326

W. J. PLATH

W. J. Plath

REQUEST: A Natural Language Question-Answering

System

Abstract:

REQUEST is an experimental Restricted English QuUEsTion-answering system that can analyze and answer a variety of En-

glish questions, spanning a significant range of syntactic complexity, with respect to a small Fortune-500-type data base. The long-range
objective of this work is to explore the possibility of providing nonprogrammers with a convenient and powerful means of accessing
information in formatted data bases without having to learn a formal query language. To address the somewhat conflicting requirements
of understandability for the machine and maximum naturalness for the user, REQUEST uses a language processing approach featuring:
1) the use of restricted English; 2) a two-phase, compiler-like organization; and 3) linguistic analysis based on a transformational
grammar. The present paper explores the motivation for this approach in some detail and also describes the organization, operation, and

current status of the system.

Introduction

REQUEST [1, 2, 3] is an experimental Restricted English
QUESTion-answering system that has been implemented
in L1SP 1.5 and runs under an interactive operating sys-
tem in one million bytes of virtual storage. It is currently
capable of analyzing and answering a variety of English
questions, spanning a significant range of syntactic com-
plexity, with respect to a small Fortune-500-type data
base.

The general objective of this work is to investigate the
feasibility of developing machine-understandable subsets
of natural languages such as English which can serve as
a basis for effective man-computer communication.
More specifically, we are seeking to explore the possibil-
ity that such natural language subsets can provide non-
programmers with a convenient and powerful means of
accessing information in formatted data bases without
having to learn a formal query language. In turning to
natural language for this purpose, our central goal is to
achieve maximum naturalness and flexibility for the
user, who ideally should not have to learn any new lin-
guistic conventions in order to interact successfully with
the system. Accordingly, such familiar devices as lists of
required words, lists of restricted words, and the use of
fixed syntactic frames are explicitly avoided in REQUEST,
because they all involve arbitrary conventions that must
be consciously learned in much the same way that those
of a formal language are. (In fact, we would claim that
systems which make substantial use of such devices are
not based on natural language to any significant degree,
but instead, like coBoL, involve little more than a formal
language thinly disguised by a layer of natural language
vocabulary.)

In order to address the somewhat conflicting require-
ments of understandability for the machine on the one
hand and maximum naturalness for the user on the
other, the REQUEST system employs a language process-
ing apprdach with three salient characteristics:

1. The use of restricted English;

2. Linguistic analysis based on a transformational gram-
mar; and

3. A two-phase, compiler-like organization.

In the next section, the general nature of each of these
fundamental features is briefly discussed. This is fol-
lowed by a more detailed presentation of the reasons for
employing a transformational grammar, which is the
characteristic that most sharply distinguishes REQUEST
from other natural language query systems. The remain-
der of the paper is devoted to an overview of REQUEST
system organization and operation, a summary of cur-
rent system status, and brief consideration of anticipated
lines of future development.

Basic design features

The first basic design feature, the use of restricted natu-
ral English, is dictated by the realities of the present
state of the art of formal description of natural lan-
guages: specifically, the fact that nothing remotely ap-
proaching a complete grammar or semantics of all of
English (or of any other natural language) either exists
now or appears likely to materialize in the near future.
The REQUEST approach to restricted English (which is
similar in certain respects to those adopted in the sys-
tems of Woods [4] and Winograd [5]) involves sharply

IBM J. RES. DEVELOP.

limiting the semantic scope of the English material to be
covered. This is accomplished by focussing on one rela-
tively well defined universe of discourse at a time, for
example, the “world” of a business statistics data base.
Having thus greatly restricted what the user can “‘con-
verse” with the computer about, we then seek to provide
him within that domain with a flexibility of syntactic and
lexical expression approaching that of normal English.

Restricting a natural language subset in the manner
just described has two major advantages: First, it re-
duces the semantic universe that must be handled to a
size that is potentially tractable for purposes of formal
analysis and ‘‘understanding” by a computer. Second, it
leads directly to major nonarbitrary reductions in the
range of vocabulary (and, to a lesser extent, the range
of syntactic constructions) that must be covered in the
subset, since there is no need to include words, con-
structions, or meanings of words not related to the sub-
ject matter the user will necessarily be dealing with.

In a research project such as that on REQUEST, one
conceivable drawback of a narrow semantic focus is the
possibility that solutions worked out for a specific do-
main of discourse may not be readily extendable to
others. In the hope of minimizing such difficulties, we
have chosen to work initially with the world of business
statistics, because it appears to be representative of a
large and important family of data bases involving peri-
odic, numerical data. Despite the existence of idiosyn-
cratic differences, the various members of this family —
such as weather data, census data, and price and wage
statistics —share a broad range of semantic relationships,
including notions of time, comparison, and various
higher order functions of the primitive data (e.g., sums,
averages, ratios, rates, maxima, and minima). Because
these shared semantic relationships tend to be expressed
linguistically in a very similar manner for all of the do-
mains in question, the prospects appear quite favorable
for a substantial carryover of results from one case to
the next.

