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Bicubic Patch Surfaces for High-Speed Numerical

Control Processing

Abstract: Parametric bicubic patch surfaces have been used for some time in manufacture and design. It is convenient to have such
surfaces available as standard numerical control surfaces using the APT programming language. A major drawback is that they are
costly to use for data processing of numerical control programs. If, however, nonparametric bicubics are used, computer time, and hence
cost, can be reduced dramatically. This paper details a strategy and algorithms for this purpose. Experimental data suggest that com-
puter costs are comparable to, or somewhat lower than, the costs for processing tabulated cylinder surfaces.

1. Introduction

The kinds of parametric bicubic patch surfaces [1-3]
discussed in this paper have been used for some time in
design and manufacture of complex surface configura-
tions. Two approaches have been taken when these sur-
faces are involved in numerical control manufacture in
conjunction with APT processing [4]. In one approach,
cutter offset positions are calculated taking into account
only the bicubic patch surface, and these points are sorted
or ordered to produce a resultant cutter path which
typically will machine the entire surface. In some cases
additional logic is used to bound the final cutter path so
that only a portion of the surface is machined. This ap-
proach is taken by the well known APTLOFT-FMILL
package, a single-purpose program that computes only
one surface and ignores the others in a given package of
related surfaces,

In the second approach, the surface is used as one of
two controlling surfaces which together determine the
path of the cutter through space. This is the preferred
technique, since the bicubic surface is a standard APT
control surface and the full power and flexibility of the
numerical control programming language may be used.
A major drawback to this approach is that such surfaces
are costly to use for processing numerical control data.
The reason for this is that the basic problem faced in pre-
paring the control tapes concerns the intersection of such
a surface with a straight line. Moreover, it is not unusual
to solve this problem 100000 to 1000000 times during
the course of APT [4] processing. Elsewhere [5], de-
vices have been developed for reducing the number of
patches that need to be investigated.

If, however, nonparametric bicubic patch surfaces as
in the F-mesh system of Dr. Inaba at Fujitsu Ltd. [6]
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are used, the basic problem becomes completely manage-
able and very large reductions are obtained in computer
storage and time, and hence in cost. There is, of course,
a price to be paid for these reductions. The surface to be
represented must be single-valued with respect to some
plane. More precisely, it must have a finite bound for its
maximum slope relative to some plane. This requirement
excludes essentially multiple-valued surfaces, for ex-
ample. In this system such surfaces would have to be rep-
resented by several single-valued segments whose
boundaries projected on an associated plane are rec-
tangular. In general these segments will overlap; hence
for subsequent applications unique subsegments must
be delimited by including bounding surfaces for each
segment. Note that the total of the unique subsegments
(except for common boundaries) must provide a com-
plete covering of the total surface.

Since the surface intersection problem is the key to
high-speed APT calculations, this paper is devoted to
efficient solution of this problem and to testing the al-
gorithms developed in a number of standard APT con-
ditions.

As in the F-mesh system, the set of points used to de-
fine the nonparametric bicubic patch surface have the
property that their projection on some plane defines a
rectangular grid whose grid lines in general are not equal-
ly spaced. This raises a problem if the points provided do
not have the requisite property. The solution to this prob-
lem requires interpolation and extrapolation from the
given data to produce suitable points. Once an appropri-
ate array of points is provided, the strategy used here to
reduce computing time involves a sequence of succes-
sively more restrictive patch rejection techniques. For
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those patches that remain after these tests, a sixth-order
equation in one variable must be solved. Methods for
dealing rapidly with this problem are also developed.

The first patch rejection technique comes from the
obvious fact that if the straight line is projected onto the
plane containing the rectangular grid, only those rec-
tangles intersected by the projected line are projections
of surface patches which may in fact be intersected by the
line. The algorithm for this procedure is sufficiently ob-
vious to require no further discussion. In sections 3 and
4 certain bounds are developed that provide rectangular
parallelepipeds within which each patch is contained.
One is also provided for the entire surface. In section 5
the problem of solving polynomial equations is discussed
for the special circumstances arising in the problem at
hand. In section 6 the techniques for using the bounds
previously developed are exhibited.

