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Exploratory Analysis of Access Path Length Data for a
Data Base Management System

Abstract: An exploratory approach is taken to analyze a vast quantity of data recorded during the running of the data base manage-
ment system IMS (Information Management System). The collection of data analyzed is a sequence of access path lengths for a day-
long period. The number of segments accessed by IMS when searching a data base in order to retrieve a specified segment for a user is
called an access path length. Part of the motivation for the analysis is to suggest reasonable stochastic models for the access path length
sequence that can be conveniently utilized as input models for a stimulation model of an IMS installation. The exploratory approach
taken to the data involves the use of graphical displays and simple numerical summaries to reveal characteristics of, and patterns in, the
data. Some simple ways are presented in which the structure of the data revealed by the analysis can be incorporated into an input model

for a system simulation.

Introduction
In this paper an exploratory or descriptive approach is
taken to study a vast quantity of data recorded during a
day-long period of operation of a computer system that
is running a data base management system. The ap-
proach is to apply appropriate graphical methods to the
time sequence of raw data, and to use simple numerical
summaries to reveal characteristics of, and patterns in,
the data. The data base management system is IMS
(Information Management System), a processing pro-
gram that facilitates the accessing of large data bases
shared in common by several applications [1]. A de-
scription of IMS which provides the necessary back-
ground for this paper is given in [2]. The data analyzed
are the sequences of access path lengths for a day-long
period. The access path length is the number of seg-
ments accessed when searching a data base in response
to a data base call issued by an application program to
IMS (cf. [2]). The nature of the access path lengths has
implications for the performance of an TMS installation
(i.e., a computer system running IMS). It is reasonable
to expect that if access path lengths are shortened, e.g.,
by modifying the set of pointers maintained under the
hierarchical direct storage organization, then improved
system performance will result. However, the precise
way in which access path lengths affect system perfor-
mance variables such as the response time for a transac-
tion is not know.

The sequence of access path lengths (measured as
described in the second section) is one of the input
(workload) sequences for a simulation model of an IMS
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installation that is currently being developed. The model
extends a previously developed analytic queueing model
[2] of the data base management portion of IMS to in-
corporate representations of additional system activities
(e.g., IMS data communication activities and operating
system overhead). Part of the motivation for the explor-
atory data analysis of this paper is to suggest reasonable
stochastic models for the access path length sequence
that can be conveniently incorporated into the simula-
tion model. In the analytic queueing model [2] it was
assumed that successive access path lengths form a se-
quence of independent and identically distributed ran-
dom variables that are geometrically distributed. This
assumption, which facilitated the mathematical analysis
of the model, is shown to be inconsistent with the avail-
able data.

Finally, a few disclaimers are in order. In general, no
attempt has been made to explain the observed patterns
in the data on physical grounds, although such explana-
tions are certainly desirable. Neither is it claimed that
the patterns noted will persist indefinitely at one installa-
tion or widely over many. Despite the fact that many
path lengths were recorded, the duration of recording
was one day, representing but one installation. Never-
theless, the data behavior is of interest because of the
detailed structure revealed; no data base system model
should ignore such structure in possible inputs. At the
end of the paper some simple, tentative ways in which
the observed structure can be incorporated into an input
model for a system simulation are discussed.
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Figure 1 Empirical log survivor function for L.

Table 1 Numerical histogram for L.

Range Count Range Count
0 9848 26-50 6488
1 55785 51-75 2020
2 62026 : 76-100 1256
3 22766 101-125 846
4 12318 126-150 218
5 5625 151-175 233
6 13893 176-200 51
7 4610 201-225 476
8 3869 226-250 38
9 2728 251-300 13

10 2185 301-1000 12

11 5176 1001-2000 35

12 2044 2001-3000 78

13-25 8478 3001-4005 71

Table 2 Summary statistics for L.

Sequence Size 223186

Mean 9.05 ]

Variance 7.14 x 10°

Coef. Var. 9.34

Minimum 0

Maximum 4005

Median 2

90th Percentile 12

Data measurement

» Description of the source sy:vtem

Initially, data were collected during one day’s normal
operation of an on-line, manufacturing IMS installation.
This installation will be referred to as the source system.
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The data bases contained information about production
scheduling, production history, quality control, planning,
etc. The installation was running IMS/360 on a
370/ 155. There were five data bases on-line containing
113.65, 1691, 9.74, 34.7, and 0.77 megabytes, respec-
tively. The structure and number of segment instances
for each data base are given in the Appendix. The hier-
archical direct storage organization was used for each
data base and indices were maintained for root segment
instances. The access method for this storage organiza-
tion is called HIDAM [1]. Forward twin pointers, for-
ward parent-to-first-child pointers, and backward child-
to-parent pointers were maintained for each data base.
The average number of terminals active was 34, and 48
types of transactions were processed during the day.
Three message processing regions were active simulta-
neously.

* Measurements on the source system

To minimize data collection overhead on the source sys-
tem, only a limited amount of data were collected. The
collected information included, for each data base call,
the name of the transaction that made the call, the data
base referenced, the call type (there are nine types of
data base calls in IMS, get unique and get next being
two of the call types), the target segment type and in-
stance, and the time that the call was completed. This
information was recorded in the IMS log. The sequence
of path segments accessed in order to reach the target
segment was not recorded.

s Measurements on the experimentul system
For the work described in this paper, access path length
data were needed. These data were reconstructed on a
system dedicated to measurement and experimental
work. All of the data base calls for a particular instance
of a transaction were grouped together into a transaction
sequence. (In IMS, all data base calls arising from an
instance of a transaction are processed consecutively in
a message processing region with no intervening calls
from other transactions processed in that region.) The
transaction sequences were then ordered according to
the completion times of the first call of each transaction.
This was intended to approximate the order in which the
transactions arrived and would have been processed on
the source system if there were only one message pro-
cessing region. The reordered sequence of calls was
executed in a single region on the experimental system
using reconstructions of the source data bases. The re-
sulting single-region sequence of access path lengths was
measured and is the one studied in this paper.

