314

S. R. PETRICK

S. R. Petrick

On Natural Language Based Computer Systems

Abstract:

Some of the arguments that have been given both for and against the use of natural languages in question-answering and

programming systems are discussed. Several natural language based computer systems are considered in assessing the current level of
system development. Finally, certain pervasive difficulties that have arisen in developing natural language based systems are identified,
and the approach taken to overcome them in the REQUEST (Restricted English QUESTion-Answering) System is described.

Introduction

The potential use of a natural language to facilitate hu-
man interaction with computers has been discussed for
over a decade in a series of papers and panels [1-9];
the participants have disagreed about the feasibility and
even the desirability of natural language programming
and question-answering systems. Although it is beyond
the scope of this paper to review in detail all of the argu-
ments that have been marshalled on this topic, the paper
identifies some of the key issues and explores the ex-
tent to which they have been dealt with in recently de-
veloped experimental question-answering systems.

It is not our purpose either to describe in detail cur-
rent question-answering systems. Instead, we assume
some familiarity with the systems considered and con-
cern ourselves principally with the inherent difficuities in
man-machine communication and with how they are
treated in those systems. In particular, we are interested
in estimating the coverage of English that has been
achieved in various applications. In discussing these
difficulties, special attention is given to the approach
taken to overcome them in the REQUEST {Restricted
English QUESTion-Answering) system [10—13]. Thus,
a rationale and introduction to REQUEST are provided,
and the reader is directed to the paper in this issue by
Plath for more detailed information about this question-
answering system [12].

Natural language pros and cons

The proponents of natural language communication with
a computer support their position by some combination
of the following claims:

1. A large number of people who are potential computer
users are unwilling to learn and then use a formal
machine language.

2. For at least some computer applications, natural lan-
guage provides an ideal medium of communication
for everyone,

3. Extrapolating from the capabilities of existing natural
language based systems, current technology appears
to be sufficiently advanced to support useful com-
puter systems that accept natural language input, or

4. To the extent that current technology is not suffi-
ciently developed for that purpose, the remaining
problems can be solved and ought to be considered
now.

In reply to these arguments, those who disparage the
use of natural language make the following claims:

1. The most difficult aspects of a problem are
formulating it precisely, analyzing it, and planning
the method of solution in detail. Actual code produc-
tion is relatively straightforward and easy.

2. Natural language is inherently too loose, vague, and
ambiguous to serve as a computer language. For this
reason its use would lead to processing inefficiency
and possible error due to misunderstanding of intended
meaning.

3. Allowing the use of unrestricted natural language is
technically unfeasible and likely to remain so in the
foreseeable future. Consequently, subsets of natural
languages must be used for communicating with
computers. These subsets would be harder to learn
and use than traditional formal computer languages
because of interference with natural language usage
habits.

4. Providing a large enough subset of a natural language
to be useful is an exceedingly difficult intellectual ac-
tivity, requiring not only a far greater command of
linguistics than is likely to be available for many
years, but also requiring capabilities for representing
an enormous quantity of information about the world
and for efficiently drawing deductive and inductive
conclusions from that information.

IBM J. RES. DEVELOP.

Pro claim 1, citing the existence of large numbers of
people who would use a computer only if this were pos-
sible without learning a formal programming or query
language, appears to be basically correct. But although
this supplies motivation for providing those people with
a natural language input system, it does nothing to either
confirm or disconfirm the possibility of implementing
such a system. And, of course, the assertion assumes the
type of formal programming and query languages that
presently exist. The use of natural language is not the
only possibility to extend the class of computer users. Im-
proved artificial languages are an alternative that must
be developed and evaluated. Query by Example [14] is
one instance of such an artificial language whose utility
for different applications and sets of users must be com-
pared to that of English-based query systems.

Pro claim 2, that natural language is well suited for at
least some computer applications, appears to be war-
ranted. In the course of reviewing the information re-
trieval and data base management requirements and plans
of a large company, the author obtained some insight
into this situation. Questions were submitted in written
English to clerks who translated them to formal query
language equivalents, processed the formal queries on the
computer, debugged and resubmitted the queries if
necessary, and returned the resulting answers to those
who submitted the questions. Typical of such questions
were:

Who is the buyer on Purchase Order H2394?

What is the total amount of dollars outstanding on pur-
chase orders for Supplier 20035?

Were any pieces received from Supplier 26 in January
1966 discrepant?

What are the quantities ordered and the balances due on
all open orders for Part Number 50475?

Clearly, if the questions could have been processed in
their original form, much turnaround time as well as
human effort might have been saved. Whether or not
computer systems can be implemented to accept such
questions (with some prompting for clarifying informa-
tion, perhaps) in the form in which they are naturally
formulated, however, is a separate issue to which we
turn in a moment.

Even though a few practical applications appear well
suited for natural language input, most applications that
come to mind offer poor prospects for natural language
input. To date there have been few instances of natural
language programming, question-answering, or data base
management systems where efforts were directed toward
a truly practical application. Most natural language ques-
tion-answering systems have dealt with toy problems
and/ or data bases for which there exists no body of pres-
ent or potential computer users who have questions or

JULY 1976

commands in which they are vitally interested. Notable
exceptions include the LsNLis system [15, 16] and cer-
tain applications of the REL system [17, 18]. The first
application that we selected for the REQUEST system
[10-13] is deficient in this respect; the data base for
that application is real—Fortune 500-type business
statistics, but we know of no body of users who might
wish to interrogate information of this type on a continu-
ing basis. A drawback of such applications is that it is
difficult to evaluate the question-answering systems to
which they give rise. Some of the previously enumerat-
ed counterarguments to the use of natural language in-
puts can only be refuted by implementing systems of
demonstrated practical utility.

What then are the characteristics of those applications
that appear to be good candidates for consideration at
this time? First, the application should be one with a
large number of potential users, probably users with a
good knowledge of the application but very naive about
programming or even algorithmic analysis of their appli-
cation. A high volume of diverse inputs is necessary to
justify the effort of developing a natural language front
end; moreover, this volume must be distributed among a
large number of users because a small number of people
could be economically trained to learn and use a syntac-
tically more restricted formal programming or query
language. Of course, for some applications, even if there
were a relatively small number of users, their natural
reluctance to learn a formal language might only be
overcome through the use of a natural language cap-
ability.

The observation that potential users are likely to be
well versed in their application but computationally na-
ive has some implications for natural language program-
ming systems. For one thing, these systems should be
problem-oriented, not procedural. They should make use
of application-specific knowledge and algorithms. Fur-
thermore, causal users will not even be aware of ali the
information that those algorithms require as input, so
provisions for computer-prompted dialogue are necessi-
tated. A discourse capability is also desirable in a ques-
tion-answering system but not as essential as in natural
language programming. That is, although the lack of a
discourse capability may make a question-answering
system clumsier and less convenient, it does not rule out
a vuseful system altogether as it would in the case of nat-
ural language programming, where single sentence pro-
grams of any complexity are intolerable.

