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Cubic  Splines  with Infinite Derivatives  at  Some  Knots 

Abstract: A generalization of cubic spline  interpolation with vertical  slopes at  some  knots is proposed. An existence  theorem includ- 
ing an  algorithm for  constructing  such generalized  splines is proved. The resulting  splines are obtained in closed  form and they are parti- 
tion  invariant. 
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Introduction 
Typically in industry (such  as  aerospace, shipbuilding 
and automotive),  surfaces  are designed  in portions - often 
called “patches”-joined via some  smoothness  con- 
straints.  Each patch is defined in terms of functions be- 
longing to an “allowalale class.”  The  class  is  chosen on 
the basis of criteria  deemed  desirable by the designer 
(a most important  criterion being the kind of patches 
that  can  be manufactured  with the available equipment). 
Spline functions [ 11, because of their desirable  prop- 
erties,  are extensively  used in surface design and  other 
applications including the  one  that motivated  this note. 
Here,  an  extension of their applicability is offered. 

The design of surfaces having infinite derivatives  (in 
one  or  more  variables)  at  some points causes difficulties. 
Such is the  case,  for  example, in the  aerospace  industry 
in the design of nose  cones, nacelles,  airfoils etc., a prob- 
lem  referred to in a recent article [2] and  elsewhere.  In 
our case, the problem arose in some  work in mathematical 
biology [3] where  surfaces of revolution are  generated 
by the  rotation of planar  cubic splines having infinite 
derivatives  at  some points. 

Although methods  exist  for coping  with  this  problem, 
an  alternate,  more  advantageous  approach is given  which 
is a natural  extension of a very  successful existing  method 
[4, 51. The resulting  splines are  obtained in closed form 
for  either finite or infinite derivatives occurring within 
a given interval,  where previously  in the  case of infinite 
derivatives  an  iterative  process  was  used.  This  improves 
the computational efficiency of the existing  algorithm 
and  enhances  the control of the  surface design.  Addition- 
ally, the  splines obtained are partition  invariant. This 
means  that local (on  sub-intervals)  alterations of the 
spline can be made  that  do  not  change  the spline  else- 
where. When infinite derivatives  occur,  the splines ob- 
tained  with  previous methods  are  not partition invariant. 

Formulation 
We  adapt Dimsdale’s method [4, 51 of spline definition. 
Though  the discussion is limited to two  dimensions, the 
x - w plane, it seems  that this  method  can  be  generalized 
to  three dimensions by replacing cubics with  bicubics 
and ordinary with partial derivatives. 

Let  the partition a = x, < x, < . . . < .xN = h and  the 
points (xi, wi)  be given as in Fig. 1. In  the parlance of 
surface designers the given points are called knots, but 
other often  used terms  are joints and junction  points. 
It  is desired to  construct a  spline-generalized  in  a  nat- 
ural way -passing through the  knots and  having infinite 
derivatives  at x. , j = 1, .  . ., k 5 N .  In  Fig. 1 for example 
k = 3 w i t h i , = l , i , = N - 2 a n d i 3 = N - 1 .  

In  the following we  use  the usual notation  wherever 
possible. Specifically, R is  the  set of real numbers. 
C ( a ,  b )  is  the  set of continuous functions f ( a ,  b )  + R ,  
and  the left and right  side limits of the function  values 
at b and a respectively are indicated by f_ ( b )  and  f+ ( a ) .  
We call t i  = [xi ,  xi+,] for i = 1 , .  . ., N - 1 .  One can write 
I i ’  for  an interval that has an x. as  an  endpoint.  Therefore, 
either I i ‘  = I .  or ti‘ = Ii,-,, the  later  case  is for i j  > 1. 
Finally we define [ a ,  bf‘ = [ a ,  b] - Uj”=,{ d l i , - ,  U t , }  
(that is [ a ,  b] ‘ is [ a ,  b] with all endpoints of ti‘ eicludedj. 