The single-region sequence of access path lengths is
one of the input sequences for a simulation model, dis-
cussed in the Introduction, of an IMS installation with
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Table 3 Sample statistics for sections of L (section size = 10000).

Percentiles Count of

Section Mean Coef. var. Min. Max. 50th 90th apls > 1000
1 8.41 2.78 0 225 2 13 0
2 7.03 2.51 0 264 2 15 0
3 5.85 2.37 0 238 2 11 0
4 19.5 8.83 0 3936 2 12 41
5 6.96 10.4 0 3508 2 8 5
6 7.07 2.73 0 259 2 11 0
7 14.7 11.3 0 3917 2 8 35
8 9.8 12.1 0 3951 2 11 14
9 10.7 10.2 0 3632 2 12 16
10 5.46 2.54 0 212 2 11 0
11 6.66 2.28 0 230 2 13 0
12 8.12 5.54 0 3127 2 12 3
13 11.7 11.9 0 4005 2 11 18
14 13.9 12.3 0 4004 2 8 31
15 7.12 5.18 0 3273 2 13 1
16 13.1 1.94 0 207 2 46 0
17 8.91 2.57 0 230 2 15 0
18 11.2 10.9 0 3959 2 11 20
19 7.34 2.42 0 207 2 14 0
20 5.08 2.49 0 207 2 10 0
21 6.34 2.61 0 206 2 11 0
22 6.00 2.55 0 225 2 11 0
Mean 9.1t 5.83
Std. dev. 3.65 4.12

multiple regions. The scheduling of transactions for pro-
cessing in multiple regions is represented explicitly in
the model, and the model transforms the single-region
access path length sequence into a multiple-region se-
quence. The single-region sequence is independent of
the scheduling algorithm used and, hence, is more sys-
tem independent than the multiple-region sequence. One
of the model outputs will be sequence of response times
for successive transactions. Thus, the model transforms
the single-region access path length sequence into a mul-
tiple-region sequence of transaction response times.

Exploratory analyses

* Analysis of access path length sequence
The access path length (apl) sequence L for a day-long
period is investigated in this subsection. The sequence L
consists of 223 186 apls ordered as described in the pre-
ceding section [3]. Table 1 contains a numerical histo-
gram for L [4]. Summary statistics for the entire se-
quence are given in Table 2. Notice that the median
and 90th percentile are small, and that the data are highly
positively skewed. The large coefficient of variation is
accounted for by the substantial number of apls in the
ranges 201-225 and 1001-4005.

The shape of the empirical log survivor function r(n)
for L, where r(n) = log[ (count of apls = n) / sequence
size], can help reveal whether the marginal distribution

SEPTEMBER 1976

for the sequence is consistent with a specified, simple,
functional form. For example, the theoretical log survi-
vor function for a geometrically distributed random vari-
able is linear in n. A plot of r(n) versus n for n = 300 is
shown in Fig. 1. Clearly, the plot is not consistent with
the assumption that L is a realization of a stationary se-
quence of geometrically distributed random variables.
Furthermore, the coefficient of variation of a geomet-
rically distributed random variable with mean m is
[(1+ m)/m]* which is equal to 1.05 if m = 9.05; since
the observed coefficient of variation for L is equal to
9.34, the simple geometric distribution is quite implaus-
ible. Also, the apparent preference for path lengths of
201-225 and the smaller, but noticeable, preference for
path lengths between 2001 and 4005 are incompatible
with a geometric distribution.

In order to investigate whether sample statistics for L
vary over the day-long period, the first 220000 apls in L
were divided into 22 non-overlapping sections of 10000
consecutive apls each. Sample statistics for the 22 sec-
tions are given in Table 3. The last two rows of the table
contain, respectively, the mean and standard deviation
of the numbers in the second and third columns of the
table. Notice that the sample mean and coefficient of
variation vary considerably from section to section while
the sample median does not vary at all and the sample
90th percentile is relatively stable (except for Section
16). The sample coefficient of variation does not exceed
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Figure 2 Empirical log survivor functions for sections of L (section size = 10000).

3 for those sections having no apls greater than 1000
and it exceeds 5 for all other sections. Plots of the em-
pirical log survivor function for selected sections are
given in Fig. 2, where minus infinity is plotted as zero.
Notice that the shapes of the empirical log survivor
functions for the different sections are somewhat similar
for n = 200. However, the frequency of the occurrence
of preferred values 201-225 and of values greater than
1000 varies considerably among sections.

The sequence L was also divided into 223 non-over-
lapping sections of 1000 consecutive apls each. The
sample mean, coefficient of variation and serial correla-
tion of lag 1 for each section are plotted versus the serial
number of the section in Fig. 3. The plots reveal that
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while the sample statistics are highly variable from sec-
tion to section, there is no apparent trend for these sta-
tistics. If the apls for a section were independent and
identically distributed (i.i.d.) random variables, then the
sample serial correlation of lag 1 for a section of size
1000 should (based on asymptotic theory) be approxi-
mately normally distributed with mean 1/1000 = 0.001
and standard deviation 1/V 1000 = 0.032 [5]. The
probability of observing a correlation greater in magni-
tude than 0.10 would be less than 0.0025. The third plot
in Fig. 3 indicates that apls are not i.i.d. for each section,
since there are 24 serial correlations of lag ! out of 223
that are greater in magnitude than 0.10. These large cor-
relations are both positive and negative.
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There are 741 apls greater than or equal to 200 in L. or

These “long” apls are plotted against their serial num- 60

bers of occurrence (index in the sequence) in Fig. 4. 50 .