This difference between natural language program-
ming and question-answering brings up the matter of the
extent to which they are essentially different. We con-
tend that there is no fundamental difference. The sen-
tence-by-sentence analysis to determine underlying rela-
tionships that characterizes question-answering must

315

NATURAL LANGUAGE SYSTEMS

316

S. R. PETRICK

also be carried out in natural language programming. It
is even reasonable to expect that a good interactive pro-
gramming system will allow users to pose clarifying
questions to the system. Question-answering systems
often start out simple, but as soon as discourse facilities
are added and the ability to manipulate as well as simply
retrieve data is provided, the line between question-
answering and programming becomes fuzzy. Thus in
talking with potential users of the REQUEST system it
was clear that, although they would be pleased to have it
adapted to their application in order to make use of its
present retrieval capabilities, they were even more inter-
ested in its extension along lines customarily associated
with natural language programming. Some other current
systems illustrate the fuzziness of this programming
question-answering distinction. Thus sHRDLU [19, 20]
not only answers such questions as “How many things
are on top of green cubes?”” but also provides for com-
mands such as “Put the blue pyramid on the green
block,” and by a sequence of such commands it can
construct complex block structures. Similarly, although
REL is often thought of as a question-answering system,
it provides for ways of performing computations on se-
lected data and assigning names to the results for subse-
quent further processing. It meets all of the requisites to
be considered a natural language programming system.
And finally, the NLP system [21-23], which was de-
signed for use in building and running simulation models
in the manner of GPSS or SIMSCRIPT, also allows its users
to pose such questions as “Are there three pumps?”
and “How often do cars arrive?”

Another requirement that ought to be placed on cur-
rent application candidates is that they demand rela-
tively little in the way of inferential capability. Inference
may turn out to be important, and indeed can now be
seen to be vital for certain applications, but there are
many applications of practical importance that do not
require such capabilities. In a wide range of applications
an inferential facility currently appears to offer a very
small additional capability at a very high cost.

About a year ago a search was begun for a new applica-
tion for REQUEST that meets the criteria discussed above.
Our motivation was to test the system in a practical ap-
plication of importance to a number of users and also to
determine the level of effort required to adapt REQUEST
to a new application, After considering several potential
applications, we have concluded that, although many
data base applications are inappropriate for REQUEST,
there are applications which appear quite well suited.
We are currently focusing on data bases of interest to
city and county government personnel. In particular,
the interrogation of land description, utilization, and tax-
ation records by city planners, assessors, title searchers,
and individual property owners looks promising, and we

have recently initiated a joint effort with a local munici-
pality aimed at developing such a capability.

Evaluation of some current systems

If we return to the arguments previously cited for and
against the use of natural language, a pair of contradicto-
ry claims come to our attention. Proponents of natural
language systems cite the success of prototype systems
and claim the time is ripe to construct large practical
natural language systems. However, those who oppose
such systems claim that our current knowledge cannot
support an undertaking of such difficulty. A perusal of
the natural language question-answering literature indi-
cates the reason for these contradictory claims. (See
[10-13] and [15-29] for some of the more recent pa-
pers on this topic.) With the single exception of the
LSNLIS system there have been no attempts to evaluate
the capacity of a natural language question-answering
system to satisfy the needs of the user community for
which the system was designed. Furthermore, there
have been few attempts to characterize the extent of the
syntactic and semantic coverage of English provided.
Lists of sentences successfully processed, syntactic con-
structions considered, and occasional discussion of
problems encountered and acknowledgment of coverage
gaps provide the only basis for evaluating system capa-
bilities, and these tend to be either missing or sketchy.
Furthermore, the primary source of information about
system capability, the grammar and/or program that
specifies the set of acceptable inputs, is not usually useful
for the interested investigator. Even when it is fully in-
cluded in a report, it is large, complex, unannotated, and
in most cases based on a linguistic theory and formalism
that are alien to the would-be investigator,

What is usually provided is a small set of “representa-
tive” inputs that were successfully processed at some
stage of system development, together with a more or
less detailed description of the steps involved in their
processing. This is, of course, useful in explaining the
algorithms in question because the computer programs
that constitute their primary specification are incompre-
hensible to almost everyone. However, it is not useful in
characterizing the syntactic and semantic coverage that
a system provides, i.e., the system’s capabilities. On the
contrary, the consideration of a few examples usually
leads to unwarranted extrapolation about system capa-
bilities. This is natural because the reader of a paper
who observes sample sentences in which, for example,
conjunction, negation, and quantification occur, assumes
that these phenomena can be successfully analyzed
when they occur in different ways involving no addition-
al lexical items; unfortunately, this assumption may be
wrong. This determination, however, can usually not be

IBM J. RES. DEVELOP.

made from the information provided in question-an-
swering papers. Information about whether a given sen-
tence is acceptable to a question-answering system can
only be provided by the system implementor (reliably in
at least certain negative cases) or through the use of the
system itself. Unfortunately, neither source is readily
accessible. Our concern about the coverage provided
by most natural language question-answering systems is
based on a first hand appreciation (gained from working
on REQUEST) of the difficulties involved, the absence of
concrete coverage claims, and some knowledge of the
coverage provided by a few other representative sys-
tems. The author has discussed specifics of coverage
with those responsible for the REL, SHRDLU, NLP, and
LSNLIS systems and to a limited extent has submitted
sentences for consideration and has talked with others
who have had the same opportunity. We have not had
the chance to systematically explore the coverage of
those systems at length, and so there undoubtedly are
allowable constructions for each system that we never
discovered. It is likely that each system considered
specifies some well formed sentence types not provided
for by any of the others. In only a few cases do we have
computer listings of our attempts to explore the use of
those systems. Moreover, our contact with them was
spread over a period of several years, and, hence,
we have more specific recollections of some than of
others.

1. The vLsNLIS (Lunar Sciences Natural Language
Information System) [15, 16] contains information
about the lunar rock and soil samples that were accu-
mulated as a result of the Apollo moon missions. It is
an experimental question-answering system that was
designed to enable lunar geologists to conveniently
access, compare, and evalute these data. Its syntactic
component is an augmented transition network gram-
mar [30]. The structures assigned by this grammar,
although referred to as “deep structures,” are often
closer to surface structure than to the deep structures
utilized in transformational grammar theory (extend-
ed standard theory or generative semantic theory). A
case in point is discussed in the penultimate section.