In section 7 devices for bounding the number of zeros
of the polynomial are developed. In section 8 an interval
halving procedure is given for isolating zeros of the poly-
nomial. Section 9 provides the results of extensive tests
performed using this system. Comparisons of computer-
time with the surface in APT are provided.

2. Notation

The set of bicubic patches is defined over a rectangular
grid that is defined by the grid lines

Xpy Xpot %5 X

Vi Vgt s Vage (1
The general form of patch i, j, that is, the surface defined

over the rectangular region

Ri[xi=x"=x{,,¥y= ¥ =yl (2)
is

Z=UKE U (y), (3)
where U(x') is a vector function U(x) = (%, 1%, x, 1),
U™ is its transpose, and E ; is a 4 X 4 matrix of constants.
With the transformation

x=(x"—x)/8,,8, = xj,, —x;

y= (Y =¥)/8, 8, =y, —¥;3
z=2z, (4)

the equation has the form

z=U®MB, (U(yM)’ (5)
for x, yin R[0=x=1,0= y= 1], where

2 -2 1 1

-3 3 -2 -1
M=t o 1 of

1 0 0 0
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Zo0 o1 Zyoo  %yon
z z z z
—f =1, . , 1,0 w11
Bi,j — ~1 0 1.1 Y ¥ (6)
Zr00 2z01 Fryeo Zxyon
21.1,0 21‘,1,1 Zr, ¥ 1,0 Zw, w11

Here z,, = 2(0, 0), z,,, = ax(0, 1)/ax, etc. Also
dx/ax=9, 9z’ /ax', °z/ dxdy = 8,8, 0°z/ ax'dy’, etc. Note
that the components of B, also §,, ,, are functions of
iand j.

The line is defined by a point p, = (x], y;. z;,) and a vec-
tor g, = (u,, vy, wy). The equation of the line, then, is

pl=(X.y.2)=Dp,+ tq, (7
When dealing with the local coordinates x,y,z of a spe-

cific patch, the line equation must, of course, also be
transformed to local coordinates. Its equation becomes

p={(x,y,2) =p,+ q,t, (8)
where

po= (@, ay, ay) = ((x—x))/8,, (o= ¥) /8, 2),
Gy = (Bys By By) = (uy/8,, vy /8,0 wy). 9)

3. Patch bounds and patch slope bounds

The i, j patch is already bounded by the four planes
X=X X=X YE YR Y=V, The present objective is
to find a pair of parallel slant planes such that the paral-
lelepiped formed by the six planes contains the surface
segment in its interior; that is, to find o', 8', v;, v, such

that

a'x +B8Y Fy, =2, Y)EdX +BY +y (10)
for X', y' in R’, where the constants ', 8', v}, v, are func-
tions of i,j.

In the transformed coordinate system the desired in-
equalities are

ax+by+tc,=z=ax+by+c, (11)

over R, where a, b, ¢, ¢, are functions of i.j.
Now consider the function

Z¥(x, y) =z(x,y) —ax— by — c. (12)
Clearly
25 (x, y) = U(x) MB*M'U" (), (13)
where
Zo— € 2, —b— ; 2400~ : 20— 1;
z,—a—c z,—d—b—c z,,,~b z,,,—
B = Z:.On,o —a z:,lo,l —a Zl:,l:o,o z": ‘yl,m 4 (14)
20— 0 2,4 Zo o oo

That is to say, having selected a, b, ¢ by any means, the
bounding plane problem for a given bicubic can be con-
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verted to a simple bounding problem for a related bi-
cubic. That is, two numbers ¢, and ¢, are now required
such that

c, Zz*(x,y) Zc, for (x, y) €R. (15)

As to the choice of a, b, ¢ with which to initiate the
problem, it might be desirable to minimize the maximum
directed derivative, since Taylor series expansions about
various points will be used, and this would tend to make
the first-order terms small. However, this is computation-
ally infeasible, and may very well be not better than a
simpler procedure, such as minimizing

J GG

Now from Eq. (12) the objective function becomes

2 2
J, el + 5] ()
R .