This plot reveals that the apls greater than 1000 occur in 40 -

clusters. Clearly if L were a realization of a sequence of 20k J

i.i.d. random variables, such clustering would not be an- é ol . : - :

ticipated. There are 184 apls greater than 1000, and 2 10~'. s, v ..‘ o " .-...,.

these apls account for slightly more than 25 percent of & 0 1:4#'.3-';'.,:‘.‘1, '-7{".@."’1 T Ts'-_,- ey,

the approximately 2 X 10° segment accesses for the day-

long period being considered. 16 A . R

The gross characteristics of the access path length 4 . © o
sequence as revealed in the above analysis are: s L2 : : -’
1. The empirical distribution function is highly positive- E 0 . : - ! .

ly skewed; certain long apls are preferred. % s - :
2. Sample statistics for the sequence vary greatly from g% o * .

section to section over the day. ? e em & v e e o
3. There is no obvious trend or easily explained cyclic T N s 1 S ey

pattern in the sequence. g0 ! L L I L
4. There is evidence of correlation between successive 0.30 _

apls. 0.25F .
5. A small number (less than 0.1 percent of all apls) of I . . .

very long apls (apls greater than 1000) occur in . : . .

clusters in the sequence. (Later it will be seen that < 015 . ..

these very long apls are caused by calls to a single :i 010 : . . _' Lo

data base.) £ 005 - .. SO ... .

EREY rr s .-.*-.".:.ﬂ';'_-'.... v ..'-; —

s Analysis of access path length sequences for different ; -0.05 ,—" : . o r.-:: ™ .': :J“:'-.’.:‘k'
data bases % -0k ’ .
It is plausible that the apl for a data base call depends on ‘c;l —015L - | .
the particular data base referenced by the call, since the 3 —0.20 . \ N “ |
five data bases are quite different in structure and in size 0 40 80 120 160 200 240
(see the Appendix). For the day-long period being con-
sidered, all but one of the data base calls were to one of Section number
four data bases, denoted as data bases 1, 2, 3, and 4. Figure 3 Sample statistics vs section number for L (section
Four apl sequences L, L,, L,, and L, can be extracted size = 1000).

from L, where L, is the subsequence of L containing all
apls resulting from calls to data base /.
The data base reference sequence D consists of

. - .
223185 data base references (one for each data base Figure 4 Access path lengths = 200 vs serial number for L.

call except for the call to the fifth data base) ordered in 45
the same manner as the data base calls are ordered. D is 40 . oo e s
a sequence on the integers 1, 2, 3, and 4. Given L, L,, 35k ; " . . P
L,, L,, and D, the sequence L can be recreated in the b : g . . *
obvious way (with the exception of one apl). In order to ’ <. ';r . cwee
further explore the gross features of the access path ; e ¥ . - s
length data, the apl sequence for each data base is exam- X 201~ : . . : . ,
ined next. The sequence D will be examined in the fol- %“ 15} ¢ I °
lowing subsection. L *
Summary statistics for L,-L, are given in Table 4, g L * . " °
and plots of the empirical log survivor functions are 2 0-_L.ua..-.1...'...‘.|...r..*_ ’.‘j:"“"““l“"""“"f"
shown in Fig. 5. Notice that L, contains all apls greater 0 20 60 100 140 180 220
than 211 and that the mean, coefficient of variation,
and 90th percentile for L, are much larger than for the Serial number X 103 453
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Figure 5 Empirical log survivor functions for L, L,, L, L,.

other three sequences. The empirical log survivor func-
tion for L, has a big jump at approximately 200, while
the other three log survivor functions do not. (The se-
quence L, contains 430 apls between 201 and 211, while
the other three sequences contain only six such apls.)
Clearly, the empirical distribution functions for the four
apl sequences differ greatly and are not geometric,

Each of the four sequences was divided into non-
overlapping sections of 1000 consecutive apls. For each
sequence the sample mean, coefficient of variation, and
serial correlation of lag 1 were computed for each sec-
tion and plotted versus the serial number of the section.
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Only the plots of sample serial correlation are shown
here, in Fig. 6. As was the case for the sequence L, the
sample statistics are highly variable from section to sec-
tion of each sequence. For each of the sequences L and
L,-L,, the mean and standard deviation across sections
of the sample statistics are given in Table 5, where the
standard deviation appears below the mean. The stan-
dard deviation provides a measure of the variability from
section to section. The variability from section to sec-
tion of the sample statistics for L. does not appear to be
simply due to different data bases being referenced in
different sections. There is evidence of trends in some of

IBM J. RES. DEVELOP.




Table 4 Summary statistics for L,, L,, L,, L.

Ll LZ Lil L4
Sequence size 99076 52413 25060 46636
Mean 5.22 20.5 8.67 4.48
Variance 83.8 2.97 x 10° 865.0 19.2
Coef. var. 1.75 8.39 3.39 0.978
Minimum 0 0 0 0
Maximum 113 4005 211 36
Median 2 2 2 3
90th percentile 11 34 12 11

0.5
0.4

0.3

0.2

0.1

—0.1

the sample statistics for L,-L,. For example, the sample
serial correlation of lag 1 for L, decreases at the end of
the sequence.

