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Cubic Splines with Infinite Derivatives at Some Knots

Abstract:

A generalization of cubic spline interpolation with vertical slopes at some knots is proposed. An existence theorem includ-

ing an algorithm for constructing such generalized splines is proved. The resulting splines are obtained in closed form and they are parti-

tion invariant.

Introduction

Typically in industry (such as aerospace, shipbuilding
and automotive), surfaces are designed in portions — often
called “patches” —joined via some smoothness con-
straints. Each patch is defined in terms of functions be-
longing to an “allowakle class.” The class is chosen on
the basis of criteria deemed desirable by the designer
(a most important criterion being the kind of patches
that can be manufactured with the available equipment).
Spline functions [1], because of their desirable prop-
erties, are extensively used in surface design and other
applications including the one that motivated this note.
Here, an extension of their applicability is offered.

The design of surfaces having infinite derivatives (in
one or more variables) at some points causes difficulties.
Such is the case, for example, in the aerospace industry
in the design of nose cones, nacelles, airfoils etc., a prob-
lem referred to in a recent article [2] and elsewhere. In
our case, the problem arose in some work in mathematical
biology [3] where surfaces of revolution are generated
by the rotation of planar cubic splines having infinite
derivatives at some points.

Although methods exist for coping with this problem,
an alternate, more advantageous approach is given which
is a natural extension of a very successful existing method
[4, 5]. The resulting splines are obtained in closed form
for either finite or infinite derivatives occurring within
a given interval, where previously in the case of infinite
derivatives an iterative process was used. This improves
the computational efficiency of the existing algorithm
and enhances the control of the surface design. Addition-
ally, the splines obtained are partition invariant. This
means that local (on sub-intervals) alterations of the
spline can be made that do not change the spline else-
where. When infinite derivatives occur, the splines ob-
tained with previous methods are not partition invariant.

Formulation

We adapt Dimsdale’s method [4, 5] of spline definition.
Though the discussion is limited to two dimensions, the
x — w plane, it seems that this method can be generalized
to three dimensions by replacing cubics with bicubics
and ordinary with partial derivatives.

Let the partition @ = x, < X, < -+ < x, = b and the
points (x;, w,) be given as in Fig. 1. In the parlance of
surface designers the given points are called knots, but
other often used terms are joints and junction points.
It is desired to construct a spline—generalized in a nat-
ural way —passing through the knots and having infinite
derivatives at x,, j = -, k= N. In Fig. 1 for example
k=3 with j, = J],z2 N 2and i;,=N— L

In the following we use the usual notation wherever
possible. Specifically, R is the set of real numbers.
C(a, b) is the set of continuous functions f:(a, b) — R,
and the left and right side limits of the function values
at b and a respectively are indicated by f_(b) and f, (a).
We call /;,=[x, x,,,] fori=1,- -+, N— 1. One can write
1, for an mterval that has an x; as an endpoint. Therefore,
elther I/ =1 orl/=1I the later case is for i > L
Finally we deﬁne [a b]7 [a, b] — {al Ual 1
(that is [a, b] " is [ a, b] with all endpoints ofl excludedﬁ

The generalization as well as the main result is in-
cluded in the existence theorem below. In the next sec-
tion a proof containing the algorithm for constructing
the spline is provided, the result pertains to the knots
at x, —havmg infinite derlvatlves—satlsfymg the condi-

tion '(*) below. That is letting ky=ky ,=ky=1 H,=
HN—1_2W0 Wi Wi = Wy k (1+1 x)/( X2 ™ KXoy )
H,=2k(k+1),K,= k1k1+1

R, =3[k (W, —wy,) +w,, —w] i=0-N—1

and
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it is required that
(*) & # 0V, =1, k

where |A,| is the determinant of the matrix A; obtained
from A by replacing the jth column of A by the column
vector R.

Theorem. 3s = s(x):[a, b] — [a, b] and W = W (s):
[a, b] = R>

1. s is a monotone increasing and onto homeomorphism
with

x(s) =sonl, # 1/
x(s) is a cubic polynomial on [,

2. W(s) is a cubic polynomial on /, Vi=1,---, N — I,
3. We C’={f:[a, b] = R|f" € C(a, b),

£,"(a) =1 "(b) =0, f(x;) = w,},
b d2 2 .
4, W minimizes f (Wf) ds vfe C* and
o e
5. For w(x) = W(s(x)) and the knots at x,, j= 1, -+, k
satisfying (*), !

weT = {f:[a, b] = R|f" € Cla, b]',

. df
flx,) =w, ‘l_l)rg’ e im]

The topology of the real line is preserved by the map-
ping s. In particular, closed sub-intervals are mapped
into closed sub-intervals. We call w = w(x) a homeo-
morphic spline in the x — w plane, since it is obtained via
the homeomorphism s, to distinguish it from W = W (s)
which is a spline in the s — W plane. If there are no in-
finite derivative constraints, w = w(x) is also a spline
in the x — w plane identical to the one obtained with
Dimsdale’s algorithm.