Thus it is a nonnegative quadratic function of ¢ and b.
It is evident that the minimum is zero if and only if the
surface is a plane. In any case the minimum is attained
at the (unique) values for a and b obtained by setting the

respective derivatives of the objective function equal to
zero. The result is

a=J’] fl i (x)MBM" u(y) = eBh"

bzfo1 f: w(x)MBM"i(y) = hBe" (17

where u is the derivative of u« and
e=(-1,1,0,0), h= (% 1% —12). (18)

For the subsequent development there is no loss of gen-
erality in setting ¢ = 0.

Given a function z(x, y) which is continuous to-
gether with all its derivatives (this is certainly true for
bicubics), its extrema over a region R can be found by
considering extrema on the boundary of R and the rela-
tive extrema inside R. It is not, in general, computation-
ally feasible to find the relative extrema of a bicubic, in
the amount of available computing time. Thus no attempt
is made to find best bounds, but bounds as close as de-
sired can be found {7, 8].

The maximum slope of the patch over R; ; is

o = max \/(az’/ax’)2+ (82’ /3y")". (19)

The transformation of the previous section (R; ;OR ),
converts the problem to

o= max \(Z) [+ (Z) /5 (20)

The maximum is computed numerically as in [7], [8].
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4. Total surface bounds
A bound for the maximum surface slope is simply the
largest of the individual patch bounds.

To find parallel bounding planes compute the least
square plane for the surface knots; that is, compute A4,
B, C such that

T=3 (Ax,+ By,+C—z )’ (21)

¥
is minimized. Then C, is chosen so that
Ax; + By, + C, Z ax; + by; + ¢, (22)

for all upper bounding planes at the knot x,, Vp for all
knots. Similarly C, is chosen so that

Ax;+ By;+ C, = ax,+ by, + ¢, (23)

for all lower bounding planes at the knots.

5. Zeros of a polynomial

It will be observed in the following sections that the inter-
section problem reduces mathematically to solving an
equation

f(x) =0, 0=x=1, (24)

where x is a polynomial (of degree six or less in the pres-
ent case). It is also observed that f(x) measures the
vertical distance between the bicubic and the line. Thus,
in practice, a set of x’s is required such that each x is on
(0, 1) and

()] = e (25)

where € is related to the accuracy of measurement of
system data, that is, input points and line slope. Such
x’s are called pseudozeros of f(x).

Unless all x’s satisfying the inequality are included,
which is clearly pointless, the necessarily finite set ac-
cepted is not uniquely defined. This is a matter of no
moment for the problem at hand. The algorithm used is as

follows. For i =0, 1,---, r — 1 let x, be a value of f,(x)
such that
[ filx)] =8 (26)
and define
S () = (fi(x) = filx))/ (x — x)), (27)

it being assumed that f,(x) = f(x). For the index r it is
true that either | f(x)| > & or that f(x) does not change
sign in the closed interval. Clearly, r= n the degree of the
polynomial f.

Let
wo(x) =1,
wix) = (x—x)(x—x) - (x—x,_). (28)
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It follows that

£ =P + S w(x) fi(x), (29)
where
P(x) = w(x) f.(x), (30)

and P(x) = f,(x) in the event that |f,(x)| > o for [9]
x€ [0, 1].

Now |w,(x)|= 1 for all /, since x and x;are all in [0, 1].
Hence

lf(x) —P(x)|=r6=<¢€ (31

when & is chosen less than e/n. Hence x, x,, - -, x,_,, the
zeros of P(x), are pseudozeros of f(x).

Graphically the initial problem involves a graph of
f(x) on [0, 1], and a band of width 2e centered on the
x axis. Whenever the graph enters the band it may or may
not emerge, and if it does it will emerge either on the side
of entry, or on the opposite side. The first two cases may
or may not be represented by a pseudozero. If € has been
reasonably chosen it does not matter. The last case should
certainly be recognized by P(x) and is, as a matter of
fact. For if f(x') = €, f(x") = —e the inequality (31) re-
quires that P(x’) = 0, P(x") =< 0, so that at least one of
the x;’s is in the closed interval defined by x’, x”. This is
the only unequivocal statement that can be made about
the relative locations of the mathematical zeros of f(x)
and of P(x). As to the number of zeros, P(x) may have
either more zeros than f(x) or less. The only certainty
about the number of zeros of P(x) is that it does not ex-
ceed n. Neither the number of pseudozeros of f(x) nor
their magnitude can be determined in advance.