There are a substantial number of sample serial cor-
relations of lag 1 greater than 0.1 in magnitude in Fig. 6,
suggesting significant serial correlation for some sections
of L,-L,. The correlations greater than 0.1 in magnitude
are both positive and negative for L, and L,, but are
negative only for L, and L,. In order to further investi-
gate whether there is significant serial correlation in L,,
an informal test was performed. The empirical distribu-
tion function was obtained for each section of L, of size
1000. Then 1000 independent samples were drawn from
each of the above 99 empirical distribution functions to
create a sequence I:l. I:l is a realization of a sequence of
independent random variables, where the random vari-
ables in a given section of size 1000 are identically dis-
tributed with distribution functional equal to the empiri-
cal distribution function for the corresponding section of
L,. The sample serial correlations of lag 1 for each of the
99 sections of ﬂl are plotted in Fig. 7. All sample serial
correlations in Fig. 7 are less than 0.1 in magnitude, in-
dicating that the large sample serial correlations for L, in
Fig. 6 are unlikely to have arisen from a realization of a
sequence of independent random variables. This graphi-
cal comparison of sample statistics obtained from the
simulation of a model with sample statistics obtained
from the data provides an informal test of the adequacy
of the model. It was expected that similar results would
be obtained if this test were repeated for L,, L,, or L,
and the test was not repeated.

In Fig. 8 the 287 apls greater than 211 in L, are plot-
ted against their serial numbers of occurrence in L,. The
apls greater than 1000 occur in clusters in the first three-
fourths of the sequence.

The gross characteristics of the access path length
sequences for the four data bases are:

1. The empirical distribution functions differ greatly for
L,-L, and are highly positively skewed for L -L..
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Figure 6 Sample serial correlations of lag 1 vs section number

for L. L,, L,, L, (section size = 1000).
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Table 5 Mean and standard deviation across sections of sample statistics for L and L,-L, (section size = 1000).

L L, L, L, L,
Mean 9.06 5.23 20.07 8.66 4.49 Mean
7.60 2.16 21.6 4.62 1.33 Std. dev.
Coef. var. 3.71 1.50 3.77 3.51 0.991 Mean
3.20 0.336 2.64 0.686 0.342 Std. dev.
Ser. cor. 1 —0.003 —0.014 —0.083 —0.050 0.055 Mean
0.059 0.124 0.116 0.039 0.208 Std. dev.
Table 6 One-step transition matrix for D s Analysis of data base reference sequence
The data base reference (dbr) sequence D is a sequence
! 2 3 4 on the integers 1-4. In Fig. 9, for each i, the number of
| 0.747 0.240 0.012 3% 107 occurrences of dbr i in the first n dbrs is plotted versus
2 0.462 0.456 0.006 0.076 n, where the axes are labeled in units of 1000. These
i .
3 0.016 0.058 0.926 4 X 10 plots of the cumulative counts of references to each data
4 0.010 0.070 0.007 0914

Table 7 Sample statistics for run lengths for sections 1-3 of
D (section size = 10000).

base indicate that the sequence D is not stationary over
the day. Data bases 1 and 3 are referenced more fre-
quently in the first half of the sequence than in the last
half, and data bases 2 and 4 are referenced more fre-
quently in the last half of the sequence than in the first
half. In addition, there are rapid short-term fluctuations
in the frequency of reference to the four data bases.
(The straight lines, plotted for comparison purposes,

Section State Si’;”() le Mean Coef. var. have slopes equal to the frequencies of reference to the
four data bases for the entire day.)

1 1 1194 445 5.32 The 4 X 4 matrix of one-step transition frequencies for
% 1%(5)’57 1_1/~§/3 ?237 D is given in Table 6 (the jjth entry in the matrix is the

4 81 972 295 frequency of occurrence of j in the sequence, given j

2 1 992 5.07 4.65 preceded by /). It is apparent that successive dbrs are
% 1022 2(1)'29 ?327 dependent (e.g., a 1 is much more likely to follow a 1

4 129 933 132 than to follow a 3 or 4). Based on counts, the dominant

3 I 742 6.25 5.75 one-step transitions in D are the 1-1, 1-2, 2-1, 2-2, 3-3,
% 8;‘21 13? 9 ?éz and 4-4 transitions. The counts of the dominant one-step

4 96 15.9 1.35 transitions for non-overlapping sections of 10000 con-

secutive dbrs vary considerably from section to section.
(The plots of these counts are not shown.)

A simple model for D is a first-order Markov chain
with state space equal to the integers 1-4. The run length
in each state of a first-order Markov chain has a geo-

metric distribution starting at one. If m, is the mean run
length in state i, then the coefficient of lvariation of the
run length in state / is [(m; — 1)/m;]?, which is less
than one. In order to informally test the adequacy of a
first-order Markov chain model for D, sample statistics
were computed for the run lengths of 1’s, 2’s, 3’s, and
4’s for each non-overlapping section of 10000 consecu-
tive dbrs. The sample coeflicients of variation of the run

2. Sample statistics for each sequence vary greatly from
section to section over the day.

3. There are indications of trends in some of the se-
quences.

4. There is evidence of correlation between successive
apls for each of the sequences, the significant correla-
tions being either positive or negative for sections of
L, and L,, and negative only for sections of L, and

L,. lengths in some of the states were too high to be consis-
5. All apls greater than 1000 occur in clusters in the first tent with the Markov model. Sample statistics for Sec-
456 three-fourths of L,. tions 1-3 of D are given in Table 7.

IBM J. RES. DEVELOP.

D. P. GAVER, S. S. LAVENBERG. AND T. G. PRICE, JR.




0.10
. . . d
0.08p-°
- L]
0.06 P~ o .
L]
.
_ 0.04 Lo . . ..
2 002F L s ) -~
€ e, ° * e * .. * .
g 0 - * [ - 0
E .. ., . LA o o : .o O
L]
£ —ombk . e . e :.
8 . .- O. .
F —omaf” c . ' .
§ © . . .
o
e —0.06
('E:I L
v —0.08 I 1 1 1 ] 1 1 1 i
0 10 20 30 40 50 60 70 80 90 100
Section number

Figure 7 Sample serial correlations of lag [ vs section number

for L, to L, (section size = 1000).