The second major feature of REQUEST’s approach to
natural language processing is the treatment of input
queries in restricted English as high-level-language
expressions that are to be compiled into executable
code. As in the case of compilers for formal languages,
the process consists of two consecutive phases: a pars-
ing phase, in which the structure of the input language
expression is determined, and a translation (or semantic
interpretation) phase, in which the resulting structural
description is mapped into object language code. In
REQUEST, the mechanics of the latter process closely
resemble those employed in conventional compilers, in
that they are based on a scheme originally proposed by
Knuth [6] as a generalization of standard syntax-direct-
ed translation techniques. A similar degree of correspon-

JULY 1976

dence does not exist for the parsing phase, however,
because we have designed it around transformational
grammar, a form of linguistic description that differs
markedly from anything used in compilers for formal
languages.

The third basic design feature of REQUEST, employ-
ment of linguistic analysis based on a transformational
grammar, was adopted in an attempt to deal with the
complexity and diversity that are characteristic of even
restricted subsets of natural language as we have defined
them. The key properties of a transformational descrip-
tion are 1) the definition of two distinct levels of linguis-
tic structure —surface structure and underlying struc-
ture —and 2) the specification of a formal mapping relat-
ing them. The nature of such grammatical models and
their relevance to the problems of developing user-ori-
ented subsets of natural language are now examined in
some detail.

Motivation for using a transformational grammar

e Inadequacy of surfuce structure models

Within the field of linguistics, the principal impetus for
adopting a transformational model for the grammatical
description of natural languages has been recognition
that models based exclusively on surface structure are
inadequate both 1) as a basis for defining grammaticality
(i.e., membership vs nonmembership in the set of well-
formed sentences) and 2) as a vehicle for representing
systematic relationships that exist among natural lan-
guage sentences, including those involving meaning
equivalence. However, these objections do not carry
over to the realm of formal languages, many of which
can be adequately described in (context-free) surface
structure terms using such devices as the familiar BNF
notation.

A surface (phrase) structure description of a natural
or formal language expression may be characterized in-
formally as a representation of the hierarchical grouping
of the elements of the expression into higher-order struc-
tures. As shown in Fig. 1, the representation typically
takes the form of a labeled bracketing or tree that pre-
serves the left-to-right ordering of the elements, which
occupy the leaves of the tree. With the exception of the
parentheses in the upper tree, each such terminal ele-
ment is directly and exclusively dominated by a node
whose label specifies the symbol category or part of
speech to which the element belongs. Thus “A” is an
expression (EXP), “X” is an operator (OP), ““Does” in
Fig. 1(b) is an auxiliary (AUX), and so on. The
branching pattern of each tree reflects the way in which
sets of categories combine to form subexpressions or
phrases, which in turn combine into structures of suc-
cessively higher scope, ultimately resulting in an expres-

327

REQUEST SYSTEM

328

W. J. PLATH

EXP
(EXP \P EXP)
.
(m) + C
| |
A X B

AUX NP NP PUNCT
VRN .
Does ATT }K sell NC‘)M b
the N(‘)M NO.UN
NOUN VPART computers

company located PREP NP

in N(‘)M
NOUN

Armonk
(b)

Figure 1 Surface structure (a) of “((A X B) + C)” and (b) of
“Does the company located in Armonk sell computers?”.

sion of the type indicated by the label of the root node —
in Fig. 1(a) and (b), an expression (EXP) and a sen-
tence (8), respectively.

In formal languages there is generally a close corre-
spondence between surface structure and meaning.
Accordingly, once the surface structure of an input
expression has been determined during the parsing
phase, the process of translating it correctly into object
language code tends to be a relatively straightforward
one. For natural languages, however, major divergences
exist between the surface structure of sentences and the
meanings those sentences convey, with predictable im-
plications for the difficulty of surface-structure-based
approaches to translation.

Two principal sources of divergence are the presence
of “understood” elements in sentences and the existence
of what may be called “structural synonymy” among
sentences. Examples of the first phenomenon are given
below in examples 1) —-3), where the (a) version of each
sentence is perfectly natural and understandable to a
speaker of English yet omits key meaning-bearing ele-
ments that are present in the corresponding (b) version.

1. (a) Where is IBM’s headquarters?
(b) Where is IBM’s headquarters located?
2. (a) What were IBM’s 1973 earnings?
(b) What were IBM’s 1973 earnings equal t0?

3. (a) What companies employed more people in
1972 than IBM did?
(b) What companies employed more people in
1972 than IBM employed people in 19727

Because these understood elements are not present in
the (a) versions, by definition they are not present in the
surface structure and hence are unavailable to any sur-
face-structure-based semantic interpretation procedure.
(Proposals to circumvent this difficulty by requiring
users to avoid sentences with understood elements are
basically unworkable because this would not only mean
making the user give up the more compact (and gener-
ally more natural) form of expression but, in the case of
examples like 3), would force him to go against habitual
patterns of language behavior whereby understood ele-
ments are obligatorily deleted in certain constructions.)
Structural synonymy, the second major source of di-
vergence, involves systematic meaning equivalences at-
tributable not to the substitution of one synonymous
word for another (i.e., lexical synonymy), but of one
synonymous construction for another. An example of
the syntactic diversity that can be associated with the
latter phenomenon in English is given in example 4),
which displays a single set of structurally synonymous
expressions.
4. (a) IBM’s earnings in 1972