-1’

6. Initial procedures for locating intersections
Given a line L, and

p =p,+ tq;, (32)

it may be possible to determine, using the bounding
planes for the entire bicubic surface, and the x’, ¥’ bound-
aries of that surface, that the line cannot intersect the
surface.

If this is not the case, then it will be necessary to deal
successively with the set E of patches selected as candi-
dates by the projected-line technique mentioned in the
Introduction. There are three situations involving slopes
that may simplify the problem considerably. Let

o=wil/V W)+ (v))* (33)

be the minimum slope of the line, o* be the bound for the
maximum slope of the entire surface, o, be the maximum
slope of the set E of patches. If either

(we)* > [(up)* + (v)*1 (0%)? (34)

JULY 1976

or
(we)* > [(up)* + (v))*1 0%, (35)

then there is at most one intersection of the line with the
entire surface. The difference between the two cases lies
in the way they are to be programmed, since o* is avail-
able at once, and o, is not. In both cases, once a solution
is found, the problem is solved. In the first case the prob-
lem is terminated when and if a solution is found. In the
second case, it is necessary to examine all the patches of
E to verify the stated condition, but only necessary to
look for a solution until one is found, if it exists.

If neither condition holds, it is still true that in any
patch for which

(wp)® > L) + (0?1, (36)

where o, is the patch slope bound, at most one solution
exists.

If a patch is a member of the set E, it remains a candi-
date patch if and only if the line L intersects two sides
of the parallelepiped containing the patch. If it does not,
the patch is no longer a candidate. If it does, then two
values ¢, and ¢, of the line parameter ¢ are determined
such that any intersection of the line and surface corre-
sponds to a value of ¢ between 1, and ¢,

Now, in terms of the local coordinate system, the line
equations are

x=o, + Bt
y=a, + 8,1,
2=, + B, (37)

and the patch equation is

z=U(x)SU"(y), S=MB, M". (38)
For a given value of ¢,

Zijne = 2y T Wy,

Zpaten = Ux, + u) SU" (v, + 031),

patch ~
Zpatch — Zline — o) = U(Xo + uot)SUT( Yo+ Uot)
T2y T Wyl (39)

Thus ¢(#) is the vertical distance between the patch
and the line, at the values of x,, y, specified by 7. The
distance from the line normal to the surface is less than
|$(#)|, and hence less than € whenever |$(r)] is.

If it is guaranteed by slope conditions that at most one
zero exists, then it is necessary only to compute qb(tl)
and ¢(¢,). Then either sign ¢(z,) = sign ¢(,), and no
zero exists, or sign ¢(f;) # sign ¢(z,) and exactly one
Zero exists.

In this last case the explicit polynomial ¢(z), of order
six or less, is computed, and a pseudozero is found, per-
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haps by a modified regula falsi [7, 8]. Note that in this
case a pseudozero is allowed to exist if and only if a
zero of (1) is known to exist.

The explicit polynomial is

(1) = U(t)B,4,SA4,B,U" (1) — Byt — a,, (40)
where
1 0 0 0 B 0o 0 0
3¢, 1 0 0 0 B2 0 0
=1 ,B,= i
A 30 22, 1 O)77H L0 0 B O (41
a? & a 0 0 0 0 1

1 13

It may be useful to note that if either 8, or 8, = 0, then
¢ (1) reduces to a cubic.

As to computing costs, computing ¢ (z) without com-
puting its coefficients in general requires 21 multiplica-
tions and 17 additions per ¢ value. The computation of
the explicit polynomial (assuming sixth order) requires
85 multiplications and 63 additions.

Thus, if it is not true a priori that the number of zeros
is bounded by one, the explicit polynomial should be
computed immediately, followed by the transformations
of the next section.