The generalization as well as the main result is in- 
cluded in the  existence  theorem below. In the  next sec- 
tion a proof containi’ng the algorithm for  constructing 
the  spline  is  provided,  the  result pertains to the  knots 
at xi,- having infinite derivatives - satisfying the condi- 
tion (“) below. That is letting k ,  = kN-, = kN = 1, H ,  = 

H . ~ - l = 2 , ~ , = ~ ~ 1 , ~ , ~ + 1 = ~ , ~ . , k i = ( ~ i + l - ~ i ) / ( ~ i + 2 - ~ i + l ) ,  
Hi = 2 ki (k i  + l ) ,  K i  = ktki+, 

‘j 

5 
‘j 

J 

Ri = 3 [ k : ( ~ ~ + ~  - wit,)  + wi+, - w i ] ,  i = 0, .  . ., N - 1 

and 
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A =  

" - 
H o K o O  ' . . 0 RO 

1 H ,   K ,  0 

0 . .  . .  

. . . . . . . , R =  . 
. . . .  0 

. . .  KN-2 

0 . . . 0 1 H N - ]  RN-L 
" 

it is required that 

( * )  lAjl # 0 Vj= 1 ; . . ,  k 

where lAj1 is  the  determinant of the matrix Aj obtained 
from A by replacing the  jth column of A by the column 
vector R .  

Theorem. 3s = s ( x ) :  [u ,  b ]  + [ a ,  b ]  and W = W ( s ) :  
[u, b ]  -+ R 3  

1.  s is a monotone increasing  and onto homeomorphism 
with 

x(s) = s on Ii # Ii' 

x(s) is a cubic polynomial on Ii' 

2. W ( s )  is a  cubic polynomial on I i ,  Vi = 1; . ., N - 1, 
3. W E e'= {f:[u,  b]  -+ R ( f "  E C ( a ,  h ) ,  

f+"(u) = f_"(b) = 0, f(xi) = w,}, 

4. W minimizes [ ($7' ds Vf E e' and 

5. For w ( x )  = W ( s ( x ) )  and  the  knots  at x i , , j =  1; . . ,  k 
satisfying (*), 

J 

f : [a ,  b] -+ RIf" E C [ u ,  b ] ' ,  

The topology of the real line is preserved by the map- 
ping s. In particular,  closed  sub-intervals are mapped 
into closed  sub-intervals. We call w = w(x) a homeo- 
morphic spline in the x - w plane,  since it is obtained via 
the homeomorphism s, to distinguish it from W = W ( s )  
which is a spline in the s - W plane. If there  are no in- 
finite derivative  constraints, w = w(x) is also a  spline 
in the x - w plane identical to the  one obtained with 
Dimsdale's  algorithm. 

Algorithm and proof 
The plan for constructing the homeomorphism s is shown 
in Fig. 2, where a  piecewise intermediate  parameteriza- 
tion x + ui + s for x, s E li is indicated. 

To  express a cubic polynomial in u E [0, 1 1  we employ 
the Hermite  busis, 

x. s 
ui= l j u i + l = o  X N l l  

Figure 1 Desired  curve  passing  through  all  knots and having 
vertical  slopes at xI, xN-2 and x,+,. 

Figure 2 Construction of the  parametrization s. 

= 2u3 - 3u2 + 1 ,  

a l ( u )  = - 2 2  + 3u2, 

ay , (u )  = u3 - 2u' + u,  

a 3 ( u )  = u' - u ; '3 2 

whose  convenience  is indicated by the values in Table 1. 
Let A i  = xi+l - xi be  the length of the interval I, and 

k ,  = A i / A i + , ,  i = 1; . ., N - 2 ,  kN- ,  = 1 the  ratio of lengths 
of consecutive intervals. On each interval fi we define 
implicitly the local purumeter ui E [0, 1 1  for x(u,)  E I, 

by 

x(u , )  =xiao(ui)  +xi+,al(ui)  +BiCyZ(ll,) + D i C y 3 ( U i ) .  ( 1 )  