(b) the earnings of IBM in 1972

(c) IBM’s 1972 earnings

(d) the 1972 earnings of IBM

which
(e) the amount {Of mgj)ney} { that] IBM earned
1]
in 1972
} earned

7 %}
by IBM in 1972

which
(f) the amount {Of money] [{ that }was

Expressions 4(a) and 4(c) differ from 4(b) and 4(d),
respectively, by the use of the preposed genitive
“IBM’s” instead of the postposed prepositional phrase
“of IBM” to denote possession. Similarly, expressions
4(c) and 4(d) differ from 4(a) and 4(b) through use of
the time compound construction “1972 earnings” in-
stead of an expression containing the postposed preposi-
tional phrase *“in 1972.” In the last two cases in 4), the
nominalized form ‘‘earnings,” which appears in 4(a)-
4(d), has been replaced by a corresponding relative
clause construction involving the verb “earned”; as a
transitive verb, the latter may occur in either the active
4(e) or the passive voice 4(f).

Taking into account the various options indicated by
the braces, 4) can be seen to contain no less than six-

IBM J. RES. DEVELOP.

teen syntactically different ways of expressing the same
semantic content —an impressive number, but one by no
means atypical of English. Each variant has a distinct
surface structure resulting from a unique combination of
word order, choice of function words, choice of gram-
matical endings, and the presence or absence of poten-
tial understood elements. These formal differences pose
severe problems for any surface-structure-based seman-
tic interpretation procedure that attempts to deal with all
of the variants or even with a representative selection
thereof. Moreover, whereas there undoubtedly are dif-
ferences in the relative frequencies of occurrence of the
sixteen alternatives, none of them is a priori so clearly
unusual as to be an obvious candidate for elimination
from a natural language subset. Thus there appears to be
no simple way of rescuing surface-structure-based se-
mantic interpretation without simultaneously abandon-
ing the goal of flexibility and naturalness for the user.

e Underlying structure

To surmount difficulties of the sort just described, the
REQUEST system uses a transformational grammar to
provide linguistic descriptions at the underlying struc-
ture level as well as at the level of surface structure. The
underlying structures assigned by the grammar are con-
siderably more abstract than their surface structure
counterparts and come much closer to providing an ade-
quate representation of those elements of meaning that
are relevant for semantic interpretation. Some of the
properties of this deeper level of representation are illus-
trated in Fig. 2, which displays the underlying structure
assigned to the question “Is IBM’s headquarters in
Armonk?”’ by the current grammar.

As can be observed from the figure, our underlying
structures are trees consisting of one or more nested
propositions (S1), each marked off by a pair of bounda-
ry symbols (BD). Each proposition consists of a predi-
cate (V) followed by its associated arguments (NP’s),
which always occur in a fixed order. Such surface struc-
ture elements as auxiliaries, prepositions, inflectional
endings, and punctuation —all major sources of syntactic
variation —have been eliminated in favor of binary syn-
tactic features (e.g., (+ PAST) and (— PAST) on the
top S1 node to represent past and present tense, respec-
tively; (+ QUES) on the top S1 node to mark interroga-
tive sentences; and (+ SG) and (— SG) on NOUN
nodes to indicate singular and plural number, respective-
ly). At the same time, understood elements, such as the
main predicate located, are systematically restored.
(The V nodes dominating underlying predicates carry
feature information relating both to properties of the
predicates themselves (e.g., whether or not they can be
realized as adjectival elements (+ ADJ) in surface struc-
ture) and to properties of their NP arguments—e.g., the

JULY 1976

S1 {(+ QUES — PAST)

R TS .
BD _— “___ BD
L - ;\K""*—\
V (+ ADJ NP NP
"+ LOCY) / ~ ;
. i
LOCATED: THE NOM NOM
. |
NOUN (+ SG — HUMAN
‘ + PLACE)
INDEX (+ CONST + CITY)
-
'\ ARMONK
NOM]
e TN
‘ BD AN BD
NOUN (+ SG - AN
‘ ~ HUMAN))/ N
/ N
INDEX (- CONST) // AN
/ ;
) / N
X4 V (+ ARGI NP NP
.+ POSS2)
I
HEADQUARTERS NOM NOM
j |
NOUN (+ SG NOUN (+ G
— HUMAN)

‘ — HUMAN) ‘

INDEX (— CONST) INDEX (+ CONST
1 ‘ +CO

X4 IBM

Figure 2 Underlying structure of ““Is IBM’s headquarters in
Armonk?”.
requirement that the second argument be a locative
(+ LOC2) or a possessive {(+ POSS2) noun phrase.)
The combined effect of elimination of syntactic varia-
tion and of restoration of “understood” elements is to
provide a sort of canonical form for sentences, where
each underlying structure in general corresponds to a set
of structurally synonymous surface variants. Thus, for
example, the structure displayed in Fig. 2 is in fact as-
signed to all of the variants listed in 5), thereby provid-
ing a common basis for their processing during the trans-
lation phase.