Although sentences the author formed by combin-
ing observed constructions in novel ways were not
always processed correctly by LSNLIs, the degree of
success was encouraging. LsSNLIS appeared to specify
an interesting subset of English. This system is, of
course, the only one that has been subjected to any
degree of evaluative testing with respect to the class
of intended users. It has been reported [16, page 5.2]
that 78 percent of the initial queries posed by lunar
geologists at a 1971 conference were processed cor-
rectly, 12 percent were judged to be answerable if

JULY 1976

simple changes or additions to the system were made,
and the remaining 10 percent could not be answered
for more deep-seated reasons. It is also interesting to
note that in several talks Woods, the principal de-
veloper of the system, has cited the results of ex-
periments which allowed lunar geologists to follow
up their initial queries with a sequence of subse-
quent queries. A much larger percentage of these fol-
low-up questions could not be processed.

Augmented transition network grammars have
been used by several research groups in the past few
years, for the most part with some success. However,
a recent paper by Wolfe [31] describes an unsuccess-
ful attempt to use the LsNL{s grammar for the auto-
matic generation of questions from text taken from a
computer programming manual. Wolfe was prob-
ably overly optimistic in expecting any existing sys-
tem to cope with unrestricted text. However, this was
not the only problem he encountered. He reported
processing times of morz than an hour before unsuc-
cessful termination of some sentences and claimed
that “incorrect” structures were assigned to 40 per-
cent of the sentences that were parsed. Unfortunate-
ly, it is not possible to assess the significance of these
reported results without knowing the specific sen-
tences in question and the structures assigned to
them. LsNLI1S, in common with all existing systems, is
not suitable for such applications as Wolfe’s, but it
appears to be a promising system for extension to
more appropriate applications, and we discuss it fur-
ther in comparison to REQUEST in the sequel.

. The ReEL (Rapidly Extensible Language) system

[17, 18] provides a framework within which various
extensible English-like languages and their associated
data bases may be accommodated. It has been applied
to such diverse problems as interrogation of anthro-
pological data, class scheduling, and Fortune 500
data question-answering. REL’s predecessor system,
DEACON [32], was among the first to integrate syn-
tactic and semantic components with an associated
data base, and from the beginning REL’s developers
have been much concerned with achieving efficient
retrieval by giving careful attention to such matters
as novel data structures, tight low level coding, and
paging. REL was also the first question-answering
system to provide a form of user extensibility, based
on string substitution, whereby new terms can be
defined in English and subsequently be successfully
processed by the system. This definitional capability
is an essential feature of the REL approach to question-
answering; REL provides a central English core lan-
guage and relies on user definitions to expand the core
to a customized dialect that is appropriate for a par-
ticular application.

317

NATURAL LANGUAGE SYSTEMS

318

S. R. PETRICK

Perhaps because of this approach to achieving gen-
erality and usefulness in a variety of applications,
REL English gives the impression of being a some-
what unnatural formal dialect of English. Even sam-
ple inputs displayed in papers on the system clearly
reflect REL’s rather unnatural quality, e.g., “What is
the number of 1957 Mazulu sample who are male?,”
“When did Jill have location New York?,” “When
each child of Moses Munsaje was born?,” and “The
clans of how many Mazulu machismos 57 are each
clan?.” In addition, many of the sentences the author
proposed for REL system testing at the International
Conference on Computational Linguistics in 1973
were not run in the form submitted but were instead
paraphrased into what appeared to be un-English-like
equivalents. REL has not been formally evaluated with
respect to a group of users, but it has been used by a
number of people at the California Institute of Tech-
nology, at least one of whom, anthropologist
Thayer Scudder, is reported to have achieved useful
results over a period of time [18, p. 114]. In all cases,
one of the REL system staff members was at least
initially available to assist those users with the for-
mulation of their queries, and there are no data on
the learnability of REL English under controlled con-
ditions. Consequently, experiments in the learnability
and ease of using REL relative to more conventional
formal query languages are in order. Similar experi-
ments are needed for other systems as well; only
such experiments or the demonstrated satisfaction
of a large number of users of some practically ori-
ented natural language question-answering system
will provide an acceptable answer to the third ob-
jection to such systems cited previously, i.e., that
there may be possible interference between a natural
language and a query system based on a natural lan-
guage subset.

. The sHRDLU system [19, 20] provides facilities

for representing, querying, and graphically simu-
lating the manipulation of objects such as toy blocks,
pyramids, balls, and a box, all of which are arranged
on a table. This system made an important contribu-
tion to the development of question-answering sys-
tems by demonstrating that it was possible to simulta-
neously bring together syntactic, semantic, inferen-
tial, and graphical capabilities in a single system.
SHRDLU also offers a more highly developed English
response generator than such systems as LSNLIS, REL,
and REQUEST. For example, the question, ““When did
you pick it up?” was reported to be answered by
“While I was stacking up the red cube, a large red
block and a large green cube.”

The author presented a list of sentences to
T. Winograd, developer of sHRDLU, to determine

whether they could be successfully processed. On the
basis of our discussion of that list of sentences, the
syntactic and semantic coverage provided by SHRDLU
appears to be spotty. Although a large number of
syntactic constructions occur at least once in sample
sentences appearing in published dialogue, our at-
tempts to combine them into different sentences
(involving no new words or concepts) produced few
sentences that Winograd felt the system could suc-
cessfully process. Linguistic sophistication was not
required in this endeavor. The gaps that were en-
countered were attributed primarily to syntactic limi-
tations. The actual users of the system with whom the
author has spoken reported similar syntactic gaps
and also mentioned encountering sentences that,
although syntactically acceptable, produced anom-
alous computer responses. These observations sug-
gest that SHRDLU has not been developed sufficiently
to permit testing to determine its habitability [33],
even though its block world offers an especially at-
tractive possibility for posing verbal tasks to a user
in a nonlinguistic fashion (i.e., by asking a user to
issue the instructions necessary to transform the block
configuration of a given figure into that of another
figure). Winograd has expressed the belief that with
work SHRDLU could be developed to the point where
linguists could still fool it but where others would
have no trouble communicating with it. However, this
would appear to require a significant effort.

. NLp [21-23] is the Natural Language Processing

system that was implemented and then used to de-
velop NLPQ, an automatic programming system for
queuing systems. Details on both systems can be
found in the paper in this issue [22] that compares
them to three other automatic programming systems.
NLP’s syntactic component makes use of rules that
are basically phrase structure grammar productions
augmented with additional conditions on their ap-
plicability and with structure building translation
actions to be taken if their corresponding produc-
tions are applicable. The conditions are primarily
feature-based but may be more general. During a
dialogue, information obtained from the user pro-
vides the basis for building a semantic network that
specifies a flow of mobile entities through a queu-
ing system. This network provides the basis for pro-
ducing a Gpss program for running a simulation of
the queuing system in question. NLPQ incorporates
specific knowledge of queuing processes, which al-
lows some information to be inferred and later cor-
rected if necessary. It also features a sentence gener-
ating capability that permits the semantic network to
be converted back at any point to an English descrip-
tion of the process to be simulated.

