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Abstract: Parametric bicubic  patch surfaces  have been used for some  time in manufacture  and design. It is convenient  to  have such 
surfaces available as standard  numerical  control surfaces using the APT programming language. A  major drawback is that they are 
costly to use  for  data processing of numerical  control  programs. If,  however,  nonparametric bicubics are  used,  computer time, and  hence 
cost, can  be  reduced dramatically. This  paper  details a strategy  and algorithms for this purpose. Experimental data suggest that com- 
puter  costs  are  comparable  to, or somewhat  lower  than,  the  costs for  processing  tabulated  cylinder surfaces. 

1.  Introduction 
The kinds of parametric bicubic patch  surfaces [ 1-31 
discussed in this  paper have been used  for some  time in 
design and manufacture of complex surface configura- 
tions. Two  approaches  have been taken when these  sur- 
faces  are involved in numerical control manufacture in 
conjunction with APT processing [4]. In  one  approach, 
cutter offset positions are calculated taking into  account 
only  the bicubic patch  surface,  and  these  points  are  sorted 
or  ordered  to  produce a resultant  cutter path  which 
typically will machine the  entire surface. In some cases 
additional logic is used to bound the final cutter path so 
that only  a  portion of the  surface is machined. This  ap- 
proach is taken by the well known APTLOFT-FMILL 
package, a single-purpose  program that  computes only 
one surface and ignores the  others in a  given  package of 
related  surfaces. 

In  the  second  approach,  the  surface is used as  one of 
two controlling surfaces which together  determine  the 
path of the  cutter through  space. This is the preferred 
technique, since the bicubic  surface is a standard APT 
control surface and the full power and flexibility of the 
numerical  control programming language may be  used. 
A major drawback  to this approach is that  such  surfaces 
are costly to  use  for processing  numerical  control data. 
The  reason  for this is that  the basic  problem  faced in pre- 
paring the control tapes  concerns  the  intersection of such 
a  surface with a straight line. Moreover,  it is not unusual 
to  solve this  problem 100000  to 1 000000 times  during 
the  course of APT [4] processing. Elsewhere [ 51, de- 
vices have  been developed for reducing the  number of 
patches  that need to  be investigated. 

If,  however,  nonparametric bicubic patch  surfaces  as 
358 in the  F-mesh  system of Dr.  Inaba  at  Fujitsu  Ltd. [6] 

are  used,  the basic  problem becomes completely  manage- 
able and  very large reductions  are obtained in computer 
storage  and time, and  hence in cost. There is, of course, 
a  price to be paid for  these  reductions.  The surface to be 
represented must be single-valued with respect  to some 
plane. More precisely, it must  have a finite bound for  its 
maximum slope relative to  some plane. This  requirement 
excludes essentially  multiple-valued surfaces,  for ex- 
ample. In this system  such  surfaces would have  to be  rep- 
resented by several single-valued  segments  whose 
boundaries projected on  an  associated plane are rec- 
tangular. In general these segments will overlap;  hence 
for  subsequent applications  unique  subsegments  must 
be delimited by including bounding surfaces  for  each 
segment. Note  that  the total of the  unique  subsegments 
(except  for  common  boundaries)  must provide  a  com- 
plete  covering of the total  surface. 

Since  the  surface  intersection problem is the key to 
high-speed APT calculations,  this  paper is devoted  to 
efficient solution of this  problem and  to testing the al- 
gorithms  developed in a number of standard APT con- 
ditions. 

As in the  F-mesh  system,  the  set of points  used to  de- 
fine the  nonparametric bicubic patch surface  have  the 
property  that  their projection on some plane  defines a 
rectangular grid whose grid lines in general are not  equal- 
ly spaced. This  raises a  problem if the points  provided do 
not  have  the requisite property.  The solution to this  prob- 
lem requires interpolation  and extrapolation from the 
given data  to  produce suitable  points. Once  an appropri- 
ate  array of points is provided,  the strategy  used here  to 
reduce computing  time  involves a sequence of succes- 
sively more restrictive patch  rejection  techniques. For 
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those  patches  that remain after  these  tests, a sixth-order 
equation in one variable  must be solved. Methods  for 
dealing rapidly with this problem are  also  developed. 

The first  patch  rejection  technique comes from the 
obvious  fact  that if the straight line is projected onto  the 
plane  containing the rectangular grid, only those rec- 
tangles intersected by the projected line are projections 
of surface  patches which may in fact be intersected by the 
line. The algorithm for this procedure is sufficiently ob- 
vious to require no  further discussion. In  sections 3 and 
4 certain  bounds  are developed that provide  rectangular 
parallelepipeds within which each patch is contained. 
One is also provided for the entire surface. In section 5 
the problem of solving polynomial equations is discussed 
for  the special circumstances arising in the problem at 
hand. In section 6 the  techniques for using the  bounds 
previously developed are exhibited. 