5. (a) Is IBM’s headquarters in Armonk?
(b) Is IBM’s headquarters located in Armonk?
(¢) Is the headquarters of IBM in Armonk?
(d) TIs the headquarters of IBM located in Armonk?

Stripped down to its bare essentials, the tree of Fig. 2
can be reduced to the bracketed expression 6), revealing
another key property of our underlying structures — their
close resemblance to expressions in the predicate calcu-
lus. As illustrated in Fig. 2, this parallelism includes the
representation of surface proper nouns (e.g., “IBM” and
“Armonk’’) as logical constants (INDEX (+ CONST))
and the treatment of surface common nouns such as
“headquarters” as variables (INDEX (— CONST)) in
propositional functions. These same variables and con-
stants play a central role in the executable code that is
the output of the REQUEST system’s translation phase 329

REQUEST SYSTEM

330

W.J. PLATH

(a) (Forward) “Located” Deletion (optional)
Structural pattern:

Si
NP AUX (V.1)(+ ADD) NP+ LOC2)
|
BE LOCATED

Structural change: DELETE |

Resultant pattern:
Sl

NP AL‘JX NP(+ LOC2)

BE

(b) Inverse “Located” Deletion (obligatory)

Structural pattern:
S1

NP (AU‘X 1) NP+ LOC2)
BE
V (+ ADJ)

Structural change: REPLACE 1 BY |

1 LOCATED

Resultant pattern = Input pattern of (a)

Figure 3 A transformation and its inverse.

(the so-called “logical form”™ of the sentence); accord-
ingly, their presence in underlying structures (which
serve as input to that phase) contributes significantly
to simplicity of processing at that point.

6. [LOCATED (THE X4 [HEADQUARTERS
(X4) (IBM)]) (ARMONK)]

o Transformational grammar

As noted previously, a transformational grammar for-
mally specifies the relationship between two levels of
linguistic structure: the underlying level and the surface
level. The correspondence between the levels is de-
scribed in terms of an ordered set of tree-mapping rules,
or transformations, each of which defines an incremental
structural change required in the process of passing from
one level to the other. Because most linguists are not
concerned with applications involving sentence parsing,
they have tended to describe such transformational pro-
cesses as proceeding generatively from underlying struc-
ture to surface structure, in a manner somewhat analo-
gous to that in which theorems are derived from a set of
underlying axioms in a formal deductive system. RE-
QUEST’s transformational parser necessarily proceeds in

the opposite direction, however, first computing the sur-
face structure of an input query and then transforming it
step by step into a corresponding underlying structure.
Consequently, the REQUEST transformational grammar
uses rules that are the inverses of conventionally ori-
ented grammatical transformations. (The parser also con-
tains the option of employing “‘forward” rules in check-
ing the validity of inverse derivational paths, a useful
feature when debugging revisions to the grammar.)

The statement of each rule in the REQUEST grammar,
whether it is a forward rule (i.e., the sort conventionally
defined by a linguist) or a corresponding inverse, is ex-
pressed in a pattern-action format, as illustrated in Fig.
3. Forward “Located” Deletion (Fig. 3(a)) is a trans-
formation that optionally deletes the adjectival predicate
“located” from a certain class of English sentences (actu-
ally, from the trees representing those sentences at a
point intermediate between the surface and underlying
structure levels), thereby accounting for the occurrence
of such structurally synonymous pairs as 5{(a) -5(b) and
5(c) =5(d). The structural pattern of the rule specifies its
domain of applicability: namely, any clause (S1) con-
sisting of an arbitrary subject noun phrase (NP), a form
of the auxiliary BE, the adjectival predicate “located,”
and an arbitrary locative noun phrase (NP (+ LOC2))
in that order. The structural change specifies the action
that is to be carried out on a tree if the pattern is
matched and the option of applying the rule is taken —in
this case, a simple deletion of the subtree corresponding
to the pattern element labeled ““1.”

The portion of Fig. 3(a) labeled “resultant pattern”
represents the general tree configuration resulting from
application of the forward rule. Although not properly
part of the rules that produce them, such resultant pat-
terns are important, because they serve to define the
domains of corresponding inverse transformations.
Thus, the structural pattern of Inverse “Located” Dele-
tion (Figure 3(b)) can be seen to be identical (except
for the addition of a numerical label) to the resultant
pattern of the forward rule. The structural change of the
inverse is then defined in such a way as to undo the ef-
fect of the forward transformation: in this case, by speci-
fying replacement of the auxiliary (i.e., the subtree la-
beled *“1”’) by itself and an instance of the missing predi-
cate “located.”

REQUEST system organization

The REQUEST system consists of a set of LISP programs
and an associated set of data files containing the lexicon,
grammar, semantic interpretation rules, and data base.
As shown in Fig. 4, these elements are organized into a
system with two major components—one transforma-
tional, the other interpretive —broadly corresponding to
the parser/translator organization of a compiler.

IBM J. RES. DEVELOP.