IBM J. RES. DEVELOP.

The author recently spent an afternoon using the
system aided by Heidorn. NLPQ’s syntactic cover-
age was not the central concern of its designer and
hence is more limited in its attempted scope than that
of the other systems considered here. Thus, no rela-
tive clauses are allowed, and noun phrases are re-
stricted in other ways. Gaps of coverage also occur in
rather natural simple sentences; thus the system ac-
cepted and subsequently generated our input “There
are 3 pumps” but rejected “How many pumps are
there?”’ and all the variants of this question that came
to mind. Other examples of inputs rejected for syn-
tactic reasons include “between 6 and 12 minutes” in
response to the system inquiry “How long do the
trucks unload at the dock?” (”’from 6 to 12 minutes”
was accepted, however), “The trucks go to a pump
for service,” and “Can I change some information?.”
The inability to process relative clauses made it diffi-
cult to refer to a stage in the queuing process where a
change was required because of an erroneous infer-
ence made by the system. In addition, the system in-
terpreted the sentence *‘10 percent of them unload at
a dock™ to mean that all trucks unload at a dock.
NrLpQ displayed no more “bugs” than the other sys-
tem, however, and its English generating capability
made possible the detection of several incorrectly
understood inputs that would have caused problems
if they had gone undetected. The extent to which
NLP is suitable for specifying larger subsets of En-
glish in support of real applications remains to be
shown (as it does for the other systems as well), but
that suitability is currently being investigated in con-
junction with a business application [34, 35].

5. The REQUEST system is based on a large and growing
transformational grammar of English. Initial emphasis
has been placed on accessing collections of tabular
data. Generality has been achieved by providing both
a parser that is valid for a class of transformational
grammars and a semantic component which accepts
semantic rules that can be tailored to the syntactic
rules and to the application in question. Our experi-
ence in developing REQUEST indicates a fair degree of
success in providing syntactic and semantic coverage
of a restricted domain [36]. We have, however, pro-
vided fewer capabilities to facilitate dialogue than have
a number of the other systems. There are no facilities
for inter-sentence pronominal reference, extensible
language definition, or complete English sentence
response generation. At least some of these capabili-
ties will undoubtedly have to be added in applying
REQUEST to the needs of actual users, REQUEST’s
semantic interpretation component offers fewer prob-
lems than do those of other systems because a much
larger share of the load of sentence ‘‘understanding”™

JULY 1976

is borne by the transformational component. A fur-
ther consequence of this approach is that our rate of
system extension has been limited by the rate at
which we can add new grammatical constructions to
the repertoire of those that can be processed. As each
new construction is implemented, we have taken
great care to integrate it with previously allowed con-
structions to permit all grammatical combinations,
thereby maintaining flexibility of usage. The price we
have paid for this flexibility, however, is a slower rate
of syntactic extension than we initially hoped for.

In spite of all the attention we have given to pro-
viding for alternative means of expression, we fre-
quently encounter gaps in coverage. These take the
form of words not included in the lexicon, construc-
tions we have not yet considered, and constructions
only partially provided for. We try to avoid the latter,
but we sometimes succumb to a pressing need for an
important construction whose thorough treatment
must be deferred until later. Cases in point include
comparative constructions, whose use was narrowly
restricted for several years but is now being signifi-
cantly extended, and conjoined constructions, whose
use is still very restricted in the latest version of
REQUEST.

Remaining arguments against natural language
One of the previously cited objections to natural lan-
guage that has not yet been discussed is that analysis
and planning are more difficult than coding, and the use
of natural language is not helpful in this more important
area. This argument is more applicable to natural lan-
guage programming systems than to question-answering
systems; but even in programming there are some appli-
cations for which we need low-level control and careful
planning for reasons of efficiency and others for which we
do not. The argument sounds like one that was put forth
to support the view that high level programming lan-
guages would never displace the universal use of assem-
bly languages. In any case natural language input as not-
ed previously is better suited to problem-oriented input
than to procedural input, and efficient low-level control
is more of a problem in the latter than in the former
case.

The previous discussion is also relevant to that por-
tion of the second objection concerning efficiency. An-
other point raised in that objection, however, deals with
natural language ambiguity and the possibility of misun-
derstanding. It is always a concern when using a higher-
level programming language that the user and the compil-
er agree on the intended meaning of every line of source
code written. The problem is basically the same when
the higher-level language is a subset of English. How-
ever, unlike programming languages, which are designed

319

NATURAL LANGUAGE SYSTEMS

320

S. R. PETRICK

and implemented to be unambiguous, natural language
sentences (particularly if their context is ignored) are
often ambiguous. Ambiguous sentences must be recog-
nized as such and their ambiguity resolved, automatical-
ly if possible and otherwise by an appeal to the user for
clarification. Unfortunately, most natural language sys-
tems have been based on syntactic structure that does
not adequately represent meaning and, hence, fails to
represent and deal adequately with the meanings of am-
biguous sentences in particular. There are, however, some
linguistic models that are better suited than others to deal
with the ambiguity problem, and we believe that our
transformational model is well suited in this respect. In
our development of REQUEST we have tried to consider
all possible ambiguities of allowable sentences and have
attempted to incorporate them in our grammar and deal
with them reasonably and correctly. For the most part
we think we have been successful in this regard, butina
few important cases (notably sentences involving con-
junction and quantification) we are aware of residual
problems that must be solved. In addition to these prob-
lems of correctly handling certain types of ambiguous
sentences, however, there is a more general, recurrent
problem that we have not solved. Once we have recog-
nized a sentence as being genuinely ambiguous in a par-
ticular context, there remains the task of exchanging
information with the user in order to resolve the am-
biguity. The logical forms which constitute our computer-
interpretable representations of meaning are not suitable
vehicles of communication with a casual user. At the
same time, the use of semi-canned messages that are
fleshed out from alternative logical forms seems to be
too ad hoc, and a more general way to go from our inter-
nal representations of meaning to appropriate English
dialogue is needed.