Simultaneously, we define the cubic  polynomial 

W,(u,)  = wiaO(u,) + Wi+,a1(u,) 

+ Ci(Y2(Ui) + kiCi+,a3(ui).  (2 )  

The  constants B,, Ci and Di will be determined so as to 
satisfy the  assertions of the  theorem.  Note  that x(0) = x i ,  
x ( 1 )  = xi+l, Wi(0) = w i  and W i ( l )  = w ~ + ~ .  To avoid 
cumbersome notation we write u for  the local parameter 
whenever  the  index i is unimportant  or  clear from the 
context. 431 
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2 0 0 1 0 
3 0 0 0 1 + C i ( 3 u  - l ) ( u  - I )  + k i C i + l ~ ( 3 ~  - 2)  

u[3u(-2Ai + D i )  + 2(3Ai - D i ) ]  1 

The parametrization ( ) the Occurrence Of where in the  last  step it was  assumed  that  the  derivative 
infinite derivatives  at a knot.  That  is,  at xi+z is finite so that (5) prevails on ti+l. (The  case of 

infinite derivative at xi+2 is settled in b.) Hence, Di = A ,  dWi(xi)  Ci  and ~ W , ( X ~ + ~ )  - kiCi+l 

Hence,  for ci f 0 (or ci+l # 0 )  the  derivative  becomes  and X ( U )  = -Aiu3 + 2Aiu2 + X , ,  which upon rearrange- 
infinite  only when Bi = 0 (or Di = 0 ) .  However,  since ment is 

.=_ - 
dx Bi dx Di . x ' ( M )  =Aiu(-3u + 4)  > 0 for u E [ O ,  11 

the  derivutive with respect  to  the local pururneters is For 0 5 ui 5 1, (7) is an irreducible cubic  whose  three 
ulwuys  finite. distinct real roots  are given  by [ 6 ] ,  

Determinution of s = s ( x )  
The Bi and Di are  determined by imposing: 

d Wi 
dx ' 

~ 

u = 3 + $ c o s  [ I  >cos 1"". :: 7)] . 

At  the  endpoints of ti we have, directly  from (7 ) ,  
( 3 )  

ui = 0 u = 0 (double  root), u = 2 and 

which results in first order continuity of W i ( x )  at  the 1 2 s  
knots with finite derivatives,  and 2 .  

~ ' ( u )  = 3u'(-2Ai + Bi  + D i )  We seek  then a monotone increasing  portion of (8)  
such  that u ( 0 )  = 0 and u(  1) = 1. Such a branch  exists, 

u i =  1 u =  I , u = -  

+ 2u(3Ai - 2Bi - D i )  + Bi 2 0 (4) framed  portion of Fig. 3- Case  a, and is given by 

stemming  from the  requirement  that  the parametrization 
be  one-to-one  and orientation  preserving.  We  distinguish 
two  cases: 

Finite  derivatives  ut  endpoints o j  ti .  
The simplest  conditions for  the positivity of the  deriva- 
tive  are Cuse b. The  derivative is finite at xi and infinite at xi+l. 

-2Ai + Bi + Di = 0 Here Bi # 0 and Di = 0. 

u i = 3 + + c 0 s  -+$Cos-I 1 - 7  ui ui E [ O ,  I ] ,  (9) 14; ( : ) l  
with the  restriction 0 5 Cos-' y 5 n. We have  from (9) 
that ui E [ O ,  I] when x E ti .  