VADIJ (+ ADJ 1

/\+ QUANT)

WH SOME
NIP
NOM
< >
VADIJ (+ ADJ NOM NOM NPROPNOM
+ QUANT)
WH SOME NOUN (+ SG NOUN (- SG NOUN (- HUMAN
- HUMAN) — HUMAN) + SG)
\% INDEX (- CONST) A INDEX (- CONST GENAF INDEX (+ CONST
‘ ’ +Co) + YEAR)
\ THING X1 COMPANY X2 'S 1971
What companies ’ 1971
NOM

NMNL (— SG — HUMAN + QNOUN
+ ARG1 + PERIODIC + NMNL)

V (+ POSS2) INDEX (— CONST) VCOMP (+ PAST) V

NOUN (- SG - HUMAN
+ UNIT)

INDEX (- CONST) VADIJ (+ ADJ PUNCT (+ QUES)

‘ + CARD)
AMOUNT MONEY EARN X5 GREATERTHAN DOLLAR X7 1000000000
earnings exceeded $ 1,000,000,000 ?

Figure 4 Overall system organization.

The transformational component analyzes input word
strings and computes their underlying structures; it con-
sists of two main parts: a preprocessor and a parser. The
interpretive component also has two main subcompo-
nents: 1) a Knuth-style semantic interpreter [2, 7, 8],
which translates each underlying structure into a corre-
sponding logical form, i.e., a formal expression specify-
ing the configuration of executable functions required to
access the data base and compute the answer to the orig-
inal question; and 2) a retrieval component, which con-
tains various data-accessing, testing, and output format-
ting functions needed to evaluate the logical form and
complete the question-answering process. (Implementa-
tion of the interpreter is due to S. R. Petrick who has
also devised the specific semantic interpretation rules
employed in REQUEST. F. J. Damerau is responsible for
the design and implementation of the current retrieval
component.)

e Transformational component

Within the transformational component, the preproces-
sor partitions the input string into words and punctua-
tion marks and then looks up each segment in the lexi-
con, producing a preprocessed string of lexical trees,
which serve as input to the parser. Multi-word strings
that function as lexical units are identified by a *‘longest
match” comparison with a special phrase lexicon;

JULY 1976

whereas the lexical trees for arabic numerals (which
may variously represent cardinals, ordinals, or year
names) are supplied algorithmically rather than by lexi-
cal lookup. Whenever there is a gap in the preprocessed
string, due to the presence in the input of misspellings,
unknown words, ambiguous pronoun references, and the
like, the preprocessor prompts the user to supply the
required information.

The nature of the output of the preprocex-or is illus-
trated in Fig. 5, which displays the lexical trees pro-
duced for the question “What companies’ 1971 earnings
exceeded $1,000,000,000? in parallel with the corre-
sponding elements of the original input string. (The lexi-
cal trees are represented internally in an equivalent par-
enthesized form, which is also used for the tree patterns
in transformational rules.) As can be observed from the
figure, the preprocessing phase of REQUEST does consid-
erably more than assigning words to conventional part-
of-speech categories, because it must set the stage as far
as possible at the lexical level for the eventual mapping
into underlying structures. Thus proper nouns such as
“1971” and “IBM” are already treated as constants
(INDEX (+ CONST)); whereas common nouns such
as ‘‘earnings” appear as combinations of variables
(INDEX (— CONST)) and underlying predicates. (The
specific values of index variables, such as the ““X1,”
“X2,”“X5,” and “X7” in Fig. 5, are used to keep track of

331

REQUEST SYSTEM

332

W.J. PLATH

_»(UsEr)

-7 Input word
- .
- string
7 - . v
o | PREPROCESSOR |4— _____
Preprocessed
string
v
STRING
j¢-————1 TRANSFOR-
MATIONS
TRANSFOR-
MATIONAL
COMPONENT
PARSER
INVERSE
L TRANSFOR-
4-————1 MATIONAL
Underlying GRAMMAR
structure(s)
— h 4
SEMANTIC | ____
INTERPRETER
N
INTERPRETIVE Executable ~
COMPONENT code o
(logical form) o
v
I | DATA
RETRIEVAL |J¢&————— BASE

Qutput

Figure 5 Output of the preprocessor in tree representation.

matters of reference in more complicated sentences by
having the preprocessor assign identical variables to rela-
tive pronouns and their antecedents. No such complexity
occurs here, however, and the preprocessor simply em-
ploys the word number of each common noun in manu-
facturing a unique variable name.) A further important
effect of preprocessing, not evident from a single ex-
ample, is the mapping of lexical synonyms onto a single
lexical tree; e.g., any of the synonyms ‘“‘net,” “net earn-
ings,” “‘profit(s),” ‘‘net profit(s),” and ‘“net income”
would be assigned the same lexical tree as “‘earnings.”
The transformational parser, whose original design
and implementation are due to Petrick [9], is extremely
general and could be employed not just for other subsets
of English, but for subsets of any language described in
transformational terms. (The version currently in use in
REQUEST is the result of significant revisions and exten-
sions by M. Pivovonsky, who has also been chiefly re-
sponsible for implementing the preprocessor.) Operation
of the parser comprises three successive stages: 1) ap-
plication of string transformations, 2) surface structure