In section 7 devices  for bounding the  number of zeros 
of the polynomial are developed. In section 8 an interval 
halving procedure is given  for isolating zeros of the poly- 
nomial. Section 9 provides  the results of extensive  tests 
performed using this system.  Comparisons of computer- 
time  with the  surface in APT are provided. 

2. Notation 
The  set of bicubic patches is defined over a  rectangular 
grid that is defined by the grid lines 

x;,  x;, . ' ' 7  x;, 

y,, Y,'.  . ., Y t .  , I  (1 )  

The general  form of patch i, , j , that  is,  the surface defined 
over  the rectangular region 

R ! . [ x ! ~ x ' ~ x j + , , y j 5 y ' 5 y !  Z,I z J + 1  1, ( 2 )  

z ' =  U ( x ' ) E i , j U T ( y l  (3)  

is 

where U ( x ' )  is a vector function U ( x )  = (i', x2, x, I ) ,  
UT is its transpose, and Et, is a 4 X 4 matrix of constants. 
With the transformation 

x = (x' - x;) /SI ,  6, = x;,, - x; ; 

y= ( y " ~ ~ ) / s , , 6 , = y j ' + l - y j ' ;  

z = z ' ,  

the  equation  has  the form 

z =  U ( x ) M B , , . ( U ( y ) M )  1' ( 5  ) 

for x, y in RIO 5 x 5  1 ,  0 5 y 5 11, where 

/ 2 -2 1 11 

Here zo," = z ( 0 ,  0) ,  z ~ , ~ , ,  = ax(0, l ) /ax ,  etc. Also 
ax/ ax = 6, az' /ax', a2z/ axay = S,S, a%/ ax'ay', etc.  Note 
that  the  components of B, also SI ,  S,, are  functions of 
i and .j. 

The line is defined by a  point p;  = (x;, y; ,  2;) and a vec- 
tor q; = (M;, u;, ~$1;). The  equation of the line, then, is 

p' = (xf, y', 2' ) = p;, + tq;. ( 7 )  

When dealing with the local coordinates x,y,z of a  spe- 
cific patch,  the line equation must, of course,  also be 
transformed to local coordinates.  Its  equation  becomes 

p = (x, y, z)  = Po + 4,t, (8) 

I.'" = (a1, aq, aJ = ((x; - x;, I S l ,  (yb - y;, ISz, zb), 

40 = (PI, p2, p,, = ( U ; / s , ,  u;/s, .  ,$$. (9 1 

where 

3. Patch  bounds and patch  slope  bounds 
The i, j patch is already bounded by the  four planes 
x = x., ,Y = x i+ l ,  y = 1). y = y .  . The  present  objective is 
to find a  pair of parallel slant  planes  such that the paral- 
lelepiped  formed by the six planes contains  the  surface 
segment in its interior;  that is, to find a' ,  B', y;, y i  such 
that 

J + 1  

a'x' + p'y' + y; 5 z ' ( x ' ,  y')  5 a'x' + p'y '  + y ;  (10) 

for x', y' in R ' ,  where  the  constants a ' ,  p ' ,  y ; ,  y; are  func- 
tions of i,,j. 

In  the transformed coordinate system the desired in- 
equalities are 

ax + by + c2 5 z 5 ux + by + c ,  (1  1 )  

over R , ,  where u ,  b ,  c , ,  c2 are  functions of iJ. 
Now  consider  the function 

z * ( x ,  y )  = z ( x ,  y) - ux - by - e. 

Clearly 

z-;:(x ,  y )  = U ( x ) M B * M T U 1 ' ( y ) ,  

where 

That is to  say, having selected a ,  b, c by any means,  the 
bounding plane  problem for a given bicubic can  be  con- 359 
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verted to a simple bounding  problem for a  related bi- 
cubic. That  is,  two  numbers c,  and c2 are now required 
such  that 

c ,  1 z*(x, y) 3 c2  for (x. y )  E R. (15) 

As  to  the choice of a ,  b, c with which to initiate the 
problem, it might be desirable  to minimize the maximum 
directed  derivative,  since  Taylor series expansions  about 
various  points will be used,  and this would tend to  make 
the first-order terms small. However, this is computation- 
ally infeasible, and may  very well be not  better  than a 
simpler procedure,  such  as minimizing 

Now  from  Eq.  (12)  the objective  function becomes 

Thus it is a nonnegative quadratic function of u and 6. 
It is evident  that the minimum is zero if and only if the 
surface is a plane. In any  case the minimum is attained 
at  the  (unique) values for a and b obtained by setting the 
respective  derivatives of the objective  function  equal to 
zero. The result is 

u = In’ In1 l i (x)MBM‘u(y)  = eBh’ 

b = ln’ In1 u(x)MBM’u(y)  = hBe’ (17) 

where CC is the  derivative of u and 

e = (-1, 1, 0, O ) ,  h = (4, 4, A, -&). (18) 

For  the  subsequent  development  there is no loss of gen- 
erality in setting c = 0. 