45
40 - & L3 - 3 e’
i r. :
o 35 ‘. .o . o
&S - . . - .
x oo ¥ e
. s :* . oo
% 25k : °:
E - 'Y .OO .
= 20 : . * . *
g » -.' o . 3
2 151 ¢ *
bS] 10
g L] N .. L]
5 5 . -
2’ O.A- SO Padl 0 tuy o o . . X
1 1 1 1 1 1 1

0 s 10 15 20 25 30

Serial number X 10-3

35 40 45 50 55

Figure 8 Access path lengths > 211 vs serial number for L,.

Figure 9 Cumulative counts of references to data bases 1-4 (axes labeled in units of 1000).

Data base 1 Data base 2
100 |- 50
Ve 4 4
s 7
80 * 40 .
-’ ; <
-
60 /.' 30 ’/ /
.. '...
40 20
(4
20 / 10
0 1 | — 1 1 | v 1 1 1 1 1
Data base 3 Data base 4
25 50
- 20 /_./'
)
= Pl
X /
3
8 15 -
ks
= /
° ¢
e
g2 10 /’l
Q
5 -
8 -’
g o
kS N ’l'.'.
2 &
5] y
] .
z 0 ] 1 1 1 1
0 40 30 120 160 200 240 40 80 120 160 200 240
Total number of references X 10-3 457

SEPTEMBER 1976

ACCESS PATH LENGTH DATA




458

Table 8 Estimated transition matrices and powers of estimated transition matrices for D.

0.669 0.290 0.022 0.018
(1) = (0356 0.324 0.014 0.105
1 0.053 0.084 0.858 0.005
0.048 0.099 0.013 0.840

0.612 0.292 0.038 0.058

, |[0559 0.278 0.031 0.132
(TY"=]0.128 0.115 0.739 0.018
0.128 0.130 0.024 0.718

Table 9 Estimated transition matrices and powers of estimated transition matrices for D'.

0 0.930 0.069 7 X107
7= | 0892 0 0.012 0.096
! 0.264 0.736 0 0
L 0.095 0.771 0.134 0
0.848 0.052 0.012 0.089
(172 =| 0-012 0.912 0.075 6% 1071
! 0.656 0.246 0.027 0.071

0.187 0.016

0.791 0.110 0.015 0.083
(T)* = 0.071 0.851 0.070 0.007
! 0.628 0.278 0.028 0.066

0.225 0.024

Another way to informally investigate the adequacy of
a first-order Markov chain model for D is to compare
the nth power of the estimated one-step transition matrix
for D with the estimated n-step transition matrix for D.
These should be approximately equal for a first-order
Markov chain. (This method has been used to investi-
gate Markov chain models of social and occupational
mobility [6].) Denote by 7, the estimated one-step trah-
sition matrix for D given in Table 6; (T 1)2 and (Tl)4 are
given in the left haif of Table 8. The estimated two-step
and four-step transition matrices, denoted by T, and T,
are given in the right half of the table. Arbitrarily define
there to be a substantial difference between correspond-
ing entries of (Tl)2 and T, or between corresponding
entries of (7,)" and T, whenever the entries differ in
magnitude by 0.05 or more; the corresponding entries
which differ substantially are enclosed in boxes in Ta-
ble 8. This table provides further evidence as to the in-
adequacy of a first-order Markov chain model for D.
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0.719 0.259 0.016 0.006
7 = 0473 0.371 0.019 0.137
2~ [0.052 0.068 0.877 0.003
0.036 0.121 0.011 0.832
0.726 0.233 0.025 0.016
0.397 0.364 0.036 0.204
T,=|0.107 0.096 0.789 0.008
0.077 0.168 0.021 0.733
0.867 0.051 0.012 0.070
7 —| 0012 0.917 0.070 6x 107
: 10,637 0.201 0.074 0.088
0.556 0.190 0.013 0.242
0.809 0.105 0.014 0.073
v —| 0.066 0.858 0.069 0.007
110,630 0.271 0.042 0.056
0.565 0.219 0.039 0.176

Although D is apparently not adequately represented
by a first-order Markov chain, it is possible that a higher
order Markov chain would provide an adequate repre-
sentation. This is not investigated here. Alternatively, a
four-state semi-Markov process [7] with a state transi-
tion occurring at the beginning of every run might pro-
vide an adequate model. The run length in each state of a
semi-Markov process has an arbitrary distribution and
successive run lengths in a particular state are i.i.d. ran-
dom variables. The embedded sequence of states that
occur at the beginning of successive runs in a semi-Mar-
kov process is a first-order Markov chain. Note that
successive states in the embedded sequence are not
equal by definition.

The embedded sequence D’ and the sequences of run
lengths in the four states were extracted from the first
30000 dbrs in D in order to investigate the adequacy of
the semi-Markov model. D' is a sequence of size 6686,
and the run length sequences have sizes 2928, 3167,
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Table 10 Sample statistics for fun lengths for first 30000
dbr’s.

Sequence Coef.
State size Mean var. r,
1 2928 5.16 5.33 —0.090
2 3167 1.85 2.86 14,0
3 284 19.0 1.71 —0.211
4 306 11.5 1.81 0.063