7. Polynomial transformations

The present objective is to obtain a bound for the num-
ber of zeros in the interval (z,, ¢,). For this purpose it is
convenient to make a linear transformation of variables
that carry (¢, t,) into (0, 1). That transformation is

t=x(t,—t) +1,. (42)

It is convenient to perform the calculation in two steps,
thus

0(s) =¢(s+1),s€(0,¢,— 1), (43)

at a computing cost of n(n + 1) /2 multiplications and a
like number of additions, where n is the degree of the
polynomial, followed by

fx)=0[x(1,— )], x< (0, 1), (44)

for which the cost is 2n — 1 multiplications.

At this point all the 0, 1 pseudozeros of f(x) are re-
moved. The result is a polynomial f(x) of lower degree,
for which | f(0)| > €, | f(1)] > e. If sign £ (0) = signf(1)
a pseudozero exists between 0 and 1. Compute it and
reduce f(x) again.

In any event, there ultimately results an f(x) having
the properties

O] > e [f(D] > e sign £(0) =sign f(1),  (45)

and there are evidently an even number of zeros of this
f(x).

Nowletz' =z/(1—2) and g(2)=(1+2")" f[2/ (1 +
2')], at a cost of n(n + 1) /2 additions.
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This is a transformation which, in the complex plane,
explodes the circle centered at (1/2, 0), radius 1/2, into
the right half plane, and carries reals into reals. The effect
is that the number of positive real zeros of g(z') is pre-
cisely the same as the number of real zeros of f(x) for
x € [0, 1]. However, the number of positive real zeros
of g(2') is bounded by the number of changes of sign
among consecutive coefficients of g(z'), and differs from
that number by an even number.

The principal reason for the use of this procedure is to
be found in the results of the experiment reported here.
The experiment consisted of forming sixth-order poly-
nomials with random coefficients uniformly distributed
over (—1, 1), discarding those polynomials which had
zeros on the interval [0, 1], and carrying the rest through
the above procedure. The results for 5000 acceptable
polynomials was 4774 cases with no sign changes, 225
cases with two sign changes, and one case with four sign
changes; that is, if the polynomial had no zeros on the
interval [0, 1] the experimental probability that there
would be no sign change in g(z’) was 0.945. For poly-
nomials of lower degree the experimental probability
was somewhat higher.

In view of the hypothesis concerning the relative rarity
of multiple intersections, it seems reasonable to assume
that this test will, in nearly 19 cases out of 20, exclude the
patch from further consideration. It has the further ad-
vantage that if there are, in fact, multiple intersections,
the patch will be retained for further analysis.

The effects of these calculations on error in the various
derived numbers seems hardly worth consideration, since
roundoff errors in the computer are completely trivial
when compared to measurement errors inherent in the
physical data, particularly in view of the small number of
operations involved.

8. Interval halving

The preceding calculations result either in eliminating
the patch, or in its complete solution, or in the present
problem. That is, given a polynomial f(x) of degree six
or less, of which it is known that

sign £(0) = sign f(1),
[f(0)] > € [f(1)] > € (46)

and that an even number of zeros on (0, 1) is possible,
isolate those zeros if they exist. It will simplify matters
to assume that f(0) > €, f(1) > e which requires, at
most, multiplying f(x) by —1.

The following procedure always locates a point at
which f(x) = 0, if one exists. If no such point exists,
then f(x) > 0 throughout the interval, and the procedure
may or may not locate a point such that f(x) = €. In out-
line, the procedure performs as follows. It begins with
the interval (0, 1) and proceeds to form a list of intervals,
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If (x,, x,) is an interval belonging to the list, its anal-
ysis consists of the following steps.

1. A value of x is located which isolates two zeros of
f(x), and the procedure is terminated.

2. It is determined that f(x) > e throughout the interval

so that the interval is deleted from the list, and the half

intervals [x,, (x, + x,) /2], [ (x,+x,)/2, x,] need not
be examined.