Given a function z ( x ,  y) which is continuous to- 
gether with all its derivatives  (this is certainly true  for 
bicubics),  its  extrema  over a region R can  be  found by 
considering extrema on the boundary of R and  the rela- 
tive extrema inside R. It is not, in general,  computation- 
ally feasible to find the relative extrema of a  bicubic, in 
the  amount of available  computing time. Thus  no  attempt 
is made to find best  bounds,  but  bounds  as close as  de- 
sired can be  found [ 7, 81. 

The maximum slope of the  patch  over Rl.j is 

m=max g ( a . ~ / a x ’ ) ~ +  ( a z ’ / a y ’ ) 2 .  (19) 

The transformation of the previous  section (Ri, to R )  , 
converts  the problem to 

360 The maximum is computed numerically as in [ 71, [ 81. 
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4. Total  surface  bounds 
A bound for  the maximum surface slope is simply the 
largest of the individual patch  bounds. 

To  find parallel bounding  planes compute  the  least 
square plane for  the  surface  knots;  that is, compute A ,  
B ,  C such  that 

T = x ( Axi + Byj + C - zi ,J2 
i, j 

is minimized. Then C, is  chosen SO that 

Axi + Byj  + C,  2 axi + byj + c,  (22) 

for all upper bounding  planes at  the knot xi, y j ,  for all 
knots. Similarly C, is chosen so that 

Axi + Byj + C,  5 axi + byj + c2 (23) 

for all lower bounding  planes at  the knots. 

5. Zeros of a  polynomial 
It will be observed in the following sections  that  the inter- 
section  problem reduces mathematically to solving an 
equation 

f ( x )  = 0, 0 5  x 5  1,  (24) 

where x is a polynomial (of  degree six or  less in the pres- 
ent  case).  It is also  observed  that f ( x )  measures the 
vertical distance between the bicubic and  the line. Thus, 
in practice, a set of x’s is required such  that  each x is on 
(0, 1) and 

If(x)l 5 € 3  ( 2 5 )  

where E is related to  the  accuracy of measurement of 
system  data,  that  is, input points  and line slope. Such 
x’s are called pseudozeros of f ( x )  . 

Unless all x’s satisfying the inequality are included, 
which is clearly  pointless, the necessarily finite set ac- 
cepted is not uniquely defined. This  is a matter of no 
moment for  the problem at hand. The algorithm  used is as 
follows. For i = 0, 1 , .  . ., Y - 1 let xi be a value of fi(x) 
such  that 

Ifi(Xi)I 5 6 (26) 

and define 

&+,(x) = (&(x) - f ,(x,) 1 / (x - X i )  3 (27) 

it being assumed that &(x) = f ( x ) .  For  the index r it is 
true  that  either I f ( x )  I > 6 or  that f ( x )  does  not  change 
sign  in the closed  interval. Clearly, r 5  n the  degree of the 
polynomial 5 

Let 

w,(x) = 1, 

W i ( X )  = (x - xn) (x - x,) . . . (x - X i - , ) .  
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or 

where 

P ( x )  = U ' , ( X ) f , ( X )  > (30) 

x €  [O, 1 1 .  
and P ( x )  = f o ( x )  in the  event  that Ifo(x)l > u for [9] 

Now I wi ( x )  I 5 1 for all i ,  since x and xj are all in [ 0,  1 1 .  
Hence 

I f ( x )  - P ( x )  I 5 r6 5 E ( 3 1 )  

when 6 is chosen  less  than € I n .  Hence xo, xl; . ., x,.-,, the 
zeros of P ( x )  , are  pseudozeros of f ( x )  . 

Graphically  the initial problem  involves a graph of 
f ( x )  on [0, 1 1 ,  and a band of width 26 centered  on  the 
x axis. Whenever  the  graph  enters  the band it may or may 
not emerge, and if it does it will emerge  either  on  the side 
of entry,  or  on  the  opposite side. The first two  cases may 
or may not  be  represented by a  pseudozero. If E has been 
reasonably chosen it does not  matter. The  last  case should 
certainly be recognized by P ( x )  and  is,  as a matter of 
fact.  For if f ( x ' )  1 E ,  f ( x " )  5 -E the inequality ( 3  1 )  re- 
quires  that P ( x ' )  1 0, P(x" )  5 0, so that  at  least  one of 
the xj's is in the closed  interval defined by x ' ,  x". This is 
the only  unequivocal statement  that  can  be  made  about 
the relative  locations of the mathematical zeros of f ( x )  
and of P ( x ) .  As  to  the  number of zeros, P ( x )  may have 
either more  zeros than f ( x )  or less. The only certainty 
about  the  number of zeros of P ( x )  is that it does not  ex- 
ceed I I .  Neither  the  number of pseudozeros of f ( x )  nor 
their magnitude can be determined in advance. 