Algorithm and proof
The plan for constructing the homeomorphism s is shown
in Fig. 2, where a piecewise intermediate parameteriza-
tion x — u, — s for x, s € [, is indicated.

To express a cubic polynomial in « € [0, 1] we employ
the Hermite basis,
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Figure 1 Desired curve passing through all knots and having
vertical slopes at x,, x,_, and x,_,.
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Figure 2 Construction of the parametrization s.

ay(u) = 20 — 3 + 1,
a, (1) =—2u" + 34,
a,(u) = ut =24 +u,
a,(u) = =t

whose convenience is indicated by the values in Table 1.

Let 4, = x;,, — x, be the length of the interval /; and
k=A,/A,,, i=1,-N—2 k, =1 the ratio of lengths
of consecutive intervals. On each interval I, we define
implicitly the local parameter u; € [0, 1] for x(u;) € I,
by

x(e;) = xog(u;) + x 0, (u;) + B, (u;) + Dy (u;). (1)

i+171

Simultaneously, we define the cubic polynomial
Wilu) = wey () + wy e (u)

+ Cio, (u;) + kCyp o, (). (2)

i+l

The constants B,, C, and D, will be determined so as to
satisfy the assertions of the theorem. Note that x(0) =x,,
x(1) = x,,,, W,(0) = w, and W,(1) = w,,,. To avoid
cumbersome notation we write « for the local parameter
whenever the index i is unimportant or clear from the

context.
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Table 1 Hermite basis values.

j o(0) o (1) o (0) o (1)

W= O
oo OoO—
[=Re—N )
[ e
—_ o o0

The parametrization (1) allows the occurrence of
infinite derivatives at a knot. That is,

aw(x) €, dW(x,)  kCiyy
& 5™ & b

i i

Hence, for C; # 0 (or C,,, # 0) the derivative becomes
infinite only when B, = 0 (or D, = 0). However, since

aw0) _ W)
du, T

' iYin
1 i

the derivative with respect to the local parameters is

always finite.

e Determination of s = s(x)
The B, and D, are determined by imposing:
aw, dw,
lim dH = lim : (3)

- k4
XX, X x—>x} dx

which results in first order continuity of W,(x) at the
knots with finite derivatives, and

x'(u) = 31" (=24, + B, + D)
+2u(34,— 2B,~ D;) + B, =0 (4)

stemming from the requirement that the parametrization
be one-to-one and orientation preserving. We distinguish
two cases:

Finite derivatives at endpoints of I;.
The simplest conditions for the positivity of the deriva-
tive are

—24,+ B+ D, =0
34,—2B,— D,=0
with B, > 0

yielding B, = D, = A, > 0 and the linear parametrization
(with x'(u;) Z 0)

u;=x—x;/A,—> u,€ [0, 1] whenx € I,. (5)
Infinite derivatives at endpoints of I,.

Case a. The derivative is infinite at x, and finite at x,, .

This condition implies that B, = 0 and D, # 0. From (3)
432 applied to x,_,
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f dWi—I' dW, du,
x—g(ri, dx - uli—rPl a’ui dx

—ii [ 6wulu—1) — 6w, u(u—1)
=5 (w[Bu(=24, + D,) + 2(34,— D,)]

CBu—1)(u—1)+kC u(3u—2)]

iit1

u[3u(—24, + D) +2(34,— D,)]

_kiCi+1_ : dWi+1_ it1
=7p, MM Ta 6)

1

where in the last step it was assumed that the derivative
at x,,, is finite so that (5) prevails on I,_,. (The case of

infinite derivative at x,,, is settled in b.) Hence, D, = 4,

x'(u)=Au(3u+4) >0foruec [0,1]

and x(u) = —Au’ + 244° + x, which upon rearrange-
ment is

X— X
u3—2u2+vi=0withvi= 4 ‘. (7)

For 0 = v, = 1, (7) is an irreducible cubic whose three
distinct real roots are given by [6],

3
u=§+%cos[% cos_1<1 —%viﬂ. (8)

At the endpoints of /, we have, directly from (7),
v; =0 u =0 (double root), u =2 and
_1=V5s
5