3. Neither situation occurs and no conclusion is possible
for the entire interval. It is removed from the list and
the half intervals examined. If case 1 occurs, the pro-
cedure is terminated. If case 2 occurs, the half interval
involved is not added to the list. If case 3 occurs, the
half interval involved is added to the list.

Thus the result of the analysis is that (x,, x,) is replaced
by zero, one, or two half intervals.

The list is initiated with the interval (0, 1). The pro-
cedure terminates when a value of x is found which iso-
lates two zeros, or when the list is empty, or when it can
be asserted that f(x) > 0 in all the intervals remaining
in the list. It is this last assertion that assures the finite-
ness of the algorithm.

The basis of the procedure is the equation [ 10]

S(x) =Px) + (&) (x—x) (x —x) (x —x,) /6, (46)

where x, < x, < x,, x, < £ < x,, P(x) is a quadratic poly-
nomial passing through the points (x,, f(x,)) i=0, 1, 2,
and f''' is the third derivative of . With

x,=(x,+x,)/2,A={(x,—x) /2, u=x,—x,

y; = f(x)

A=y, =2y +y, B=y,—y,, C=y,

Equation (46) becomes

f(x) =Px) +f""(E) (u—A)u(u+A)/6

P(x) = (A/28%)u* — (B/28)u+ C. (47)
Let

M =max|f""(x)|, x€ (0, 1)

and note that for |u| = A

1/6 | (u—A)u(u+ A)| < a=0.06415004,

whence

P, (x) = P(x) —aMA’ = f(x) = P(x) + aMA®

=P, (x).

If, for ju| = A, min P, (x) > € the interval may be dis-
carded. If, for |#| = A, min P, (x) = e then a pair of
pseudozeros has been located and the procedure termi-
nates. If neither condition is true, the half intervals will
be analyzed. Before undertaking these tests, however,
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test y, < e which, if true, locates two pseudozeros and
terminates the process. Otherwise note that if 4 = 0, or
A > 0 and |B| = 24 the minima occur at either x, or x,,
where y, > €, y, > e. Finally, if the minima require in-
vestigation

min P, = C — (B°/84) — aMA®,

min P, = C — (B*/84) + aMA’,

If the test of the entire interval is inconclusive, note that
0= (u~Ayu(u+A) ==20u(u+4), u€ (—A, 0)
0= (u—Au(u+ A) =2Au(u—A), u€ (0, 4).

For the interval (—A, 0) let
P (x)

10

P (x) = (A4,,/28 " — (B,,/28)u+ C,

=(A4,,/20) 4 — (B,,/20)u+ C,

10

where

A,=A+a, B,=B—a, A, =A—a, B, =B+a,

b=
a =2MA/3.
Now
P (x) = f(x) =P (x), X, = x= x,
P(x) = f(x) =P, (%),
For this case

1. Either =24, < B, < 0, or the interval can be dis-
carded, or

2. If 224, < B,, < 0, P,(x) has a minimum at u =
B,,A/24,, of magnitude C — (B%,/84,,).

10

If this number is greater than e, the interval can be
discarded. Otherwise,

3. either =24, < B, < 0, and no conclusion can be
reached concerning this interval,

4. or the mjnimum occurs at (B,,A/2A4,,) and has mag-
nitude C — (B},/84,,). If this number is not greater
than €, a pair of zeros or pseudozeros has been iso-
lated in the present interval. Otherwise no conclusion
is possible, in which event the interval is appended to
the list. If C — (B%,/84,,) > 0 this fact is noted and
also saved.

For the interval 0 = u = A, with
P, (x) = (A4,,/20%) u* — (B,,/20)u+ C,
P, (x) = (A, /20 u" — (B,,/20)u+ C,
where

AZO =A10’ B20 = Bll’ A21 = All’ BZI = BIO

the conditions become
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Figure 1 Diamond-circle pattern produced by basic part pro-
gram used for the test cases.

1. 0 < B,, < 24,, not true, discard the interval,

2. otherwise test C — B, /84, > €. If true, discard the
interval. If not true, then

3. test 0 < B,, < 24,,. If not true, no conclusion can be
reached regarding this interval. If this is true, then

4. compute C — (B;,/84,,). If the number is not greater
than € then a pair of zeros or pseudozeros has been
isolated. If greater than €, no conclusion is possible
for this interval, and it is added to the list, together
with an appropriate indicator if C — (B,/84,,) is
positive.