6. Initial  procedures for locating  intersections 
Given a line L ,  and 

P' = PI, + WI,, (32) 

it may be possible to  determine, using the bounding 
planes for  the  entire bicubic surface, and the x' ,  y' bound- 
aries of that  surface,  that  the line cannot  intersect  the 
surface. 

If  this is not the  case, then it will be  necessary  to deal 
successively with the  set E of patches selected as candi- 
dates by the projected-line  technique  mentioned in the 
Introduction.  There  are  three  situations involving slopes 
that may simplify the problem considerably.  Let 

u =  l w ; l / q u I , ) ,  + (UI,)' (33) 

be the minimum slope of the line, u* be the bound for  the 
maximum slope of the  entire  surface, a, be the maximum 
slope of the  set E of patches.  If either 

(w;)' > [(UI,Y + (u;)'I (U*Y (34) 

then  there  is  at most one  intersection of the line with the 
entire surface. The difference between  the  two  cases lies 
in the way they are  to be  programmed,  since u* is avail- 
able  at  once,  and uE is not.  In  both  cases,  once a solution 
is found,  the problem is solved. In  the first case  the prob- 
lem is terminated  when and if a solution is found. In  the 
second  case, it is  necessary  to  examine all the  patches of 
E to verify the  stated  condition, but  only necessary  to 
look for a  solution until one is found, if it exists. 

If neither  condition  holds, it  is still true  that in any 
patch  for which 

where up is the  patch slope bound,  at  most  one solution 
exists. 

If  a patch is a member of the  set E ,  it remains a candi- 
date  patch if and only if the line L intersects two  sides 
of the parallelepiped  containing the patch.  If it does  not, 
the  patch is no longer a candidate. If it does,  then  two 
values t ,  and t ,  of the line parameter t are determined 
such  that any intersection of the line and surface  corre- 
sponds  to a  value of t between t ,  and tz. 

Now, in terms of the local coordinate  system,  the line 
equations  are 

x = f f t  + P,t, 

Y = ff, + P't, 

z = f f3  + P3t' 

and  the  patch  equation is 

z =  U ( x ) S U T ( y ) ,  s =  MBi, jMT.  

For a  given  value of t ,  

- zo - wot. (39) 

Thus + ( t )  is  the vertical distance  between  the  patch 
and  the line, at  the  values of xo,  yo specified by t .  The 
distance from the line normal to  the  surface is less than 
I +  ( t )  1 ,  and hence  less than E whenever 14 ( t )  1 is. 

If it is guaranteed by slope  conditions that  at most one 
zero  exists,  then it is necessary only to  compute + ( t l )  
and +( t z )  . Then  either sign +( t l )  = sign +( t,) , and  no 
zero  exists,  or sign +( t l)  # sign + ( t z )  and exactly one 
zero exists. 

In this  last case  the explicit polynomial 4( t )  , of order 
six or  less, is computed, and  a pseudozero is found, per- 361 
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haps by a modified regula falsi [7, 81. Note  that in this 
case a pseudozero is allowed to  exist if and only if a 
zero of +( t )  is known to exist. 

The explicit polynomial is 

where 

It may be useful to  note  that if either p, or p, = 0, then 
+ ( t )  reduces  to a  cubic. 

As  to computing costs, computing + ( t )  without com- 
puting its coefficients in general requires  21 multiplica- 
tions and 17 additions  per t value. The  computation of 
the explicit polynomial (assuming sixth order)  requires 
8 5  multiplications  and 63 additions. 

Thus, if it is not  true a  priori that  the number of zeros 
is bounded by one,  the explicit polynomial should  be 
computed immediately, followed by the  transformations 
of the  next section. 

7. Polynomial transformations 
The  present objective is to obtain  a  bound for  the num- 
ber of zeros in the interval ( t , ,  t 2 ) .  For this purpose it is 
convenient  to make a linear  transformation of variables 
that  carry ( t , ,   t 2 )  into (0, 1 ) .  That transformation is 

t = x ( t z  - t,) + t,. (42) 

It  is convenient  to perform the calculation in two steps, 
thus 

O(s) = +(.Y + t ,) 1 s E (0, tz - t , ) ,  (43) 

at a  computing cost of n ( n  + 1 )  / 2  multiplications  and a 
like number of additions,  where II is the  degree of the 
polynomial, followed by 

f ( x )  = O [ x ( t 2  - tJ1, (0, 1 1 ,  (44) 

for which the  cost is 2n - 1 multiplications. 
At this  point all the 0, 1 pseudozeros of f ( x )  are re- 

moved. The result is a polynomial f ( ~ )  of lower  degree, 
for which I f ( 0 )  I > E ,  I f (  1) I > E .  If signf(0) # signf( 1 )  
a pseudozero  exists between 0 and 1. Compute it and 
reduce f ( x )  again. 