What can we conclude then as to the significance of
results to date in the development of natural language-
based computer systems? First of all, no such systems
of proven usefulness have yet been produced. (A possi-
ble exception is REL, but productive use of this system
has depended upon the assistance of REL personnel).
Second, most of the systems developed to date have
provided sparse syntactic (as well as semantic) cover-
age of English. This coverage has at least two dimen-
sions — breadth, the diversity of syntactic constructions
provided for, and depth, the degree of flexibility with
which constructions may be combined in grammatically
allowable ways. Most current systems are lacking in
breadth and even more so in depth of syntactic cover-
age. At least two systems, however, LSNLIS and RE-
QUEST, have provided enough depth to suggest that the
third objection to natural language systems raised at the
beginning of the paper can be eliminated if more breadth
is provided. The question of how much effort is required

to provide that breadth remains open. We feel that, giv-
en an adequate grammatical model, this effort is large
but not prohibitive. Furthermore, we feel strongly that
the effort should be directed toward an application that
is of importance to some community of users, since only
in this way can the practical potential of natural lan-
guage question-answering systems be meaningfully eval-
uated.

Natural language system models

Several distinct models have been proposed and used in
the syntactic and semantic components of natural lan-
guage based computer systems. Syntactic models in-
clude transformational grammars, context-sensitive
grammars, context-free grammars, general rewriting
systems, and augmented transition networks. Also, the
syntactic components of many systems are defined as
syntactic analysis models rather than as more familiar
generative models with which various syntactic analysis
algorithms may be associated. Many of these analysis-
specified systems employ what their developers refer to
as “transformations.” These are mappings of a string of
trees (which exist at some stage of bottom-to-top con-
text-free grammar parsing) into another string of trees,
and not linguistic transformations as usually defined.
The application of such operations is usually inter-
spersed with phrase structure building. Such systems
are thus not variants of transformational grammars but
are essentially distinct models that must be independent-
ly motivated. The only systems that we know to have
been based on generative transformational grammar the-
ory are REQUEST and SAFARI [29].

Models for the semantic interpretation of syntactic
structure are equally varied. The most commonly en-
countered “‘model” involves the issuance of calls to
semantic subroutines interspersed with syntactic analy-
sis, i.e., after the syntactic structure of certain types of
phrases is obtained. SHRDLU’s semantic component op-
erates in this fashion. Another frequently employed mod-
el is that used by Irons in 1961 for ALGOL to assembly
language translation [37]. In this model a translation
rule is associated with every production of a syntac-
tic component phrase structure grammar. These transla-
tion rules are applied from the bottom of a tree up to its
root, and each rule assigns a “translation” to a nonter-
minal node as some function of the translations of its
immediate descendent nodes. The Irons translation
mechanism is thus seen to be similar to the use of Katz
and Fodor’s semantic projection rules [38] with respect
to the way that both traverse the nodes of a tree, assign-
ing translations (readings) to subtrees in the process.
Both REL and NLP use this basic method of tree traversal
as well. Note that it is not necessary to first find a syntax
tree and then traverse it for the purpose of interpreting

IBM J. RES. DEVELOP.

its meaning. Interpretation can be carried out on sub-
trees prior to connecting them in a complete syntactic
surface structure. NLP works in the latter fashion, and
REL can optionally be operated that way too. The re-
suiting systems resemble SHRDLU with respect to the
way in which they interleave syntactic and semantic
processing. SHRDLU is less rigid about the order in which
the surface tree is implicitly traversed, but it is corre-
spondingly weaker about making any claims concerning
the nature of all languages and the way they are under-
stood.

A variation of the frons model due to Knuth [39] is
the approach to semantic interpretation used in RE-
QUEST. It differs from the Irons procedure in providing
for more than one ‘‘translation” to be associated with a
nonterminal node. These “‘translations” and the names
by which they are referenced are called values and attri-
butes, respectively. Whereas in the Irons procedure a
single translation rule is associated with every phrase
structure production, in the Knuth procedure a set of
translation rules is associated with every production.
Each Knuth translation rule assigns a value to a node N
by computing some function of the previously deter-
mined values of attributes associated with nodes in a
neighborhood of N (where a node and its immediate
descendent nodes are said to be in the same
neighborhood). By means of the Knuth translation pro-
cedure the values of attributes can be passed down a
tree as well as up a tree, and, hence, it is possible to
translate a subtree differently depending on the larger
context in which it occurs.

Still a different semantic component is used by Woods
and Kaplan [15, 16], an adaptation of the semantic in-
terpretation procedure presented by Woods [40]. In this
procedure use is made of semantic rules that consist of
tree fragment templates, which are the basis for pattern
matching to determine rule applicability, and actions,
which specify how semantic interpretation is to be ac-
complished. These actions take the form of schemata
into which the interpretations of embedded constituents
are inserted before they are evaluated. The value result-
ing from such an evaluation constitutes the semantic in-
terpretation of the syntactic structure tree node corre-
sponding to the semantic rule in question.

The better the syntactic component is in assigning
structures that reflect underlying meaning, the easier is
the task of the semantic component in translating those
structures into computer-interpretable form. From this
tradeoff in complexity one would expect to find rela-
tively simple semantic components used in systems that
expend considerable effort on computing good syntactic
structures, and conversely. Surprisingly, however, there
are several instances where simple semantic components
have been coupled with weak syntactic components,

JULY 1976

which suggests that many systems are incapable of mak-
ing up for syntactic shortcomings by means of increased
semantic capability. We comment on this further in a
later section when we consider the difficulties posed by a
specific query.

Intermediate structural and semantic represen-
tations

Another way of comparing different language under-
standing systems is to discuss the different structural
representations of input sentences that they employ.
Descriptive phrases are not too useful in this regard
because, for example, structures referred to as “deep
structures” in one system may be closer to the surface
structures than to the ““deep structures” in another sys-
tem. We do not discuss this topic in depth here, but we
mention some of the intermediate structures for input
sentences that are used in the five systems previously
discussed.

Lsniis directly assigns deep structures to sentences
by means of an ATN grammar, and then its semantic
component maps them to a semantic representation
made up of quantified functions and propositions. RE-
QUEST has explicit surface structures that are mapped
into underlying structures more abstract (i.e., deeper)
than those of LSNLIS by means of its transformational
component. These underlying structures are, in turn,
mapped by a semantic component into logical forms that
consist of quantified propositions together with expres-
sions denoting sets (either extensionally or intensionally
represented). In evaluating these logical forms the LisP
interpreter calls functions required for such purposes
as data base retrieval.

SHRDLU does not explicitly produce either deep or
surface syntactic structure, but at least implicitly defines
surface structure. By executing semantic routines that
are called in tracing through surface structure, PLANNER
[41] expressions are built up. These expressions are, in
turn, evaluated by a separate PLANNER system. PLANNER
is a goal-oriented procedural language that was designed
to represent information and make inferences based on it.