284, and 306, respectively. Since all run lengths for D'
are equal to one, the adequacy of a first-order Markov
chain model for D’ cannot be assessed based on run
lengths. The estimated one-step transition matrix for D',
denoted by T, and the second and fourth powers of this
matrix are given in the left half on Table 9. The estimat-
ed two-step and four-step transition matrixes, denoted
by T, and T, are given in the right half of the table. Cor-
responding entries which differ substantially (by at least
0.05 in magnitude) are enclosed in boxes in the table.
All corresponding entries in the first two rows of (T;)2
and T}, and in the first three rows of (T;)4 and T, differ
in magnitude by less than 0.02. D' is apparently more
adequately represented by a first-order Markov chain
than is D. Sample statistics for the run length sequences
are given in Table 10. The quantity r, is the normalized
sample serial correlation of lag 1, obtained by multiply-
ing the sample serial correlation of lag 1 by the square
root of the sample size. For a sequence of » i.i.d. ran-
dom variables, where n is large, r, is approximately
normally distributed with mean 1/ V'n and variance one
[5], and a value of r, greater than 3 is very unlikely to
occur. Thus, there is strong evidence that successive
run lengths in state 2 are dependent. (The sequence of
run lengths in state 2 contains 4 values equal to 147 and
no other values greater than 18. Two of the 147’s occur
in succession and may considerably inflate the value of
r,. The value of r, computed with the 147’s removed
from the sequence is equal to 10.1, which is still sig-
nificantly large.) Based on the values of r,, successive
run lengths in states 1, 3, and 4 appear to be independent.

The data base reference sequence has the following
gross characteristics:

1. The sequence is not stationary over the day.

2. A first-order Markov chain is an inadequate model
for the sequence; a semi-Markov process more ade-
quately represents the sequence, although there are
some large discrepancies between the model and the
data.
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Table 11 Number of calls due to five most active transactions

Number Number of calls to data base
Transaction of calls 1 2 3 4
1 39657 28180 302 11175 0
2 32444 27560 4884 0 0
3 26659 0 181 0 26478
4 22215 10961 11254 0 0
5 20251 11757 8494 0 0

o Analysis of access path length sequences for different
transactions and data bases

It is plausible that the access path length for a data base
call depends on the transaction that gives rise to the call
in addition to the data base referenced by the call, since
different transactions cause different application pro-
grams to be executed. Five transactions account for 63
percent of the data base calls for the day-long period
being considered. The number of calls due to each of
these transactions and the number of calls to each data
base due to each of these transactions are given in Table
11. The cumulative count of data base calls due to each
of these transactions is plotted versus the serial numbers
of the calls in Fig. 10, where the axes are labeled in units
of 1000 calls. Notice that the rate at which each transac-
tion issues calls varies over the sequence of calls. It is
possible that the variability of the sample statistics from
section to section of each of the sequences L -L, is
largely due to the variability from section to section of
the number of calls arising from each transaction. Sam-
ple statistics for the apl sequence for a particular trans-
action and data base might be relatively stable from sec-
tion to section.

To investigate this hypothesis, sequences L ,, L,,, and
L,, were extracted from L where L,; is the apl sequence
for transaction i and data base j. (L,, and L,, contain
over one-half of the apls in L,, and L, contains slightly
less than one-half of the apls in L,.) Each of these se-
quences was divided into non-overlapping sections of
1000 consecutive apls; the number of sections for L,,,
L, and L, is 28, 11, and 27, respectively. For each
sequence the sample mean, coefficient of variation, and
serial correlation of lag 1 were computed for each sec-
tion. The mean and standard deviation across sections of
each of the sample statistics are given in Table 12,
where the standard deviation appears below the mean.
Notice that the standard deviations across sections of
the sample statistics for L,, are comparable in value
to the standard deviations for L, given in Table 5. Thus,
the sample statistics for L,; are as variable from section
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Figure 10 Cumulative counts of calls for five most active
transactions.

to section as the sample statistics for L,. The sample sta-
tistics for L,, are less variable than those for L, and the
sample mean and serial correlation of lag 1 for L,, are
less variable than for L,. (The sample coefficient of vari-
ation is, however, more variable.) The sample serial cor-
relation of lag 1 for each section of L,, is plotted versus
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the serial number of the section in Fig. 11. The values
vary greatly from section to section, and there is evi-
dence of significant serial correlation for several sec-
tions. It appears that it would be no easier to develop an
adequate stochastic model for L,, than to develop one
for L,. The apl sequences for different transactions and
data bases were not investigated further.

Models for the simulation of access path lengths
The analysis of the previous section shows that access
path lengths have the following characteristics:

1. Access path length distributions, as represented by
log survivor functions, appear to differ between data
bases. Graphical presentations (see Fig. 5) provide
the evidence.

2. The log survivor functions reveal that while the ma-
jority of the apls are short (=12 about 90 percent of
the time), the overall distributions are skewed to the
right, showing a few preferred values, and eventually
truncating or cutting off at a large finite value. The
cutoff is relatively smooth for apls from data bases 1
and 4, appearing more abrupt for data base 3; the
graph does not display a cutoff for data base 2. Thus,
apl behavior cannot be realistically modeled as a
geometric distribution with a linearly decreasing log
survivor function. Modification of the geometric is
evidently required.

3. Successive apls are somewhat correlated. The degree
and sign of the correlation are peculiar to the data
base being referenced.

Models for apls that will provide the type of qualita-
tive behavior noted above are now introduced. These
models can readily be fitted to the observed log survivor
function and are a convenient means for generating sim-
ulated apls having the observed characteristics 1)-3).

e The representing function method

First the sequence L, is considered. The log survivor
function for L, appears similar to that of a geometric dis-
tribution for small variable values (say =10, but exclud-
ing zero), departs therefrom by decreasing more slowly
(long-tailed behavior) for intermediate values (approxi-
mately in the range 11-75) and finally cuts off at large
values (around 113). A random apl, Y, will be repre-
sented in terms of an underlying unit exponential ran-
dom variable, X, as follows:

Let
d(X; a, B, €) = (BXe™) /(1 + eBXe™),
and

Y=[¢(X;a B )], (1)
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where [a] denotes the integer part of a and «, 8, € > 0;
¢ is called a representing function [8]. In order to sim-
ulate apls Y, exponential realizations are obtained from
X, where P{X > x} =¢7", and converted to Y-realizations
by use of Eq. (1). Examination of Eq. (1) reveals that
Y behaves like a discretized exponential random variable
(i.e., like a geometric random variable) for small X and
cuts off at 1/g; at intermediate values it exhibits long-
tailed behavior due to the influence of ¢** on X. Methods
for introducing correlations between successive Y-values
will be considered shortly.