parsing, and 3) mapping of surface structures into un-
derlying structures. In the first stage, the preprocessed
string is successively analyzed with respect to the struc-
tural patterns of each of a linearly ordered list of string
transformations. These rules share the property of being
definable on local segments of the preprocessed string
without reference to higher-order structures such as
clause boundaries. Their principal functions include res-
olution of homographs, simplification of idiomatic struc-
tures, and the prevention of various artificial ambiguities
at the surface structure level. (For a more detailed dis-
cussion of the nature and use of string transformations,
see [3].) Each successful match against a string trans-
formation leads to modification of one or more of the
trees in the preprocessed string through application of
the operations specified in the structural change of the
rule in question. (These operations are drawn from pre-
cisely the same inventory of elementary transformations
that REQUEST makes available for the processing of full
trees by conventional forward and inverse transforma-
tions: deletion, replacement of a tree by a list of trees,
Chomsky adjunction, feature insertion, and feature dele-
tion.)

Upon completion of the string transformation phase,
the resulting transformed preprocessed string—still in
the form of a list of trees —is passed on to a context-free
parser that computes the surface structure(s) of the in-
put query. (Although one major effect of the use of
string transformations has been a significant reduction in
the number of unwanted surface parses, cases still occur
where more than one surface parse is produced.) For
the example in Fig. 5, the transformed preprocessed
string, whose essential structure is conveyed by the
bracketed set of terminal elements 7), is assigned a
unique surface structure with the bracketed terminal
string 8).

7. ((WH SOME) (COMPANY X2) 'S (1971
((AMOUNT MONEY EARN) X5))
GREATERTHAN 1000000000
(DOLLAR X7) ?)

8. ((({WH SOME) (COMPANY X2)) ’S) (1971
((AMOUNT MONEY EARN) X5)))
GREATERTHAN (1000000000
(DOLLAR X7)) 7)

In the third and final stage, the transformational parser
takes each surface structure in turn and attempts to map
it step by step into the corresponding underlying struc-
ture according to the rules of the inverse transforma-
tional grammar. In this process, transformational invers-
es are applied in an order precisely opposite to that in
which their forward counterparts would be invoked in
sentence generation. (That is, inverses of postcyclic
transformations are applied first, starting with the latest

IBM J. RES. DEVELOP.

and ending with the earliest; then inverses of the cyclic
transformations are applied (also in last-to-first order)
working down the tree from the main clause, until the
most deeply embedded clauses have been processed.)
For our running example this results in the creation of
an underlying structure tree with the bracketed terminal
string 9).

9. (BD GREATERTHAN (THE (X5
(BD AMOUNT X5 ((MONEY X39)
(BD EARN ((WH SOME) (COMPANY X2))
X39 1971 BD)) BD))) 1000000000
(DOLLAR X7)) BD)

e Interpretive component

At the completion of the transformational parsing phase,
the resulting underlying structure is passed to the
Knuth-style semantic interpreter. As described in great-
er detail in [2], the interpreter maps the underlying
structure into a corresponding logical form through the
systematic application of a series of semantic interpre-
tation rules. These rules are in the form of sets of trans-
lation equations, one for each of the local branching
patterns (node plus immediate descendants) that are
permitted to occur in underlying structure trees. Each
such pattern is represented as a list consisting of the name
of the parent node followed by the names of its immediate
descendants listed in left-to-right order as they occur in
the tree. Example 10a) illustrates this convention as
applied to the branching pattern for relative clauses,
which in our grammatical description always consists of
a NOM node immediately dominating another NOM
node followed by an S1 node.

10. (@ (NOM NOM S1)
(b) (((V 0) (UNION (V 1) (V 2)))
((N 0) (ADDRESTR (N 1) (N 2)))
((SG 0) (SG 1)))

The associated translation equations 10b) describe
the way in which values of specified attributes of nodes
in the configuration are to be assigned. The numerals in
each translation equation designate nodes in the corre-
sponding branching pattern, which are treated as though
they were numbered consecutively from the left, starting
with zero. The codes that are paired with the numerals
denote the values of specific attributes; thus (V 0) de-
notes the value of the attribute V of node 0 (the parent
NOM node), (N 2) denotes the value of the attribute N
of node 2 (the S1 node), etc. In each translation equa-
tion, the nodal attribute designated at the left is defined
as the function of nodal attributes specified by the
expression on the right. Thus in 10b), the V attribute
(i.e., the list of free variables) of node 0 is defined as the
union of the V’s of nodes 1 and 2; the N attribute (i.e.,

JULY 1976

the partially constructed logical form) of node 0 is de-
fined as a special function ADDRESTR of the N’s of its
immediate descendants; and the SG attribute (gram-
matical number) of node 0 is defined as identical to that
of node 1. Although the three translation equations of
10b) all have the effect of passing information up the
tree, this is by no means universally the case: There are
also rules that pass information down the tree, and infor-
mation can be passed laterally among sibling nodes as
well.