REL assigns structure that is basically surface struc-
ture but that can be and in some cases is deeper than
surface structure. Kay’s general rewriting system parser
[42] is used to obtain it. Depending upon the user’s
preference, semantic subroutines that can completely
interpret subtrees can be called during the course of
parsing or, alternatively, intermediate output can be
produced and later evaluated after parsing is complete.
This intermediate output takes the form of a sequence of
semantic subroutines to be executed and an indication of
their arguments.

In the NLP system, surface structure is implicitly
traced, and an Irons type of translation mechanism is

321

NATURAL LANGUAGE SYSTEMS

322

S. R. PETRICK

invoked to produce a deeper structure that takes the
form of sets of attribute-value pairs linked together in a
semantic network. The network represents internal rela-
tions within single sentences and also certain relation-
ships that go beyond single sentences such as the se-
quence in which actions contained in sentences are to be
carried out. The network can be mapped back into a
sequence of English sentences or, when problem speci-
fication is complete, into an appropriate Gpss program
for subsequent execution.

Inherent difficulties of natural language under-
standing

In order to illustrate some of the difficulties of natural
language understanding let us consider the query

(Q) Were GE’s earnings greater than IBM’s in 19737

We understand this to refer to the amount of money that
the General Electric Company earned in 1973 and to the
amount of money that IBM earned in 1973, and we fur-
ther understand the query to request information as to
whether the former amount is larger than the latter
amount. Notice, however, that in the query as written,
“earnings” is missing from its understood position after
“IBM’s.” In addition, “1973,” which logically qualifies
the year of both GE’s and IBM’ earnings, appears in
only one place, at the end of the question.

As discussed more fully in Plath [12], question-an-
swering systems whose syntactic component is a phrase
structure grammar of any kind are hard put to account
for the underlying meaning relationships from the scram-
bled and incomplete form that natural language input
queries frequently take. Phrase structure grammar-based
systems must decode intended meaning from surface
structures —trees whose debracketizations are input
queries and whose structure reflects the hierarchical
grouping of the words and phrases of those queries. It is
well known that the semantic interpretation of sur-
face structure is extremely difficult. Wild ambiguity
of surface structures assigned to unambiguous sen-
tences is simply a special case of the general lack of
correspondence between surface structures and in-
tended meaning.

The structural descriptions that a phrase structure
grammar would undoubtedly assign to query (Q) would
probably analyze “GE’s earnings” as a noun phrase,
“IBM’s” as another noun phrase, and “in 1973” as a
prepositional phrase. At least two assigned structures
might be expected, one in which the prepositional phrase
combines with its adjacent noun phrase to make up the
larger noun phrase “IBM’s in 1973 and one in which
the prepositional phrase is attached to a higher node,
perhaps the root of the tree. We note that interpretation

of the two noun phrases poses a problem, because infor-
mation needed to determine their referents is not includ-
ed in their assigned structures. The structure corre-
sponding to “GE’s earnings” is missing information as to
the year in question, and the structure corresponding to
“IBM’s” is not only missing the year but also the fact
that it denotes an earnings figure.

Any natural attempt to use the Irons bottom-to-top
semantic interpretation procedure on such structures
must fail. The noun phrases cannot be interpreted solely
on the basis of their surface structure, and the only re-
course is to avoid noun phrase interpretation altogether
until we are interpreting the top node. This defeats the
purpose of the Irons procedure, i.e., to interpret larger
phrases as a simple function of the interpretations of
their constituent phrases. The resultant top level inter-
pretation rule must be very complex; one noun phrase
lacks an essential piece of information and the other
lacks two such pieces. Recognizing that this is the case
is not easy, and simply providing surface structure does
not go very far toward solving the problem of how to
interpret this structure.

In view of the above difficulties we would not expect
to find a relatively simple Irons-type of semantic compo-
nent used in conjunction with a surface structure-based
syntactic component. Often, however, just such a com-
bination is found. REL and NLP are basically of this type.

Many systems avoid the problem of surface structure
interpretation by utilizing syntactic components which
assign structures to sentences that more adequately rep-
resent their meanings. Thus in REQUEST an underlying
(deep) structure is assigned to query (Q) in which a
verb “‘greaterthan’ relates two noun phrase structures;
the first of these represents “GE’s 1973 earnings” in a
form that can be paraphrased in English as “the quantity
of money X such that GE earned X in the year 1973,”
and the second represents “IBM’s 1973 earnings’’ simi-
larly.

Although many systems have recognized the necessi-
ty of a syntactic component that provides more ade-
quate structure than surface structure, the syntactic
structures that they do provide vary widely with respect
to the degree of their improvement over surface struc-
ture. A majority of these systems employ a few *‘trans-
formations™ to eliminate certain surface structure such
as that associated with passive sentences, but their re-
sulting “deep structures” still reflect a large number of
phrase structure productions and hence pose the same
semantic interpretation problems as the surface struc-
ture based systems.

In REQUEST we have placed relatively great emphasis
on producing underlying syntactic structure at a level of
abstractness that directly reflects meaning. In contrast,
even those other systems that attempt to produce struc-

IBM J. RES. DEVELOP.

tures that represent the successively embedded simple
declarative sentence structures advocated by transfor-
mational grammarians fall short of the level of abstract-
ness that we believe is called for. Consequently, they
must make up for this shortcoming with increased se-
mantic complexity. Often, the semantic corrections for
inadequate structure that are made work for simple
cases but are not sufficiently general.

A case in LSNLIS that seems to illustrate this situation
is Woods and Kaplan’s treatment of prepositional phras-
es. As we have seen, the correct association of preposi-
tional phrases with other structure is both difficult and
crucial. In discussing this problem Woods and Kaplan
write ([15], page 4.10), “It would be nice if the parser
provided a syntax tree in which the various prepositional
arguments of a noun phrase were attached directly to the
noun phrase where they make sense semantically, and
we have experimented elsewhere with a rudimentary
facility for using the information in the semantic rules to
guide the parser in the placement of prepositional modi-
fiers. In the present system, however, we have taken the
opposite tack and provided semantic rules which can
locate the necessary prepositional arguments even when
the parser has placed them in the wrong place.” Woods
and Kaplan also refer in several other places to inade-
quacies of modifier placement in their system. They
acknowledge ({15], page 5.6) that the information nec-
essary to achieve correct modifier position ‘‘is not in a
format which makes it conveniently available to the par-
ser for use in deciding where to put the prepositional
phrase,” and go on to say, “The parser in our present
system, therefore, places the modifier in the syntactic
parse tree as if it modified the ‘nearest’ possible con-
struction To compensate for this characteristic of
the parser, the semantic rules have been made smarter in
order to find the modifier . . . even though it appears as
a modifier of ‘breccias’ and not where it should be.”