3 4  - 2 4  - Di = 0 Applying ( 3 )  to xi ,  

with Bi > 0 

yielding Bi = Di = Ai > 0 and  the linear parametrization 
(with x ' ( u i )  2 0 )  

ui = x  - x i / A i  + u E [O, I ]  when x E t i .  ( 5 )  
= lim 

6wiu(u - 1) - 6wji+,u(u - 1 )  
3u2(-2Ai + Bi)  + 2 ~ (  3Ai - 2Bi) + Bi 

Infinite  derivatives  ut  endpoints oft,. + C i ( 3 u - 1 ) ( ~ - 1 )   + k , C i + , ~ ( 3 ~ * - 2 )  

Case  a.   The derivutive  is  infinite  ut xi  undfinite  at xi+l. 
3u2(-2Ai + B i )  + 2u(3Ai - 2Bi) + Bi] Bi 

=s, (10) 

This condition implies that Bi = 0 and-D, # 0.  From ( 3 )  where in the first step it was  assumed that  the  derivative 
at xi-l is finite so that (5)  is valid on We find that 432 applied to xi+l 
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B j  = A j ,  x ' ( u )  = Ai(-3u2 + 2u + 1) 3 0 for u E [O, 11 
with x ' ( u )  = 0 -+. u = 1, and 

u3 - u2 - u + ui = 0 where ui is as above. ( 1 1 )  

As for ( 9 ) ,  the  inversion of ( 1 I )  yields 

with uj E [ 0, 13 when x E li (see also Fig. 3 ) .  

Case c. Infinite derivatives at xi and xi+l 
Now B j  = D j  = 0 and  we  are  restricted  to  the cubic  para- 
metrization 

2u3 - 3u2 + ui = 0, i 1 3 )  

from which we obtain 

Mi  = 3 + cos - + Q Cos"( 1 - 2Ui) r4: I (14) 

so that uj E [ 0, 11 when x E I j  (see Fig. 3 ,  Case  c) . 

defined by 

s = s ( u i ( x ) )  = s ( u i ( x ) )  = xi + Aiu i ix )  s o  that ( 15) 

The 'global' parametrization on [a ,  b] can now be 

All the mappings indicated on Fig.  2  have now been 
provided. 

From ( 15) we see  that s simply restores  the scale of 
I j  from [O, I ] .  Also, s(xi) = x j  and in fact s = x on I j  c* 
there  are no infinite derivative  constraints  at xi and 
Clearly, the first assertion of the theorem is satisfied. 
Proceeding, we define 

W ( s )  = W i ( u i ( s ) )  for s E fi. i 17) 

Since W j  is (and x ( u J  is either linear or) cubic in I t j ,  

which in turn is linear in s, W ( s )  is (and x ( s )  is either 
linear or) cubic in s on Ii, satisfying part  2) of the 
theorem. 

Note  that 

dW d W .  du,+, - ci 
s+,x%- ds u , - t + ~  d ~ ~ - ~  d . ~  A i  
]im - 1 l i m  2- - - 

dW.  du. dW lim 1 - 2  = lim - 
U,+O dui ds .%d,y: CIS 

so that W ( s )  has continuous first derivatives on ( u ,  b)  
including the points x i , j  = 1, . ., k .  

We check  for  asserhon ( u )  of the  theorem.  Let 

w(x) = W ( s ( x ) ) ,  then 

. , ( X j )  = W ( s ( x , ) )  = W ( x J  = W i  (18 )  

and in fact w(x) W ( s )  on l j  c* no infinite derivatives 
occur  at xi and xi+l .  

2.0 

1.5 

1.0 

0.5 

0 

-0.5 

a- -1.0 

2).= - u3 -t u2 -t u 

Case b 

I 
Case a 
- u3 -t 2u2 

\ , 
I I I I I I t I \ I  

0.5 1.0 2.0 

Figure 3 Local  parametrization  when  infinite  derivatives 
occur  at  the  knots. 

To examine the differentiability of w(x) at  the  knots 
we  consider the  left, 

lim", tlw 
x+.r, dx 

and  right, 

lim - , 
drivatives  at x i .  