It is necessary to maintain two counts, one being the
number of intervals in the list, the other being the num-
ber of intervals in which f(x) is entirely positive. If the
first is zero, or is equal to the second number, the proce-
dure is terminated.

Experience to date suggests that the number of inter-
vals tested per problem averages about three. For ex-
ample, for the function f(x) = (x — 0.5)° the zero 0.5 is
found immediately. For f(x) = (x — 1/V2)* + 107,
€ = 107", about 150 iterations were required to discard
the function. For f(x) = (x — 1/V2)* + 107" with e =
1077, the first pseudozero was found after about the same
number of iterations. These would appear to be fairly
representative of worst cases.

9. Experimental results

A principal objective of this work was to reduce com-
puter processing times, and hence costs, when dealing
with bicubic patch surfaces. In order to obtain a meaning-
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ful measure of the performance, it was decided to com-
pare the APT processing times (for Section 2, the arith-
metic element) of rectangular bicubic patch surfaces with
standard APT surfaces. The tabulated cylinder (a cylin-
der with a piecewise continuous planar spline curve
generator and a straight-line generatrix) was chosen for
comparison purposes, since this is one of the more com-
plex types of APT surface but is none the less sufficiently
economical that it is widely used. This surface type is ab-
breviated TC in the following discussion.

Code modifications and additions to implement the
bicubic patch surface algorithms described in the pre-
ceding sections were made to the APT system as imple-
mented under CMS [11], and a series of tests was run.

The same basic APT part program was used for all
test cases. This program required the cutter to be driven
around a series of planes and a right circular cylinder, so
that the xy projection of the resultant cutter path pro-
duced the ‘diamond-circle’ pattern shown in Fig. 1. The
z coordinates of the resultant cutter path were controlled
by the part surface that was varied between test series.

Each of the first four test series used two part surfaces
that were very similar in overall shape —one which was
defined as a TC surface and the other which was defined
as a bicubic patch surface. The number of TC intervals
(the number of intervals on the spline defining the TC)
and the number of patches on the bicubic patch surface
were the same within each test series and varied from
series to series. The part surfaces used in the tests are
described for each test.

A range of five different APT programming conditions
was used in the tests. These differing conditions varied
the complexity of the APT calculations required to com-
pute the cutter path. The conditions used were:

APT programming condition
A. (TLONPS, 3 axis) Simplest case; cutter
is effectively a single
point which is to be
on the part surface.
Cutter axis is fixed.
B. (TLOFPS, Ball Cutter) Somewhat more com-
3 axis plex; cutter end is
a hemisphere which
must be positioned
tangent to the part
surface. Cutter axis
is fixed.
C. (TLOFPS, Flat Cutter) More complex; cut-
3 axis ter is a section of a
right circular cylinder
which must be posi-
tioned tangent to the
part surface. Cutter
axis is fixed.

I1BM J. RES. DEVELOP.




D. (TLOFPS, Ball Cutter)
MULTAX

Still more complex;
cutter end is a hemi-
sphere but the cutter
axis must be lined up
parallel to the sur-
face normal at the
point of tangency be-
tween the cutter and
the surface.

Most complex, cut-
ter is a section of a
right circular cylinder
which must be posi-
tioned tangent to the
part surface with the
tool axis oriented
normal to the sur-
face at the point of
tangency.

E. (TLOFPS, Flat Cutter)
MULTAX

Test series |

A section of the parabolic cylinder y = 2 (see Fig. 2)
approximated by a four-interval TC and by a four-
patch bicubic surface.

Test series 2

The same section of the parabolic cylinder y = 2* was
approximated by a 49-interval TC and by a 49-patch
bicubic surface.

Test series 3

The same section of the parabolic cylinder y = 2 was
approximated by an 8l-interval TC and by an 81-patch
bicubic surface.