The authors’ use of “smarter” in the previous sen-
tence might well be read as “‘longer and more complicat-
ed.” There is clearly a tradeoff between syntactic and
semantic complexity, and it is overall simplicity and
efficiency that are important. This must be kep* in mind
when critics of transformational grammar base« systems
claim they are too inefficient for practical consideration.
It is very difficult to compare the efficiency of different
systems due to disparity of the computers used, cover-
age achieved, size of data bases involved, etc., but these
factors must be taken into account, and the comparison
must consider complete systems due to the fact that the
relative share of the load borne by the syntactic and
semantic components of current systems varies widely.

A very limited exercise in comparing the LSNLIS and
REQUEST systems is described in the Appendix. It sug-
gests that the amount of computation required to pro-

JULY 1976

duce similar logical representations of input sentences in
LSNLIS and in REQUEST is comparable.

Future development

In light of our earlier observations concerning the pres-
ent dearth of natural language based systems of demon-
strable practical usefulness, it is reasonable to ask how
much time is likely to elapse before one or more such
systems have evolved to the point where a more con-
crete and conclusive assessment can be made of the
practical potential of this general line of development.
Based on current estimates for REQUEST, our best guess
would be that a period of about two to three years
would be required —one year to bring the system to the
point of readiness for testing with respect to its ability to
satisfy user requirements for a single, chosen applica-
tion, and at least a second year for system testing, modi-
fication, and enhancement leading to a stable version
that is well-engineered for easy communication with its
users. Although the resultant system should be appro-
priate for extensive testing and evaluation, it will by no
means be a production system. Such a possibility, if it
materializes, clearly lies still farther in the future.

Appendix: Comparison of LSNLIS and REQUEST pro-
cessing times

No comparison of processing times for two question-
answering systems is meaningful without taking into
consideration the coverage provided by those systems.
Although differing in certain respects the coverages of
LSNLIS and REQUEST are close enough that a comparison
of processing times required for sentences belonging to
their intersection is not ludicrous. The time for a full-
scale comparison was lacking, but we were interested in
at least obtaining a rough estimate of relative efficien-
cies. Four sentences were selected for which Woods has
supplied timing information in the appendix of a paper
[16]: 1) “How many lunar samples are there?,” 2)
“How many breccias do not contain FEuropium?,”
3) “How many samples contain chromite?,” and 4)
“Which rocks contain chromite and ulvospinel?.” Each
sentence was replaced by a sentence that differed only
lexically, and the modified sentences were run under
REQUEST. The sentences processed were 1) “How many
profitable companies are there?,” 2) “How many com-
panies do not produce gas?,” 3) “How many companies
sell computers?,” and 4) “Which people sold IBM and
Xerox?.” Both parsing time and interpretation time nec-
essary to produce a logical form suitable for evaluation
with respect to a data base are included in the times (in
seconds) given below. Times required for this evalua-
tion were excluded, however, because they depend on
the sizes of the data bases. Although the last three RE-
QUEST sentences refer to information that is not included

323

NATURAL LANGUAGE SYSTEMS

Table 1 Sentence processing times required by LSNLIS and REQUEST.

LSNLIS LSNLIS Total REQUEST REQUEST Total
Sentence Parsing Interp. LSNLIS Parsing Interp. REQUEST
time time time time time time
1 2.039 5.152 7.191 2.814 0.200 3.014
2 6.272 8.593 14.865 2.956 0.279 3.235
3 3.579 8.277 11.856 2.768 0.269 3.037
4 7.743 9.782 17.525 2.189 0.219 2.408

324

S. R. PETRICK

in the REQUEST data base, it could easily be added if
such data were available. This is of no consequence
because evaluation time had to be excluded anyway for
the reason stated above.

The times obtained are shown in Table 1.

Both systems are programmed in LISP and run bn
paged time sharing systems, but the LISP systems, time
sharing systems, and computers in question are different.
LsnNiis is coded in BBN-LISP. It runs under the TENEX
time sharing system on a DEC PDP-10 Computer.
REQUEST is coded for the IBM Research LisP system
(version 124-4). It runs under the VM/ 370 time sharing
system on an IBM 370/ 168 Computer. To meaningfully
factor out those differences one must compare the speed
of the two LISP systems running on their respective
computers under their respective time sharing systems.
Although we have estimated the relative speed of the
two LISP systems in question on the basis of the best in-
formation available, we are not prepared to defend that
estimate; thus we leave this normalization to the reader.
We would expect, however, that after correcting for the
faster IBM system, the 1.SNLIS and REQUEST total times
would be roughly comparable.

Although caution is required because of the small
sample, these results cast doubt on claims of greater ef-
ficiency which have been made for augmented transition
network based systems over transformational gram-
mar based systems. Although current question-answer-
ing systems are perhaps too slow for production purpos-
es, their development is not being hindered by their
slowness. Those of us who have been working on RE-
QUEST have identified many ways of speeding it up, but
we have not done so because we believe that this is less
important at this time than developing the system to a
stage of proven utility.

References and notes
1. J. E. Sammet, “The Use of English as a Programming Lan-
guage,” Commun. ACM 9, 228 (1966).
2. 1. D. Hill, “Wouldn’t It Be Nice If We Could Write Com-
puter Programs in English or Would 1t?,” Compur. Bull.
16, 306 (1972).

3. V. E. Guiliano, “In Defense of Natural Language,” Pro-
ceedings of the ACM Annual Conference, New York,
1972, p. 1074.

4. C. A. Montgomery, “Is Natural Language an Unnatural
Query Language?,” ibid., p. 1075.

5. M. Halpern, “Foundations of the Case for Natural-Lan-
guage Programming,” AFIPS Conf. Proc. Fall Ji. Comput.
Conf. 29, 1966, p. 639.

6. W. C. Watt, “Habitability,” J. Am. Soc. Inf. Sci. 19, 388
(1968).

7. W. J. Plath, “Computational Linguistics and the Language
of Computation,” Research Report 3071, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1970.

8. R. F. Simmons, “Answering English Questions by Com-
puter: A Survey,” Commun. ACM 8, 53 (1965).

9. R. F. Simmons, “Natural Language Question-Answering
Systems: 1969,” Commun. ACM 13, 15 (1970).

10. W. J. Plath, “Transformational Grammar and Transforma-
tional Parsing in the REQUEST System,” Research Report
4396, 1BM Thomas J. Watson Research Center, Yorktown
Heights, New York, 1973. (to appear it A. Zampolli (ed.),
Computational and Mathematical Linguistics. Proceedings
of the International Conference on Computational Lin-
guistics, Pisa 27 VIII-1/IX 1973, Casa Editrice Olschki,
Firenze, Vol. 1.)