Owing to the possibility different definitions of the 
local parameter  that may prevail on  and l j ,  we need 
to exhaustively consider  the distinct circumstances  that 
may arise.  This is conveniently done with the aid of the 
"occurrence matrix" shown in Fig. 4 where,  for  the  sake 
of clarity, all the different  combinations are also pic- 
torialized. 

We adopt  the  convention of referring to  the right and 
left derivative  at  the  endpoints a and  b  respectively as 
the  derivative  there. 

Occurrences I + 3 were  actually incorporated in the 
construction and for  these  cases dw(x,)/dx = C j / A i .  
This is also true  for 4. Hence  at all knots  except  at x. 

'j 

dw 
.?+At* dx 

j =  1 , .  . . , k w ( x )  is differentiable  and 

dw(xJ - d W ( x J  - Ci 
dx ds A i  ' 

In remaining four  occurrences  where xi = xi, for j E 
{ 1,. . ., k }  we find that J 

lim - = 

CUBIC S 

433 
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I I I where 

I :  - 

0 

c I O  

X. , + I  

= - q F  

X i  +I  

(b)  

Figure 4 Derivative conditions at  endpoints of adjoining in- 
tervals. (a) Occurrence matrix for derivative conditions  on 
adjoining intervals. 0 indicates nonoccurrence, 1 + 8 indicates 
occurrences. (b) Occurrences: F indicates finite derivative, 
s indicates infinite ( i m )  derivative occurring at  the  knot. 

the  case Ci = 0 having been  previously  excluded for  the 
existence of an infinite derivative  (see discussion after 
( 2 ) ) .  Subject then to the condition C,, # 0, assertion 5) 
is also  satisfied. 

Determination of W ( s )  
The Ci are  determined so as  to  render W ( s )  a spline in 
the s - W plane. This is equivalent to  parts 3)  and 4) of 
the  theorem,  as well as  2), which has already  been shown. 

For second order continuity of W ( s )  at a  knot, taken 
for  convenience  at x,+,, it is required that 

lim 7 = lim -, 

J 

d2 W d2  W 
.\+x,+, dsL .\+x:+, ( t u 2  

or 

which  yields 

434 C i  i- H,Ci+, + KiCi+2 = R,, i = 2,. . ., ?d - 2 ,  

Hi = 2 k , ( k i  + I ) ,  K ,  = k f k , , ,  

and 

Ri = 3 [ k i " ( ~ ~ + ~  - &vi+,) + (w,+, - w,)] 

Two additional  conditions are needed for  the determi- 
nation of C,. Let us consider  the integral 

When an undeformed  thin  beam is statically  deflected 
to  the  shape W = W (  s) , the  strain energy of the deforma- 
tion (according  to linear  elasticity theory) is proportional 
to  the integral in (20). 

Necessary conditions for  the minimization of (20) 
are  that 

" a F - O , V i =  l ; . . ,  N .  
ac, 
Applying the minimization conditions for  convenience 
at i +  I ,  we have 

resulting in 

and 

Upon evaluation (21) yields ( 19). From  (22)  we obtain 

2 c ,  + k,C2 = 3 ( w2 - w,) , 

e,-, + 2c, = 3(w, - w,-,) 

Defining C ,  = C,+, = 0, H ,  = H,-l = 2, k, = k, = I ,  w,, 
= w 1  and w,+, = w, enables us to write (19) and (23) in 
the  compact form 

C, + Hiei+, + KiCi+, = Ri i = 0; . ., N - 1. (24) 
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The C,, and  hence W (  s) , are uniquely determined by 
(24) since the coefficient matrix A of (24) is nonsingular 
[ 51. In  fact A" = [a, ,] ,  where 

.v- 1 

a,, = (-1 y + (  x ( I i  K ; ) / ( K ;  iI " C )  
r=max(s, f )  n=s n=f  

with 

H,' = H I ,  K;-l  = K i + l /   H i - , ,   H i - ,  = H i  - K;- l ,  

i = 2  , ,  3 . . .  , N -  I .  