o Fitting the representing function

For simplicity, Y is not discretized in what follows; in-
stead, Y =¢ (X; a, B, €). Observe that if F(y) is the dis-
tribution function of Y, then

1—F(y)=e""=1—p=¢0sp=1,

where y, is the pth quantile of the Y-distribution, and x,
is the pth quantile of the unit exponential distribution.
Hence, the log survivor function of Y, namely A(y), sat-
isfies

A(y,) = log(1—p) =—x,. (2)
Furthermore, the monotonicity of ¢ guarantees that

y,=¢(x,; a, B8, €). (3)

In order to fit ¢ to empirical data, «, 8, and £ must be
chosen. This may be done by matching suitable quan-
tiles using Eq. (3). Most easily, 1/¢ is the cutoff point
for Y; from Fig. 5 this is 113 for L, so that one parame-
ter value is established. Next, two other points on the
empirical log survivor function are selected. Examina-
tion of the empirical log survivor function for L, reveals
turning points in the neighborhood of n = 12.5, r(n) =
—2.37 and n = 75, r(n) = —6; these two points are now
selected.

1. Select y, = 12.5, and set A(yp) =-2.37; from Eq. (2)
x,=2.37 and p = 0.907.

2. Select y,= 75, and set A(yp) =—6; from Eq. (2) x, =
6 and p = 0.998.

This choice leads to the simultaneous equations
12.5 = (2378 /(1 + (2.37/113) g,
75 = (68™*) /[ 1+ (6/113) Be*],

which are readily solved by a Newton-Raphson iteration
procedure, as are other similarly derived equations for
the log survivor functions for L,, L,, and L,. The fitted
values of a, B8, and ¢ are given in Table 13. Plots of the
fitted log survivor functions are superimposed on plots
of the empirical log survivor functions in Fig. 12; the
solid line curves are the fitted functions. For L, the cut-
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Figure 11 Sample serial correlation of lag 1 vs section number
for L,, (section size = 1000).

Table 12 Mean and standard deviation across sections of
sample statistics for L, L ., L, (section size = 1000).

Lll L13 L2]
Mean 5.14 2.09 2.90 Mean
2.26 0.381 0.561 Std. dev.
Coef, var. 1.50 4.29 1.12 Mean
0.291 0.867 0.172 Std. dev.
Ser. cor. 1 0.036 -0.019 —0.050 Mean
0.172 0.007 0.057 Std. dev.

Table 13 Fitted parameter values for log survivor functions
forL,,L,, L, L,

a B 1/¢
L, 0.283 1.79 13
L, 0.126 3.84 =
L, 16.6 0.0984 ©
L 0.106 3.36 36

-

off value is so large that 1/e was chosen equal to infini-
ty (in which case ¢ = BXe™"). The empirical log survi-
vor function for L, has an abrupt cutoff at 211. This log
survivor function was fitted by choosing 1/¢ equal to
infinity and letting ¥ = max (Y, 211); the log survivor
function for ¥ is plotted in the figure.
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Figure 12 Fitted and empirical log survivor functions for L , L,, L,, L, .

By and large, the general shapes of the empirical log
survivor functions are imitated by the simple parametric
models with the parameter values given in the table.
Simulation of independent apls via the models is easily
accomplished. One noticeable difference between the
simulated apls and those observed in the data will be the
smoothness and lack of preferred values in the former.
No physical explanation has been obtained for these
preferred values; they may not remain a significant fea-
ture as more data are analyzed.

e Correlations

Analysis of the apls in successive sections of sequences
L,-L, revealed that mild but definite (statistically
significant) correlations, of both signs, exist between
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two successive apls. Very likely some kind of depen-
dency structure exists between apls of even greater sep-
aration. Although no physical explanation for their be-
havior can be advanced at this date, it is of interest to
suggest simple schemes for simulating such correlated
apls. The following are a few tentative suggestions. None
has been, as yet, fitted to the available data.

A) A method based on a first-order autoregressive se-
quence of exponentials

Gaver and Lewis [9] showed that a sequence {X,} of
random variables having unit exponential marginals may
be constructed as follows:

X, =pX,+e,n=0,1,2,"
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A General Methodology for Data Conversion and

Restructuring

Abstract: This paper presents a methodology and a model for data conversion or translation. The model assumes that both source
and target systems are available and that conversion interfaces may be required to interact between these systems and the conversion
system. To achieve data conversion or translation using this approach, two languages are needed: 1) a language to describe the data
structures, and 2) a language to specify the mapping between source and target data. This paper describes these two languages, DE-
FINE and CONVERT and gives numerous examples to show the capabilities of these languages and how they can be used in data
conversion and restructuring. Both languages are high level and nonprocedural and have the power to deal with most situations en-
countered in data conversion processes. In addition, the paper also describes some of the facilities in the languages specifically de-

signed for data checking in a data conversion process.

Introduction

In recent years applications of data base systems have
grown very rapidly. While the use of data base systems
relieves users of the task of having to know much of the
implementation details, it has at the same time made
data conversion a necessity because of various reasons.
In general, data conversion is a complex problem requir-
ing more of our attention than it has received in the past.
This paper proposes a solution applicable to a broad
class of logical data conversion problems.

Relatively little work has been done to find a solution
making data conversion easier [1-11]. All investiga-
tions so far are preliminary. Only few individuals are
actively involved. The most comprehensive work is
done by members of the Stored Data Definition and
Translation Task Group under CODASYL’s System
Committee, which attempts to develop a general method
for defining data structures, storage structures, their re-
lationship, and translation from one structure to another.
Similar work goes on at the University of Michigan and
to a lesser extent elsewhere (see references). The paper
of Sibley and Taylor [11] gives a good account of some
of these related works.