In  any  event,  there ultimately results  an f ( x )  having 
the  properties 

I f ( 0 ) l  > E ,  I f ( 1 ) I  > E ,  signf(0) = signf(I) ,   (45)  

f (x). 
and  there  are evidently an  even number of zeros of this 

N o w l e t z ' = z / ( l - z )  a n d g ( z ' ) = ( 1 + ~ ' ) ~ ' f [ z ' / ( 1 +  
362 z ' ) ]  , at a cost of n ( n  + 1 )  / 2  additions. 
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This is a transformation  which, in the  complex plane, 
explodes  the circle centered  at ( 1/2, 0) , radius 1 / 2, into 
the right half plane, and  carries  reals  into reals. The effect 
is that  the number of positive  real zeros of g ( z ' )  is pre- 
cisely the  same  as  the number of real zeros of f ( x )  for 
x E [0, I ] .  However,  the  number of positive  real zeros 
of g(z ' )  is bounded by the  number of changes of  sign 
among  consecutive coefficients of g ( z ' )  , and  differs  from 
that  number by an  even number. 

The principal reason  for  the  use of this procedure is to 
be  found in the  results of the  experiment  reported  here. 
The  experiment consisted of forming  sixth-order poly- 
nomials  with random coefficients uniformly distributed 
over ( - I ,  l ) ,  discarding those polynomials  which had 
zeros  on  the interval [ 0, I ] ,  and carrying the  rest through 
the  above procedure. The  results  for 5000 acceptable 
polynomials was  4774  cases with no sign changes, 225 
cases with two sign changes,  and  one  case with four sign 
changes;  that is, if the polynomial had no  zeros  on  the 
interval [0, 11 the experimental probability that  there 
would be no sign change in g ( z ' )  was  0.945.  For poly- 
nomials of lower  degree  the experimental  probability 
was  somewhat higher. 

In view of the  hypothesis  concerning  the relative  rarity 
of multiple intersections, it seems  reasonable  to  assume 
that this test will, in nearly 19 cases  out of 20,  exclude  the 
patch from further consideration. It  has  the  further ad- 
vantage that if there  are, in fact, multiple intersections, 
the patch will be  retained for  further analysis. 

The effects of these  calculations  on  error in the various 
derived  numbers  seems hardly worth  consideration, since 
roundoff errors in the  computer  are completely trivial 
when  compared  to  measurement  errors  inherent in the 
physical data, particularly in view of the small number of 
operations involved. 

8. Interval halving 
The preceding  calculations  result either in eliminating 
the  patch,  or in its  complete  solution,  or in the  present 
problem. That is,  given  a polynomial f ( x )  of degree six 
or  less, of which it is known that 

sign f ( 0 )  = sign f (  I ) ,  

I f (0) l  > E ,  I f ( 1 ) l  > E >  (46) 

and  that  an  even  number of zeros  on (0, 1 )  is possible, 
isolate those  zeros if they  exist. It will simplify matters 
to  assume  that f ( 0 )  > E ,  f (  1 )  > E which requires,  at 
most, multiplying f ( x )  by -1 .  

The following procedure  always  locates a point at 
which f ( x )  5 0, if one exists. If no such point exists, 
then f ( x )  > 0 throughout  the  interval,  and  the  procedure 
may or may not locate a  point such  that f ( x )  5 E .  In out- 
line, the  procedure performs as follows. It begins with 
the interval (0, I )  and  proceeds  to form  a list of intervals. 
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I 
I If (xl, x , )  is an interval belonging to the list,  its  anal- test y ,  < E which, if true,  locates  two  pseudozeros and 

ysis consists of the following steps. terminates  the  process.  Otherwise  note  that if A 5 0, or 
I 

1. A value of x is located which isolates two  zeros of 
A > 0 and IBI 1 2A the minima occur  at  either x, or x,,  
where y o  > E, y ,  > E .  Finally, if the minima require in- 
vestigation f ( x )  , and the procedure is terminated. 

2. It  is determined  that f (x)  > E throughout the interval 
so that  the interval is deleted from  the list,  and the half  min Po, = C - ( B 2 /  8 A )  - aMA', 

' intervals [x,, (x ,+x2)/2] ,  [ ( x , + x 2 ) / 2 , x , J  neednot 
be examined. 

min Po, = C - ( B 2 / 8 A )  + aMA'. 