I t t u r n s o u t t h a t a , , Z O V s , t = O ,  l ; . . , N - l .  
We appeal  to  the  celebrated result (quoted in [ 11, 

p. 3, p. 7 5 ) :  

Theorem ( H o l l a d a y )  Of all functions having continuous 
second derivatives  on ( a ,  b )  and  passing  through all the 
knots,  the spline W (  s) having W:( a )  = W''( 6 )  = 0 mini- 
mizes (20).  

Hence,  (24) provides  necessary  and sufficient con- 
ditions for  the minimization of the integral. 

Assertions 1) -+ 4) of the  theorem  as well as a part of 
5 )  have been proved. We need conditions to  guarantee 
that C. # 0, Vj = 1, . . ., k .  These  are given by ( * ) ,  ob- 
tained directly from (24) via Crarner's rule.  q.e.d. 

Implementation 
The function w(x) is not  a  spline.  It just misses being a 
spline on  the intervals 1;. There  it is obtained  "homeo- 
morphical1y"-in the  sense of w(x) = W [  s ( x )  ] -from a 
spline. Further, w"(x) exists and is continuous  on [ a ,  b] '. 
The  reader  interested in the determination of cubic 
splines  when other  constraints not involving infinite 
derivatives are imposed is referred to  the cited  work of 
Dimsdale. 

The salient feature of the algorithm is the homeomor- 
phism x. The spline W ( s )  in the s - W plane is identical 
to  the  one  constructed in the x - w plane by Dimsdale's 
algorithm  when  only finite derivatives  exist  at  the  knots. 
This is advantageous,  because if additional constraints 
on  the spline are  required,  these can be incorporated in 
W ( s )  directly via Dimsdale's  method.  Since W ( s )  = 

w ( x )  on Ii # I : ,  the  constraints  carry  over  to  the x - M' 
plane. In addition, we obtain "(x) in closed form through- 
out the interval [ a ,  b]  including the  subintervals  where 
infinite derivatives  exist. 

We elaborate now on  the partition  invariant property 
of w(x) alluded to in the introduction. Suppose  that 
w(x) is constructed  on [ a ,  b] with  a  partition P [ a ,  h] = 

{ a  = x1 < x2 <. . . < xN = b}  -we write w p  for  emphasis - 
and it is desired to  alter w p  on I,. This situation arises 
very  frequently in the applications where a designer  feels 
he has achieved the desired shape on [ a ,  b] except  for 
I,. He wishes to modify wp on a  portion of Ii without 
altering it elsewhere.  The way this is done is by introduc- 

'j 
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Figure 5 Airplane silhouette  constructed in four parts  (see 
also Table 2).  Vertical  slopes at  knots  number 1, 1 1  and 17. 
Slope discontinuities at  knots 4 and 9 are intentional. Note 
differences on intervals with vertical  slopes  between w ( x )  and 
W ( S ) .  