11. W. J. Plath, “String Transformations in the REQUEST Sys-
tem,” Amer. J. of Computational Linguistics, Microfiche
8, 1974.

12. W. J. Plath, “REQUEsT: A Natural Language Question-
Answering System.” /BM J. Res. Develop. 20, 326 (1976,
this issue).

13. S. R. Petrick, “‘Semantic Interpretation in the REQUEST Sys-
tem,” Research Report 4457, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, 1973. (to
appear in A. Zampolli (ed.), Computational and Mathe-
matical Linguistics. Proceedings of the International Con-
ference on Computational Linguistics, Pisa 27 VIII-
1/IX 1973, Casa Editrice Olschki, Firenze, Vol. I1.)

14. M. M. Zloof, “Query by Example: The Invocation and
Definition of Tables and Forms,” Research Report 5115,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1975.

15. W. A. Woods and R. M. Kaplati, “The Lunar Sciences
Natural Language Information System,” BBN Report
2265, Bolt Beranek and Newman, Inc., Cambridge, MA,
1971.

16. W. A. Woods, R. M. Kaplan, and B. Nash-Webber, “The
Lunar Sciences Natural Language Information System:
Final Report,” BBN Report 2378, Bolt Beranek and
Newman, Inc., Cambridge, MA, 1972.

17. F. B. Thompson, P. C. Lockemann, B. Dostert, and R. S.
Deverill, “REL: A Rapidly Extensible Language System,”
Proceedings of the Twenty-fourth National Conference of
the ACM, New York 1969, p. 399.

IBM J. RES. DEVELOP.

18.

20.

21.

23.

24,

25.

26.

27.

28.

29.

30.

31.

F. B. Thompson and B. H. Thompson, ‘““Practical Natural
Language Processing: The REL System as Prototype,”
Advances in Computers 13, edited by M. Rubinoff and
M. C. Yovits, Academic Press, New York, 1975, p. 109,

. T. Winograd, “Procedures as a Representation for Data in

a Computer Program for Understanding Natural Lan-
guage,” Project Mac TR-84, MIT, Cambridge, MA, 1971.
T. Winograd, Understanding Natural Language, Academic
Press, New York, 1972.

G. E. Heidorn, “English as a Very High Level Language
for Simulation Programming,” Proceedings of a Sympo-
sium on Very High Level Languages, SIGPLAN Notices
9,91 (1974).

. G. E. Heidorn, *Automatic Programming Through Natural

Language Dialogue: A Survey,” IBM J. Res. Develop. 20,
302 (1976, this issue).

G. E. Heidorn, “*Augmented Phrase Structure Grammars,”
Theoretical 1ssues in Natural Language Processing, edited
by R. Schank and B. L. Nash-Webber, June 1975, p. 1.

C. Kellogg, “A Natural Language Compiler for Online
Data Management,” AFIPS Conf. Proc. Fall Jt. Comput
Conf. 33, Part 1, p. 473.

C. Kellog, J. Burger, T. Diller, and K. Fogt, “The Con-
verse Natural Language Data Management System: Cur-
rent Status and Plans,” Proceedings of the Symposium on
Information Storage and Retrieval, ACM, New York,
1971, p. 33.

R. F. Simmons, J. F. Burger, and R. M. Schwarcz, “A
Computational Model of Verbal Understanding,” AF/PS
Conf. Proc. Fall Jt. Comput. Conf. 33, Thompson Book
Co., Washington, p. 441.

D. B. Loveman, J. A. Moyne, and R. G. Tobey, “Cue: A
Preprocessor System for Restricted, Natural English,” Pro-
ceedings of the Symposium on Information Storage and
Retrieval, ACM, New York, 1971, p. 47.

I. Batori, “LIANA —Ein Deutschsprachiges Frage-Ant-
wort-System,” submitted for publication to Linguistische
Berichte.

D. E. Waiker, “SAFARI: An On-Line Text Processing
System,” MTP-69, the MITRE Corp., Bedford, MA, 1967.
W. A. Woods, “Transition Network Grammars,” Natural
Language Processing, edited by R. Rustin, Algorithmics
Press, New York, 1973, p. 111.

J. H. Wolfe, ““An Aid to Independent Study Through Auto-
matic Question Generation (AUTOQUEST),” NPRDC
TR 76-18, AD-A017 059, Navy Personnel Research and
Development Center, San Diego, CA, 1975.

JULY 1976

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

J. A. Craig, S. C. Berezner, H. C. Carney, and C. R.
Longyear, “DEACON: Direct English Access and Con-
trol,” AFIPS Conf. Proc. Fall Jt. Comput. Conf. 29, 1966,
p. 365.

Habitability of a computer-interpretable language is a term
coined by William Watt (see reference [6]) to indicate the
ability of users to stay within the limits of that language
while expressing themselves productively.

W. G. Howe, V. J. Kruskal, and I. Wladawsky, “A New
Approach for Customizing Business Applications,” Re-
search Report 5474, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1975.

M. Hammer, W. G. Howe, V.J. Kruskal, and I. Wladawsky,
“A Very High Level Programming Language for Data
Processing Applications,” Research Report 5583, 1BM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1975.

See references [10~12] for a discussion of the coverage
provided by REQUEST. We have not yet achieved enough
coverage to consider the habitability of our present English
subset.

E. T. Irons, “A Syntax Directed Compiler for ALGOL
60,” Commun. ACM 4, 51 (1961).

J. A. Katz and J. J. Fodor, “The Structure of a Semantic
Theory,” The Structure of Language: Readings in the Phi-
losophy of Language, Prentice-Hall, Englewood Cliffs, NJ,
1964, p. 479.

D. E. Knuth, “Semantics of Context-Free Languages,”
Math. Sys. Theory 2, 127 (1968).

W. A. Woods, “Procedural Semantics for a Question-An-
swering Machine,” AFIPS Conf. Proc. Fall Jt. Comput.
Conf. 33, 1968, p. 457.

C. Hewitt, “PLANNER: A Language for Proving Theo-
rems in Robots,” Proceedings of the International Joint
Conference on Artificial Intelligence, edited by D. E.
Walker and L. M. Norton, 1969, p. 295.

M. Kay, “Experiments with a Powerful Parser,” Proceed-
ings of the Second International Conference on Computa-
tional Linguistics, Grenoble, France, August, 1967.

Received April 2, 1975, revised March 5, 1976

The author is located at the IBM Thomas J. Watson
Reaearch Center, Yorktown Heights, New York 10598.

325

NATURAL LANGUAGE SYSTEMS