3. Neither situation occurs  and  no conclusion is possible If the  test of the  entire interval is inconclusive, note  that 
for  the  entire interval. It is removed  from the list and 
the half intervals examined. If case 1 occurs,  the pro- 
cedure  is terminated. If case 2 occurs,  the half interval 0 3 ( u  - A) u(  u + A) 1 2Au(u - A ) ,  u E  (0, A ) .  

0 5  ( M - A ) u ( u + A )  5 " 2 A u ( u + A ) ,  II E (-A, 0) 

involved is not added  to  the list. If case 3 occurs,  the 
half interval  involved is added  to  the list. 

Thus  the result of the analysis is that (x1, x,) is replaced 
by zero,  one, or two half intervals. 

The list is initiated with the interval (0, 1 ) .  The pro- 
cedure  terminates when a value of x is found  which  iso- 
lates two zeros,  or when the list is empty,  or when it can 
be asserted  that f ( x )  > 0 in all the intervals remaining 
in the list. It is this  last assertion  that  assures  the finite- 
ness of the algorithm. 

The basis of the  procedure is the equation [ 101 

f (x )  = P ( x )  + f " ' ( 5 )  ( x  - x,) (x - xl) (x - x 2 )  / 6, (46) 

where x.  < x, < x2, x, < 5 < x, ,  P ( x )  is a quadratic poly- 
nomial passing through the points ( x i ,  f(x,)) i = 0, I ,  2, 
and f"' is the third derivative of f .  With 

For  the interval (-A, 0) let 

P,,(x) = (Alo/2A2)u2 - (Bl0 /2A)u+ C ,  

P , , ( x )  (A,,/2A2)k2 - ( B 1 , / 2 A ) ~  + C ,  

where 

A,, = A  + U,  B,,, = B - a ,  A, ,  = A  - U,  B,, = B + a,  

a = 2MA3/3. 

Now 

P,,(x) f f ( x )  5 P , , ( x )  > x, 5 x 5 x,, 

P , , ( x )  = f (x )  = P,,(x) ,  x = x ,  or x,. 

For this case 

1 .  Either -2A,, < B,,) < 0, or  the interval can be dis- 

x 1 = ( ~ , + ~ , ) / 2 , A = ( x , - , ~ , ) / 2 , ~ = ~ , - ~ ,  carded,  or 
2. If  -2A,, < B,, < 0, P , , ( x )  has a minimum at u = 

Yi = f (x,) BloA/ 2A,,  of magnitude C - (B;J 8A,, ) .  

A = Y, - 2yl + Y , ,  B = yo - Y , ,  C Y .  

Equation  (46)  becomes 

f(x) = P ( x )  + f " ' ( [ )  ( U  - A)u(u + A)  / 6  

P ( x )  = ( A / 2 A 2 ) d  - ( B / 2 A ) u +  C.  (47) 

Let 

M=maxl f " ' (x ) I ,xE  (0, 1 )  

and note  that for 1uI 5 A 

1 / 6  I ( U - A ) U ( U + A ) I  <a=0.06415004,  

whence 

P o 0 ( x )  P (X) - CYMA' 5 f (x )  5 P (X) + aMA' 

= Po, ( 4 .  

If,  for 1uI 5 A, min P, , (x)  > E the interval may be  dis- 
carded.  If,  for I u1 5 A, min P,,, (x) 5 E then  a  pair of 
pseudozeros  has been located and the  procedure termi- 
nates. If neither condition is true,  the half intervals will 
be  analyzed. Before  undertaking these  tests,  however, 

If this  number is greater than E ,  the interval  can be 
discarded.  Otherwise, 

3 .  either -2A,, < B,, < 0, and no conclusion  can  be 
reached  concerning  this interval, 

4. or  the minimum occurs  at (B,,A/  2A11) and  has mag- 
nitude C - (BY1/8Al1). If this  number is not greater 
than E, a  pair of zeros  or  pseudozeros  has been iso- 
lated in the  present interval. Otherwise no conclusion 
is possible, in which event  the interval is appended  to 
the list. If C - (B;,,/ 8A ,,) > 0 this fact is noted and 
also saved. 

For  the interval 0 5 u 5 A, with 

P,,(x) = (A2, ) /  2A2)u2 - (B2,/2A)u + C ,  

P,,(x) = (A,,/2A2)U" - ( B 2 , / 2 A ) u +  C ,  

where 

A,, =A, , , ,  B,, = B,,, A,, = A , , ,  B,, = B,, 

the conditions become 363 
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Figure 1 Diamond-circle pattern produced by basic part pro- 
gram  used for the test cases. 

1. 0 < B,, < 2A,, not true, discard the interval, 
2 .  otherwise  test C - B 2 , / 8 A , ,  > E. If true,  discard  the 

3. test 0 < B,, < 2A,, .  If not  true,  no conclusion can be 
reached regarding this  interval.  If  this is true, then 

4. compute C - ( B : , /   8 A 2 , ) .  If the  number  is not greater 
than E then  a  pair of zeros  or  pseudozeros  has been 
isolated. If greater than E ,  no conclusion is possible 
for this interval, and it is added  to  the list, together 
with an  appropriate  indicator if C - (Bi , /   8A, , )  is 
positive. 