As reported in reference [12], the authors initiated a
similar project at IBM. This project was established to
investigate and develop a methodology for application
conversion and migration. Application conversion is
defined to include the movement of both data and pro-
grams from one system (or one form) to another. After
studying the problem for some time, it became clear that
current technology is inadequate in solving the general
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problem. Our initial attack is to solve first the problem
of data conversion. This approach not only provides us
with a more fundamental understanding of the problem
but it actually is a necessary first step since we must
understand what is needed for data conversion before
we know what is to be done in the programs. Attention
is paid, however, to the larger problem so that the re-
sults obtained can be used as a foundation in the solu-
tion of total application migration.

At present data conversion is done infrequently be-
cause of its complexity. In spite of changes in require-
ments, users are reluctant to change their data struc-
tures. It is believed that conversions will take place
more frequently when better techniques are known,
when automatic or semi-automatic aids are available,
and when greater data independence is achieved.

Problem environment

A study of current works revealed that current ap-
proaches to data conversion are either too broad and
general, as in the case of CODASYL Task Group or
Smith’s and Taylor’s work [5, 6], or too narrow in ap-
plication as in Lin ahd Heller [13]. In the first case an
economically feasible solution requires much more re-
search and, therefore, appears distant. In the second
case, a narrow approach is not really solving the main
problem and, therefore, will provide benefits to only a
small subset of computer users. The approach we have
adopted is a compromise which will provide help to a
broad class of users in the near future.
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The approach assumes that the conversion system will
run under the operating system of either the source or
the target system. We also assume that an interface on
the source system is available to transform the source
data into an intermediate form acceptable to the transla-
tor, and an interface on the target system is available to
take the output of the translator and transform it into the
target data. In this way the translator is shielded from
many of the physical incompatabilities of the source and
target data such as parity schemes, etc. Specific details
of our model are discussed later.

A basic assumption in our approach is that it is gener-
ally impossible to perform data conversion without the
users’ help. It is therefore visualized that it is the users’
responsibility to describe the data structures for both the
source and target data and to define the mappings be-
tween them. It is possible, however, to have an ad-
vanced system which may provide some prompting
through interaction.

Two languages have been defined for this purpose: 1)
DEFINE a language to define data structures, and 2)
CONVERT, a language to specify mappings between
source and target data, each of which may contain multi-
ple logical record types and logical views. This paper dis-
cusses at some length these two languages. For a complete
discussion, readers should refer to [ 14, 15].

In designing these languages we assumed that the
users are skilled programmers. The programmers are
familiar with their data’s content, not in the sense of how
many screws and nuts are in a parts’ file, but in the sense
of knowing that there exists a field for describing a part
and that this field may contain blanks if no description
exists. They know the semantics of their data and its
structure at a logical level and what they want to be
done in the mapping process. These aspects are quite
different from the assumptions of the designers of data
base systems who frequently consider their users to be
casual users with little knowledge of the underlying data
structure.

Assuming that the users are sophisticated and know
their data, they do not know, however, the implementa-
tion details of their data structure, nor do they want to
be burdened with the details of how to accomplish the
whole conversion process. Another assumption is that
the users are willing to follow some simple syntactic
rules of the languages, but are unwilling to learn another
complex language comparable to, say, COBOL or PL/ 1.
We have also assumed that these users are not mathe-
matically oriented and they do not appreciate semantics
in mathematical terms. As a result we set out at the be-
ginning to make our languages high level, nonprocedural,
easy to learn, and simple to use.

The above aspects cannot be achieved without some
expense. As opposed to a general language like PL/1,
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our languages are simple only because we tailored them
to a specific purpose, namely, data conversion and in
certain cases we traded capabilities for simplicity. Our
philosophy is to provide a language to handle a great
majority of the cases encountered frequently in data
conversion and let the remaining small number of cases
be handled by the computer’s procedural languages. In
any case, the languages have been so structured that
additional capabilities can be included without much
difficulty.

The conversion model

Figure 1 illustrates the overall conversion process in our
model. The source systems which originally process the
source data is used to access it and interacts with the
conversion interface module to produce a nearly system
independent source data called linearized source files.
As the name implies, linearized files are sequential files.
(More is said about them in a subsequent section).
These files become the input to the converter/ translator.
The output from the converter/translator is another set
of linearized files called linearized target files, which are
changed into physical target files with the use of the
conversion interface and the target system.

Generally speaking, data conversion can be divided
into two basic categories: 1. from files to data base, and
2. from data base to data base. These two categories
have some basic differences. Several points are salient in
the first case. 1) Data is generally not well organized. It
contains much redundancy and much of the data de-
scription is carried implicitly in the procedures. In fact,
frequently additional information is contained there. For
example, a census file may be separated into two parts
such that the first part contains information about males
and the second part about females, but this separation is
not stated explicitly when the data structure for this file
is defined. In our system all this descriptive information
is made explicit. 2) These source files are sequential
files. Since the real world at this time has a preponder-
ance of sequential files to be converted to data bases, we
have attempted to define in our data definition language
a capability that can describe most of these files instead
of imposing severe limitations on the formats of linear-
ized files. 3) The COBOL files deserve further atten-
tion because a great majority of commercial users are
COBOL oriented. Hence, our data definition language
has been designed to have a strong COBOL flavor and
the capability to describe the common COBOL files.
Thus, we define a linearized file to be a file belonging to
that subset of sequential files describable by our data def-
inition language. It may have a flat or hierarchical record
structure. It may contain self-defining data, terminators
of different kinds, multiple record types within the same
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