Table 2 Values for curve in Fig. 5.  

~~~~ 

Spline 1 
(nose) 

Spline 2 
(body) 

Spline 3 
(tail) 

Spline 4 
(belly) 

Point 
Number xi wi ' 6  

. -~ ." 

I 0 0.0 0.798 
2 2.6 0.7 1.009 
3 7.8 1.0 0.055 
4 13 1.2 

4 13 1.2 0.720 
5 18.5 1.8 0.360 
6 24.0 1.9 -0.146 
7 
8 

37.8 1.6 -0.150 
46.0 1.5 -0.244 

9 68.0 1.1 

9  68.0 1.1 0.264 
I O  73.5 1.6 0.971 
1 1  79.0  3.2  0.861 
12 81.2  4.0  0.302 
13 82.3 4.2 0.080 
14 83.4 4.2 -0.022 
15 84.5 4.2 0.009 
16 85.6  4.0 -0.614 
17 86.7 3.0 -3.464 
18 90.0 0.0 

1 0 0.0 0.476 
19 4.5 0.4 0.248 
20 9.0 0.5 0.065 
21 18.0 0.58  0.058 
22 27.0 0.6 0.004 
23 36.0 0.6  -0.077 
18 90.0 0.0 

.a-Derivative 

Yes 

Yes 

Yes 

Yes 

ing additional knots  at y,,,, with rn = 1 , .  . ., M and x, < 
y 1  < y2  <. . . < yu < xi+l ,  so that  the resulting  spline re- 
sembles more closely the  desired  shape. Physically,  this 
imitates  the bending of a thin beam,  according to  the 435 
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“small”  deflections theory,  and is equivalent to forcing 
the beam to  pass through the additional knots by placing 
simple supports  there.  On J ,  = [y,, y,,,] C l i  the  shape 
of w p  is to be preserved,  and this may be the  case  for  any 
number of subintervals. We have then  a new partition 
f l u ,  b] = P [ u ,  h] U {y,; . ., yM} and we wish to  construct 
wp so that w,(x) = w,(x) Vx E Q = [ a ,  xi] U J ,  U 

If only finite derivatives  occur  at  the knots the con- 
struction is easy.  On [ a ,  xi] U [ x i + l ,  b] we retain the 
cubic  portions W , ( s ( x ) )  of w,(x), n = 1, .  . ., l i - l ,  t i+, ,  
. . ., N and let wp(x )  = W , ( s ( x ) )  there.  On J ,  we specify 
W,( s(x) ) as  the cubic  passing  through (y,,  wp(yq) ) with 
slope w;(y,) and  through (y,+,, ~ , , ( y , + ~ ) )  with slope 
w;(y,+,). Clearly, W , ( s ( x ) )  = W,(s(x)) on J ,  since a 
cubic is uniquely  determined by specifying two  points it 
must pass through with given derivatives  there. We  let 
w p ( x )  = W , ( s ( x ) )  on./,. Finally we specify that 

[ X i + , >  b l .  

I wI;(xJ = l V L ( X J ,  W k ( Y , )  = w;(Y,) 

“b(Y,+,) = w;bq+,)’ M.’I;(Xi+,) = w;(xi+l). ( 2 5 )  

Then using Dimsdale’s  method wp(x)  is constructed  on 
[ x i ,  y,-,] U [y,+,, xi+,] subject  to  the  constraints in (25) .  
Hence wp(x)  = w,(x) on Q.  

When infinite derivatives  occur,  however, this process 
fails  since on l i ‘ ,  W , ( s ( x ) )  is not a cubic  inx.  However, 
here the s - W plane comes  to  the  rescue.  For W,(s)  is 
always  piecewise cubic  and  has finite derivatives  every- 
where  on [ a ,   b ]  . So by the  process  we  have  just outlined 
W , ( s )  is constructed with W,(s)  = W,(s)  on Q.  Then 
using the ui derived  for partition P (not  f l  we obtain w~ 
with wp(x) = w,(x) on Q.  That is w p  is  “invariant”  on 
a specified Q C [ a ,  b]  with respect  to  changes in the 
partition P [  a ,  b] . 

This  property was  crucially important in the applica- 
tion [ 3 ]  that motivated  this  work. There some  subin- 
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tervals,  where a w(x) was constructed, needed to be 
“shrunk” sufficiently to  guarantee  convergence of a 
certain series expansion, this without changing the  shape 

The algorithm given  was  tried on several  examples. 
One,  constructed  for  convenience in four  separate  parts, 
is shown in Fig. 5 and  Table 2. It  was found that  the 
algorithm is computationally efficient and easy to im- 
plement.  Condition ( * )  poses  no problems in implemen- 
tation. Rather it implies that  the  knots ought to be chosen 
judiciously. 
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