Test series 4

Two cycles of a cylindrical surface with a sine wave gen-
erator (see Fig. 3) approximated by a 60-interval
TC and by a 60-patch bicubic surface.

Test series 5

The sine wave surface of the preceding series was dis-
torted so it was no longer cylindrical, and approximated
by a 40-patch bicubic surface (see Fig. 4). The purpose
of this test was to determine whether the fact that the
bicubic patches in the previous tests were all ruled sur-
faces was significantly affecting the timing. Processing
time, as compared with the patch surface of series 4, was
not substantially different.

The execution times for the tests are given in Table 1,
which summarizes APT execution times.

With one exception, the bicubic surface was always
processed in less time than the TC with the same num-
ber of intervals. In that one case (1 — D) the probable
explanation for the difference is that minor variations
in numerical values can cause significantly different
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Figure 2 Section of a paraboloid cylinder approximated by a
four-interval TC program and by a four-patch bicubic surface.

branching in the highly iterative procedures used by the
arithmetic element of APT. This phenomenon is not
unusual.

Increasing the complexity of the APT programming
condition, again with the one exception, increased both
the TC and bicubic surface time, with their ratio re-
maining constant for a given number of patches or in-
tervals. The overall ratio of time intervals changed in
favor of the BICUBIC surface (see Fig. 5) as the num-
ber of patches or intervals was increased.

Table 1 Execution times in tests comparing APT processing
of rectangular cubic patch surfaces with the APT TC standard
surface.

Test Programming Time for Time for Ratio
series condition TC bicubic  bicubic/ TC
part part
surface surface
(seconds) (seconds)
1 A 15.00 13.93 0.92
B 19.80 19.02 0.96
C 20.22 19.40 0.95
D 19.82 32.18 1.62
E 23.26 22.95 0.98
2 A 25.05 18.10 0.72
B 33.74 24.53 0.72
C 34.15 24.90 0.73
D 36.66 25.50 0.69
E 42.06 29.43 0.70
3 E 55.31 31.51 0.56
4 A 34.42 26.56 0.77
S A not 30.92 not
applicable applicable
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Figure 3 Two cycles of a cylindrical surface with a sine-wave
generator approximated by a 60-interval TC program and by a
60-patch bicubic surface.

Figure 4 Sine-wave surface approximated by a 40-patch bi-
cubic surface.
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Figure 5 Progressive change in the ratio of T/ Tre PIO-
cessing-time interval as complexity of programming increases.
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10. Summary

The necessity to deal with complex, doubly curved sur-
faces presents many problems to the overall design, en-
gineering, and manufacturing cycle. One such problem is
that when these surfaces are implemented in APT, large
amounts of computer time are frequently needed to pre-
pare numerical control data. The object of the investiga-
tion reported here was to determine the relative economic
feasibility of using a nonparametric patch surface repre-
sentation. This representation makes it possible to reduce
the computer time required to do the fundamental cal-
culation required for APT processing, that of intersecting
a line with a surface.

This time reduction is possible because:

e A linearization technique eliminates many of the
patches on a surface as candidates for intersection with
a given line.

* A parallelepiped surrounding each of the remaining
patches further reduces possible candidates and sup-
plies bounds for the independent variable of the sixth-
degree equation determining intersection with the line.

* For any remaining patches, an upper bound for the
number of solutions is to be computed. Since bounds
greater than one are expected to be rare, computing
time is again relatively small.

To evaluate the relative economics, APT processing
times for a nonparametric bicubic patch were compared
with processing times for TC surfaces over a range of
APT programming conditions. It was surprising to dis-
cover that the bicubic surface was less costly than TC in
all but one instance, since the opposite had been expected.
From the point of view of computing time, such bicubic
surfaces are at least as economical as TC surfaces.

Obviously the surfaces investigated here are more re-
strictive than parametric bicubic patch surfaces. In par-
ticular, multiple-valued surfaces have to be segmented
and represented in several segments, each of which is
single-valued with respect to some plane. Such represen-
tations present problems that are far from trivial. These
problems must be dealt with before this special represen-
tation can be considered for production usage with sur-
faces that require such treatment.
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