We seek then a monotone increasing portion of (8)
such that #(0) = 0 and «(1) = 1. Such a branch exists,
framed portion of Fig. 3- Case a, and is given by

v.=1lu=1,u

3
u, =244 005[4777 +%Cos_l( —% vi>] v, € 10,13, (9)

with the restriction 0 = Cos ' y = &. We have from (9)
that «, € [0, 1] when x € I
Case b. The derivative is finite at x, and infinite at x,_,.
Here B, # 0 and D, = 0.
Applying (3) to x,,

. . ; cdu,
tim G == i = i

. [ wu(u—1) — 6w, u(u—1)
= hm
=0 [ 3y*(—24; + B,) + 2u(34,— 2B;) + B,

ii+1 i
= (10)
3u*(—24,+ B) + 2u(34,—2B) + B! B,

1

CBu—1)(u—1) +kC, u(3u— 2)] _G

where in the first step it was assumed that the derivative
at x,_, is finite so that (5) is valid on I,_,. We find that

i-1
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Ap X' (u) = A,(=30" +2u~+ 1) =0 foru e [0, 1]
with x'(u) =0— u=1, and

W’ —u* — u + v; = 0 where v, is as above. (11)

As for (9), the inversion of (11) yields

11— 27y,
=i+3 cos[ﬁ;l +3 Cos"(T)] (12)

U,

with u; € [0, 1] when x € [, (see also Fig. 3).

Case c. Infinite derivatives at x; and x,,,
Now B, = D,= 0 and we are restricted to the cubic para-
metrization

26’ = 36" + v, =0, (13)
from which we obtain
=1+ cos[%” +1 Cos™'(1— Zvi)] (14)

so that u, € [0, 1] when x € I, (see Fig. 3, Case c).
The ‘global’ parametrization on [a, b] can now be
defined by

s=s(u,(x)) =s(u,(x)) = x;, + Au,(x) so that  (13)

x=x(s) = ui_‘(s ;'Xi>. (16)

i
All the mappings indicated on Fig. 2 have now been
provided.

From (15) we see that s simply restores the scale of
1, from [0, 1]. Also, s(x;) =x, and in fact s =x on /, <
there are no infinite derlvatlve constraints at x; and x,_,.
Clearly, the first assertion of the theorem is satisfied.
Proceeding, we define

W(s) =W(ul(s)) fors e I, (17)
Since W, is (and x(u,) is either linear or) cubic in «,,
which in turn is linear in s, W (s) is (and x(s) is either

linear or) cubic in s on /,, satisfying part 2) of the
theorem.

Note that
AW W du, G
sl_)T s o1 du ds A

Ui -1 “ i

=lim — — = lim —

dW, du, . dw
u—o du; ds  ox ds

so that W(s) has continuous first derivatives on (a, b)
including the points x, j =1, k.
We check for assertion (v) of the theorem. Let

w(x) = W(s(x)), then
wix) =W(s(x)) = W(x) =w, (18)

and in fact w(x) = W(s) on [, <> no infinite derivatives
oceur at x; and x,,,

SEPTEMBER 1976

y=—udtul+tu
Case b
v, =—2u3+32
Case ¢
LA™
. A\
’ \
s \
o \
/' \
A ‘
Gl [}
r v
L}
Case a v
u3 +2u2 '
—0.5F [}
L
1]
1
o 1) R S S N N W N O W W
—0.5 0 0.5 1.0 20
u

Figure 3 Local parametrization when infinite derivatives
occur at the knots.

To examine the differentiability of w(x) at the knots
we consider the left,

. dw
lim —

- b
x—=x; AdX

and right,

lim dw
Xt dx’
drivatives at x,.

Owing to the possibility different definitions of the
local parameter that may prevail on /,_, and [, we need
to exhaustively consider the distinct circumstances that
may arise. This is conveniently done with the aid of the
“occurrence matrix” shown in Fig. 4 where, for the sake
of clarity, all the different combinations are also pic-
torialized.