It is necessary  to maintain  two counts,  one being the 
number of intervals in the  list,  the  other being the num- 
ber of intervals in which f ( x )  is entirely  positive. If the 
first is zero,  or is equal  to  the  second  number, the  proce- 
dure is terminated. 

Experience  to  date suggests that  the  number of inter- 
vals  tested per problem averages  about three. For ex- 
ample, for the function f ( x )  = (x - 0.5)6 the  zero 0.5 is 
found  immediately. For f ( x )  = (x - + 
E = lo-', about 150 iterations  were required to  discard 
the  function.  For f ( x )  = (x - + lo-' with E =  

the first pseudozero  was found after  about  the  same 
number of iterations. These would appear  to be fairly 
representative of worst  cases. 

9. Experimental  results 
A principal objective of this  work was  to  reduce com- 
puter processing  times, and  hence  costs, when dealing 

364 with  bicubic  patch  surfaces. In  order  to  obtain a meaning- 

interval. If not  true, then 

ful measure of the  performance, it was  decided to com- 
pare  the  APT processing  times (for Section 2 ,  the arith- 
metic element) of rectangular  bicubic  patch surfaces with 
standard APT surfaces.  The  tabulated cylinder ( a  cylin- 
der with a  piecewise continuous planar  spline curve 
generator and  a  straight-line generatrix)  was  chosen  for 
comparison  purposes, since  this is one of the more  com- 
plex types of APT  surface  but is none the  less sufficiently 
economical that it is widely used. This  surface  type is ab- 
breviated TC in the following discussion. 

Code modifications and additions  to implement  the 
bicubic  patch surface algorithms  described in the pre- 
ceding  sections were  made  to  the APT system as imple- 
mented under  CMS [ 1 1 1 ,  and  a  series of tests was  run. 

The  same basic APT part program was used for all 
test  cases.  This program  required the  cutter  to be driven 
around a  series of planes  and  a right circular  cylinder, so 
that  the xy projection of the  resultant  cutter path pro- 
duced  the 'diamond-circle' pattern shown in Fig. 1 .  The 
z coordinates of the resultant cutter path were controlled 
by the  part surface that  was varied  between test series. 

Each of the first four  test  series used two  part  surfaces 
that  were very similar in overall shape-one which was 
defined as a T C  surface  and  the  other which was defined 
as a  bicubic patch  surface.  The  number of T C  intervals 
(the number of intervals  on  the spline defining the  TC) 
and the  number of patches  on  the bicubic patch  surface 
were  the  same within each  test  series and  varied  from 
series  to series. The  part  surfaces used in the  tests  are 
described for each  test. 

A range of five different APT programming conditions 
was  used in the  tests.  These differing conditions varied 
the complexity of the APT calculations  required to com- 
pute  the  cutter path. The conditions used were: 

A P T  programming  condition 
A. (TLONPS, 3 axis) Simplest case;  cutter 

is effectively a single 
point which is to be 
on  the  part surface. 
Cutter  axis is fixed. 

B. (TLOFPS, Ball Cutter)  Somewhatmorecom- 
3 axis plex; cutter end is 

a  hemisphere which 
must  be  positioned 
tangent to  the part 
surface. Cutter axis 
is fixed. 

C.  (TLOFPS,  Flat  Cutter)  More  complex; cut- 
3 axis  ter is a  section of a 

right circular cylinder 
which must be posi- 
tioned tangent  to  the 
part  surface. Cutter 
axis  is fixed. 
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D. (TLOFPS, Ball Cutter) Still more  complex; 
MULTAX  cutter end is a hemi- 

sphere but the  cutter 
axis must be lined up 
parallel to the sur- 
face normal at  the 
point of tangency be- 
tween the  cutter and 
the  surface. 

E. (TLOFPS,  Flat  Cutter)  Most  complex,  cut- 
MULTAX  ter is a  section of a 

right circular cylinder 
which  must  be posi- 
tioned  tangent to the 
part  surface with the 
tool axis oriented 
normal to  the sur- 
face  at  the point of 
tangency. 

Test  series I 
A  section of the parabolic cylinder y = z' (see Fig. 2) 
approximated by a four-interval T C  and by a four- 
patch bicubic surface. 

Test  series 2 
The  same section of the parabolic cylinder y = z' was 
approximated by  a  49-interval T C  and by  a  49-patch 
bicubic surface. 

Test  series 3 
The  same section of the parabolic  cylinder y = z' was 
approximated by an 81-interval T C  and  by an 81-patch 
bicubic surface. 