As in the case of the transformational parser, the
computational algorithms used to apply the semantic
interpretation rules are entirely application independent.
The same does not hold true for the rules themselves,
however. Whereas certain important rules, such as those
for processing relative clauses 10b) and questioned
noun phrases, can be expected to remain unchanged
from one application to the next, others (notably those
low-level rules relating to the translation of individual
underlying predicates, such as “EARN”) are highly
application specific.

The nature of the output of the semantic interpreter
in our current application is illustrated in 11), which
displays the logical form produced for our running
example “What companies’ 1971 earnings exceeded
$10000000007".

11. (setx 'X2
"(and

(forall 'X50

(setx 'X39
"(testfct X39 '('NET_INCOME
X2 ’1971) NIL))

"(greaterthan X50 '1000000000))

(company X2)))

The output is in the form of a LISP S-expression contain-
ing an array of functions that are evaluated during the
retrieval phase in order to answer the question. The top-
level setx function indicates that the desired answer is in
the form of a set of objects X2 each member of which
satisfies the specification that follows. In this case, the
latter is in the form of a conjunction of two terms: the
universally quantified expression beginning *‘(forall
’X50”) and the expression ““(company X2),” which stip-
ulates that the X2’s under consideration are companies.
The quantified expression indicates that all members
X350 of the set of 1971 earnings figures X39 of the com-
panies in question must exceed 1000000000.

Some of the functions that appear in logical forms—
e.g., and and greaterthan—are already supplied by LISP;
while others, such as setx, forall, and testfct, have had to
be defined in LisP in order to provide the required mech-
anisms for data base accessing, testing of values, and
output formatting during the retrieval phase. In the case

333

REQUEST SYSTEM

334

W. J. PLATH

of 11), interpretive execution of the logical form during
that phase produces the final output 12), which is dis-
played at the user’s terminal.

12. ANSWERS:
1: GENERAL MOTORS
2: EXXON
3. IBM

Current status

The REQUEST system has been in experimental operation
for nearly three years, a period during which a series of
extensions of linguistic coverage and improvements in
system capabilities and organization have been made.
The current grammar contains more than one hundred
transformational rules, which provide for a wide variety
of basic English constructions —including wh- and yes-
no questions, relative clauses, genitives, negatives, loca-
tives, and time expressions—as well as for selected
phenomena more narrowly oriented towards the family
of data bases under consideration (e.g., numerical quan-
tifiers and rank expressions). A list of example ques-
tions partially illustrating the scope of current coverage
is given in the Appendix.

Although the subset of English presently handled of-
fers considerable flexibility of expression within the lim-
ited vniverse of discourse addressed, it is still quite inad-
equate with respect to coverage of certain complex
phenomena— including comparison, conjunction, and
quantification — which appear to be of central importance
in providing users with a semantically powerful subset of
English. Accordingly, such constructions have been the
focus of our grammar development effort for several
months and can be expected to remain so for some time
in the future. This activity has already resulted in sub-
stantial extensions in the coverage of comparatives and
in the addition to the parser of new pattern-matching and
tree-mapping primitives. ‘

The current REQUEST data base has also grown sub-
stantially within the past two years, but it is still rela-
tively small: some twelve fields of Fortune-500-type in-
formation for about sixty major companies over a six-
year period (1967 -73). During the same period, both the
retrieval component and the logical forms that serve to
drive it have been extensively revised in two key re-
spects —partially illustrated in 11) above —: the introduc-
tion of quantified expressions and the replacement of
numerous special purpose functions by a few very gen-
eral test functions. These changes have resulted in an
interpretive facility that is both cleaner and more power-
ful than its predecessors. Moreover, in anticipation of
planned future experiments with a different data base,
further measures have recently been undertaken to sepa-
rate data-base-dependent code from non-data-base-de-

pendent code in the retrieval component, so that it will
be as insensitive to such changes as are the parser, the
preprocessor, and the semantic interpreter.

Future directions

As currently conceived, future development of the RE-
QUEST system is expected to center about three closely
related types of activity: 1} extension of grammatical
coverage, 2) experimentation with one or more new data
bases, and 3) exploration of the effectiveness of restrict-
ed English subsets as interaction languages through the
medium of tests on actual users. As indicated in the pre-
vious section, efforts are already underway to provide
future users with greater semantic power through a more
comprehensive treatment of constructions involving
comparison, conjunction, and quantification. Other ma-
jor linguistic phenomena that we hope eventually to
cover are ones relating to arithmetic predicates (sum,
average, ratio, rate, etc.), connected discourse (includ-
ing problems of pronominal reference), and the provi-
sion of definitional capabilities.

Our plans to work with a second data base are princi-
pally motivated by two considerations. One is the need
to make a first-hand assessment of just what such a
changeover entails with respect to revision and exten-
sion of various subparts of REQUEST, including the lexi-
con, grammar, semantic interpretation rules, and data
accessing and formatting functions. The other is our de-
sire to deal with a data collection whose contents are
likely to be of active and continuing interest to some
community of actual users— sufficiently so that they will
be willing to participate on an experimental basis in the
development and testing of a version of the system with
the appropriate semantic orientation. Based on our in-
vestigations to date, the most promising candidates cur-
rently available for this purpose appear to be machine-
readable files on land use and related topics (assess-
ments, property sales, school census, etc.); these files
contain material of great interest both to such officials as
city planners and assessors and to members of the tax-
paying public. A joint study agreement providing a
framework for working with such a data base and its
associated user community has recently been concluded
with a nearby municipality, and initial steps towards
extending REQUEST to cover the domain of land use are
now under way.