We adopt the convention of referring to the right and
left derivative at the endpoints a and b respectively as
the derivative there,

Occurrences 1 — 3 were actually incorporated in the
construction and for these cases dw(x,)/dx = C,/A,.
This is also true for 4. Hence at all knots except at X,

Jj=1,-+ k w(x) is differentiable and
dw(x) dW(x) C,
dx ds A ;-
In remaining four occurrences where x, = x, for j €
{1, -+, k} we find that ’
i dw _ +ooifCij>0
x=x, dx —0 if C, < 0 433
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a b ¢ c
X5 X; x x x X

i—1 i i+l

(b)

Figure 4 Derivative conditions at endpoints of adjoining in-
tervals. (a) Occurrence matrix for derivative conditions on
adjoining intervals. 0 indicates nonoccurrence, 1 — 8 indicates
occurrences. (b) Occurrences: F indicates finite derivative,
« indicates infinite (+w) derivative occurring at the knot.

the case C, = 0 having been previously excluded for the
existence of an infinite derivative (see discussion after
(2}). Subject then to the condition C # (), assertion 5)
is also satisfied.

s Determination of W(s)

The C, are determined so as to render W (s} a spline in

the s — W plane. This is equivalent to parts 3) and 4) of

the theorem, as well as 2), which has already been shown.
For second order continuity of W(s) at a knot, taken

for convenience at x,_ ., it is required that

. dwW_ . d
lim ;= lim VZV,
ST ds $Xi4 ds
or

Lo dW 1, AW,
— lim . = T Iim —
A u=1 du A, w0 du,

i+1

’

which yields
C,+HC,  +KC,

i+l i“ire T 1,1':2,"-,}\/—2, (19)

where

H,=2k(k,+ 1), K, = kk,.,
and
R, = 3[ki2(wi+2 wi ) v, —w)l.

Two additional conditions are needed for the determi-
nation of C,. Let us consider the integral

b, 92
F(C,- C,) =f (d VZV> ds.

« Vds

(20)

When an undeformed thin beam is statically deflected
to the shape W = W(s), the strain energy of the deforma-
tion (according to linear elasticity theory) is proportional
to the integral in (20).

Necessary conditions for the minimization of (20)
are that

aF

oC, =0,vi=1,--+, N.

Applying the minimization conditions for convenience
at i+ 1, we have

N—1 (Tipq 2 2
a zf (45) as
c')Ci+1 i=1 Vg dS

N R
z+111A du

resulting in

f:(d;:/) s (uy) du, +k f(

(21)

and

2

f‘dWl
0 dLl2

1

tdtw
ay(u,)du, =0, f y ZN_I ay(uy_)duy = 0.
0

MN—I

(22)
Upon evaluation (21) yields (19). From (22) we obtain
2C, + 5 C,=3(w,—w,),
Cyy T2C,=3(w (23)

v Wy1) -

Defining C,=C,,, =0, H =H, =2 k=k,=1,w,
=w, and w,,, = w, enables us to write (19) and (23) in
the compact form

C,+HC,, +KC,,,=R, i=0,N—1 (24)

Interestingly enough (23) also imply that

Wila) =W"(b) =0.
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The C,, and hence W(s), are uniquely determined by
(24) since the coefficient matrix A of (24) is nonsingular
[5). In fact A" = [a,], where

R LI

r=max{s, t} n=
with
H'=H, Ki’—l = KiAl/Hi’—l’ Hi/—l =H,— Ki/—v
i=2,3,--N—1.

It turns out that a, # 0 Vs, t=10, 1, -, N— 1.
We appeal to the celebrated result (quoted in [1],
p. 3, p.75):

Theorem (Holladay) Of all functions having continuous
second derivatives on (a, ) and passing through all the
knots, the spline W(s) having W' (a) = W” (b) = 0 mini-
mizes (20).

Hence, (24) provides necessary and sufficient con-
ditions for the minimization of the integral.

Assertions 1) — 4) of the theorem as well as a part of
5) have been proved. We need conditions to guarantee
that Cij #0,9,= 1, k. These are given by (*), ob-
tained directly from (24) via Cramer’s rule. q.e.d.

Implementation

The function w(x) is not a spline. It just misses being a
spline on the intervals /;. There it is obtained *“‘*homeo-
morphically”” —in the sense of w(x) = W[s(x)] —from a
spline. Further, w"(x) exists and is continuous on [a, b]'.
The reader interested in the determination of cubic
splines when other constraints not involving infinite
derivatives are imposed is referred to the cited work of
Dimsdale.

The salient feature of the algorithm is the homeomor-
phism s. The spline W(s) in the s — W plane is identical
to the one constructed in the x — w plane by Dimsdale’s
algorithm when only finite derivatives exist at the knots.
This is advantageous, because if additional constraints
on the spline are required, these can be incorporated in
W{(s) directly via Dimsdale’s method. Since W(s) =
w(x) on I, # I}, the constraints carry over to the x — w
plane. In addition, we obtain w(x) in closed form through-
out the interval [a, b] including the subintervals where
infinite derivatives exist.