Test series 4 
Two  cycles of a  cylindrical  surface with a  sine wave gen- 
erator  (see Fig. 3) approximated by a  60-interval 
T C  and by a 60-patch  bicubic  surface. 

Test  series 5 
The sine wave  surface of the preceding  series  was  dis- 
torted so it was  no longer  cylindrical, and approximated 
by a 40-patch bicubic  surface (see Fig. 4).  The  purpose 
of this test was to  determine  whether  the  fact  that  the 
bicubic patches in the previous tests  were all ruled  sur- 
faces  was significantly affecting the timing. Processing 
time, as  compared with the patch surface of series 4, was 
not  substantially  different. 

The  execution times for the  tests are given in Table 1, 
which summarizes APT execution times. 

With one  exception,  the bicubic surface  was always 
processed in less time than  the T C  with the  same num- 
ber of intervals. In  that  one  case ( 1  - D )  the probable 
explanation  for the difference is that minor  variations 
in numerical values can cause significantly different 
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Figure 2 Section of a  paraboloid  cylinder  approximated by a 
four-interval TC program and by a four-patch bicubic surface. 

branching in the highly iterative  procedures used by the 
arithmetic element of APT.  This phenomenon is not 
unusual. 

Increasing the complexity of the  APT programming 
condition, again with the  one  exception, increased  both 
the T C  and  bicubic surface time, with their  ratio re- 
maining constant  for a given number of patches  or in- 
tervals. The overall  ratio of time  intervals  changed in 
favor of the  BICUBIC surface (see Fig. 5) as  the num- 
ber of patches  or intervals was increased. 

Table 1 Execution  times in tests comparing APT processing 
of rectangular cubic  patch  surfaces with the APT TC standard 
surface. 

Test Programming Time j& TimeJbr Ratio 
series condition T C  hicubic hicubic/ TC 

purt purt 
surface surjucr 

(seconds) (seconds) 
~~ 

1 A 15.00 13.93 0.92 
B 19.80 19.02 0.96 
C 20.22 19.40 0.95 
D 19.82 32.18 1.62 
E 23.26 22.95 0.98 

2 A 25.05 18.10 0.72 
B 33.74 24.53 0.72 
C 34. I5 24.90 0.73 
D 36.66 25.50  0.69 
E 42.06 29.43  0.70 

3 E 55.3 1 31.51 0.56 

4 A 34.42 26.56 0.77 

5 A not 30.92 not 

~~ 

applicable  applicable 
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10. Summary 
The necessity to deal with complex, doubly curved sur- 
faces  presents many problems to  the overall  design,  en- 
gineering,  and  manufacturing  cycle. One  such problem is 
that when these  surfaces  are implemented in APT, large 
amounts of computer time are frequently  needed to pre- 
pare numerical  control  data. The  object of the investiga- 
tion reported  here  was  to  determine  the relative  economic 
feasibility of using a nonparametric  patch  surface  repre- 
sentation. This  representation  makes it possible to  reduce 
the  computer time  required to  do  the fundamental cal- 
culation  required for APT processing, that of intersecting 
a line with a  surface. 

Figure 3 Two cycles of a cylindrical surface with a  sine-wave This time  reduction is possible  because: 
generator approximated by a 60-interval T C  program and by a 
60-patch  bicubic surface. 

A linearization technique eliminates many of the 
patches  on a surface  as  candidates  for  intersection with 
a  given line. 
A  parallelepiped  surrounding each of the remaining 
patches  further  reduces possible candidates and  sup- 
plies bounds  for  the  independent variable of the sixth- 
degree  equation determining intersection with the line. 
For any remaining patches,  an  upper bound for the 
number of solutions is to be computed. Since bounds 
greater than one  are  expected  to be rare, computing 
time is again relatively small. 

1 

To  evaluate  the relative economics, APT processing 
times for a nonparametric bicubic patch were compared 
with  processing  times for TC surfaces  over a  range of 
APT programming conditions.  It  was surprising to dis- 
cover  that  the bicubic surface  was less  costly than T C  in 
all but one instance,  since the  opposite had been  expected. 
From  the point of view of computing  time, such bicubic 
surfaces  are  at  least  as economical as T C  surfaces. 

Figure 4 Sine-wave  surface approximated by a  40-pdtch bi- Obviously the  surfaces investigated here  are  more re- 
cubic surface. 

strictive  than parametric bicubic  patch  surfaces. In par- 
ticular, multiple-valued surfaces  have  to be  segmented 
and  represented in several segments,  each of which is 
single-valued with respect  to  some plane. Such  represen- 
tations  present problems that  are  far from trivial. These 

Case 1 problems must be dealt with before  this  special represen- 
0.75 tation can be  considered for production usage with sur- 

Case 2 faces  that  require  such  treatment. 

;..;I 
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