References

1. W. J. Plath, “Transformational Grammar and Transforma-
tional Parsing in the REQUEST System,” Research Report
4396, 1BM Thomas J. Watson Research Center, Yorktown
Heights, New York, 1973. (to appear in A. Zampolli (ed.),
Computational and Mathematical Linguistics. Proceedings
of the International Conference on Computational Lin-
guistics, Pisa 27 VIII-1/IX 1973, Casa Editrice Olschki,
Firenze, Vol. 1.)

IBM J. RES. DEVELGP.

2. S. R. Petrick, “Semantic Interpretation in the REQUEST Sys-
tem,” Research Report 4457, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, 1973. (to
appear in A. Zampolli (ed.), Computational and Mathe-
matical Linguistics. Proceedings of the International Con-
ference on Computational Linguistics, Pisa 27 VIII-1/IX
1973, Casa Editrice Olschki, Firenze, Vol. II.).

3. W.J. Plath, “*String Transformations in the REQUEST System,”
American Journal of Computational Linguistics, Microfiche
8 (1974). (Also appeared as Research Report 4947, IBM
Thomas J. Watson Research Center, Yorktown Heights.
New York, 1974.)

4. W. A. Woods, R. M. Kaplan, and B. Nash-Webber, “The
Lunar Sciences Natural Language Information System,”
Final Report BBN 2378, Bolt Beranek and Newman Inc.,
Cambridge, Mass., 1972.

5. T. Winograd, “Understanding Natural Language,” Cogni-
tive Psychology 3, 1 (January 1972).

6. D. E. Knuth, “Semantics of Context-free Languages,”’
Mathematical Systems Theory 2, 127 (1968).

7. S. R. Petrick, ““On the Use of Syntax-based Translators for
Symbolic and Algebraic Manipulation,” Proceedings of the
Second Symposium on Symbolic and Algebraic Manipula-
tion, edited by S. R. Petrick, Association for Computing
Machinery, New York, 1971, p. 224,

8. S. R. Petrick, “Mapping of Linguistic Structures into Com-
puter-Interpretable Form,” AFCRL-TR-0055 Final Report,
Contract No. F19628-72-C-0129, Air Force Cambridge
Research Laboratories, Bedford, Mass., 1972.

9. S. R. Petrick, “Transformational Analysis,” Natural Lan-
guage Processing, edited by R. Rustin, Algorithmics Press,
New York, 1973, p. 43.

Appendix: Some examples of current linguistic

coverage

1. Is IBM’s headquarters (located) in Armonk?

2. What city is the headquarters of IBM (located) in?
3. Are the headquarters of the IBM Corporation in
(the city of) Chicago, Illinois?

. Did Chrysler make a profit in 1969?

. When wasn’t Chrysler profitable?

. How much (money) did GM gross in 1967?

. What company ranked fifth in 1971 sales?

. What was Xerox’s rank with respect to growth rate
in 1970?

9. What company was 16th in earnings in 19727

10. How (high) did Exxon rank in 1973 sales?

11. How many companies’ headquarters are (located)

in New York?

e B RV I

JULY 1976

12.
13.

14.

15.

16.

17.

19.

20.

21.

22.
23.

24,

25.

26.

27.

28.

29.

30.

31.

In how many years was General Foods profitable?
What companies’ 1973 sales were greater than
GM’s 1973 earnings?

How large a number of people did companies in
Chicago employ in 1969?

What companies (that are) not (located) in New
York City are (located) in New York State?

What companies whose sales exceeded
$2,000,000,000 in 1970 were unprofitable in 1970?
How large were the 1972 sales of the companies
whose growth rates in 1970 exceeded ten percent?

. How large were the workforces of IBM, GE, and

Xerox in the years 1970, 1971, 1972 and 1973?
How many people were employed by GM, Ford
and Chrysler during the period from 1967 through
19727

What were the top ten companies in sales in the
year 19707

How large were the 1972 earnings of the companies
ranking 10th through 15th in 1969 sales?

Were 1BM’s 1973 earnings greater than Mobil’s?
What companies’ sales for 1970 were as large as
Chrysler’s for 1971?

Roughly how many workers were employed by GM
in 19697

What companies made at least $1,000,000,000 in
19732

Exactly what amount (of money) did MMM earn in
19687

What companies’ 1969 sales were about the same
size as IBM’s?

IBM’s 1968 sales?

The 1969 sales ranks of companies in Detroit?

List the companies (that are) (located) in Michi-
gan!

Print out the 19671971 earnings of Ford and GM!

Received April 2, 1975, revised February 23, 1976

The author is located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y. 10598.

335

REQUEST SYSTEM

