majority of the  cases  encountered frequently in data 
conversion and let the remaining small number of cases 
be  handled  by the  computer’s  procedural languages. In 
any case,  the languages have been so structured  that 
additional  capabilities can be  included  without  much 
difficulty. 

The conversion model 
Figure 1 illustrates the overall conversion  process in our 
model. The  source  systems which originally process  the 
source  data  is used to  access  it  and  interacts with the 
conversion interface  module to  produce a  nearly  system 
independent source  data called linearized source files. 
As the  name implies,  linearized files are sequential files. 
(More is said about them in a subsequent  section). 
These files become the input to  the  converter/  translator. 
The  output  from  the  converter/translator  is  another set 
of linearized files called linearized  target files, which are 
changed into physical  target files with the  use of the 
conversion  interface  and  the  target  system. 

Generally speaking, data  conversion  can be divided 
into  two basic  categories: 1. from files to  data  base,  and 
2. from data  base to data  base.  These  two categories 
have some  basic  differences. Several points are salient  in 
the first case. 1) Data is generally  not well organized. It 
contains  much  redundancy  and much of the  data de- 
scription is  carried implicitly in the  procedures.  In fact, 
frequently additional  information is contained there.  For 
example, a census file may be separated  into  two  parts 
such  that  the first part contains information about males 
and  the  second  part  about females, but this separation is 
not  stated explicitly when  the  data  structure  for this file 
is defined. In  our  system all this descriptive information 
is made  explicit. 2 )  These  source files are sequential 
files. Since  the  real world at this  time  has a preponder- 
ance of sequential files to be converted  to  data  bases, we 
have  attempted  to define in our  data definition language 
a  capability that  can  describe most of these files instead 
of imposing severe limitations on  the  formats of linear- 
ized files. 3 )  The  COBOL files deserve  further  atten- 
tion because a great majority of commercial users  are 
COBOL  oriented.  Hence,  our  data definition language 
has  been  designed to have  a strong  COBOL flavor  and 
the capability to describe  the common COBOL files. 
Thus.  we define a  linearized file to  be a file belonging to 
that  subset of sequential files describable by our  data def- 
inition language. It may have a flat or hierarchical record 
structure.  It may contain self-defining data,  terminators 
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