We elaborate now on the partition invariant property
of w(x) alluded to in the introduction. Suppose that
w(x) is constructed on [a, b] with a partition Pla, b] =
{a=x <x, < - <x,=b}—we write w, for emphasis —
and it is desired to alter w, on /,. This situation arises
very frequently in the applications where a designer feels
he has achieved the desired shape on [a, b] except for
1. He wishes to modify w, on a portion of /;, without
altering it elsewhere. The way this is done is by introduc-
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Figure 5 Airplane silhouette constructed in four parts (see
also Table 2). Vertical slopes at knots number 1, 11 and 17.
Slope discontinuities at knots 4 and 9 are intentional. Note
differences on intervals with vertical slopes between w(x) and
Wi{s).

Table 2 Values for curve in Fig. §.

Point
Number X, w; C,; w-Derivative
Spline 1 1 0 0.0 0.798 Yes
(nose) 2 26 0.7 1.009
3 7.8 1.0 0.055
4 13 1.2
Spline 2 4 13 1.2 0.720
(body) 5 18.5 1.8 0.360
6 24.0 1.9 —0.146
7 37.8 1.6 —0.150
8 46.0 1.5 —0.244
9 68.0 1.1
Spline 3 9 68.0 1.1 0.264
(tail) 10 73.5 1.6 0.971
11 79.0 3.2 0.861 Yes
12 81.2 4.0 0.302
13 82.3 4.2 0.080
14 83.4 4.2 —0.022
15 84.5 4.2 0.009
16 85.6 4.0 —0.614
17 86.7 3.0 —3.464 Yes
18 90.0 0.0
Spline 4 1 0 0.0 0.476 Yes
(belly) 19 4.5 0.4 0.248
20 9.0 0.5 0.065
21 18.0 0.58 0.058
22 27.0 0.6 0.004
23 36.0 0.6 —0.077
18 90.0 0.0
ing additional knots at y,, with m =1,--+, M and x;, <

v, <y, <<y, <x,, so that the resulting spline re-
sembles more closely the desired shape. Physically, this
imitates the bending of a thin beam, according to the

435

CUBIC SPLINES




“small” deflections theory, and is equivalent to forcing
the beam to pass through the additional knots by placing
simple supports there. On J, = [y, ¥,,,] C I, the shape
of w, is to be preserved, and this may be the case for any
number of subintervals. We have then a new partition
Pla, bl =Pla, b] U {y,," " v,} and we wish to construct
w; 80 that wi(x) = w,(x) Vx € Q = [a, x,] U J, U
(x50 B].

If only finite derivatives occur at the knots the con-
struction is easy. On [g, x;] U [x,,,, ] we retain the
cubic portions W, (s(x}) of wo(x), n =1, I,_, I,

<+, N and let wp(x) = W (s(x)) there. On J, we specify
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W ,(s(x)) as the cubic passing through (y,, w,(y,)) with
slope wy(y,} and through (y wu(y,.)) with slope
wi(¥g,,) . Clearly, Wq(s(x)) = W,(s(x)) on J, since a
cubic is uniquely determined by specifying two points it
must pass through with given derivatives there. We let
wi(x) =W _(s(x)) onJ . Finally we specify that

wi(x) = wi(x,), wi(y,) = wp(y,)

(25)

w;_’(yqﬂ) = w;’(yqﬂ)’ W;(xiﬂ) = W;J(xin)'

Then using Dimsdale’s method w,(x) is constructed on
[x;, yq_l] U [yqﬂ, x;,,] subject to the constraints in (25).
Hence wy(x) = w,(x) on Q.

When infinite derivatives occur, however, this process
fails since on 1,', W,(s(x)) is not a cubic in x. However,
here the s — W plane comes to the rescue. For W,(s) is
always piecewise cubic and has finite derivatives every-
where on [a, b]. So by the process we have just outlined
Wi (s) is constructed with W,(s) = W;(s) on Q. Then
using the u; derived for partition P (not P) we obtain w;
with w3(x) = w,(x) on Q. That is w,, is “invariant” on
a specified Q C [a, b] with respect to changes in the
partition P[a, b].

This property was crucially important in the applica-
tion [3] that motivated this work. There some subin-

tervals, where a w(x) was constructed, needed to be
“shrunk” sufficiently to guarantee convergence of a
certain series expansion, this without changing the shape
of w(x).

The algorithm given was tried on several examples.
One, constructed for convenience in four separate parts,
is shown in Fig. 5 and Table 2. It was found that the
algorithm is computationally efficient and easy to im-
plement. Condition (*) poses no problems in implemen-
tation. Rather it implies that the knots ought to be chosen
judiciously.
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